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As is well known, Maxwell equations in vacuum are covariant under a transformation of the Lorentz

group. The same equations in a material medium have a more general symmetry group and retain their

form under arbitrary nondegenerate linear transformations of space-time variables to which, naturally, are

added definite rules for recalculating fields and material characteristics of the medium. This enables a

formal correspondence to be established between solutions of physically different electrodynamic problems

related by linear transformations of the space-metric and of the tensor characteristics of the media. Such

a correspondence (comparison) turns out to be useful, in particular, for investigating the propagation of

electromagnetic waves in the presence of external gravitational fields, and also in systems with moving

inhomogeneities or sources. Some examples of comparisons are examined and the results obtained in the

course of this are indicated. A discussion is given of the relationship of the comparison method to the

transformations of special and general theories of relativity.
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1. INTRODUCTION

The opinion is quite widespread that the Lorentz
transformations

*' = γ (x — Ft), y'=y, z' = z, f = γ (t - Vc'x), (1.1)

where γ = [l - (Vz/cz)]"in are distinguished among other
transformations of coordinates and time (for example,
the classical Galilean transformations) by the fact that,
in contrast to the latter, they (and only they) leave Max-
well equations invariant. However, it is well known
that the Maxwell equations

rotE = -
1 SB

divB =
(1.2)

can be written in 4-tensor form without making specific
the relation between the field vectors in matter. cl~*]

And this means not only that they are Lorentz-invariant
(which is usually emphasized in physical literature) but
that they are also invariant with respect to arbitrary
nondegenerate linear transformations of space-time

variables (affine covariance).

In other words, if along with the coordinates one also
recalculates fields and sources according to an appro-
priate law (as is done, in particular, also in the special
theory of relativity (STR)), equations (1.2) will retain
their form under arbitrary linear transformations in-
cluding the Galilean ones. Naturally to each such trans-
formation (i .e., to each system of 4-coordinates) there
will correspond in such a procedure appropriate mate-
rial equations for the medium.

From a formal point of view Lorentz transformations
are distinguished only by the fact that in vacuum they
preserve the form of material equations for the medium
(D = Ε, Β = H) and this physically corresponds to the rel-
ativistic postulate of the invariance of the velocity of
light. For fields in matter the Lorentz transformations
no longer have such an advantage, and, as will be shown
later, they are therefore not the optimum ones for solv-
ing a number of problems. In other words, the group
of invariant transformations of the original system of
equations (1.2) turns out to be wider than the symmetry
group of the wave equation obtained from (1.2) (the
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D'Alembertian operator).1'

But the assertion widespread in physics literature
concerning the uniqueness of the invariant properties of
the Lorentz group is far from always accompanied by a
clear indication of whether one has in mind fields spe-
cifically in vacuum or in an arbitrary material medium
(cf., for example, »•».·-«).«>

Of course, according to their physical meaning Lo-
rentz transformations differ in principle from other lin-
ear transformations of variables, since the latter no
longer correspond to a transition from one inertial ref-
erence system to another. Nevertheless, to each in-
variant transformation there formally corresponds a
definite prescription for the recalculation of fields and
of material characteristics of the medium, and this en-
ables one to speak of comparison of different electrody-
namic systems. Lorentz transformations can be re-
garded as a particular case of such a comparison when
the same physical system is described from the point
of view of two different inertial observers.

While relativistic transformations are the usual meth-
od for solving many electrodynamic problems, other
invariant transformations find almost no application.
But there exist definite classes of problems for which
non-Lorentz transformations turn out to be more conve-
nient. The calculation of fields in media with moving
inhomogenieties or sources'-11"16-1 can serve as an ex-
ample.

As is well known, the use of a Lorentz transformation
from the system Κ where the medium is at rest and is
described by the simplest material equations

D = εΕ, Β = μΗ (1.3)

(ε, μ = const), to the system Κ' comoving with inhomo-
geneities or sources moving with velocity V leads to
the material relations of MinkowskiC2~4]3)

D' + c-1 [VXH'] =ε (Ε' + c-1 [VXB/]),

B' -c-i[VXE']= μ (Η' -c-1 [VXD'])·
(1.4)

But the use of sensibly chosen non-Lorentz transforma-
tions enables us to reduce the problem to the investiga-
tion of fields in media with simpler material equations
than (1.4) with the corresponding formulas remaining
applicable also to motion with velocity greater than that

n In this connection we note the remark of Minkowski151 that the
Lorentz-covariance of the equations of electrodynamics is a
mathematical fact which is essentially based "on the form of
the differential equation for the propagation of waves with the
velocity of light."

2 'it is possible that the emergence of the misunderstanding in-
dicated above was aided by the fact that Poincare, '" having
formulated the principle of convariance of the equations of
motion, introduced the Lorentz transformations specifically as
transformations which do not alter the equations of electro-
dynamics. However, he" 1 (just as Einstein did in the first
papers on the STR1101) examined the case of vacuum, and the
possibility of recalculating the material equations of the
medium was excluded.

3'Both here and later quantities related to the system Κ' will
be denoted by a prime.

of light {V > c). Such systems are physically entirely
realizable and in recent times have attracted consider-
able interest (cf., for example,C13'173). The possibility
of comparing the effect on electromagnetic fields of a
homogeneous gravitational field and of a dielectric me-
dium1·4'183 can serve as a well-known example of quite
a different kind.

In connection with this the attempt undertaken below
to discuss the special features of non-Lorentz trans-
formations and to illustrate the applications of the meth-
od of comparison to the solution of some problems ap-
pears to be useful.

2. MAXWELL EQUATIONS IN NONORTHOGONAL
4-COORDINATES AND INTRODUCTION OF
COMPARABLE SYSTEMS

It is well known that from the geometrical point of
view Lorentz transformations represent unitary trans-
formations (rotations) in orthogonal (pseudo-Euclidean)
4-space. In such a case the space metric tensor glk

which defines the corresponding line element4'

remains unchanged ("Galilean")

( 1 0 0 Q\
0 — 1 0 0 |
o o — i ο I ·

0 0 0 - 1 /

(2.1)

But we are considering arbitary nondegenerate linear
transformations of 4-coordinates of the form

*" = aU\ *' = Ξ£*"\ (2.2)

such that al &* = &'„, where δ£ is the Kronecker symbol,

In the language of general theory of relativity (GTR)
such transformations denote the introduction of non-
orthogonal (oblique) 4-coordinate systems described
by a metric tensor with constant components which,
however, differfrom(2.1). The transformation law for
the covariant components" gik, corresponding to (2.2),
has the form

gk°=a?al

kgml. (2.3)

In such a case in GTR, as is well known, the covari-
ance of equations (1.2) under arbitrary transformations
of coordinates is assured; but, of course, usually elec-
trodynamics in GTR is formulated only for a vacuum,
while we are here interested in fields in material me-

4)Here and below Greek subscripts take on the values 1, 2, 3,
and Latin subscripts take on the values 0, 1, 2, 3.

5 )In order to emphasize the difference between the covariant
and contravariant components in nonorthogonal coordinates
we recall their explicit geometric definitions for vectors"9 1:

A = A,e', A' = (Ae<),

where θ' are unit vectors along the coordinate axes.
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dia. However, the problem of comparison under dis-
cussion here differs essentially from that which is
solved with the aid of the well-known apparatus of GTR.
The point is that in GTR in going over to other indepen-
dent variables χ ' ' the space-time metric is also uniquely
transformed in accordance with formula (2.3). But in
our case the auxiliary system is physically, generally
speaking, not in any way connected with the initial one,
and the metric tensor for it can be chosen arbitrarily.
This circumstance broadens the class of comparable
systems and enables us to obtain formulas for the trans-
formation of fields and sources leaving the system (1.2)
invariant which are simpler and more convenient for the
solution of specific problems. In particular, the metric
of the auxiliary system can be retained in the form
(2.1), and this will be utilized in Sec. 3.

It is well known (cf., for example, the review1-20-1),
that within the framework of the STR a transition to the
vector-potential description is often convenient for the
introduction of 4-tensor quantities. In an arbitrary non-
orthogonal coordinate system in the presence of a ma-
terial medium the connection between the potential and
the field characteristics becomes more complicated,
and the advantages of such a description are to a large
extent lost. We shall therefore take as our point of de-
parture the antisymmetric tensors of the displacement
Dik and of the field Bik the contravariant components of
which can be expressed in terms of the components of
the corresponding vectors in 3-space in the following
manner:

ΰ«° = ( B~;
(2.4)
(2.5)

here ηαΒγ is the antisymmetric unit tensor in 3-space,
the metric tensor for which is defined in agreement
withc l 8 ] by

(2.6)
ioo

At the same time ηαΙ* = h'1/zeatr, where eaBr is the anti-
symmetric unit tensor defined by the value of elzi = 1,
h=OethaS.

Introducing the 4-vector for the current in the usual
manner1·181:

(<?oo)-1/! («Ρ, Λ . (2.7)

Eqs. (1.2) for the quantities Dik, Bik can be written in
the form

№ " _ in -n dB* _ Q (2.8)

which is invariant with respect to the transformations
(2.2).β )

6)The covariant form of Maxwell equations in the form (2. 8)
(cf., also'11) is preferable for the case of material media
than the form utilized in121, since, in contrast to the latter,
it preserves explicitly the property of the duality of the ini-
tial equations (1.2), i. e., their symmetry with respect to the
replacements Ε—Η, Β—· — D in a medium without sources.

In accordance with the general rules for tensor trans-
formation the contravariant components D1* are recalcu-
lated according to the formulas

D'ik = a\a*D'n (2.9)

(similarly for Bik), while the transition from contravari-
ant components to covariant components in a given sys-
tem of coordinates is performed with the aid of the met-
ric tensor, for example,

As Vgoo Da - (2.10)

Formulas (2.4)-(2.10) enable us to find completely
the fields and the material equations in the auxiliary
electromagnetic system K1, if they are known in the ini-
tial system K, and conversely. Thus, if in K:Dik

= ε{* B'm, then the components of the material tensor in
the system K' with a metric defined in accordance with
(2.3) are equal to

(2.11)

It is not difficult to establish with the aid of formulas
(2.4), (2.5) the form of the tensor ε for a specific medi-
um. For example, for an anisotropic dielectric de-
scribed in 3-coordinates by the permittivity tensor εοβ

and the scalar magnetic permeability μ, the nonvanishing
components of the antisymmetric material 4-tensor ε
are equal to

(2.12)

with, as follows from (2.6): g^h=-g = -T>etgik. The
particular case of vacuum is obtained from (2.12) when
zaB = h"6, μ = 1, including the case of Cartesian coordi-
nates when the metric tensor for 4-space is chosen in
the form (2.1): εοβ = δ£.

Thus, the initial problem of finding fields in an elec-
trodynamic system Κ with given sources and definite
material equations of the medium can be compared to
another (auxiliary) system where the same initial equa-
tions (1.2) are to be solved, but in a medium with dif-
ferent material relations defined by formulas (2.4),
(2.5), (2.9) and by appropriately recalculated sources
(2.7). The solutions of these two problems will be of
the same type and can be obtained one from the other
by a simple recalculation using formulas of the form
(2.9).

We note that the possibilities of comparison can be
extended as a result of the similarity principle for elec-
tromagnetic systems: if Dlk and Bik satisfy equations
(2.8) with sources /*, then the quantities kpD1", kBB

ik

are solutions of the same equations with the sources
kol", where kD, kB are arbitrary constant multipliers.

3. STR AND GTR TRANSFORMATIONS AS
PARTICULAR CASES OF COMPARABLE SYSTEMS

We consider the relation of the method of comparison
to the transformations of STR and GTR in the language
of the general formulas set out in Sec. 2. If the matrix
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aj, in (2.2) is equal to

( ν -βγ ο o\

-βγ γ 0 0»
0 0 1 0 /
0 0 0 1/

(3.1)

where β = V/c, then the space metric in K' in accordance
with (2.3) remains Galilean and the transformation (2.9)
brings the material equations (1.3) into formulas (1.4),
i. e., the comparison procedure corresponds to the Lo-
rentz-Minkowski transformations (STR) when for the
comparison system we consider the same medium, but
taken in another inertial reference system.

For arbitrary a}, a comparison can be carried out in
two ways. 1) The choice of the metric in K' in accor-
dance with (2.3) means that the comparison system is
the same medium but described not in terms of orthogo-
nal but in terms of oblique 4-coordinates. 2) Any other
choice of the metric makes the comparison procedure
more formal and means that in the auxiliary problem
we are, generally speaking, considering a medium quite
different from the one in Κ which even need not neces-
sarily be physically realizable (for example, it can cor-
respond to negative values of density; cf., Sec. 5).
This circumstance is not an obstacle to the application
of the comparison method—it is sufficient that the aux-
iliary system should be a simpler one for making cal-
culations.

In other words, in the former case the comparison is
carried out by replacing the coordinate systems for one
and the same medium (GTR), while in the latter case
(which, as we hope to show in Sec. 5, is of greater in-
terest for applications) it consists of the choice of a
suitable medium while retaining in K' possibly simpler
metric relations.

The correspondence between these two approaches
can be explicitly demonstrated using the example quoted
above of comparing electrodynamic problems in a static
gravitational field and in a dielectric medium with a
given permittivity.

Suppose that in Κ we consider an electromagnetic field
in vacuum in the presence of a static gravitational field.
Such a system is described by the metric 4-tensor gih

in which all the components gOa = 0, c l 8 ] and by the mate-
rial 4-tensor ejj, whose nonvanishing components are
in accordance with (2.12) equal to

(3.2)

We require that in K' no gravitational field should be
present, and under this condition we shall obtain here
the components of the material tensor (ε'){£. The trans-
formation which brings the metric 3-tensor hav of the
system Κ into the unit metric tensor (h')aB, correspond-
ing to a Galilean space in Κ', can be written in the form

Expressing the nonvanishing components of the tensor
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ε{* in terms of the corresponding components of (ε'){*
with the aid of (3.3) and substituting these expressions
into (3.2), it is not difficult to obtain

(3.4)

According to (2.4), (2.5) the relations (3.4) are equiv-
alent to two material equations

(3.5)

which mean that in the auxiliary problem without the
gravitational field we must consider an isotropic ho-
mogeneous medium with the permittivity and magnetic
permeability ε = μ =(gm)~1/i. In this case the electro-
magnetic fields in these two physically different systems
turn out to be analogous and can be obtained from each
other with the aid of formulas of the form (2.9). In
other words, a change in the space-time metric in a
gravitational field from the point of view of its effect on
the electromagnetic fields can be equivalent to the pres-
ence of a dielectric medium.C 4 l l 8 : l

4. THREE-DIMENSIONAL FORMULAS FOR THE
TRANSFORMATION OF FIELDS AND SOURCES

Although the use of 4-tensor formalism enables us to
formulate the comparison method in the simplest and
most general form, in the solution of specific problems
it turns out to be useful to go over to a 3-coordinate
vector description of quantities characterizing the elec-
tromagnetic field.

The 3-vector transformation formulas, in particular,
are more convenient because they do not depend explic-
itly on the form of the metric tensor. But in those
cases when these formulas will be written in terms of
components we shall everywhere for the sake of sim-
plicity assume the metric to be Galilean, making no dis-
tinction between covariant and contravariant components.
We shall write the linear transformation (2.2) of coor-
dinates and time with the aid of the matrix ν and the
numerical factor κ in the following form:

r' = ν (r — ai), t' = κ (t — br), (4.1)

where a and b are arbitrary 3-vectors. Then from (2.9)
in the notation of (4.1) (or by a direct substitution of
(4.1) into the Maxwell equations) and taking into account
the similarity transformations it is not difficult to ob-
tain the rules for the recalculation of the induction vec-
tors D and Β and of the sources p, j in going from sys-
tem Κ to K':

D' = kDm (D - a (bD) + c [bXH]),

B' = kBm (B — a (bB) — c [bXE]),

j ' = kDv (j — ap), p' = kDx (p — bj).

(4.2)

(4.3)

The transformation formulas for the field intensities
Ε and Η turn out, generally speaking, to be quite awk-
ward, but for the case of further interest to us when the
matrix ν is assumed to be diagonal (there is no rotation
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of axes in the coordinate 3-space) they can be written
in a relatively compact form

vE' = kBv (E + kDv (H - c1 [aXD]), (4.4)

where v = Detu.

The following values of the parameters:

( y ο ON

- - = ν , v = 0 1 0 ;
\ 0 0 1 /

(4.5)

apparently correspond to the Lorentz transformations
(1.1) in the notation of (4.1) and in this case the rela-
tions (4.2), (4.4) go over into the Minkowski formulas
if we take kD=kB.

We recall that one of the transformations of the form
of (2.2), (4.1) which leave Maxwell equations invariant
is the Galilean transformation when the nonvanishing
components of the matrix al

k in (2.2) are equal to a\ = l,
a\ = -a/c or, in the notation of (4.1), 6=0, V\ = VL = \.
In this case the rules for recalculating fields and
sources into the corresponding auxiliary system K' are
(for brevity we set kD =kB = 1):

Ε' = Ε + <r»[aXB], D' = D,

H' = H-e-'[aXD],B' = B,

j ' — j — aP» P' — P

(4.6)

and turn out to be even simpler than the corresponding
relativistic relations. In contrast to the latter they do
not have any singularities for a^ c, and this makes us-
ing them equally convenient for arbitrary values of a.
If in Κ the material equations have the form of (1.3),
then in Κ' in accordance with (4.6) we obtain the rela-
tions

D' = ε (Ε' - c-1 [aXB1]), Β' = μ (Η' + c"1 [aXD]), (4. 7)

which are also simpler than the Minkowski formulas
(1.4) corresponding to the choice of the auxiliary system
on the basis of (4.5). As has been already emphasized
in the introduction, the case of vacuum is an exception
when the Lorentz transformations are priviledged.

Thus, one can say that the transformations of fields
and sources obtained on the basis of Galilean formulas
can be regarded in principle not only as approximate
ones for /3=a/c«l but also as quite rigorous relations
if one has in mind a comparison of media and not a
transformation of reference systems. In such a case
the induction vectors D and Β are invariant so that a dif-
ference compared to relativistic formulas of recalcula-
tion exists already in the first order in β.

5. SOME EXAMPLES OF THE APPLICATION OF
THE METHOD OF COMPARISON

As has been noted already, the use of non-Lorentz
transformations and of the comparison method can be
convenient for the investigation of fields in media with
parameters or sources which vary in space and time in
accordance with the law governing a traveling wave of
arbitrary profile: p=p(x-Vt), particularly for V&c.

As limiting cases this also includes problems with
abrupt moving boundaries and point sources.

Suppose, for example, that in the initial system Κ the
material equations have the form of (1.3), i.e., the me-
dium is stationary but the sources move and are func-
tions of the formjOf- Vt), pbc- Vt). Setting in (4.1)
a = V· x0 (i.e., taking x' ccx- Vt) one can choose the
auxiliary system {K1) to be stationary (the sources in it
will not depend on t'). In contrast to the Lorentz trans-
formations the remaining coefficients in (4.1) can be
simultaneously chosen so that the medium in K1 will also
be stationary and the material equations will preserve the
form analogous to (1.3)

D' = e'E', Β' = μ'Η', (5.1)

where ε', μ'are certain constants. In other words, the
anisotropy of the problem due to the relative motion of
the medium and the sources can, in contrast to (1.4), be
totally "forced" into the transformation formulas for
fields and sources (4.2)-(4.4), and this, of course, is
simpler for calculations. It is not difficult to verify by
the substitution of (4.2) and (4.4) into (5.1) that for this
it is necessary and sufficient that the following relation
be satisfied

(5.2)

which represents the condition of similarity of electro-
magnetic systems of the kind under consideration, and
that the following conditions also hold

b = (5.3)

One can take the values of ε' and μ' in (5.1), for ex-
ample, to be the same as the initial values ε and μ or
corresponding to vacuum (ε' = μ' = 1). In the latter case
in accordance with (5.2), (5.3) the expression replacing
(4.1) takes on the form

z' = Hz, y' = Hy, χ' = κ (1 - β

f = κ (εμ)" 1 ' 2 (1 - β'βμ)-1'· (£ —

)"1/» (χ - Vt),

(5.4)

The transformations (5.4) remind us of Lorentz trans-
formations and go over into them as εμ — 1, H = 1. Gen-
erally speaking, the factor κ and one of the coefficients
kD and kB remain arbitrary, and they can be chosen, for
example, in such a manner as to simplify formulas (4.3)
for the recalculation of the sources themselves.

Thus, the fields due to sources moving in a homoge-
neous medium can be obtained by means of the well-
known solutions for stationary sources in vacuum by
means of a simple recalculation of fields and coordinates
in accordance with formulas (4.2), (4.4). We illustrate
this on the example of a point charge moving with veloc-
ity V along the χ axis in a nondispersive dielectric. We
take the static solution of the auxiliary problem in the
form

D' = E' = q (r')-» r', H« = B< = 0. (5.5)
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We find the corresponding solution of the initial problem
by substituting relations (5.2), (5.3), (5.5) into the for-
mulas for the recalculation of fields (4.2), (4.4). Choos-
ing for the sake of simplifying the result κ = 1, kD

=(εμ)"3/2(1 - ^ ε μ Γ 1 we obtain

(5.6)
Ex = ge-1 (x — Vt) R->, Hx = 0,

Ey = qe-^R-*, Hv = —

where R = [(x— Vtr + (y + z )(1 -β εμ)] ' . The remain-
ing components of the fields can be easily obtained from
the material equations (1.3) taking into account the cylin-
drical symmetry of the problem.

Formulas (5.6), naturally, agree with the well-known
expressions for fields of uniformly moving charges ob-
tained by the traditional method (cf., for example,c a l ]).
We note, that already from (5.4) we can see the special
feature occurring in the Cerenkov case (/3*εμ> 1), here
real x, t correspond to imaginary values of χ , t' and
conversely. As a result of this in the solution of (5.6)
on the surface of the cone (* - Vtf = (y* + zz) (βζζμ -1)
the fields have a divergence associated with Cerenkov
radiation.

One can proceed in a similar manner also in investi-
gating fields of oscillators moving in a medium—the
use of the transformations (5.4) enables us to express
these fields in terms of the well-known solution for a
stationary oscillator in vacuum. Here the special fea-
tures arising in "faster than light" motion are also taken
into account in an explicit manner.

We now indicate how one can investigate waves in
media with variable parameters within the framework
of the class of linear transformations (2.2) considered
here (since in a direct application of media with vari-
able ε and μ of transformations of the type of (5.4) the
latter are no longer linear). For this one can utilize
the fact that the separation of the current induced in the
medium into a conduction current j and the displacement
vector D in (1.2) is carried out, generally speaking, in
a nonunique manner. Therefore for media with variable
parameters (such as density, temperature, etc.) the
corresponding part of the polarization current can be
included into the quantity j leaving, if necessary, ε and
μ at values different from unity only for taking into ac-
count the homogeneous "background" medium or the ef-
fect of retarding systems. Then the material equations
(1.3) must be complemented by a relation connecting
the current j with the electromagnetic field, for exam-
ple, in the form

j = aE, (5.7)

where the conductivity tensor σ for dispersive media is
a linear operator.7'

For media with variable parameters the operator σ
will depend explicitly on r and t. If, in particular, the

parameter wave is of the form of a moving layer of con-
stant profile {σ=σ{χ— Vt)), then by the replacement
x' (χχ — Vt the problem can again be reduced to a station-
ary one—to the investigation of reflection and transmis-
sion of waves in an auxiliary stationary layer, including
the case of V> c. In such a case again by a suitable
choice of the dependence t'(t, x) one can succeed in sim-
plifying the material relations for the medium in com-
parison with the relativistic relations. As a result one
can directly use for moving layers the methods and the
results well known for stationary spatially-inhomoge-
neous media.C 2 a·2 3 3

Further, since here the coefficients in Eqs. (1.2) do
not depend on t', the variables χ and t' are separable,
and the problem of finding fields in the form Ε'
=f'(x')g'(tr) can be reduced to solving an equation with
variable coefficients (but now in terms of ordinary de-
rivatives) involvingthefunction f'(x') the form of which
depends on the operator σ. And for the other factor
g'(t') an equation with constant coefficients is obtained;
its solution can be taken to be harmonic in t' ( i .e.,
proportional to exp(t'u>7')). Then the procedure of com-
parison can be conveneiently carried out in a somewhat
different form—in a number of specific problems the
transformation t\x, t) can be so chosen that the equation
for/ 'U') and for the analogous factor/(x- Vt) in the
initial problem would be invariant without recalculating
the functions being sought (in contrast to (4.2), (4.4)). [ 1 1 :

Physically this means that the comparison system is a
layer of the same nature, but stationary. As a result
of this when the function/'(χ1) is known in order to find
the desired solution E(x, t) it is sufficient in the expres-
sion E' =f'(x')g'(t') to substitute (4.1) in place of χ', t'.
As an example we consider the case of a moving layer
of plasma of variable density N(x, t) =Ν(χ - Vt). The
variation of N(x, t) can be, in principle, due both to the
motion (drift) of an inhomogeneous plasma, and to ion-
ization-recombination processes (it is in the latter case
that V> c is possible and this has been repeatedly noted
in the literature—cf., for example, t1 1·1 7·2*·8 5!). it
should be noted that depending on the mechanism pro-
ducing a density variation the form of the operator <r(r, t)
and, correspondingly, the behavior of electromagnetic
waves turn out to be different in the case of the same de-
pendence N(T, t) (cf., ize~sal)t and this is often over-
looked.

In particular, for high frequency fields in an immobile
nonstationary plasma the connection of j with Ε can be
written with some idealizing assumptions in the form
usual for the phenomenological theory of dispersive
media

i(/)= σ(ί,

7>Such a relation does not exclude taking into account the effect
of the magnetic field of the wave which is essential for mov-
ing media since the field Β can be expressed In terms of Ε in
accordance with (1.2).

(5.8)

where the kernel σ(ί, τ) turns out to be equal toC 2 e > 2 7 ]

σ (t, τ) = e'm^N (r, t — τ) exp [-(ν + δ) τ];

here e, m and N(r, t) are the charge, mass and the den-
sity of electrons which varies in time due to the pro-
cesses of ionization and recombination, ν is the effec-
tive frequency of elastic collisions of electrons with
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heavy particles, δ'1 is the mean lifetime for free elec-
trons. Generally speaking, taking (5.8) into account
one can obtain from the system (1.2) a third order equa-
tion for the vector Ε (and consequently, for the factor
f' he')). If for the sake of simplicity we neglect the ef-
fect of collisions (which is permissible for ΝΛI SN/bt I
»(ν + δ)) we obtain for the field Ε in a plane wave travel-
ing along the χ axis a second order equation of the Klein-
Gordon type

(5.9)

where ωρ = (ΑτΐβζΝ/τηζ)ι/ζ is the plasma frequency.

Setting in (5.9) Ε =f '(*') exp(w'i'), where x' and t'
are introduced in accordance with (4.1), the problem
can be reduced in accordance with the foregoing to the
investigation of waves in a stationary (immobile) plasma
layer of profile Ν'(χ'), similar to the initial one which
is situated in a likewise immobile dielectric of permit-
tivity ε'. The specific values of N' and ζ depend on the
choice of the coefficients in (4.1). For example, if we

-βϋ), b=

(5.10)Ν' = (1 - β2ε) Ν, ε' = ε (1 - β2ε)-

but if ν\ = (1 - β*ε)-ιη, b = zVc*, then we have

If' = Ν, ε' = ε (5.11)

etc.

Using the known structure of the field in the auxiliary
case it is not difficult by means of recalculating E' and
ω' to obtain the amplitude and the frequencies of sec-
ondary waves in the initial problem, their group and
phase velocities, etc. Inparticular, the frequencies of
the incident (ω0) and of secondary (ω) waves outside the
layer turn out, just as in the case of sharp boundaries, lz i l

to be connected by the Doppler relations

o>o 1 — (Vlv)
(5.12)

where va, ν are the phase velocities of the waves. The
coefficients of power reflection (A) and transmission
(Γ) of waves in a moving layer can be directly expressed
in terms of analogous quantities for the auxiliary layer
(Λ\ Τ'):

r = riSafeI, . (5.13)

where k is the wave number, while the subscripts r, t
refer to the reflected and transmitted waves respectively.
In particular, if there is no plasma ahead of the ioniza-
tion front (vo = vT), then R =R'. The condition for total
reflection (T =0) can here be satisfied even for Τ' *0,
if the frequency found in accordance with (5.12) ω,
« ω , β β , i .e., Refe(=0.

We note further that the method of comparison enables
us also in the general case to obtain relations connecting
the total energies {W) and the frequencies of quasimono-
chromatic wave packets independently of the specific

profile of the plasma layer. Indeed, starting from the
fact that in this approximation the energy of the field is
conserved in the auxiliary system, i .e., R' + T' = l, we
obtain in the case of an initial layer, moving with a
"less than light" velocity (0/7 < 1), [ 1 3 ]

(5.14a)

Since in the case of ionization BN/dt > 0 and ωτ, ω,
> ω0, it follows from (5.14a) that Wo< Wr+ Wt, i .e.,
the total energy of the electromagnetic waves is re-
duced.

In the "greater than light" case (j3vT >1) special fea-
tures appear in the formulas for the recalculation of pa-
rameters. For example, in the variant (5.10) the den-
sity N* of the auxiliary layer turns out to be negative,
which is physically nonrealizable. However, this cir-
cumstance does not preclude a formal procedure for
seeking a solution and merely means that the dispersion
equation for the auxiliary medium has the form czkz/t'
= ω2 + Ι ω'ρ

ζ1.8) In contrast to the initial problem, when
czkz/c = ω2- u)j, and for ω<ωρ the plasma is nontransparent,
the quantity k' is real for arbitrary values of ω'. In
other words, in the "greater than light" case a pertur-
bation of arbitrarily low frequency is transformed with
respect to its spectrum in such a manner that ω η > ωρ,
and the wave "sneaks" through the plasma. Thus, for
uip » ω0 a large coefficient of frequency transformation
occurs here as has been repeatedly pointed out in the
literature (cf., for example,[la·13·84·253). We note that
now the reflected wave, as such, no longer exists, but
we have a second transmitted wave of frequency o>f2,
the group velocity of which in the initial problem is in
the direction of catching up with the layer. As a result
it follows in this case from the equation R' + T' = 1C13J

that

(5.14b)

In spite of the opposite sign of the last term compared
with (5.14a) analysis shows1·131 that in this case also we
always have Wn + Wtz< Wo. Physically this is under-
standable, if we take into account the fact that for any
arbitrary velocity of motion of the ionization wave, a
part of the electromagnetic energy is expended in im-
parting translational motion to the newly produced elec-
trons.

In the case of a moving plasma equation (5.9) is no
longer valid; here, by the way, it is in principle neces- •
sary to take account spatial dispersion. In connection
with this it is more convenient to start from the rela-
tions of microtheory from which (without taking into ac-
count thermal motion, etc. c l l ' 1 2 ] ) it is possible once
again to obtain the Klein-Gordon equation, but this time
for vector potential A (in this case Ε = - c"1 8Α/θί, Β
= curl A). As a result of this the dispersion law and all
the kinematic formulas (for frequencies and propagation

8'in another variant of comparison there are no special features
In the formulas of (5.11), but the variables χ', t' become
imaginary and the dispersion equation for Κ' is obtained in
the same form as in the case that has just been considered.
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vectors, phase and group velocities, etc.) remain the
same as in the preceding case, but the relations involv-
ing amplitudes and energies are significantly altered.
Thus, from the condition R' + T' = 1 instead of (5.14) we
now have"2 1

(5.15)ωο ω, + ω,

ω, ω,, ωί 2

 w r ^ '

Formulas (5.15) in a definite sense generalize the
well-known Manley-RoweC29] relations to the case of an
arbitrary aperiodic variation of the parameters of the
medium. The first of them, in fact, means that the
total number of quanta is conserved in reflection and
refraction; the total energy in this case can both in-
crease and decrease depending on the relation between
ω0 and uir, u t . But if we neglect reflection (Wr = 0), then
from this we obtain W/w = const. For media with
smoothly varying parameters the validity of such an
adiabatic invariant was established inC30>311 (cf.,
also" 4 ' 2 8 ' 3 2 3 ) . Thus, when a wave packet "enters" into
a denser plasma its frequency and energy increase at
the expense of the kinetic energy of the moving plasma.
Previously relations of the form (5.15) were obtained
for moving sharp boundaries (cf.,C 2 4·3 2 1),

And from the second of equations (5.15) it follows that
in the case of "faster than light" motion of an inhomoge-
neous plasma induced production of new quanta occurs,
and this can be treated as stimulated Cerenkov radia-
tion from a moving layer in a retarding dielectric medi-
um. It is of interest to note that the dispersion equation
for the auxiliary medium in this case coincides with the
corresponding equation obtained inC33] for a stationary
plasma with inverted population.

Thus, a comparison with an auxiliary stationary layer
enables us to carry out an exhaustive investigation of
electromagnetic waves in systems with moving plasma
layers. An analogous method is also applicable in more
complicated cases, for example, within the framework
of kinetic theory for a heated moving plasma, U 4 ] when
there is, in fact, not one variable parameter N(x - Vt),
as above, but a continuous set of parameters—the un-
perturbed distribution function. In such a case the dis-
persion equation (and the kinematic relations for the fre-
quencies and the wave numbers) is obtained in a differ-
ent form; nevertheless, the energy relationships (5.15)
remain in force as before, if we neglect losses of a sur-
face nature which are significant only for abrupt bound-
aries.

6. CONCLUSION

Summarizing we note that in the preceding discussion
•we -were not aiming to carry out a detailed review of
specific physical problems and results obtained in the
literature with the aid of the method of comparison; one
can become acquainted with them utilizing the appended
bibliography. The authors wished more to emphasize
the principle and the, methodological aspects of the prob-
lem—to clarify the essence of the procedure of compari-
son, its relationship to the transformations of STR and
GTR and to underline the available advantages in compari-

son with them. It seems to us that the possibilities of
this method for the solution of different problems are far
from having been exhausted. We note, first of all, that
it can be useful in the investigation not only of electro-
magnetic fields, but of wave systems of arbitrary na-
ture. Utilizing the invariance of the corresponding dy-
namic equations with respect to different transforma-
tions of the independent variables, here also one can in
a number of cases suceed in simplifying the problems
significantly. For example, definite results for sys-
tems described by Lagrange equations were obtained
in[ 1 5 ' 1 6 1 by such a method. Finally, a comparison of
systems is possible which are also related by nonlinear
transformations of independent variables. Some prob-
lems utilizing the invariance of the equations of electro-
dynamics under nonlinear transformations of space-time
were solved, for example in" 1 · 1 6 · 3 4 ^ bitf in view of the
complexity and the diversity of this problem it is diffi-
cult at the present time to advance any general consid-
erations or recommendations concerning the choice of
optimal transformations.
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