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This review is devoted to a systematic exposition of theoretical and experimental results related to the
physics of cylindrical magnetic domains (bubbles). The stability problem is discussed for an individual
cylindrical domain and for a lattice of such domains, with allowance for the effect of the coercivity on the
stability and dynamics of cylindrical domains. A detailed discussion is given of the laws of motion of
cylindrical magnetic domains under the influence of inhomogeneities of magnetic field, temperature, and
plate thickness. Phase transitions in a lattice of domains are considered, and the singularities of the
magnetization and magnetic susceptibility in such phase transitions are determined. A theory is given for
waves propagated in a lattice of domains. Detailed consideration is given to the effect of external factors
and of the parameters of the magnetic material on the dynamical properties of a lattice of domains.
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INTRODUCTION turn character of the motion of electrons in a solid.

Investigation of the magnetic phenomena and processes in addition to exchange interaction, the magnetic an-
that lead to magnetization of matter has its roots in ex- isotropy energy exerts a significant influence on the
treme antiquity.1' Modern scientific descriptions of magnetic properties of materials', this is energy that
the physics of magnetism are based on ideas that origi- depends on the orientation of the magnetic moments of
nated after the creation of quantum mechanics. The the atoms with respect to the crystallographic direc-
first quantitative theory of magnetism, based on the con- tions. This energy was first studied by Akulov.173 In-
cept of the existence of a "molecular field," was con- vestigation of the interaction of variations of the mag-
structed by Weiss in 1907,B] The nature of this field was netic moments of the atoms with variations of the lattice
revealed only in 1927-1928, after the fundamental work had its beginning with works of Akulov^andHeisenberg.1-93

of Heisenberg»! Dorfman,^ and Frankel ™ As a result n l s ^ ^ ^ , ^ t l c a J 1 o r d e r e d b o d i e s o f

of these investigations it became clear that the interac- f . n U e d i m e n s i o n s a s a n l a d o m a i n s t r u c .
tion of atomic magnetic moments wi h Weiss s molec ^ m0)jn e a c h o f ^ d o m ^ t l z a t i o n i s

ular field is an approximate description (quite good) of ^ ^ ^ ^ i t u d e ^ i n ' d i r e c t i o n . ^ t r a n s i .
the more complicated atomic exchange interaction, ^ f r o m o n e d o m a i n t Q ^ ^ d i r e c t i ( m o f ^
which is of electrostatic nature and is due to the quan- m a g n e t i z a t i o n c h a n g e s a b r u p t l y . T h e i d e a o f a d o m a i n

'• structure was introduced by WeissC33 to explain the pro-

I'lnteresting and complete historical sketches on magnetism c e s s e s o f magnetization and demagnetization of ferro-
may be found in the monographs of Vonsovskiim and of magnets. An important step in the study of domains was
Mattis.121 taken by Bloclr103 and Neel,cll:who found the law of varia-
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tion of the magnetization within a domain wall, deter-
mined the energy stored in the boundaries between the
domains, and showed that the change of magnetization
direction occurs over distances that are small in com-
parison with the dimensions of the domains but large in
comparison with the interatomic distances.

In the fundamental work of Landau and Lifshitztl2] it
was shown that the formation of a domain structure in a
crystal corresponds to a decrease of the total energy of
the specimen by virtue of a decrease of the energy of
magnetic dipole interaction. The domain dimensions
are determined by competition between the energy of
magnetic dipole interaction and the energy necessary
for domain boundaries. Their work gave a powerful
push to investigations of domain structure. It soon be-
came clear113'14-1 that domain structure (especially at the
surface of the body) is very complicated, and that its
specific form is strongly influenced not only by the ori-
entation of the surface with respect to the crystallo-
graphic axes, but also by the purity of the surface, sur-
face deformations, etc. Important results relating to
the magnetization curve were obtained in papers of
Akulov,cl5] Kondorsky, α β ] Bitter,cl7] v. Hamos and
Thiessen,[18] Kersten,I19] Bozorth,C2b] and others.

In1·153 it was shown that the magnetization process is
due, in weak fields, to displacement of the domain
boundaries, such that the component of the magnetic
moment in the direction of the magnetic field increases;
and in strong fields, to processes of rotation of the mag-
netic moment into the direction of the external magnetic
field.

Inci5,18,17] t n e u s e o f p o w cjers to fix the positions of
domain boundaries was proposed, and the method of
investigation of domain structures by means of powder
patterns (the Akulov-Bitter method) was developed.

jn[ie,i7] a t n e o r y was given for interaction of domain
walls with crystal defects, and the nature of the coer-
cive force was thereby explained. Under the,influence
of an external magnetic field, there occurs a simplifica-
tion of the domain structure by virtue of the natural
diminution of those domains in which the magnetization
is directed opposite to the external magnetic field. It
was established that simplification of the domain struc-
ture is accomplished also by virtue of a decrease of the
thickness of the walls, which possess considerable
magnetic anisotropy. During the last decade, very
diversified methods have been applied to the study of
domain structures (optical, electron-diffraction, neu-
tron-diffraction, etc.). An important contribution to
the development of these trends has been made by Soviet
scientists S. V. Vonsovskii, L. V. Kirenskii, R. V.
Telesin, Ya. S. Shur, and others.

The first systematic investigations of magnetic do-
mains in thin films, located in an external magnetic
field, were made by Kooy and Enzc20] and by Kaczer and
Gemperle.t21] In these researches it was shown that
under the influence of an external magnetic field, the
usual stripe domain structure becomes unstable, and
stripes in which the magnetization is directed opposite
to the field break up into "drops" of circular shape. In

thin films, these "drops" correspond to right circular
cylinders extending through the whole film; the mag-
netization within a cylinder is directed opposite to the
external field.

Notable features of these domains, which are called
in our literature cylindrical magnetic domains (CMD)
and in the foreign literature "bubbles," are their high
mobility and their small size (down to microns).

BobeckC22] called attention to the fact that these prop-
erties of CMD can be used for transmission and re-
cording of information in computers. His work0221 ful-
filled the role of an extraordinary trigger for a boom in
investigations of CMD, both of fundamental and of ap-
plied character (but more of the latter). At present the
total number of articles of CMD is about a thousand;
they are dispersed among journals of various kinds,
including very specialized ones. At the same time, a
whole series of questions on the physics of CMD is of
general interest. Such questions include primarily the
problem of the stability of an individual CMD, the de-
pendence of the dimensions of CMD on the magnetic
field, the dynamics of an individual CMD, the problem
of interaction of CMD with each other and formation of
plane lattices of CMD, waves in CMD lattices, and a
number of other problems.

The experimental and theoretical results so far ob-
tained are in fair agreement and encourage confidence
that understanding has been achieved of the fundamental
laws of formation, existence, dynamics, and collective
properties of CMD.

The present paper is a review of the foundations of
the theory and of the most important experiments on
CMD. The review is divided into two parts; in one of
these (the first), the results of investigations of the
static and dynamic properties of isolated CMD are pre-
sented; in the other, the properties of CMD lattices are
discussed. Finally, the first section of the review
serves to remind the reader of the fundamental concepts
of the physics of magnetically ordered crystals; it may
be omitted by those for whom employment in the physics
of magnetism is a profession.

1. ENERGY OF A FERROMAGNET. DOMAIN
BOUNDARIES

For description of the domain structure of ferromag-
nets and ferrites, the concepts of the phenomenological
theory of magnetism are sufficient. According to these
concepts (seetl]'C23~35:l), the state of a ferromagnet is
described by specifying the local magnetic-moment den-
sity (the local magnetization) M(r). The free-energy
density can be represented as a series in powers of the
magnetization and its derivatives. The ground state of
a ferromagnet corresponds to a magnetization uniform
over the whole body. Therefore if we are interested in
the energy of states close to the ground state, it is
appropriate to suppose that these states correspond to
small nonuniformities of the magnetization. On the
strength of these considerations, we shall represent the
free-energy density of a magnet, w, in the form
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In this formula, the first term is the energy of exchange
origin due to inhomogeneities of magnetization; A is an
exchange constant (A>0), equal in order of magnitude
to A**.c?(Tc/vBM)Mz, where κ is Boltzmann's con-
stant, Tc is the Curie temperature, μΒ is the Bohr
magneton, and a is the lattice constant.

The second term in formula (1.1) is the magnetic-
anisotropy energy; Kt is the first magnetic-anisotropy
constant (Kt> 0), and θ is the angle between the axis of
easy magnetization and the magnetization direction.

The third term is the Zeeman energy, and the last
term is the energy of the field produced by the magnetic
moments of the atoms (the energy of magnetic dipole
interaction). The field Hm is determined by the equa-
tions of magnetostatics and the boundary conditions on
the surface of the body. The ground state is the state
that corresponds to the minimum of the total energy of
the body

W--•I ID dV. (1.2)

This minimum must be sought under the supplementary
condition M2 = const. This supplementary condition re-
flects the fact that the magnetization of a ferromagnet
is of spin character. The atomic spins change in mag-
nitude only upon change of the electronic shell, which
requires energies considerably exceeding the thermal
energy at temperatures below the Curie temperature.

We consider first the simplest case, in which the ex-
ternal magnetic field is absent and the field Hm also
vanishes (we shall discuss later the conditions under
which Hm=0). Then in the expression (1.1) there re-
main only the first two terms. Supposing for simplicity
that the changes of the magnetization direction occur in
some fixed plane (for example the plane zov), so that
Mx = 0, My = Msin0, Mc=Mcos6, and that the angle Θ de-
pends only on the coordinate x, we rewrite expression
(1.1) in the form

β-£. (1.3)

On varying this expression with respect to the angle Θ,

we find

(1.4)

tinguish directions as "up" or "down," while the third
solution corresponds to a maximum of the anisotropy
energy.

Besides the uniform solutions (1.5), a nonuniform so-
lution of Eq. (1.4) also exists. The first integral cor-
responding to it has the form*'

2 — sinJe=const. (1.6)

Following Bloch, we shall treat the nonuniform mag-
netization distribution as a transitional distribution be-
tween two uniform solutions with θι = 0 and θζ = ν, which
occupy the regions in the body with χ = + «> and χ = - »
respectively. In order that the condition (1.6) may de-
scribe this transition layer, it is necessary to set the
constant of integration equal to zero. On integrating the
first-order equation thus obtained, we findcl0:

tg4 = exp(-JL). (1.7)

The quantity ζΒ obviously has the meaning of thickness
of the transition layer; or, as it is usually stated,

'B-VT; (1.8)

is the thickness of the Bloch boundary between domains
(see Fig. 1). This thickness is directly proportional to
the square root of the ratio of the exchange energy to the
anisotropy energy. On using the estimate for A and
noting that for most films Kt= βΜζ, where 3»10-100,
we obtain for zB the following estimate: ζΒ»^/Τ0/ββΒΜα
»(10 to 100)a; that is, the thickness of a Bloch wall
amounts to ten to a hundred interatomic layers.

We shall now discuss the conditions under which a
Bloch wall occurs. By noting that Mx = 0, M5l = Msin9,
Mt=Mcos9 and that θ = θ(χ), one can easily show that
divM = 0. Therefore to find the field Hm one must start
from the equations divHm = 0, rotHm = 0. In conjunction
with zero boundary conditions, which are realized for
example in a plate with surfaces parallel to the plane
zoy, this gives Hm = 0.

In the general case, the magnetization distribution in
a specimen is determined from the equations11·1

rot H

+ Η, + ΛΤ,Λ/-5 η (ηΜ) + λΜ = 0,

= 0, divHm = — 4π div M,

(1.9)

where H, =H0

ditions3 )

Hm, and the corresponding boundary con-

where (1.9')

We see that this equation has three uniform solutions:

ί · .

The first two of these correspond to two equal minima
of the magnetic anisotropy energy, in accordance with
the fact that the axis of easy magnetization does not dis-

the indices η and t denote components normal and tan-
gential to the interface, the upper indices i and e denote

2'This integral becomes especially lucid if we consider u> as
the Lagrangian function w=L=T-U with kinetic energy Τ
=ΛΘ2 and potential energy L =-Ksin2e.

3)The Lagrangian multiplier λ takes account of the condition
Λί2 = const.
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FIG. 1. a) Bloch wall; b) Neel wall.

the fields inside and outside the body.

The system of equations (1.9) is called the "micro-
magnetic" equations, and in the general case their solu-
tion is a very complicated problem. Therefore one usu-
ally does not solve the system of equations (1.9) but,
with the aid of Bloch walls, selects various domain
structures and, following"*3, uses the parameters of
these structures as variational parameters.

We shall present one other solution of the system (1.9)
in an infinite body; like the distribution (1.7), it de-
scribes the transitional layer between regions with θχ = 0
and θζ = IT. As before, we set

Μ cos9, My = Μ sin Θ, (1.10)

but now

θ = θ (y).

With this choice of the dependence of the magnetization
on the coordinates, the equations of magnetostatics take
the form

dy

Hence

dy

= 0,

dy
- = 0, dHm

dy
- = 0.

— ίπΜ sin θ (y).

(1.Π)

(1.11')

The choice of the solution (1.11') for the magnetic field
corresponds to the boundary condition that the magnetic
field vanishes far from the domain boundary. On substi-
tuting (1.11') in (1.1), we get

A (-^) (1.12)

This expression differs from (1.3) by replacement of χ
by y and of Kx by Kx + 2itMz. Therefore

where

(1.14)

This distribution of the magnetization in the transitional
layer between domains was found by Ne"el, and the "wall"
corresponding to it is called a Neel wall. The quantity
zs has the meaning of width of the Noel transitional
layer (see Fig. 2b). In contrast to the Bloch wall, the
Neel wall has on it local magnetic charges, whose den-
sity is pm = divM = M(sin29)/zll. It is easy to see that
pm= 0 for y — ± =o. Therefore the formation of N6el walls
entails the occurrence also of a magnetic field Hm. The
formation of Neel walls turns out to be preferable in
thin films. The distribution (1.13) found by N6el plays
a fundamental role also in the theory of CMD. Knowing
the distributions (1.7) and (1.13) and using (1.3) and
(1.12), one easily finds the energy σ per unit surface of
a domain boundary:

VAK, for a Bloch boundary,

for a №el boundary.
(1.15)

The larger value of the surface energy for a N6el bound-
ary is due to the presence in it of a magnetic field Hm.

We shall state briefly the results of this section. The
thickness of a domain boundary is a macroscopically
small quantity. The magnetization distribution in a wall
is of exponential character. These facts enable us to
treat the transitional layer as infinitely thin, with a def-
inite surface energy.

2. DOMAIN STRUCTURE AND ITS RESPONSE TO AN
EXTERNAL MAGNETIC FIELD

As has already been mentioned in the introduction,
the domain structure of real specimens may be very
complicated. The variety of forms of domain structure
and its "easy vulnerability" to external influences are

ε β

2000

b
H, Oe

4OOO

FIG. 2. a) Plane-parallel domain structure in a plate (dx is
the dimension of a domain in which the magnetization is direct-
ed along the field, d2 of one in which the magnetization is di-
rected opposite to the field); b) theoretical curve and experi-
mental points determining the dependence of the period of the
domain structure on the magnetic field.
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due to the fact that it is formed because of weak mag-
netic dipole interactions. Nevertheless, a number of
general properties of domain structure can be analyzed
quite simply. We shall first consider, for the example
of a plane-parallel plate, the problem of the mean di-
mensions of the domains. We shall suppose that the
plate has a rather large magnetic anisotropy energy,
K1>AvMt, and an axis of easy magnetization (the ζ
axis) perpendicular to the plate surface. Let there be
Ν domains per unit length along the χ axis, so that the
distance between them is d; then if d is much smaller
than the plate thickness h, the magnetic energy can be
expressed in the form

g = ohLv If- (2.1)

In this expression, aLvh is the energy associated with a
single domain boundary, hjd is the number of domain
boundaries in the specimen, ξΛί2d} L,« /(Η£/8π)dV is
the energy of magnetic dipole interaction associated with
a single domain (the field Hm~ Μ is concentrated in a
surface region with dimensions dz in the plane zOx and
extending along the domain walls, that is over a distance
Ly), and ξ is a numerical factor of order of magnitude
unity. The minimum of the energy (2.1) occurs for do-
main dimensions of the order

(2.2)

The conclusion that the domain dimensions increase
with the linear dimensions of the specimen is in good
agreement with experimental data. The relation (2.2),
however, becomes incorrect both for specimens of suf-
ficiently small dimensions and for bulk specimens. If
the linear dimensions of the body are less than a char-
acteristic length Ζ = σ/4πΜ2 for the magnetic energy,
then formation of domain walls in it becomes so un-
favorable that domains do not occur. Specimens of
these dimensions are magnetized uniformly. In speci-
mens of large dimensions, there begins a branching of
the domain boundaries at the surface, and the depen-
dence d~h1/z changes to the slower dependence d~hV3.a31

Under the influence of an external magnetic field
there is a change not only of the dimensions of those
domains in which the magnetization is directed opposite
to the field, but also of the period of the domain struc-
ture. The change of both these quantities was investi-
gated, both experimentally and theoretically, in[ 2 0 '2 l ] .
The results are shown in Figs. 2a and 2b. At fields
Η0*4ττΜ, when the width of a domain magnetized oppo-
site to the field becomes sufficiently small (of order l),
instability of the stripe domain occurs, a n and the long
stripe domain breaks up into separate cylindrical do-
mains of circular cross section. Because of the mag-
netic dipole repulsive force, they separate from each
other and distribute themselves more or less uniformly
over the whole surface of the plate. This phenomenon
was first observed int20:i. The dimensions of the do-
mains thus formed are tens of microns. A hexagonal
lattice of cylindrical domains was discovered in№U.
The properties of CMD show up most clearly in thin

magnetic plates of thickness h~l. The dimensions of
CMD in such plates are of the same order as the thick-
ness of the plate.

3. ENERGY AND EQUILIBRIUM DIMENSIONS OF A
CYLINDRICAL MAGNETIC DOMAIN

In this section we shall consider the static properties
of an individual CMD; that is, we shall suppose that the
distance between the domains is much larger than the
radius of a domain and that their interaction may be ne-
glected.

In a monocrystalline, magnetically uniaxial plate
(film) of thickness h, with the plane of the surface per-
pendicular to the axis of easy magnetization (AEM),
along which is directed an external magnetic field of in-
tensity Ho, coinciding in direction with the ζ axis, let
there be an isolated CMD (Fig. 3). We shall find the
change of energy of the plate caused by formation of the
domaint27>28:i. What energies must be taken into account
can be easily understood by starting from the following
qualitative considerations. The presence of domain
walls leads to a positive energy Ev due to them. The
value of Ew is proportional to the area of the domain
boundaries, so that the domain will strive to decrease
its dimensions in order to decrease Ew as much as pos-
sible. But decrease of the dimensions of the CMD
leads to increase of the energy Eu of magnetostatic di-
pole interaction, which is unfavorable. In the absence
of an external magnetic field, the necessity for decrease
of EM will lead to a spreading and distortion of the CMD.
In order that this may not occur, there must be an ex-
ternal magnetic field directed opposite to the magnetiza-
tion of the CMD. A gain in the energy of magnetization
in this field obviously occurs on compression of the
CMD. Thus the equilibrium dimensions of the CMD are
determined by competition between the energy of mag-
netostatic interaction, on the one hand, and the energy
of the domain walls and the energy of magnetization in
the external magnetic field, on the other.

For the further discussion, we make the following
simplifying assumptions:

a) The ferromagnetic plate is infinite in the plane
perpendicular to the ζ axis. This permits us to suppose
that all positions of the CMD in the plane of the plate
are equivalent. In other words, when the CMD is dis-
placed in the plane of the plate, its energy does not
change (translational invariance).

b) The thickness of the domain boundary is much
smaller than the domain dimensions, and its energy σ
per unit area is independent of the curvature of the do-
main wall, of the coordinates, and in a monocrystalline

FIG. 3. Cylindrical mag-
netic domain.
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TABLE I. Films of

Film
material

Tb2.4Er0.6Fe5O1 2

YjGa,Fe5^O,2,
0.4ίΐα.4

Ε u2E r G a 0 . 7 F e 4 i 3 O I 2

EuEr 2 Ga 0 . 7 F3 4 . 3 O, 2

G d 3-. T b Jt F e 5°12

Yj^FesO,,

rare-earth garnets for CMD devices.

Substrate
material

SmgGa5Oj2

Gd3Ga5O,2

Gd3Ga5O1 2

Gd3Ga5OI2

Gd3Ga5O1 2

Nd3GaO12

Gd3Ga5O,2

Orientation
in direction

(100)

(110)

(111)

(110)

(111)

(111)

(111)

Method of
preparation

Chemical
deposition

Chemical
deposition

Chemical
deposition

Epitaxy from
liquid phase

Epitaxy from
liquid phase

Epitaxy from
liquid phase

Epitaxy from
liquid phase

CMD
diameter,
μια

8

5-10

5-10

6-17

Charac-
teristic
length I,
Mm

1.0

5

5

0.7

2.2

Satu-
ration
magneti-
zation,
G

220

500

500

173

120

Anisot-
ropy
field,
Oe

4000

500

500

4000

6500

plate also of the orientation of its individual sections
with respect to the crystallographic axes.

c) The domain has the form of a right cylinder with
axis perpendicular to the plate surface (the curvature
of the walls along the axis vanishes).

d) The magnetization Μ at all points of the plate is
directed strictly along the ζ (or - z) axis.

Later we shall discuss the consequences of abandon-
ing some of these assumptions. Here, however, an-
ticipating a bit, we may say that the consequences of a
theory based on these assumptions agree well with ex-
perimental data. In particular, it is clear that fulfill-
ment of assumption d) requires materials with a suffi-
ciently large anisotropy constant. Table I shows values
of the anisotropy field and of the magnetization of vari-
ous materials. From this table it is evident that there
are a number of ferrites and ferromagnets in which the
anisotropy constant is sufficiently large. If the diam-
eter of the CMD is denoted by d, then obviously

(3.D

The calculation of the energy of magnetic dipole inter-
action is a somewhat more complicated problem than the
calculation of the surface energy of the CMD and of the
energy of magnetization in the external field Ho. This is
due to the fact that the energy Eu is not expressed di-
rectly in terms of the shape of the CMD and the mag-
netization but is determined by the field Hm, to find
which it is necessary to solve the appropriate magneto-
static problem. Without going into the solution of this
problem which is carried out in standard fashion,cl4]

we shall give the final expression for the energy Eu

mi:

EM = — {2nMfh?I (x), (3. 2)

where χ = d/h,

(3.3)

and Ji(y) is the first-order Bessel function. Thus for-
mation of the CMD entails the energy

Ε = (3.4)

To the minimum of the energy (3.4) corresponds a do-
main diameter determined by the relation

ί ι *ff dJ 0

ft "τ" fa.W dx ~
(3.5)

It was first obtained by Thiele.C27'283 Equation (3.5) de-
termines the dependence of the CMD diameter on the
value of the magnetic field, the plate parameters, and
the characteristics of the material. The function
d=d(H) is shown in Fig. 4. Since the function /(*) con-
tains no parameters and Η*4πΜ, it follows from (3.5)
that ΛΓ« (/A)? or d~ ξΐ (ξ is a numerical parameter of
order of magnitude 1 to 10); that is, the dimensions of
equilibrium CMD are of the same order as I (or an or-
der or two larger than I). Equation (3.5) is a necessary
but by no means a sufficient condition for a minimum of
the CMD energy. In order to clarify the sufficient con-
ditions for a minimum of the CMD energy, it is neces-
sary to consider the stability of the CMD with respect
to small deformations of its generators. Here one must

100

JO

Unstable

FIG. 4. a) Dependence of CMD diameter on magnetic field;
b) dependence of diameters for collapse and for elliptic insta-
bility on the ratio hi I.

303 Sov. Phys. Usp., Vol. 20, No. 4, April 1977 Bar'yakhtar et al. 303



expect at least two variants of the onset of instability of
the CMD. The first of these should bound the magnetic-
field range for existence of a CMD from above. Specif-
ically, in sufficiently strong fields the plate should be
magnetized uniformly; that is, CMD must disappear.
The fields at which collapse of the CMD occurs have
been named collapse fields, Hcol. The second variant
of instability is related to fields that bound the range of
existence of CMD from below. Specifically, in suffi-
ciently weak fields a stripe domain structure is stable.
Therefore there should be a field Hz at which the CMD
undergoes deformations that tend to convert it from a
circle to a figure elongated along some direction, for
example an ellipse. A detailed analysis carried out by
Thielef273 showed that, in fact, the collapse field and the
field at which the circular cross section of the CMD be-
comes unstable with respect to elliptic deformations are
the fields that bound the magnetic-field range in which a
CMD is stable. Figure 4 shows the variation of the col-
lapse diameter dtol = d(Hcol) and of the elliptic-instability
diameter dz = d(Hz) on the ratio l/h, and Fig. 5 shows
the variation of Hcol and of H2 with l/h.

An important quantity in the theory of CMD is the field
He at which the energy of the CMD vanishes. Figure 5
shows a graph of the variation of He with l/h.

In the above treatment, it was assumed that the thick-
ness zB of the domain wall is small in comparison with
the dimensions of the CMD. We shall consider the con-
ditions under which this approximation is possible.
First of all, it is evident from Fig. 4 that if,.o, as a func-
tion of the thickness has a minimum. This minimum
value of rfcol, which we shall denote by dcol<min, can be
calculated and is about 4Z; it occurs in plates of thick-
ness h = 3.3l. Thus for validity of the theory developed
above, it is necessary that over a wide range of speci-
men thicknesses dcoitmin»zB. If we use the fact that
zfl=VA/if,, this condition takes the form

(3.6)

TABLE II.

Hence it is evident that the above approximation is valid
if q is at least greater than unity; for the majority of
materials in which CMD are observed, this is satisfied
(see, for example, Table I). Values of Hcol and dwX

are given in Table Π.

Tu and Lin B e · ' 0 1 give results of a numerical calcula-
tion of the energy of a CMD with allowance for the finite
thickness of the domain wall. They show that the thick-
ness of the domain wall may exert a definite influence

FIG. 5. Variation of critical
fields with the ratio k/l.
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on the conditions for stability of a CMD. Thus with in-
crease of the domain-wall thickness the range of stabil-
ity of the CMD may broaden. This is due to the fact that
by considering the wall infinitely thin we actually over-
estimate the magnetostatic energy, and the total energy
of a specimen containing a CMD is found to be somewhat
higher than in the case of a CMD with a finite domain-
wall thickness. Investigations of the actual change of
the field interval in which CMD are stable were not car-
ried out i n E 9 · 3 0 1 , although it is possible that in some
cases these changes may prove important. This is due
to the fact that the total energy £ of a CMD is consider-
ably smaller than the separate energy contributions and
may prove sensitive to the small changes of these con-
tributions that result from allowance for the finiteness
of the domain-wall thickness.

ThieleC31] investigated the effect of a small anlsotropy
of the energy of domain walls on the static properties
of CMD; it was shown that the presence of this anisot-
ropy practically always leads to the result that the CMD
is not circular in cross section, but elliptic. This el-
lipticity is least pronounced near the collapse of the
CMD; it has practically no effect either on the collapse
field or on the diameter of the collapsing domain, and
it becomes increasingly noticeable with increasing dis-
tance from the collapse field. No conclusion can be
drawn, within the framework of the approximations,C28]

regarding the effect of this ellipticity on the elliptic-in-
stability field. But experimental data on plates of
TmFeOs (seeB 8 ]), in which the ratio of the anisotropic
part of the domain-wall energy to the isotropic amounts
to 3%, show that the decrease of the ratio of the col-
lapse field to the elliptic-instability field caused by
anisotropy of the domain-wall energy does not exceed
1%.

We note finally that allowance for the interaction of
the field of the CMD with the plate boundaries may exert
an appreciable influence on the stability range of the
CMD.L 3 2 i This influence can be estimated most simply
for a disk on whose center there is a CMD. The cor-
responding calculationsC38: show that the range of exis-
tence of CMD broadens and that elliptic instability may
not show up down to field H=Q. Thus the magnetic-field
range for existence of CMD is bounded and determined
by the exchange length and the plate thickness. In
strong fields the domains collapse; in weak fields they
change to stripes.

4. EFFECTS OF DEFECTS ON THE STABILITY OF
CYLINDRICAL MAGNETIC DOMAINS

Defects (dislocations, magnetic and nonmagnetic in-
clusions) that are present in materials with CMD may
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have an effect on the dynamics of the CMD, and also on
their static properties. The problem of the interaction
of the domain wall of a CMD with defects is very impor-
tant and was already being considered in one of Thiele's
first papers . [ 3 1 : By the force of interaction of a do-
main boundary with defects we may understand the field
that must be applied in order to tear it away from the
defect. In general, this quantity will be a function of
the point; but if, for simplicity, we suppose that the
crystal contains defects of a single kind distributed uni-
formly, then the field mentioned can be identified with
the coercive force # c o e r , which is characteristic of the
whole specimen. A treatment of the stability conditions
of a CMD in this case can be carried out by a method
similar to that used in treatment of the conditions for
growth of nuclei of reverse magnetization/293

First of all, we note that defects exert on domain
walls an influence analogous to the action of frictional
forces, since either increase or decrease of the domain
dimensions has a braking effect. Therefore a CMD
will be unstable if the force - dE/dr produced by change
of the domain dimensions is larger in absolute value
than the force of "friction," which according to the
assumptions made above can be represented in the form
2irrhMHCMr. Contrariwise, stability of the CMD re-
quires" 3 3

here Ε is determined according to (3.4). Using this,
we find that the range of stable CMD dimensions is in-
cluded between the curves d± (H), which can be con-
structed by numerical solution of the equations

I . d H±

4πΛί
— " - 0 .

dx
(4.1)

Then d±(H) are the solutions of the equation with
Η + HcotT and Η - HcotI, r espec tively.

Figure 6 shows both curves d± (H)/d as they depend
on H/A-nM.

In the range daal<d<dz, where the diameters of equi-
librium CMD were concentrated in the case HcoeT = 0,
for every fixed field there will now be contained a cer-
tain quantity of stable CMD, differing in diameter.
Thus even for uniform ffcoer, a spread in diameter of
stable CMD will be observed at fixed H. But in speci-
mens used practically, this spread may turn out to be
small, since one usually tries to make Hcotr as small as
possible.

More interesting is another fact that emerges from

consideration of Fig. 6. Thus, for example, when
#coer = 0 t n e section of the d(H) curve with d<dcol (dotted)
corresponded to absolute instability of CMD. Now,
there occurs here also a whole range of values of diam-
eters of stable CMD, stabilized solely by the presence
of Hcoer. The same is true of the section of the curve
above d = dz.

Thus for very small HcoeT, in principle CMD of two
significantly different dimensions should be observed at
each fixed H. Such a situation was in fact observed
inC343.

In closing this section, we note that the concepts de-
scribed enable us to suggest a very simple method of
determination of HcoeT, by visual observation of the mag-
nitude of the spread of CMD diameter.

5. DYNAMICS OF AN ISOLATED CYLINDRICAL
DOMAIN

In the preceding section, the equilibrium dimensions
of an isolated domain were considered, and problems
related to the stability of a domain were discussed. But
it is clear that the shape of a domain and the stability-
field bounds may depend on its velocity of motion. This
is due to the fact that a moving CMD possesses kinetic
energy, caused by the appearance of an additional mag-
netic field. The kinetic energy has the form

r lit , ,, /K 1 \
i!'kw = JllilmikViVkdl, (0.1)

where ν is the velocity of motion of the domain, and
where m{k is the tensor density of effective mass per
unit surface of the domain boundary1"3; the integration
in (5.1) extends over the generators of the domain.:3β>373

If the domain boundary is homogeneous (there are no
magnetization gradients connected with the azimuthal
angle), then the effective-mass tensor has only one non-
vanishing component, describing motion along the nor-
mal to the surface.C3e3 ThereforeC3e·373

^kin ~ ~ψ bm φ (ν, n)2di, (5.2)

where n(Z) is the unit normal to the CMD surface at the
point I (it is assumed that there is no nonuniformity of
the velocity ν along z). We shall further suppose that
the velocity of motion of the CMD is small enough so
that the magnetic fields that arise because of the motion
may be treated as small corrections. As a dimension-
less small parameter characterizing these corrections
we choose the ratio

(5.3)16.-rft.W2

hi I '3.3
FIG. 6. Variation of CMD
diameter with magnetic
field, with allowance for
the coercive force.

Allowance for motion of the domain leads not only to a
change of the domain dimensions but also to a change of
its shape, so that the minimum of the Lagrangian func-
tion of the CMD, L = Etla - Evot,

C3ei corresponds to a
generator described by the formula137'391

(5.4)

In this formula r(cp) is the distance in the plane xOy
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FIG. 7. Graphs of the func-
tions Sn, SA, SF, I, and F.

from the CMD axis to its generators, φ is the azimuthal
angle measured from the direction of motion of the do-
main, and Sn(x) are special functions encountered in the
theory of CMD. Their graphs are shown in Fig. 7. The
function So determines the stability of the CMD with re-
spect to collapse, and the function S2 with respect to
elliptic instability; specifically, for stability of the do-
main the following conditions must be satisfied:

s i k _1<ο ( 5 · 5 )

From formula (5.4) we see that the domain elongates
across the direction of motion, and that the role of the
corrections due to the motion is especially important
near the stability bounds; that is, near the collapse
field Hcol and the elliptic-instability field Hz.

It is not difficult to determine the effect of the domain
motion on the collapse field # c o l and the critical do-
main dimension r c o l . Appropriate calculations show
that the collapse field increases under the influence of
the motion, so that

(5.6)

and that the dimensions of collapsing domains decrease:

«; <<w> (5.7)

Analogous results can be obtained also for the ellip-
tic-instability field H2.

We shall now discuss free oscillations of domain
walls, c3 6·4 0·*" The simplest oscillations are oscilla-
tions of the walls that are uniform through the thick-
ness of the plate. To describe them, it is sufficient to
consider only small deformations Δ (φ) of the CMD gen-
erators,

r (φ) = Ane"«t. (5.8)

The expansions of the potential and kinetic energies in
powers of Δπ have the form

" " ^ ' - " " M - ( 5 - 9 )

I \\n\\ (5.10)

where

and where Jn is the w-th order Bessel function. Thus
the total energy of a domain with oscillating walls i s " 0 1

(5.11)

where

(5.11')

From these formulas it is evident that the energy of a
domain with oscillating walls is the sum of the energies
of oscillators with frequencies ωπ and that the functions
Sn have a simple meaning: they determine the elastic
constants of the domain walls with respect to deforma-
tions &rn = &ne

ir"° +A*e"inel. The frequency of the first
harmonic is u>l = 0; this is a consequence of the trans-
lational invariance of the domain energy. At large val-
ues of the number n, the frequency of the oscillations
increases almost according to the linear law ωη~η. We
note that the frequency ω0 vanishes at H=Hcol and fre-
quency ω2 at H = H2. The vanishing of the frequencies is
due to the fact that the fields Hcai and Hz are bounds to
the stability of the CMD. The dependence of the fre-
quencies ωη on the external magnetic field is shown in
Fig. 8 for a plate with thickness h = Zl and with
Κι = %τιΜζ. The oscillations under consideration may
be interpreted as waves propagated along the contour of
the CMD. This is evident from the formula that deter-
mines the dependence of a point on the contour upon the
coordinate φ and the time f.

Γ(φ, <) = (5.12)

Above, we have considered the motion of a CMD with
constant velocity and the free oscillations of an isolated
CMD. This leaves still to be clarified two questions
that are important for CMD dynamics: what is the na-
ture of the frictional force and of the external forces
that act on a CMD? We shall first consider the ques-
tion of the external forces. In order to determine the
force it is necessary, as is well known, to differentiate
the energy Ε of the CMD with respect to the coordinate
of the "center of gravity": that is, with respect to the
coordinate R of the center of the CMD:

F = - dE
VE. (5.13)

The energy of the CMD was found earlier, in Sec. 1.
Within the framework of the assumptions adopted there,
the equilibrium position of the CMD is neutral with re-

FIG. 8. Dependence of fre-
quencies ωπ (Β = 0 , 2 , 3 , 4 , 5 )
on magnetic field.

«col Η
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spect to translation of the domain in an arbitrary direc-
tion in the plane of the plate. The picture changes in
the presence of a gradient of the external magnetic field
Η or of the temperature T. If these gradients are small
enough so that a characteristic distance of change of Η
and Τ is considerably larger than the CMD radius, then
it may be supposed that the energy of the CMD is, as
before, determined by formula (3.4); but the parameters
h, Μ, Η, and σ are to be interpreted as their local val-
ues, that is the values at the point where the CMD is
located. Therefore

Since the radius of the domain is determined by the con-
dition (dE/dr) = 0, we have for the force acting on the
domain142 ]

ί £ dE dE (5.15)

(we recall that h is the plate thickness, Η is the exter-
nal magnetic field, Μ is the magnetization, and σ is the
surface energy density of the domain wall). This for-
mula determines the force acting on the CMD.

We shall discuss in greater detail the action of the
gradient of the external magnetic field. Let Vh = VM
= Va = 0. Then

F = - - (5.16)

In this formula, the derivative of the energy with re-
spect to magnetic field is taken at fixed values of the
remaining CMD parameters (k, Μ, σ, r); that is, only
the Zeeman part of the total CMD energy is subject to
differentiation:

dE,,

-7F-

and

F = —2: (5.17)

Thus we see that the force F is directed opposite to V#
and that under the action of this force, the CMD is dis-
placed into a weak-field region; the value of the mag-
netic field H(R) plays for a CMD the same role as does
the potential energy U(R) for a material point.

If there is a temperature gradient in the body, then it
produces gradients of Μ, σ, and h, and in this case

V dh dT """ d.M dT "•" do dT I (5.18)

The terms that enter in this formula may have different
signs, and the resultant sign depends on the properties
of the specific materials. Thus, for example, in the
orthoferrite Smo.55Tb0.45Fe03C423 the resultant sign of the
terms in parentheses is positive, and the domains move
opposite to the temperature gradient, i .e. from hot to
cold parts of the body. In the garnet Gd1-3Tb0.7Fe5Oi2
the resultant sign of the terms is negative, and the force
F is directed along the temperature gradient; that is,
under the action of this force the domains move from

cold to hot parts. The CMD property of moving from
hot sections to cold or vice versa can be used to control
the motion of CMD by means of a laser beam.

We pass now to consideration of the frictional force
that acts on CMD. It can be exhibited in the form of a
sum of two forces: a force of "static friction," which
under certain assumptions can be identified with the co-
ercive force, and a force of viscous friction, propor-
tional to the velocity of the CMD.

The force of
the form

static friction" can be represented in

"~ • (5.19)

If for simplicity we suppose that the defects in the plate
are distributed uniformly and that the character of f\T

is dependent on the surmounting of barriers in the direc-
tion normal to the CMD surface, then Fcoer = (4/ττ)ΜΗ,.Μτ.
As regards the force proportional to the velocity, in
writing down an expression for it we must remember
that we are dealing with a frictional force in a magnet-
ically polarized medium, characterized by magnetiza-
tion M. Therefore in obtaining a formula for such a
force, we shall turn to the general relations of the ther-
modynamics of irreversible processes.

We shall denote the frictional force being sought by
ftt. Then the dissipative function Q=Ts is obviously

= Ts = f.v. (5.20)

If we choose as generalized fluxes the components of
the vector velocity, which also describe the deviations
from a state of thermodynamic equilibrium, then the
components of the frictional force will be, except for a
factor 71"1, the components of the corresponding gener-
alized forces. ° Therefore

" t = (5.21)

The kinetic coefficients Γ and γ satisfy the Onsager sym-
metry relations Γ( Λ(Β)=ΓΜ(-Β), γη(Β) = γΜ(-Β), where
Β is the magnetic induction. On separating the sym-
metric and antisymmetric parts of yi s, as inc 4 3 ], we can
represent yik(B) in the form

VtkW-lwtktBi + is,,,), (5.22)

where y0 and η are even functions of B. Therefore

f r = -(vo[vXB]-r--v)rtd/i. (5.23)

On adding to this expression the term (5.19) that deter-
mines the force of "dry" friction, we get

Ffr= -3ii(fco,r^-№[vXB]-fiv). (5.24)

The value of Β that enters in this formula has the

4>We recall that according to Onsager s=xiXi, where X{ = — ds/
dxf, and x{ -yikXk; the kinetic coefficients γ satisfy the sym-
metry principle; s here is the entropy.
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TABLE III. Mobilities of cylindrical domains.

1
[ Material
|

SmjTbi^Fc'Oa

DyFeO3

Domain
mobility,
cm sec"' Or"

Material

E n P r O ,

HoFc-O,

Domain
mobility,
cmsec-'Oe"

31XJ

230

meaning of the mean magnetic induction in the region of
the magnet in which the singularity in the magnetization
distribution is located. In the case of domain walls,
that is of a specimen with a domain structure, the mean
value of the magnetic field Η inside the specimen is
either zero (for thick specimens) or proportional to Μ
(for thin films). Therefore it may be supposed that
B~M, and formula (5.24) may be put into the form"1· 4 4-4 8 3

Fft--.1<7/.(FCOKi-rv.lvXMi.:-iv). (5.25)

This formula determines the structure of the friction-
al force that acts on a singularity of the magnetization
distribution that is being propagated with velocity ν in a
magnetically polarized medium.

The coefficients yx and η in the treatment presented
here are certain phenomenological parameters. Micro-
magnetic equations enable us to relate them to the num-
ber of so-called Bloch lines, the exchange constant, the
anisotropy constant, and the relaxation constant in the
equation of motion of the magnetic moment. We note
finally that formula (5.25) describes the frictional force
in the case of sufficiently small velocities v. Domains
in which the magnetization distribution in the walls is
such that ΤΊ = 0 are called simple or ordinary CMD. If
7Ί*0, then domains with such a magnetization distribu-
tion in the wall are called hard CMD."4"

By studying pulsations of CMD, one can determine
the coefficient η experimentally from the mobility of the
domain walls. BobeckC4e:i proposed and used, for deter-
mination of η in ordinary CMD, an experiment on ob-
servation of collapse. The idea of this experiment is as
follows. Let there be a CMD with equilibrium radius
rt corresponding to external field Hi. Then the field is
suddenly increased to a value Hf that exceeds the col-
lapse field. This field is kept constant for a time in-
terval t, then suddenly decreased to its original value
Ht. It is obvious that there is a time τ such that for
t> τ, the CMD succeeds in reaching the instability re-
gion (r becomes less than r c o l ) , and the domain col-
lapses. If t < τ, then the domain does not succeed in

FIG. 9.

a1, μ

250-

25

2.5

SbFeO, SFeO3

Sb
FIG. 10.

10' 10"
a, cm/sec (<5W

collapsing, and it enlarges to its original state r,. The
time τ is determined by the mobility of the CMD and by
the values of the original field H, and of the field Hf.
By studying experimentally the variation of τ with the
values of H{ and Hf, one can find the mobility μ (see
Table ΠΙ). Figure 9 shows the results of a study of
collapse.t 4 7 ] There are also other methods of deter-
mining the mobility of domain walls. t 4 8 · 4 9 3 By equating
the frictional force to the force (5.17) exerted by the
magnetic-field gradient, we find the velocity of uniform
motion of the CMD

0,

if

if
(5.26)

where we have introduced the notation μ = 7jM, 6H= {dH/
dR)d.

The value of the coercive force is determined by in-
teraction of the domain wall with crystal defects. As re-
gards the viscosity, it is determined by transfer of
energy to spin waves and phonons. We shall give ex-
pressions for the mobility that are obtained from the
equation of motion of the magnetic moment,

where α is a relaxation constant. For a Bloch wall5

for a Neel wall5'

(5.28)

(5.29)

These two formulas can be combined into one by use of
the expressions (1.8) and (1.14) for the thicknesses of
Bloch and Neel domain walls:

μ = ΤΓ· *· = {*«.**}• (5.30)

It is evident from formula (5.30) that in order to in-
crease the velocity of motion of a CMD (other things
being equal), »7·5 0·5 1 1 it is necessary to decrease the re-
laxation constant a. Table III shows values of the mo-
bility for a number of materials. Figure 10 shows ve-
locities and, simultaneously, diameters of CMD in
various materials for 5ff=20 O e . t e 7 ]

We shall now discuss the motion of a hard CMD in a

Ζ Ί ( s)See Appendix.
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nonuniform external magnetic field. The total force
acting on a CMD has the form

(5.31)

The sum of the first two terms is analogous to the Lo-
rentz force exerted on a charged particle by external
electric and magnetic fields. Therefore the motion of
a hard CMD should be reminiscent of the motion of a
charged particle of external magnetic and electric fields
with allowance for friction; that is, the velocity of the
domain will have not only a longitudinal but also a trans-
verse component with respect to VH. Actually these
peculiarities of CMD motion were originally detected
experimentally1·453 in 1970, in observation of the motion
of domains in a monocrystalline plate of Gd2.3Tb0>7Fe5O12.
and not theoretiaally. Different domains behaved dif-
ferently. One CMD moved to the left of the field gra-
dient, others to the right. The transverse components
of the velocity of motion of these domains reached very
large values and exceeded the values of the longitudinal
components. The largest value of the ratio of veloci-
ties was 10:1. These domains possessed still another
peculiarity, that they were more stable with respect to
collapse. Their diameter changed, from nucleation to
collapse, by a factor 10. Subsequently, CMD with the
same properties were detected in high-quality epitaxial
films.

By a series of experiments, it was shown that this
property of hard CMD was caused by the structure of
their domain walls. Until the discovery of hard do-
mains, it was assumed that the domain boundaries of
CMD were simple Bloch boundaries; that is, that all the
spins in them lay in planes parallel to the plane of the
wall. But transillumination of thin cobalt plates with
an electron microscope showed that in the domain bound-
aries there are transitional regions, separating two
neighboring sections of Bloch type with opposite direc-
tions of rotation of the spins in the wall. These transi-
tional regions have been called Bloch lines (or Neel
segments). The kinetic coefficient γ1 in formula (5. 25)
can be simply expressed in terms of the number η of
Bloch lines,c44:

Y.~, (5.32)

where y is the gyromagnetic ratio. As regards the
ratio between the coefficient 1/?? in the expression (5.25)
for the frictional force and the relaxation constant in
the equation of motion of the magnetization, it remains,
except for corrections of order (zo/r), the same for
hard CMD as for ordinary CMD.C44]

In closing this section, we shall discuss the behavior
of a CMD when the frictional force is small enough so
that the free path length of a CMD, λ = νπ (π is the braking
time of the CMD, determined by the relaxation constant
a), is much larger than either the dimension of the
CMD or the "Larmor radius" of the domain. Noting
that the mass of the CMD is

(5.33)

and using the expression for the force that acts on the
CMD, we find that the "Larmor radius" is

(5.34)

(5.35)

(5.36)

and that the free path length is

Thus if the condition

is satisfied, then in the absence of VH hard CMD
revolves around a circle of radius RL with frequency

(5.37)

If a hard CMD moves in a film in the presence of VH,
then its trajectory, like the trajectory of a charged
particle, will be a trochoid. The drift velocity is de-
termined by the formula

jdEIdH) | VH |

2 Vi-W (5.38)

It is evident from formula (5.38) that the sign of the
drift velocity depends on the sign of γχ. We shall dis-
cuss also the behavior of a group of CMD moving in a
plate of finite dimensions. If a constant flow of CMD
is maintained as a result of generation of CMD at one of
the ends and absorption at the other, then in the direc-
tion of the flow there occurs a magnetic-field gradient
whose value is determined by the CMD parameters and
by the value of 6H. Measurement of this field can give
important information about the characteristics of the
CMD. This effect is analogous to the Hall effect in
ordinary metals and in semiconductors, where there
are two types of carrier.6>

Finally, we shall give estimates of the "Larmor
radius" and of the free-path length.

Setting r=10"4 cm, z0=10"6cm, yM= 109 sec'1, α^ΙΟ"3,
n~\, 6#=10"4Oe, and ν = 10* cm/sec, we get RL« 10'3

cm, λ =10^ cm, and νύτ= 10'1 cm/sec.

We see from these estimates that the condition RL < λ
can be satisfied by appropriate choice of the parameters
of the ferromagnet.

Thus the dynamics of a normal CMD is analogous to
the dynamics of an ordinary particle in a viscous medi-
um, if the parameters of the CMD are appreciably small-
er than the distances over which its energy changes
appreciably. The dynamics of a hard CMD under simi-
lar conditions is reminiscent of the dynamics of a
charged particle in crossed electric and magnetic fields.

6. ENERGY OF A LATTICE OF CYLINDRICAL
MAGNETIC DOMAINS

In the preceding section, we considered the proper-
ties of an individual CMD. Quite often, however, what

»! = 2nrhm = 2n2rAv-
! j / S ,

6)This fact can be used for construction of devices for the sort-
ing of CMD with respect to sign and value of y1.
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FIG. 11. Subdivision of a stripe structure into CMD on in-
crease of the external magnetic field from 0 to 70 Oe.

appears is not an individual CMD but a system of cylin-
drical domains.1 2 0 ' 2 1 1 Thus, for example, the appear-
ance of a system of CMD is observed experimentally120·213

upon increase of the magnetic field applied normal to the
surface of a specimen originally divided into plane par-
allel domains (Fig. 11). With increase of the magnetic
field, domains in which the magnetization is oriented
opposite to the field shrink (see Fig. 11) and ultimately
break up into separate cylindrical domains, which then
"repel" each other and fill the surface of the plate uni-
formly. Formation of a system of CMD may also have
some other origin, for example as a result of artificial
breakup of a stripe structure or of the operation of a
source of nucleation of CMD, such as defects in the plate
or of its edge.

The set of CMD, because of the dipole force of re-
pulsion (Fig. 12), may form an ordered system, i . e . ,
a two-dimensional lattice. Later we shall show that the
forces that keep the individual CMD in this lattice are
very small, and therefore small random effects can
lead to a breakdown of the order, that is to the occur-
rence of a disordered structure."

A system of CMD, either ordered or disordered, has
a number of new properties as compared with an indi-
vidual CMD; for example, in such a system there can
occur propagation of special types of spin waves, due to
displacement of CMD from the equilibrium position or
to oscillations of the boundaries of individual CMD.
These waves show up in the magnetic susceptibility and
affect the propagation of sound in the crystal and others
of its properties.

We shall first study the static properties of a CMD
lattice.

We shall consider a plate thickness h, infinite in the
χ and y directions, located in a magnetic field Η di-
rected along the axis of easiest magnetization (the ζ
axis). Under these conditions, as has already been
mentioned, it is possible for a domain structure to form
that consists of a lattice of cylindrical magnetic do-
mains of diameter d, magnetized opposite to the direc-
tion of the external magnetic field (Fig. 12). The rest
of the plate is magnetized along the field. We choose

7)We remark that the high mobility of CMD, even in a lattice,
makes a system of CMD a suitable model for the study of the
properties of disordered systems.

an elementary rectangular cell with periods a and ap
along the χ and y axes respectively; here ρ is a numeri-
cal parameter that takes the values p =V3~for a hexagonal
lattice and p = i for a square lattice of cylindrical do-
mains. The expression for the total energy density of
the lattice can be put into the same form (3.4) as for an
isolated domain. Thus we have for the energy of mag-
netization in the external magnetic field and for the en-
ergy of the domain walls, per unit volume of the speci-
men,

(6.1)
4r·
a2p

The magnetostatic energy of a lattice of cylindrical
magnetic domains was calculated inCS2>S3]:

i - ) 4 JL V O («y W+
ft

where
(6.2)

·[l-exp (:=£*)],

here the summation over k and m extends from - °° to
°° under the condition that fe + m is an even number; J^
is a Bessel function. Φ(0) is interpreted as

Φ(0)= lira Φ( —

In the practically most important case a » d and
it is possible to obtain a simple expansion of the

magnetostatic energy gM in powers of the density of
cylindrical domains.c 5 4 ] In this case, the expression

for Su takes the form

(4)'At (6.3)

where I(x) is defined by formula (3.3) and where

_ C(3)
~ - -

_ n—1 np v '

V) «0.1735.

By use of formulas (6.1) and (6.3), we can put the
total energy density of the lattice into the following
form:

where
(6.5)

Θ Θ

Θ, Θ Θ
FIG. 12. Lattice of CMD. The co-
ordinates of the CMD within an ele-
mentary cell are (\a,\ap) and (ia,

Θ Θ
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(6.5')

The first term in the expression (6.5) corresponds to
the energy density of a uniformly magnetized plate, the
second to the interaction of the uniformly magnetized
plate with the external magnetic field; the third term
corresponds to the self-energy density of a cylindrical
domain, while the last term describes the interaction
between the domains in the dipole approximation. We
note that, as is evident from formulas (6.5) and (6.5'),
the energy per domain in a lattice of cylindrical domains
is larger than the energy of an isolated domain of the
same diameter.

7. EQUILIBRIUM PARAMETERS OF A LATTICE OF
CYLINDRICAL MAGNETIC DOMAINS

The state of thermodynamic equilibrium of a lattice of
cylindrical domains corresponds to the minimum of the
total energy with respect to the variables, a, d, and p:

ΖΣ- — Ο ΖΣ. Π —5- Ο (7.1)

The first two equations of the system (7.1) can be put
into the following form by use of the expression (6. 5)
for the total energy of a lattice of cylindrical domains11543:

(7.2)Si? (p) d

'V(d/h)h'

where

F(x)- dl

ιι we formally set a = °° in equation (7.2), it reduces
to the known equation (3.5) obtained earlier for deter-
mination of the diameter of an isolated domain. Equa-
tions (7.2) can also be written in the following form:

J 1 d Η „ /_c/\
h 3 A 4πΜ ~ *• \h I · (7.3)

2R tP>
d V SE{d ft) —(ί/Λ)'

Figure 7 shows graphs of the functions SA and SF:

By analyzing equations (7.3) one easily observes that
the field Hc is the critical field for a lattice of magnetic
domains, since on approach of Η to Hc from below, the
self-energy of the cylindrical magnetic domains ap-
proaches zero (this follows from the very definition of
the field Hc), while the period a of the lattice meanwhile
becomes infinite.8' Thus the field Hc is the field
at which the lattice of cylindrical magnetic domains is
transformed to one or several isolated cylindrical do-
mains. At the point H=He, the energy of the lattice and
of an isolated domain are equal. In fields H>HC, the
lattice becomes energetically disadvantageous.

We shall consider in greater detail the properties of a
lattice of cylindrical domains near the critical point

6)AtH=Hc the condition SE(d/h) =l/h is satisfied.
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On supposing that Hc-H «4πΜ, we get the following
approximate solutions of the system of equations (7.3):

d ~ V
10.fi (ρ) ίπΜ (7.4)

o- Sn\ xc = dc/h = d(Hc)/h.where x = [5S^ c )]- 1

It follows from the expression (7.4) that the diameter
of a domain decreases linearly with increase of the ex-
ternal magnetic field; the coefficient of proportionality
κ in the state with a lattice of domains is five times
smaller than for an isolated domain. The weaker de-
pendence of the diameter of a cylindrical domain on the
external magnetic field Η when the domain belongs to a
lattice is an expression of the fact that the magnetiza-
tion of a plate with a lattice of cylindrical magnetic
domains changes not only because of change of diameter
of a domain, but also by decrease of the density of do-
mains in the lattice. The variation of the period of the
lattice with the external field H, as follows from for-
mula (7.4), is determined by the power law (He-H)'i/3.

By using formula (7.4), one easilyjcalculates the de-
pendence of the mean magnetization Μ on the value of
the magnetic field:

(7.5)

where

χ -- ' Γ J ' 12/3

0 6pLlU«(p)J "

We shall calculate also the static magnetic susceptibility
near the critical point Hc:

(7.6)

As is evident from the expression (7.6), the static
magnetic susceptibility has a singularity at the critical
point; it becomes infinite according to the law (Hc -
-Η)'1'3.

By using the relation (7.4), one can obtain an ex-
pression for the change of energy density due to forma-
tion of a lattice:

5 5 1ΟΛΓ (p) V 4πΛ/ / (7.7)

where

X (p) = p^R (p).

The formulas obtained above contain the unknown pa-
rameter p. To find the value of this parameter, it is
sufficient to investigate the minimum of the function
Δ'ί(ρ). The values of xc and Hc are independent of p c 5 4 ] ;
therefore the functional relation Δ$'(ρ) is completely
determined by the form of the function iV(£), a graph of
which is shown in Fig. 13. From Fig. 13 and formula
(7.7) it follows that the function Δΐ(ρ) has two equal
minima, at the points p = V3~ and p = 3/VT, and a maxi-
mum at the point p= 1. Thus the minimum value of the
energy density corresponds to a hexagonal lattice (the
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values £=V3 and p = 1/VJ correspond to two equivalent
hexagonal lattices, one turned through 90° with respect
to the other). Obviously the values p = 1, £ = 3/VT, and
ρ = V3~ comprise a complete set of solutions of the three
equations of the system (7.1).

We note that the difference between the values of Δ?
for the hexagonal lattice and for the square amounts to
« 1% of the whole value of Δί. Therefore slight inhomo-
geneities of the thickness or of other parameters of the
plate, and also inhomogeneities of the temperature of
the plate or of the external magnetic field, may signif-
icantly distort the structure of the lattice and may lead
to any degree of complication in the domain distribution
on the surface of the specimen. In general, on the ba-
sis of the domain-distribution pattern on the surface of
the plate one can make judgments about the distribution
of inhomogeneities in the specimen or about the distri-
bution of temperature gradients and of deformational
stresses.

We shall now analyze the range of applicability of ex-
pressions (7.4)-(7.7). For this purpose it is necessary
to estimate the next term in the expansion of the total
energy f in the small quantity d/a and to compare it with
the energy of dipole interaction. It is not difficult to
obtain the value of the relative error, from which we get
the formula

(7.8)

As is seen from formula (7.8), the quantity d/a is
actually an expansion parameter in the expression (6.5)
only when (d/h) tZ 1. In the contrary case, the natural
expansion parameter will be the ratio h/a.

From Fig. 5 it is evident that the inequality
is unconditionally satisfied in the most interesting case
of thin films for which (l/h)* 0.1. The presence in the
expression (7.8) of the small numerical parameter 0.2,
which is determined by the geometry of the magnetiza-
tion distribution in a plate, indicates that formulas
(7.4)-(7.7) are valid, for sufficiently thin films, over
the whole range of existence of a lattice.

TABLE
Η/4πΜ =

Theory
Numerical

results

IV
0.

l/k = (
12.

,1

~

2.9

-.S

J. 25,

~d~

l.l!

1.7

'"•' FIG. 14.

-0.2

In the case of thick plates, however, (l/h)k,Q. 1, the
expressions (7.4)-(7.7) are valid only over the narrow
field interval 0< (Hc - Η)/4ττΜ< l/h. These conditions
are easily derived by use of formulas (7.2) and (7.8).
The structure of a lattice of cylindrical domains in fields
(Hc - H)/4irM > l/h was investigated in reference"".

It is interesting to compare the relations determined
by formulas (7.4)-(7.7) with the results of"33, in which
numerical minimization of the total energy of the lattice
was used to find d, a, and Δε as functions of the value
of the external magnetic field for the parameter value
Z/ft = 0.25. Such a comparison is made in Table IV.

The curve in Fig. 14 shows the dependence of the
energy density of a lattice on the value of the magnetic
field, as found from formula (7.7). The points in the
same figure represent the corresponding numerical val-
ues from"33.

The comparison made in Table IV and in Fig. 14
shows that the range of applicability of the theory we
have developed encompasses practically the entire
range of stability of a lattice of cylindrical magnetic
domains in thin films. We mention also that inc5e] a
comparison was made between numerical results and
experimental data on the lattice parameters, and good
agreement was found between calculations and experi-
ment (Table V).

In order to obtain a complete description of the prop-
erties of a lattice of cylindrical domains, it is necessary
to investigate the question of the stability of the domain
structure, both with respect to changes of the lattice
parameters from their equilibrium values and with re-
spect to small arbitrary changes of shape of the cylin-
drical magnetic domains. Such an investigation was
made in"4 3. There it was found that the upper bound for
existence of a hexagonal lattice of CMD is determined
by the onset of instability with respect to increase of the
lattice parameter a, and that it coincides with the mag-
netic field He at which the energy necessary for forma-
tion of CMD vanishes. As for the lower bound, it is de-
termined by the onset of elliptic instability of the CMD

TABLE V.

Material

llaFi'|..O|«
TmKi'i),
GdIG

Observed effect, cm

0.5—1.0.10-1
1.3-1(1-2
4.5-10"3

7.(M0-* cm
4.3-10-2 cm
ΰ.0.10"3 cm

Calculated effect, cm

1-10-»
1.26 10-2
4.5-10"3

8.7-10-*
4.3 10-2
6.1-10-'
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of the lattice. The value of the elliptic-instability field
in a lattice of CMD is lower than for an individual iso-
lated CMD. This is due to the fact that in a lattice,
neighboring domains produce a certain effective magnetic
field that stabilizes individual domains and, in principle,
makes possible the existence of a lattice of CMD even
in zero field. Figure 14 [sicl] shows the fields Hc and
Η that bound the magnetic-field range in which a lattice
of CMD is stable, as functions of the plate thickness.:54]

It is evident that this range exceeds the range of stabil-
ity of an isolated CMD.

8. LATTICE WITH FIXED DOMAIN DENSITY

As is seen from Fig. 5, in a thin film, depending on
the value of the external magnetic field, the following
types of domain structure may be realized. In the field
range Η >Hcol, domains are absent. At fields HC<H
s Hcol, metastable isolated cylindrical domains can
exist; their destruction is prevented by the presence of
an energy barrier. In the field interval HZ-<H s= Hc,
formation of an isolated domain becomes energetically
advantageous, but the minimum of the total energy in
this case corresponds to a lattice of cylindrical domains.
This state is realized in the field interval HS<H<HC.
At fields Η <HS, a stripe structure is energetically
more advantageous.csei

Nucleation or annihilation of a cylindrical domain
usually involves the surmounting of an energy barrier;
therefore in order to obtain thermodynamic equilibrium
of a lattice of domains, it is necessary to take special
measures.

The total number of domains in the specimen is deter-
mined by its previous history and does not change with
time. Local ordering is established between the do-
mains, so that one may speak of short-range order. As
concerns ordering over the whole plate, it cannot be
realized because of the presence of defects and inhomo-
geneities, so that the set of CMD is, as it were, either
a polycrystal or a two-dimensional liquid, which is
usually characterized by the CMD density p. The fields
that bound the range of existence of such a lattice are
the collapse field of an individual domain and the ellip-
tic-instability field of an individual domain. The values
of these fields naturally differ from the corresponding
fields for an isolated CMD. Allowance for interaction
of domains with each other leads to a stabilization effect;
specifically, the interval between the collapse field and
the elliptic-instability field in a disordered ensemble of
domains with density ρ is larger than for an isolated
CMD.C54:i Near the collapse field, the magnetic sus-
ceptibility has a square-root singularity

χ ~ (ffcol- H)-1*-

9. HIGH-FREQUENCY PROPERTIES OF A LATTICE
OF CYLINDRICAL MAGNETIC DOMAINS

We go on now to consideration of the high-frequency
properties of a lattice of CMD.t 5 7 > e" In such a lattice,
just as in an ordinary crystal lattice, there can be
propagation of longitudinal and transverse oscillations
caused by displacement of CMD from the equilibrium

position. Besides these waves, in a lattice of magnetic
domains waves can be excited that are due to change of
shape of CMD.

In order to describe the high-frequency properties of
a lattice of domains, we shall start from the following
expression for the energy:

i=?.+ 2 ^ { S ^ (9.D
ΐ i.ft

where ?0 is the energy of the uniformly magnetized
plate, ε, is the self-energy of the domain that is located
at the ith site of the lattice, with coordinate RJf and
Vik is the interaction energy of the two domains with
center coordinates Rt and R̂  respectively. Since in
thin films the lattice constant a is usually larger than
either the CMD diameter or the plate thickness, the
interaction energy of two CMD can be described as the
energy of dipole-dipole interaction9'

Vlh = [m,mkRfh- 3 (ηι,Β») (mkRu,)] Ηχ. (9.2)

We note that the vector RJ4 = R t - R s lies in the plane of
the plate; that is, m{ is orthogonal to R<J6. Therefore
the second term in (9.2) can be neglected in compari-
son with the first. By using the relation between the
moments m, and the CMD area S{, we can put the inter-
action energy of the domains into the form

By using further the standard procedure for treatment
of small oscillations, one can easily find the velocities
ct of longitudinal and ct of transverse waves of CMD
displacement:

where sff t are numerical parameters of order ten for
longitudinal waves and of order unity for transverse. As
in an ordinary lattice, the velocity of sound in a CMD
lattice is inversely proportional to the square root of
the mass; the factor (d/af reflects the fact that the in-
teraction responsible for the waves in a CMD lattice is
magnetic dipole interaction (a is the lattice parameter,
d the CMD diameter). These waves, and also waves of
pulsation of CMD, cause the appearance of poles in the
tensor high-frequency magnetic susceptibility of a CMD
lattice. M "

10. CONTROL WITH CYLINDRICAL MAGNETIC
DOMAINS, AND THEIR APPLICATIONS

The preceding sections were devoted to the physical
properties of CMD. As was mentioned in the introduc-
tion, considerable work has now been done on the tech-
nical application of these domains and the use of CMD
devices in computers. In this section we shall briefly
describe specific methods of generation, control, and
recording of CMD in use at the present time. A detailed
elucidation of these questions can be found in the re-
viewsce2>e3] and in the monographs. m ' m

At the basis of schemes for control of CMD lies the

9)If this condition is violated, then in order to calculate the in-
teraction energy one must carry out numerical calculations.
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idea of producing in the film a series of potential wells
for domains, and of means of moving these potential
wells or moving the domains from one potential well to
another. As is clear from the preceding (see sections
3, 5, and 6), this can be achieved by change of an in-
homogeneous external magnetic field, temperature,
plate thickness, anisotropy, or other parameters of
the magnetic film.

At present there are in fact exploitations of the use of
each of these possibilities. Thus, for example, there
are being developed systems for control by means of a
laser beam, on the basis of local heating of the film;
by change of the surface anisotropy by implantation of
ions; and by production of magnetic inhomogeneities by
means of magnetic attachments and current-carrying
conductors.

Magnetic-attachment methods are at present the most
widely used.

According to the configuration of the magnetic attach-
ments, there are the various control schemes Τ, Υ, X,
and other types. Figure 15 shows an example of a con-
trol structure of the Τ type. The structure consists of
T-shaped and strip elements; the material used for
these is magnetically soft permalloy (~ 80% Ni and
20% Fe) with a low value of the coercive force. The
thickness of these elements is about 5000 A; the ratio
of the length to the width of a strip is 5; and the distance
between strips and their width is about half the diameter
of a domain. The relatively large thickness is chosen
for the purpose of preventing magnetization of the ele-
ments to saturation by the stray fields of the domains
themselves. When the ratio of the sides of the elements
is 5:1, there is a quite appreciable shape anisotropy
the demagnetizing field along the strip is considerably
smaller than across it), and as a result an external
magnetic field parallel to the length of a strip magne-
tizes the element to saturation, whereas a perpendicular
field of the same magnitude does not affect the mag-
netization. A field of about 10-20 Oe is sufficient to
magnetize the element to saturation. Periodic motion
of the field gradients along the elements of the structure,

ITT

T U T U T
FIG. 15.

T¥T°-

t

/

FIG. 16

t ΤΤΊ

which is necessary in order to move the domains over
large distances, is effected by means of an external
magnetic field that is rotated in the plane of the film.
The action of the Τ structure shown in Fig. 15 may be
regarded as the result of interaction of the domains, be-
having as magnetic dipoles, with the magnetic poles in-
duced in the permalloy elements by the rotating field.
As is seen from the figure, during one period of varia-
tion of the rotating control field, the domains shift by
one spatial period of the Τ structure. Change of sign
of the rotating field leads to reversal of the direction of
motion of the CMD. A rotating field can be produced by
a pair of mutually perpendicular Helmholtz coils, fed
with alternating currents 90° out of phase.

An advantage of control schemes of the type consid-
ered is the absence of electrical connections to the ele-
ments of the control structure, and the possibility of
controlling the motion of CMD in many channels by
means of a single rotating field.

Similar principles—interaction of domains with an in-
homogeneous magnetic field—lie at the basis of the ac-
tion of CMD generators. Such generators may be made
in the form of a mosaic of permalloy elements, which
are so located that under the action of a rotating field
they cause extension of a nucleating domain. The ex-
tended nucleating domain is then split into two domains
by transmission of a current pulse along a special con-
ductor, the splitter. One of the newly produced do-
mains, under the action of the rotating field, is guided
into the propagation channel, while the other remains
in the generator as a nucleating domain.

Another type of permalloy-element generator in
widespread use produces one domain in one period of
variation of the rotating field, without participation of
current-carrying conductors. The scheme of such a
generator is shown in Fig. 16. A nucleating domain is
located under a permalloy element in the form of a disk.
As is seen from the figure, under the action of the ro-
tating control field the nucleating domain undergoes ex-
tension, and from it there splits off a new domain,
which is guided into the propagation channel.
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Also obvious are the problems of annihilation of cylin-
drical domains. The simplest method consists of rais-
ing the magnetic field Η perpendicular to the film plane
to a value equal to or greater than the collapse field.
When it is necessary to annihilate a domain in a speci-
fied section of the film, increase of only the local mag-
netic field is required; this can be done by means of a
plane current circuit.

The most widespread schemes for detection of CMD
are based on the action of the stray magnetic field of a
domain on the detector.ce5] Such a detector may be a
circuit of conducting film, in which an emf is induced
because of the change of magnetic flux when a cylindrical
domain passes under the circuit. The magnitude of the
signal depends on the diameter of the domain and on its
velocity of passage under the circuit. With a domain
diameter of about 100 μηι and with a velocity of motion
corresponding to operating frequencies of about 1 MHz,
the output signal may be as high as 100 μν. This sig-
nal can be increased if, before the detection, the area
of the domain is increased by extension of it.

For practical application, however, there are other,
more convenient methods of detection, using the Hall
effect and the magnetoresistive effect, in which the sig-
nal originates not directly under the action of the mag-
netic field of the CMD but by modulation by this field of
electrical power supplied by an external source.

Thin-film Hall microdetectors have an active area of
the order of the domain area. The axial component of
the magnetic field of a domain, acting on the detector,
leads to the appearance of a Hall difference of potential
in the direction perpendicular to the field and current
directions. The detectors used are of silicon or of
InSb, which because of the high mobility of the carriers
has the best sensitivity. With a domain diameter of
about 100 μπι, the output signal of a silicon detector
amounts to 0.5 mV for input voltage 9 V; in the case of
an InSb detector, a signal of about 1 mV can be obtained
with input voltage 0.3 V.

A Hall detector is a four-pole device, and this com-
plicates its wiring diagram. A magnetoresistive per-
malloy detector, whose operation is based on the change
of resistance under the influence of a magnetic field,
is made in the form of a two-terminal network. The
permalloy magnetoresistor is a rectangular film of
thickness 200-300 A, with size about equal to the do-
main size, through which is passed electric current
from an external source (Fig. 17). By virtue of the
magnetoresistance effect, when the film is magnetized
perpendicular to the direction of the current it has a re-
sistance a few percent lower than when it is magne-
tized parallel to the direction of the current. The
crystallographic anisotropy, in combination with shape
anisotropy, leads to the result that when no domain is
near the detector, its magnetization is directed along
its long side; that is, along the direction of the current.
If a domain appears near the detector, then under the
influence of the radial component of the stray field of
the domain there occurs a rotation of the magnetization
of the film toward the axis of hard magnetization; that

I Detector resistance

FIG. 17.

is, in the direction of increase of the angle θ (Fig. 17).
The effective anisotropy field of the film for rotation of
the magnetization through angle θ = 90° is made up of
the magnetocrystalline anisotropy field and of the de-
magnetizing field (the latter is proportional to the thick-
ness of the film) and, for a film of thickness 200-300 A,
has a value of the order of 10 Oe. The radial compo-
nent of the magnetic field of a cylindrical domain is 0.1
to 0.3 of its magnetization 4πΜ, and therefore the do-
main field leads to a significant change of the angle θ
and consequently to an appreciable change of the resis-
tance of the magnetoresistor. The largest change of the
angle θ and the largest output signal of the detector are
observed when the edge of the domain is under the cen-
ter of the magnetoresistor. The output signal of a
typical magnetoresistive detector, with domain diameter
100 μηι, is about 2 mV when the input voltage to the de-
tector is about 0.3 V.

Use of CMD in computer technology. From the data
presented above, it follows that by use of CMD, memory
devices (MD) can be constructed that differ favorably,
with respect to a number of parameters, from the MD
usually applied. With domain diameter about 5 μηι (iron
garnets), MD based on CMD guarantee a density of in-
formation storage of about 5 • 105 bit/cm2; that is, higher
than with other forms of magnetic MD.cee: Such storage
densities have now already been attained. By choice of
a material with domain diameter about 2 μι», it will be
possible to obtain a storage density up to 107 bit/cm8.
With such a high storage density, production of control
and readout circuits whose characteristic dimensions
are of the order of magnitude of the domain dimensions
requires the use of electron-beam lithography methods,
since photolithography in this case no longer provides
the necessary dimensions for the circuit elements.
Devices with storage density about 107 bit/cm2 will ap-
parently be made within the next few years. MD and
CMD are assembled from a set of ferrite plates or fer-
rite films on substrates of area 1-10 cm2 and occupy
a relatively small physical volume. There are now al-
ready MD with total capacity about 106 bits; it is quite
realistic to expect realization in the near future of MD
with capacity up to 109 bits in a physical volume of about
1000 cm3 (a significant part of the volume is occupied by
the magnets that produce the shift and control fields).

As always, a very important parameter of a memory
device is the time for selection of information. It de-
pends to an important degree on the mode of organiza-
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tion of a CMD memory. The most advantageous orga-
nization is the following. The basic structural unit of
the MD is a ferrite plate (film), on which are arranged
the attendent circuits. Such a plate is called a chip.
The information on the chip is kept in circular storage
registers, i.e., closed channels of motion of CMD,
with a definite digit capacity n. Usually n= 102 - 10* bits.
Access to individual sites in writing and reading occurs
within each register in accordance with the advance of
domains along it. During a single cycle, equal to the
period of rotation of the magnetic control field, the do-
mains are shifted one site. In order to simplify the
attendant circuits, the set of a large number of storage
registers of a single chip is connected, by use of a cou-
pling register, with a single general circuit for writing,
erasing, and reading information. The storage regis-
ters are connected to the coupling register through
switching devices. Such an organization of the memory
insures cyclic access to information; the arrangement
and circulation of domains in the shift registers is equiv-
alent to separate writing paths on magnetic drums or
disks. The selection time with this organization is half
the time of a complete shift in the register; that is,
τ = η/(2ι>), where ν is the timing frequency. This time
corresponds to the rotation waiting time in the case of
a disk or drum. With timing frequency about 1 MHz and
with n= 102 - 10* bits, the selection time will be from 10
Msec to 1 msec. With MD organization with blockwise
access, when a given register stores information of
just one block, the time equivalent to the rotation wait-
ing time is eliminated, and the selection time can be
shortened to 1 - 0.1 Msec. Thus with respect to their
capacity and fast action, MD based on cylindrical do-
mains significantly surpass MD on magnetic disks and
drums. The absence of mechanical motions in CMD
devices (the only motion is that of the information itself
with respect to a fixed informational medium) makes the
operation of these devices very reliable. Furthermore,
a CMD memory device compares favorably, with re-
spect to low cost per bit (this cost corresponds in order
of magnitude to the cost of a magnetic tape MD) and
small energy consumption, with ferrite-core MD. By
appropriate design, cylindrical domains can also be
used to make memory devices with arbitrary (and also
with associative) selection, and with parameters that
satisfy the requirements for operational memory de-
vices; but CMD memory devices will apparently be most
widely used as external and buffer MD of large and me-
dium capacity, with cyclic access. Such MD are capa-
ble of filling the large gap in speed of action that exists,
in the traditional hierarchy of computer memory de-
vices, between external and internal memory devices.
There are predictions that within the next few years
CMD memory devices will completely displace mag-
netic-disk memory devices.

CONCLUSION

Thus it is evident that cylindrical magnetic domains
possess a number of interesting physical properties,
which manifest themselves both in individual cylindrical
domains and in an assemblage of CMD. The most in-
teresting properties of those of hard CMD; the dynamics

of these domains in slightly inhomogeneous external
magnetic fields is as diversified as the dynamics of
charged particles in external electric and magnetic
fields.

CMD can arrange themselves in a lattice, in which
unique waves exist, and which can simulate both or-
dered and disordered two-dimensional crystals.

All this variety of properties at present not only has
scientific interest, but also is finding practical appli-
cation in a whole series of memory and radiotechnical
devices.

It must be mentioned that there are a number of cur-
rent problems in the physics of CMD that have still not
found a sufficiently complete solution. Among these
problems are the dynamics of CMD at high velocities,
investigation of the magnetization distribution in a CMD
wall and the effect of motion on the wall structure, study
of varieties of CMD, CMD in extremely anisotropic me-
dia, and the dynamical properties of lattices of hard
CMD.

APPENDIX

Relation between the mobility and the relaxation constant
in the equation of motion of the magnetic moment

We shall start from the following expression for the
variation of the energy of a ferromagnet:

6£ = — \ (A.I)

where He = - 6E/6M is the effective magnetic field acting
on the magnetization. Hence

£=-fHeMiF. (A. 2)

By using the equation

Μ = γ[Μ, ΗΛ-αΛί-ΐ[ΜΧΜ], (Α.3)

we get

Ε--=η£ j (H,[MXM])iV. (A. 4)

Allowing for the smallness of the damping, we have

*--3rJ (S-)1"· <Α·5>
For a domain wall moving with velocity v,

Therefore

dM,

If the wall is plane, then

where S is the area of the domain wall, and where the χ
axis is chosen along the normal to the wall.
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On the other hand, if a force of viscous friction

F = - 1/η ν acts on unit area, then the dissipation of ener-

gy during the motion of the domain wall is determined

by the following expressions

(A. 9)

Therefore

1_ a
(A. 10)

where θ is the angle that determines the magnetization

distribution in a Bloch or Neel wall. This formula also

determines the relation of the mobility coefficient η to

the relaxation constant a and to the parameters of the

magnetization distribution in the domain wall. By using

the specific form of the dependence of θ on the coordi-

nate x, we easily find

2aM for a Bloch

-' for a Neel wall

and

-•*{
V~AiTu

(A. 11)
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'S. V. Vonsovskii, Magnetizm (Magnetism), Μ. , Nauka, 1971
(transl., Wiley, 1974).

2a) D. C. Mattis, Theory of Magnetism, Harper and Row, New
York, 1965 (Russ. transl., M. , Mir, 1971). b) R. M.
Bozorth, Ferromagnetism, Van Nostrand, 1951 (Russ.
transl. , M., IL, 1956).

3 P . Weiss, J. de Physique theOrique et appliquee [4] 6, 661
(1907).

4W. Heisenberg, Z. Physik 49, 619 (1928).
5J. Dorfman, Nature 119, 353 (1927); Ya. Dorfman and G. I.

Yanus, ZhRFKhO 60, 519 (1928).
6J. Frenkel, Z. Physik 49, 31 (1928).
7N. S. Akulov, Z. Physik 54, 582 (1929).
8N. S. Akulov, Z. Physik 52, 389 (1928).
9W. Heisenberg, Z. Physik 69, 287 (1931).
1 0 F. Bloch, Z. Physik 74, 295 (1932).
"L. Neel, Cahiers de Physique, No. 25, 1 (1944).
12L. D. Landau and Ε. Μ Lifshitz, Phys. Z. Sowjetunion 8,

153 (1935) (reprinted in L. D. Landau, Collected Works,
Pergamon, 1965, No. 18, and in D. ter Haar, Men of Physics:
L. D. Landau, Vol. 1, Pergamon, 1965, p. 178).

1 3E. Lifshitz, Zh. Eksp. Teor. Fiz. 15, 97(1945) [Sov. Phys.
JETP 8, 337 (1944)].

1 4C. Kittel, Rev. Mod. Phys. 2 1 t 541 (1949) [Russ. transl. in
Fizika ferromagnitnykh oblastei (Physics of Ferromagnetic
Domains), S. V. Vonsovskii" ed., M., IL, 1951, p. 56].

15N. S. Akulov, Z. Physik 69, 78 and 822 (1931).
1 6E. Kondorski, Phys. Z. Sowjetunion 11, 597 (1937).
1 7 F. Bitter, Phys. Rev. 38, 1903 (1931).
1 8L. v. Hamos and P. A. Thiessen, Z. Physik 71, 442 (1931);

75, 562 (1932).
19M. Kersten, Phys. Z. 44, 63 (1943).
2 0C. KooyandU. Enz, Philips Res. Rep. 15, 7(1960).
2 1 J. Kaczer and R. Gemperle, Czech. J. Phys. B10, 614

(1960); Bll, 510 (1961).
22A. H. Bobeck, Bell Syst. Tech. J. 46, 1901 (1967).
2 3L. D. Landau and E. M. Lifshitz, Elektrodinamika splosh-

nykh sred (Electrodynamics of Continuous Media), Μ., Gos-
tekhizdat, 1959 (transl., Pergamon Press and Addison-
Wesley, 1960).

24A. I. Akhiezer, V. G. Bar'yakhtar, and S. V. PeletminskU,
Spinovye volny (Spin Waves), M. , Nauka, 1967 (transl. ,

North-Holland, 1968); A. I. Akhiezer, V. G. Bar'yakhtar,
and M. I. Kaganov, Usp. Fiz. Nauk 71, 533 and 72, 3 (1960)
[Sov. Phys. Usp. 3, 567 and 661 (1961)].

2 5E. A. Turov, Fizicheskie svorstva magnitouporyadochennykh
kristallov (Physical Properties of Magnetically Ordered Crys-
tals), Izd. Akad. Nauk SSSR, 1963 (transl. , Academic Press,
1965).

F. B. Hagedorn, J. Appl. Phys. 41, 1161 (1970).26

27A. A. Thiele, Bell Syst. Tech. J. 48, 3287 (1969).
28A. A. Thiele, J. Appl. Phys. 41, 1139 (1970).
29Yih-O Tu, J. Appl. Phys. 42, 5704 (1971).
30Y. S. Lin and Y. O. Tu, Appl. Phys. Lett. 18, 247 (1971).
31A. A. Thiele, Bell Syst. Tech. J. 50, 725(1971).
32R. A. Szymczak and R. S. Wadas, IEEE Trans. Magn.

MAG-7, 361 (1971).
3 3B. N. Filippov and Yu. G. Lebedev, Fiz. Met. Metalloved.

36, 933 (1973) [Phys. Met. Metallogr. 36, No. 5, 30 (1973)];
Tsilindricheskie magnitnye domeny (Cylindrical Magnetic
Domains), Preprint IFM Akad. Nauk SSSR, Sverdlovsk, 1971.

34R. C. Sherwood, J. P. Remeika, and H. J. Williams, J.
Appl. Phys. 30, 217 (1959).

35W. Doring, Z. Naturforsch. 3a, 373 (1948).
36G. R. Henry, J. Appl. Phys. 42, 3150 (1971).
37Yu. I. Gorobets, Fiz. Tverd. Tela (Leningrad) 16, 3128

(1974) [Sov. Phys. Solid State 16, 2024 (1975)].
3 8J. A. Cape, W. F Hall, and G. W. Lehman, J. Appl. Phys.

45, 3572 (1974).
39Yu. P. Mukhortov, Fiz. Tverd. Tela (Leningrad) 18, 1351

(1976) [Sov. Phys. Solid State 18, 777 (1976)].
40V. V. Gann and Yu. I. Gorobets, Fiz. Tverd. Tela (Lenin-

grad) 16, 2147 (1974) [Sov. Phys. Solid State 16, 1407 (1975)].
4 1 J. Kaczer and I. Tomas, Phys. Status Solidi (a) 10, 619

(1972).
42A. A. Thiele, A. H. Bobeck, E. Delia Torre, and U. F.

Gianola, Bell Syst. Tech. J. 50, 711 (1971).
4 3L. D. Landau and Ε. Μ. Lifshitz, Statisticheskaya fizika

(Statistical Physics), Μ., Nauka, 1964 (translation, Per-
gamon Press and Addison-Wesley, 1969).

4 4 J . C. Slonczewski, J. Appl. Phys. 45, 2705 (1974).
4 5G. P. Vella-Coleiro, A. Rosencwaig, and W. J. Tabor,

Phys. Rev. Lett. 29, 949 (1972); W. J. Tabor, A. H. Bobeck,
G. P. Vella-Coleiro, and A. Rosencwaig, Bell Syst. Tech. J.
51, 1427 (1972).

46A. P. Malozemoff and J. C. Slonzewski, Phys. Rev. Lett.
29, 952 (1972); A. H. Bobeck, Bell Syst. Tech. J. 46, 1901
(1967).

4 7H. Callen and R. M. Josephs, J. Appl. Phys. 42, 1977
(1971).

4 8J. A. Seitchik, W. D. Doyle, and G. K. Goldberg, J. Appl.
Phys. 42, 1272 (1971).

4 9L. Neel, Cahiers de Physique, No. 25, 21 (1944).
5 0 F . C. Rossol, Phys. Rev. Lett. 24, 1021 (1970).
51A. H. Bobeck, R. F. Fischer, A. J. Perneski, J. P. Re-

meika, and L. G. Van Uitert, IEEE Trans. Magn. MAG-5,
544 (1969).

5 2J. A. Cape and G. W. Lehman, Solid State Commun. 8, 1303
(1970).

53W. F. Druyvesteyn and J. W. F. Dorleijn, Philips Res. Rep.
26, 11 (1971).

54V. G. Bar'yakhtar, V. V. Gann, and Yu. I. Gorobets, Zh.
Tekh. Fiz. 45, 386 (1975) [Sov. Phys. Tech. Phys. 20, 240
(1975)].

55V. G. Bar'yakhtar, V. V. Gann, and Yu. I. Gorobets, Pre-
print IFT-66-R, Kiev, 1974; V. G. Bar'yakhtar and Yu. I.
Gorobets, Ukr. Fiz. Zh. 19, 6 (1974).

5 6J. A. Cape, G. W. Lehman, and L. A. Vredevoe, Bull. Am.
Phys. Soc. 15, 318 (1970).

57M. Η. Η. Hofelt, J. Appl. Phys. 44, 414 (1973).
5 8 I . Tomas, Phys. Status Solidi (a) 21, 329 (1974).
59V. V. Gann and Yu. I. Gorobets, Fiz. Tverd. Tela (Lenin-

grad) 17, 1305 (1975) [Sov. Phys. Solid State 17, 843 (1975)].

317 Sov. Phys. Usp., Vol. 20, No. 4, April 1977 Bar'yakhtar et at. 317



60Μ. Μ. Sokoloski and Τ Tanaka, J. Appl. Phys. 45, 3091
(1974).

61V. G. Bar'yakhtar, Yu. I. Gorobets, and Yu. V. Melikhov,
Fiz. Tverd Tela (Leningrad) 17, 1388 (1975) [Sov. Phys.
Solid State 17, 893 (1975)].

6 2G. A. Smolenskii, M. A. Boyarchenkov, F. V. Lisovskii,
and V. K. Raev, MikroSlektronika 1, 26 and 99 (1972).

63W. F. Druyvesteyn, A. W. M. Enden, F. A. Kuypers, E.
de Niet, and A. G. H. Verhulst, Inst. Phys. Conf., ser. No.
25, 37 (1975).

UA. H. BobeckandE. Delia Torre, Magnetic Bubbles, North-

Holland, 1975.
6 5G. S. Almasi, Proc. IEEE 61, 438 (1973).
6 6G. A. Smolenskii and V. V Lemanov, Ferrity i ikh tekh-

nicheskoe primenenie (Ferrites and their Technical Applica-
tion), L., Nauka, LO, 1975.

67A. H. Bobeck, IEEE Trans. Magn. MAG-6, 445 (1970).
68Magnltnye domennye logicheskie i zapominayushchie

ustroistva (Magnetic-Domain Logic and Memory Devices),
M. A. Boyarchenkov, ed., Μ., Energiya, 1974.

Translated by W. F. Brown, Jr.

318 Sov. Phys. Usp., Vol. 20, No. 4, April 1977 Bar'yakhtar et al. 318


