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The aim of this review is to provide a systematic survey of the extensive experimental and theoretical data

obtained recently as a result of studies of the motion of charged particles in liquid, solid, and gaseous

helium. The great variety of the available material has forced a subdivision of the general question of the

motion of charged particles in helium into a number of "autonomous" areas. The motion of charges in a

homogeneous medium at sufficiently low velocities is discussed. Chapter 1 describes the structure of

positive (cations) and negative (anions) helium ions in liquid helium. It is noted that there is good

agreement between theoretical descriptions and observed characteristics of ions in helium. The nucleation

of electron bubbles in dense gaseous helium is investigated. Chapter 2 surveys theoretical and

experimental results on the mobility of helium ions under kinetic conditions. The structure of helium ions

ensures that the ion scattering cross sections of different thermal and impurity excitations exhibit very

varied properties. Each of the basic scattering mechanisms, i.e., the phonon mechanism, scattering of

impurities in weak He3-He4 solutions, the Fermi-fluid mechanism, and the roton mechanism, which are

listed here in order of increasing complexity of interpretation, must therefore be specially considered.

There have been notable successes in the theoretical interpretation of the kinetic mobility of helium ions,

but there are also the characteristic difficulties which impede the development of a complete theory of the

kinetic mobility of helium ions. Chapter 3 reviews the results obtained as a result of studies of the

mobility of helium ions when the hydrodynamic approximation can be used in dense gaseous and in solid

helium.
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INTRODUCTION

The introduction of a charged particle into dense heli-
um1' (solid, liquid, or gaseous) leads to the formation
of various elaborate complexes consisting of the charged
particle proper and the ambient helium interacting with
the charge. The large number of effects involving the
participation of these complexes, which are often called
helium ions, the excellent experimental possibilities,
and the relatively lucid interpretation of the most impor-
tant observable facts have stimulated the publication of
a large number of papers, both experimental and theo-
retical, and this has resulted in the development of a
new field of research in helium physics in a relatively
short time (say, the last fifteen to twenty years).

Originally, most of the research effort was directed
toward the determination of the structure of the helium
ion. The work of Williams, Shal'nikov, Meyer, Reif,
Atkins, Ferrel, Careri, Rayfield, and others, has en-
sured that the structure of helium ions in liquid helium

1 'The methods used to introduce the lone into helium, and to
measure their mobility, are analogous to the classical meth-
ods for studying the mobility of ions in gases (see, for ex-
ample, the review by Smirnov1201).

is now practically completely established. The results
obtained by these researchers in the case of charges in
homogeneous helium is considered in the first part of
this review.

Another and much more extensive range of problems
arises in the interpretation of the experimental data on
the mobility of helium ions under different special con-
ditions as a function of temperature, guiding field, con-
centration of impurity excitations, and so on. It is im-
portant to note that the mobility of charged particles is
the most readily measured characteristic of such ions.
It follows that our understanding of the properties of he-
lium ions is, in many ways, determined by the current
state of the theory of the mobility of such ions. More-
over, by observing the behavior of ions in helium and
by being able to explain this behavior, it is, as a rule,
possible to extract from the mobility data, a consider-
able amount of interesting information on the properties
of liquid helium itself. The second part of this review
gives a description of the simpler dynamic properties
of helium ions moving slowly through a homogeneous
medium under the action of a weak electric field.

Studies of the thermal properties of liquid helium it-
self and quantitative interpretation of experimental data
on the mobility of helium ions are possible only in cer-
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tain temperature intervals. These intervals are as fol-
lows:

a) the low-temperature region with well-defined con-
cepts of thermal and impurity excitations, and an exci-
tation path length I greater than the ionic radius R(l >R);

b) the hydrodynamic region in which 1<R;

c) the neighborhood of the λ point.

In addition, the mobility of charges in dense gaseous and
solid helium also deserves attention.

In view of the considerable volume of data on helium-
ion mobility, it will be convenient to subdivide the sec-
ond part into two chapters. One will consider the mo-
bility of charges under kinetic conditions, and the other
will summarize existing information on other types of
mobility.

1. STRUCTURE OF HELIUM IONS

At least three qualitatively different ionic complexes
are observed in homogeneous helium: positive ions,
negative ions, and charged vortex rings. In addition,
independent ionic formations may also be considered to
include charged surface states existing near the liquid-
vapor interface of liquid helium. The great variety of
possibilities forces us to subdivide the general problem
of helium ions into a number of "autonomous" areas.
They are defined in the introduction. Throughout this
review, we confine our attention to the mobility of ions
in a homogeneous medium at low velocities. Under such
conditions, only the positive and negative ions need be
defined.

A. Positive ions (cations)

Positive ions, or cations, in liquid helium are usual-
ly defined as charged particles with a bare mass of the
order of the mass of the helium atom. Any description
of the properties of such particles in liquid helium must
take into account the polarization interaction between
the charge and the ambient helium. This point was first
noted by Atkins[1] and enabled him to put forward a sim-
ple model of a cation in the form of a charge surrounded
by a sphere of solidified helium. The radius of the
sphere can be estimated as follows. The electric field
Ε = e/R2 of a point charge produces in the ambient liq-
uid an excess pressure Pa of polarization origin, which
is given by

r>a, ( i . D

i. e., it is inversely proportional to the fourth power of
the distance (a is the atomic polarizability, vt is the ef-
fective volume per atom of the liquid, r is the distance
from the center of the ion, and a is the interatomic dis-
tance).

If we take into account the fact that liquid helium so-
lidifies under a pressure Ps a* 25 atm, and if we set
Pa{r) = Ps) we find that the solidification radius i , is
given by

This macroscopic definition of the radius Rt is meaning-
ful if R.»a. Numerical estimates of Λ,, obtained for
a = 5 x 10'25 cm3 and v4 ~ a3 yield R,« 6-7 A for a * 3. 5
A. In other words, the inequality Rt > a is, in fact, sat-
isfied but with a small margin.

The effective mass Mt of a cation in the Atkins model
consists of the mass of the solid nucleus of radius Rt,
the mass of the excess-density liquid around the nucle-
us, and the attached mass. This means that M, is
roughly, 60wiHe4-80w2He4. The particular feature of liq-
uid helium is that, because of the low solidification
pressure, even small polarizability is sufficient in the
above model to result in the formation of a quasimacro-
scopic helium-solidification region around the positive
charge. This, in turn, gives rise to a sharp increase in
the effective cation mass and a reduction in its mobility.

The simplicity and ease of physical interpretation of
the Atkins model were such that all subsequent publica-
tions on the observed properties of the cations involved
attempts to explain these data in terms of the solid
sphere model. The most complete account of the cor-
responding theory is given in Arkhipov's review. i z ]

However, there is now a sufficient number of facts that
cannot be fitted into the framework of the Atkins model
and require a more rigorous inclusion of the interaction
between charges and liquid helium. Examples of this
kind of discrepancy are discussed below. Nevertheless,
Atkins' model retains its significance as the first ap-
proximation which can be used to estimate the scale of
the various effects.

In a more rigorous description of the properties of a
cation, the two most important characteristics are the
excess pressure Pa (1.1) and the experimentally mea-
sured effective mass Mt.

2> The resonance method of
measuring M,[ 4 ' 5 : l 3 ) yields the value

2 Ά rigorous theoretical calculation of Mt has not as yet been
made although some attempts at this have been published.'3'

3'Helium ions located near the vapor-liquid boundary are re-
pelled from it by the electrostatic image force

where χ is the distance of the ion from the surface, ε is the
dielectric constant ε- 1 = 0. 06 of the liquid (εκ 1 for the gas),
and F>0 corresponds to repulsion. By equating this repul-
sive force to the external field EL, which holds the ion on the
surface, it is possible to fix the position of the ion at any
given depth x0 from the surface. This depth is given by

-1-JLi/ZT__
- 2 V Ε, ε(ε+ΐΓ

(**)

This provides us with a very convenient means of observing
a number of effects. In particular, the ions execute small
natural oscillations around *0'

4 1 with a characteristic fre-
quency ω0 given by

ω° 2Μ± ζ|(ε + 1) ' (***)

where M± is the effective cation (anion) mass. Experimental
determination of the frequency ω0 yields direct information on
the effective mass Mt. Such experiments have been carried
out by Poitrenaud and Williams.t s I A typical resonance curve
showing the absorption of high-frequency radiation by the ions
is given in Fig. 1.
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FIG. 1. Resonance lines for cations tag) and anione (b) at
208 MHz and T = 0. 7°K.I51 The first harmonic (a,) is also seen
in the case of cations. The external frequency were fixed in
this experiment, and the natural frequencies of the ions were
varied by varying the applied electric field (plotted along the
ordinate axis).

M+=(45±2)mH e«, (1.3)

which is substantially different from estimates of ΛΓ.
based on the Atkins model. Insofar as the radius Λ, is
concerned, it does not play a universal role in the more
rigorous theory and, in principle, need not be used at
all.

B. Negative ions (anions)

The structure of negative ions produced in liquid he-
lium when some light particle (for example, an elec-
tron—which is the most stable and readily available) is
introduced into helium, has been found to be novel and
in its time unexpected. Such particles produce bubbles
in helium and are localized inside the spherical cavi-
ties. [ β · 7 :

The formation of bubbles is made possible by a com-
bination of several circumstances. Firstly, an indi-
vidual helium atom is a stable quantum system and does
not attach to itself a surplus electron at distances of the
order of the Bohr orbit. A free electron introduced ar-
tificially into dense helium, and forced to move in the
interatomic spaces between individual atoms that repel
it, has therefore a high zero-point oscillation energy
We. In the optical model, which is widely used at pres-
ent to describe the interaction of electrons with dense
helium, this energy is estimated from the following ex-
pression:

W.-?2pZn, (1.4)

where η is the density of helium, m, is the electron
mass, and a0 is the effective scattering length for an
electron on helium atoms. The numerical value of OQ is
chosen so that, at w« 2x 10M cm"3, the energy We given
by (1.4) is equal to the measured work done on intro-
ducing an electron into liquid helium (We «1.0 eV).cel

Hence, it follows that a0« 0.62 A. One other property
of helium which facilitates the formation of bubbles is
its low surface tension on the liquid-vapor interface.
This ensures that the total energy W expended in form-
ing the bubble can be simply estimated, and turns out to
be much less than We, so that the electron is, in fact,
conveniently localized and produces a bubble.

Estimates of the anion parameters, first carried out
by Ferrelc e l and somewhat later by Carera, Fasoli, and

Gaeta,t7] 4> were quite elementary and, at the same
time, sufficiently accurate because the resulting com-
plex is quasimacroscopic (the formal condition for this
is mt/mRl>i« 1). The basic idea is to minimize the to-
tal anion energy

with respect to the radius R (me is the mass of the free
electron and σ is the surface tension on the free helium
surface). This yields

(1.5)

(1. 5a)

so that the energy is given by

w=inhy -p..

For σ = 0.36 erg/cm2, the numerical value of R. in liq-
uid He4 turns out to be of the order of 18 A. Equation
(1.5a) then yields W« 0.1 eV, i. e., W« We and the lo-
calization of the electron is, clearly, favored.

It is important to note that, under the usual condi-
tions, when external pressure is zero, the polarization
forces which play the dominant role in the formation of
cations are in practice not perceptible during the for-
mation of the bubble because the inequality R.» Rt is
well satisfied.

If we neglect the polarization of helium around the
anion, and recall that the electron mass is relatively
small, we may conclude that the effective anion mass
M. must be equal to its associated hydrodynamic mass

Λ/.«=-|πΛ?ρ (1.6)

(where ρ is the mass density of helium).

Resonance measurements yield the following resultCS]:

(1.6a)

(1.7)

and this corresponds to

i?_ = (1.74 ± 0.02)-10-' cm.

The agreement between the theoretical (1.5) and experi-
mental (1. 7) values of R. must be regarded as fully sat-
isfactory. The agreement can, however, be improved

4>The possibility of formation by light particles (electrons,
positrons, and so on) of localized states inside an empty bub-
ble in helium was first noted by Ferrel1 6 1 in connection with
the properties of ortho- and parapositronium in liquid helium.
However, a definitive demonstration of the existence of such
bubbles become possible only after the introduction of light
charged particles (electrons) into helium.171 The appearance
of charged bubbles has by now been observed in other non-
polar liquids, i. e., neon and hydrogen. α ύ It is interesting
to note that the introduction of positrons into dense gaseous
helium results in the appearance not of bubbles but of clus-
ters. I № 1.
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tron and the gas to the free-energy density can be writ-

ten by analogy with (1.4) in the form

FIG. 2. Mobility of electrons
in gaseous helium at Τ
= 4.2°K.I U I Arrow shows the
calculated value of nC P l t .

1.0 Zff

n, W!t Atoms/an·

by solving the electron localization problem more care-

fully. This was done by Springett et al.,cl0: who ob-

tained a theoretical value for R. equal to 17. 0 A.

C. Anions in gaseous and solid helium

1) In gaseous helium, it is possible to vary the den-

sity of the medium within very broad limits and thus in-

vestigate the development of electronic bound states.

This possibility is beautifully illustrated by the experi-

ments of Levin and Sanders, t l l ] who measured the mo-

bility of free electrons in dense gaseous He4. Figure 2

shows the datacl l : i on the mobility of electrons in a weak

guiding field as a function of gas density. It is clear

from this figure that the critical gas density which sepa-

rates the regions of existence of strongly and weakly lo-

calized electronic states lies in the neighborhood of

wcrlt ~ 1021 cm'3. When the gas density is varied in this

region by a factor of only three or four, the carrier

mobility falls by roughly five orders of magnitude from

a value which is in good agreement with calculations

based on ordinary gas-kinetic theory for free electrons

down to a value which is almost equal to the mobility of

anions in liquid helium. This sharp reduction in mobili-

ty was justifiably interpreted by Levin and Sanders as

being due to the onset of the formation of anions in dense

gaseous helium.

Initially, the localized states are still quite "shallow"

and are therefore very sensitive to the influence of var-

ious external fields. This means that, for the inter-

mediate values of n, there is a range of electronic bound

states which are qualitatively different from the bound

states in the liquid.

The equations for the self-consistent bound states of
an electron in gaseous helium can be obtained, as usu-
al, by minimizing the free energy of the system. We
shall suppose that the de Broglie wavelength of an elec-
tron is much greater than the mean separation between
the helium atoms, so that the electron is in the mean
field produced by the helium atoms which, in turn, is
determined by their concentration w(r). Moreover, it
is interesting for future purposes to introduce a con-
stant uniform magnetic field.

The contribution of the interaction between the elec-

u n ( r ) | c p ( r ) | 2 , (1.8)

where αο = Ο. 62 A is the scattering length of electrons

on helium atoms in the pseudopotential approximation,

φ(τ) is the electron wave function, and me the electron

mass. This means that, if we neglect the interaction

between the helium atoms and suppose that the gas is

classical, the free-energy density of the system in an

external field with vector potential A(r) is given by

F= -±-\(i + -^ A) yf^- FiRt + nT\n(nB), (1.9)

where B{T) is a known function of temperature.

By varying the free energy F = fvFdV with respect to

w(r) and φ(τ) at constant volume V of the system and

subject to the condition

f Ι φ (r) 1* dV -

we have, as f-

= 1,

ra(r) = reoexp ( — jr),

ψ 2 " ' i 2 ' " ) Ι φ (r) I*

(1

(1 .

.10)

10a)

(l.n)
The second term in (1.11) is the free energy of a per-

fect gas.

The normalized extremal <p{r) of the functional (1.11)

satisfies the equation

λφ. (1.12)

In the absence of the magnetic field, the wave function
of a localized electron is spherically symmetric and we
shall assume, for simplicity, that

The change in the free energy, 6F0{k), due to the local-

ization of the electron is given by

6F, (k) = Fo (k) - «0Γ In

or, in t e r m s of the dimensionless variables,

k - η ,,,-, «F

*0 '

meT \2/3

2SM0

we h a v e t l 2 J

SF0 (κ) = κ2 + η [-i j A r ' exp ( - κ 3 θ ds•• — 2 ] .

(1.13)

(1.14)

Figure 3 (curves 1-5) shows graphs of 5F 0 (H) obtained
from (1.14) for different n. Electronic bound states
which correspond to a negative minimum of δ.Ρ0(κ) ap-
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FIG. 3. 6F0 as a function of κ for different n. Curves 1—5 cor-
respond, respectively, to η = 4, 6, 7, 8, and 10. Dashed curves
show 6F0 as a function of κ for small κ. Curves 3 ' and 4' cor-
respond to « = 7 and 8, respectively.

pear for η > n c r l t » 7. In dimensional units and for Τ
* 4 °K, we find that wcri t » 2 x 10 2 1 cm'3 and k"clit » 1.6
xlO"7 cm. For these values of the critical parameters,
we have

(1.15)

i. e., according to (1.10), n(r)« n0 in the region of lo-
calization of the electron, and this may be looked upon
as a verification of the empty sphere model.

It is interesting to note that, according to (1.13), the
critical density is n c r l t ~ r E / 3 . If we define nCTit as cor-
responding to the end of the intermediate region on the
graph of the electron mobility as a function of gas den-
sity5' and if we use the experimental data on electron
mobility in the gas at different temperatures,c u : l we ob-
tain the comparative graph shown in Fig. 4.6 ) Experi-
ment confirms that »c r l ta: Tzn.

When a strong magnetic field parallel to the ζ axis is
present, the electron can execute infinite motion only
along the ζ axis. However, in one-dimensional prob-
lems, any interaction that can be represented by a po-
tential well for the electron should lead to the appear-
ance of electronic bound states (in three-dimensional
problems, this well must have a finite depth). It is pre-
cisely for this reason that the interaction given by (1. 8),
which stimulates the deformation of the gas density
around the electron (the deformed gas density acts as
an effective potential well for the electron), turns out
to be sufficient, when the magnetic field is present, to
localize the motion of the electron even along the ζ axis.
The mechanism responsible for this localization differs
from that discussed above and does not have a threshold
with respect to the gas density, so that localized states
of magnetic origin are present even for n<ncrit. The
most characteristics feature of such localized states,
known as large-radius ions, is the small deformation
of the density of gaseous helium in the electron-local-
ization region, which can be formally represented by
the condition y « 1 (this differs from the case of small-
radius ions for which, as noted above, γ » 1). Using
the fact that γ is small, so that

5)The result n c r l t cc T 2 / 3 was also reported by Khrapak and
Yakubov.1131

6)The arguments in favor of this definition of n c r l t are given in
Chap. 3, Sec. B.

and assuming that

it is possible to obtain an analytic solution for x(z) from
an Euler equation such as (1.12) by varying the func-
tional (1.11) averaged over r . [ 1 2 ] The result is

! ch" (1.16)

where z0 is an arbitrary constant and i?z and the energy
AD of the localized state are, respectively, given by

2meT ΐ) 2 ' »·—ι
№•

2meR\

The intrinsic energy of a large-radius ion, which is
a pure gain in the free energy of the system associated
with localization, is Ι λο1 /3. Let us consider some nu-
merical values that are characteristic for a large-radi-
us ion. Let us suppose that WQ = 2 x 1021 cm"3, T= 4 °K,
and Η = 5 x 105 G. We then have

r0 «3-10-7 cm, Rz = 8·10"' cm, | λ0 | «20 °K, ν = 0.1.
(1.16a)

Plots of 6FH(x.) as a function of x for η = 7. 8 have
minima even for w<wcrlt (see the dashed curves in Fig.
3).

2) Experimental studies of the mobility of ions in solid
helium are technically more difficult than in the case
of the gas. Nevertheless, the first successful results,
obtained by Shal'nikov et al.cl5: and other workers, : l e : l

show that the experimental problem has been solved.

Lack of experimental information and the absence of
a rigorous theory prevent the attainment of an unam-
biguous description of the structure of ionic formations
in solid helium. Thus, considerations analogous to
those given for the liquid case lead to the idea of com-
plex cation and anion formations in solid helium. In
particular, the radius of an empty bubble produced in
solid helium subjected to a pressure of about 25-30 atm
and due to the introduction of a free electron turns out
to be of the order of R.~ 10-12 Ac l 7 ] and does not vary
much as the pressure is increased. l l 8 ] Such complexes
can, of course, move freely through the helium lattice
in the form of well-defined quasiparticles with given
momenta. In other words, the character of the mobility
of the massive helium ions in solid helium is qualita-

FIG. 4. n c r t l as a function of tem-
: perature according to 1 1 4 1 .

Β Tzff

230 Sotf. Phys. Usp., Vol. 20, No. 3, March 1977 V. B. Shikin 230



tively different from that in the liquid situation. How-
ever, the relatively small value of R. as compared with
the interatomic distance (««3.5 A) must be regarded
as an indication that this approach to the structure of
ions in solid helium is at least arguable.

The alternative possibility is put forward and investi-
gated in detail by Andreev and Meierovich,[ l e ] who look
upon ions in solid helium as simple point defects oc-
cupying a volume of the order of the volume of one ele-
mentary cell of the crystal. The result of this is that
the dynamic properties of the ions become identical with
the properties of vacancies and uncharged impurities.
The theory of the mobility of ions is then essentially
based on the quantum-mechanical description of the
properties of point defects in solid helium, and turns
out to be very fruitful. The great advantage of this ap-
proach is the symmetry of the theoretical predictions
with respect to positive and negative ions.

2. MOBILITY OF IONS IN THE KINETIC STATE

The mobility of helium ions has a finite value at low
temperatures mainly because of single-particle colli-
sions with thermal and impurity excitations of helium.
The formal basis for mobility calculations under these
conditions is the solution of the corresponding kinetic
equation, or some more general approach using the Ku-
bo formalism. Since the main experimental facts can
be explained within the framework of kinetic theory, we
shall confine our attention in this account to the conse-
quences of this theory.

The classical theory of the mobility of ions in gases,
developed by Maxwell, Boltzmann, Langevin, Chapman,
Enskog, Kihara, and others contains exhaustive recipes
for solving the kinetic equation (in this connection see,
for example, Smirnov's review1-201). Nevertheless,
modern authors have repeatedly returned to the problem
of mobility, and have simplified its solution and rede-
fined its limits of validity. In this connection, it will
be useful to write down, without proof, the general ex-
pression for the mobility μ of a heavy particle of mass
Μ in a gas of thermal excitations of mass m with a dis-
persion law ε(ρ), energy distribution «(ε), and momen-
tum p=mv. For example, following1·21-1, we have

Temperature, °K

IS 0.5

atT = \ σ (ν, θ) (1 — cos θ) άΩ

(2.1)

where the latter quantity is the transport scattering
cross section.

It is shown in t 2 1 ] that the formula given by (2.1) is
valid not only when

(2.2)

but also in more complicated cases (for example, in de-
generate He3-He4 solutions) when the small parameter
of the theory is the quantity

in which

l. (2.2a)

is the Fermi energy and Τ the temperature.

FIG. 5. Temperature de-
pendence of the reciprocal of
cation mobility in pure He 4 . l 2 i ]

1—Experimental points, 2—
roton contribution, 3—phonon
contribution, 4—proposed
contribution of residual im-
purities.

IP in
Reciprocal of temp.,

The equivalent and, evidently, the simplest definition
of mobility in terms of wave numbers, which is con-
venient for calculating the phonon mobility of ions, is
given by Baym et al.C221:

e h2 C , - dn . . /o o\
— = — rr~z \ "QQ ~r~ ĉ tr (?) - \"· «/

The problem for the theory is thus essentially reduced
to the determination of the transport cross section for
the scattering of an excitation of a particular kind by
helium ions, and the subsequent integration of either
(2.1) or (2.3).

A. Phonon mobility

1) Cations. The phonon mobility of positive ions for
Γ 50. 5°K is largely determined by collisions between
the cations and long-wave phonons. In fact, the cation
radius is Rt« 6 A and the wavelength λ,̂  of thermal pho-
nons for Τ 50. 5 °K and velocity of sound in He4 c0 = 237
m/sec is λ,,,* 3x 10"7 cm, i. e., Λ+« \ph. The cross
section for the scattering of long-wave phonons by a
cation under these conditions is of the form o-tpoc^4

(Rayleigh scattering; seeC233, p. 366). It is given by

" t r (?) =
11 + 262 — 48 R'qi' 6 = -?7· (2.4)

where p, and ps are the densities of the liquid and solid
phases, respectively.

The phonon mobility μ*,, of cations, given by (2. 3) and
(2.4), turns out to be proportional to Γ ' β :

_ £ _ _ 2-8! ζ (8) (11-46+282) , / J_\» „,

μ*,, - 27π (2 + 6)2 n \ n c a ) n*'
(2.5)

where ζ (χ) is the Riemann zeta function. Four of the
powers of temperature in μρ11 are due to the scattering
cross section, three are due to the number of phonons
in liquid helium at low temperatures, and one repre-
sents the transfer of momentum from phonons to the ion.

The clearest experimental information on the phonon
mobility of cations was obtained by Schwarz and Stark.[ 2 4 ]

It is important to note that observation of the phonon mo-
bility of cations in the pure form is a relatively difficult
experimental problem. At high temperatures, this mo-
bility is replaced by roton mobility whereas, at low tem-
peratures, the effect of residual impurities becomes ap-
preciable. Measurements of μ* and of the proposed con-
tributions to the function μ*{Τ) due to rotons, phonons,
and impurity excitations are shown in Fig. 5. Quanti-
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FIG. 6. Temperature depen-
dence of anion mobility in pure
He4. Solid lines—theory,1221

circles—experiment,t 2 6 1 t r i-
angles—I 3 0 c I.

ss
T°K

tative analysis of the data shown in Fig. 5 leads to the
conclusion that

o = 7.5 ± 1 , (2.6)

i. e., the temperature dependence of M*h is close to the
calculated result, but the numerical value of Rt is less
than the value predicted by the Atkins model. This dis-
crepancy is fully admissible because the proportionality
constant in the expression for atT(q) given by (2.4) is
very arbitrary. For example, by abandoning the solid
sphere model, and by taking into account only the ex-
istence of the higher-density zero around the nucleating
charge, it is possible to show that the cross section for
long-wave phonons on the cations is

CO

σ(ω) = 4πΛ2ω1, Λ = \ [c? — c-*(r)]r2dr,
ό

where c0 and c(r) are the undisturbed and local veloci-
ties of sound (the latter is a function of position near
the center of the cation).

No attempts have been reported so far to use the nu-
merical value of the constant in (2. 6) to interpret the
structure of a cation at short distances.

2) Anions. At first sight, the phonon mobility of
anions at temperatures T<1 0 ( i .e . , where Xph >R.)
should have a temperature dependence of the form μ'κ

ccT"8, i. e., it should be analogous to the case of the cat-
ion and all we should need to consider is the change in
the numerical constant in (2.4) and the inclusion of the
anion radius Λ.» 18 A. The experiments of Schwarz
and StarkC2ei have rejected this apparently natural as-
sumption. These measurements (Fig. 6) show that the
function μ^,(Τ) is highly nonmonotonic in the region Τ
= 0. 3-0. 5 °K, in which the product μ',, Τ 3 is independent
of temperature. The formula μ,,, ~ Γ ' 8 tends to be fol-
lowed only when the temperature is reduced to Τ
<0. 2°K.

A qualitative explanation of this feature in the tem-
perature dependence of μ ,̂, which is free from adjust-
able parameters, is given by Baym et al. B Z ] It turns
out that the theory of phonon mobility of anions must
take into account the natural oscillations of the bubble

surface and the possibility of resonance scattering of
thermal phonons by these oscillations. To be fair, it is
important to note that the spectrum of natural oscilla-
tions of the anion surface was calculated previously by
other workers.t 2 7 : l However, it was only Baym et al.[22]

who pointed out that the fundamental frequency of the
natural-anion oscillations was of the same order as the
frequency of the thermal phonons at Τ ~ 0. 4°K and, con-
sequently, such phonons should undergo resonance scat-
tering by the anion.

The spectrum of the surface oscillations of a charged
bubble arises from the balance equation for all the pres-
sures acting on the surface of the deformed bubble, just
as in the classical problem of the oscillations of an in-
compressible drop. The only quantity that requires spe-
cial definition is the electron pressure on the anion sur-
face

p?=niknk,
In n\

Π - . — _ _ _ I ψ * i l - _ i _ _ L _ _ l _ n r l \ " · · /

In these expressions, Uik is the momentum flux tensor
for an electron localized inside the bubble and «„ is the
normal to the anion surface. It is assumed that the
electron wave function φ in the bubble can follow adia-
batically any small deformation of the surface.

Let us now collect together all the additions to the
pressure on the oscillating surface. They are: the
electron component, the addition due to surface tension,
and the hydrodynamic part of the pressure which rep-
resents the time-dependent character of the problem.
Since the sum of all the pressures must be equal to
zero, the spectrum of the oscillations of the anion sur-
face is given by

8a
pRi'

(2.8)

In these expressions, σ is the surface tension, ρ is the
density of helium, and jt{x) are the spherical Bessel
functions. The fundamental frequency WQ corresponding
to the radial oscillations of the bubble for σ ~ 0. 36 erg/
cm2 and R. = 18 A is of the order of ωο~ 101 0-10η sec'1,
i. e., it is, in fact, in the region of the phonon frequen-
cies corresponding to ~ 0. 3-0. 5 °K. The cross section
for the scattering of such phonons in the presence of a
single resonance frequency wj, has the following well-
known form[ 2 8 ]:

σ (ω) = (2.9)

where q is the phonon wave number and qR.« 1.

In the more general case of several natural frequen-
cies, the cross section exhibits resonance peaks corre-
sponding to further resonances. Figure 7 shows the
overall appearance of the function σ(^) for an anion.
This curve was calculated in t 2 2 : . The corresponding an-
ion mobility that follows from (2. 3) when the numerical
values of σ (q) are inserted (see Fig. 7) is shown in Fig.
β together with the experimental points. In view of the
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FIG. 7. Transport cross sec-
tion for the scattering of phonons
by anions.t 2 2 1 Two variants are
shown: cross section corre-
sponding to the scattering of s
and/> waves and cross section
corresponding to the scatter-
ing of s, p, and d waves. In
addition, the graph shows the
temperature factor qA8n{q)/dq
for Τ = 0.5 °K, in arbitrary
units.

fact that the theory does not contain adjustable param-
eters, it must be admitted that the agreement between
the theoretical and experimental values of μ ,̂(Τ) is very
good.

To complete the picture, it will be useful to summa-
rize the results obtained from studies of the effect of an
external pressure on the phonon mobility of anions, ob-
tained by Ostermeier.[ 2 9 a : An external pressure will
reduce the radius of the bubble and, consequently, in-
crease the frequencies of its natural oscillations. The
result of this is that the region corresponding to the
resonance phonon-anion scattering is shifted toward
higher temperatures. Figure 8 illustrates the variation
that occurs in the resonance phonon-anion scattering
cross section where an external pressure is applied.
The dependence of the anion radius on external pres-
sure, which follows from experimental data on the pho-
non mobility of anions, is shown in Fig. 9. This figure
also gives the results of other experiments on the pres-
sure dependence of R. together with the results of theo-
retical calculations. ll°2 The agreement between the
various experimental curves among themselves and with
the calculated values of R.(P) may be regarded as good.

B. Mobility of ions in weak solutions

The mobility of a massive solid sphere in a Boltzr
mann gas of impurity excitations should be of the form
μ3ατΓ"1 / 2.7 ) This prediction is valid for helium ions
within the framework of the Atkins model and is, in gen-
eral, in conflict with observations. In the case of cat-
ions, the impurity mobility μ| is independent of Γ in a
broad range of temperatures. This is clearly illustrated
by graphs of the temperature dependence of this mobili-
ty, shown in Figs. 10 and 11 (they are taken from the
work of Essel'son, Kovdrya, and Shikint30a] and Kuchnir,
Ketterson, and RoachC3l]). For anions, the impurity
mobility μ̂  is a nonmonotonic function of temperature

"This temperature dependence of f*j has a simple explanation,
just as in the case of μ^. In this situation, the impurity con-
centration and the cross section for the scattering of impurity
excitations by the sphere are independent of temperature.
The only quantity which does depend on temperature is the
transferred momentum: pT&JT. Hence, it follows that ^

1 / 2

(see Fig. 12, which shows the data fromC31:l). Thus,
just as in the case of μ^, we are forced to consider
separately the temperature dependence of the two mo-
bilities μ; and μ̂ .

1) Cations. The main reason for the failure of the
solid sphere model of the interaction between cations
and low-energy impurity excitations in the presence of
the excess pressure around the positive ion which de-
creases in inverse proportion to a certain power of the
distance. The parametrization of the resulting scatter-
ing problem is such that the main contribution to the
cross section for the scattering of thermal impurity ex-
citations by a cation is due to the excess-pressure
"tail" at distances appreciably greater than the Atkins
radius.

To obtain a qualitative description of the interaction
between cations and impurity excitations, we note that
He4 and He3 atoms located in the neighborhood of a bare
charge experience two forces, namely, polarization at-
traction toward the center of the cation and repulsion
due to the excess pressure near the cation. These
forces cancel out in the case of He4 atoms, so that a sta-
tionary region of enhanced solvent pressure appears in
the neighborhood of the original charge. In the case of
He3, on the other hand, which has the same polarizabili-
ty as He4 but a somewhat greater effective volume (ν3/ι^
« 1.27[32:i), the repulsive forces exceeds the attractive
force. The difference between these two forces, and to-
gether with them the interaction between the cation and
impurity excitation, V*%{r), turn out to be different from
zero. When the definition of pressure given by (1.1) in
the neighborhood of the cation is taken into account, the
interaction Vl(r), which is, in fact, a repulsion, takes
the form

V*3(r)=;¥L, β2 = -ία«2 lf--i\. (2.10)

The macroscopic character of the definition of the en-
ergy ^3 (for example, we have used the concept of pres-
sure in a fluid, and so on) means that the energy of the
incident impurity excitations must be confined to values
below a certain figure. A suitable criterion for this is

where R^ is the Atkins radius and rm l n is the minimum
separation between the impurity excitation and the cat-
ion center in a head-on collision, so that

FIG. 8. Transport cross section
for the scattering of phonons by
anions in pure He4 at different ex-
ternal pressures.1 2 9*' Solid line—
zero pressure; broken line—
24. 78 atm.

Wave number,10" cm"1
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FIG. 9. Anion radius as a function of external pressure. Solid
lines—theoretical"01; open circles—SpringettI29bl; full points—
Zipfel and Sanderst 2 9 c l; bars—Ostermeier. l 2 9 a l

••-ψ-. (2.11)

For temperatures Τ ~ 1 °K, the separation r m l n that fol-
lows from this equation is r m U £ 9x 10"8 cm, i. e., the
inequality rmla >R, is, in fact, satisfied. Consequently,
the problem of scattering of impurity excitations by cat-
ions at 1 £ 1 °K can be solved as a problem involving
scattering by a power-type potential without taking into
account the structure of the cation nucleus. This was
first noted by Essel'son et al.t30a] and, independently,
by Bowley and Lekner.C 3 3 ]

The nonrelativistic quantum theory of scattering by a
potential of the form F(r) ~ r'4 has been developed to a
reasonably complete state in connection with the classi-
cal problem of the mobility of electrons in a gas of neu-
tral atoms in which the interaction is, in fact, an at-
traction. The main point of the theory is that the wave
equation for an electron in a potential V ~ r'4 can be re-
duced to a Mathieu equation with an imaginary argu-
ment and, thereafter, the scattering amplitude is deter-
mined in terms of known special functions.[34J This is
also possible for the respulsive potential FJ = /32r"4.
Moreover, this problem is free from the difficulties en-
countered in the case of attraction because there is now
no danger that the particle will fall into the attractive
center.

The overall result is that the asymptotic behavior of

FIG. 10. Impurity mobility of cations as a function of tem-
perature. l 3 0 a l Solid lines: I—Atkins model with cross section
a t r = irfl2 (B =7 A); II—same model but corrected for the quan-
tum increase in the scattering cross section from irfl2 to 4πΒ2;
Ill—mobility determined from (2.13). Experimental points: 1)
1.3X10"'%; 2) 5.1xl0"3%C30cl; 3) from 1. 55xlO"20% to
4.46% " * ' ; 4) from 0.75% to 39. 9%,I30al

10' -

FIG. 11. Mobility ^ as a
function of temperature T,
according to 1 3 1 ' .

P.p-m.f i,

Θ η~/77 "!
'-S01 "

IS"
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the transport cross section for the scattering of im-
purity excitations by a cation is as follows:

(2.12)

where q and m3 are, respectively, the wave number and
mass of the impurity excitation and/0 is the zeroth scat-
tering amplitude. The numerical value of the quantum
length /0 for a cation in helium is of the order of /0

~6xlO"7 cm. Consequently, the quantum limit of scat-
tering begins to be realized only in the region of very
low temperatures. For all other temperatures
(2wi3T)1 / 2S"1»/o1, the scattering process is quasiclas-
sical. Moreover, alT<*q~x, which is qualitatively dif-
ferent from a collision between solid spheres and is suf-
ficient to explain the fact that the mobility μ, is inde-
pendent of Τ in a broad range of temperatures.

Substituting the quasiclassical behavior of otT(q), giv-
en by (2.12), into (2.1), we obtain130*·353

where n3 is the concentration of the impurity atoms in
the solution and β is given by (2.10). The mobility giv-

FIG. 12. Mobility A? as a
function of temperature T,
according to1 3 1 1 .
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en by (2.13) is independent of temperature. This result
was known to Maxwell135: in the case of the mutual dif-
fusion of two gases with a repulsive interaction of the
form V(r) <* r'4. When the particular value of β is taken
into account, the mobility given by (2.13) gives a good
description of the experimental data not only in the sense
that it predicts the correct temperature dependence but
also because it yields the correct absolute value with-
out the use of adjustable parameters. Figure 10 shows
a comparison between the calculated and experimental
values of the impurity mobility μ̂  taken from[ 3 0 a : l. A
similar comparison, which confirms the validity of the
above interpretation of the interaction between low-en-
ergy impurity excitations and cations, is given inC333.

2) Anions. The most likely reason for the observed
anomalies in the temperature dependence of the mobility
of anions in weak He3-He4 solutions is the adsorption of
impurity excitations on the anion surface. The corre-
sponding phenomenon on the plane surface of a weak so-
lution is well known1·36 ] and gives rise to a characteristic
temperature dependence of the surface tension of weak
solutions. It is natural to suppose that the anion sur-
face can also adsorb impurity excitations.

Let us adopt the adsorption interpretation of the tem-
perature dependence of μ̂  and consider the most com-
plete data that are available on this temperature depen-
dence. They are given in [ 3 1 ] and are illustrated in Fig.
12. It follows from these data that, at very low tem-
peratures, the anion mobility is μ ^ Γ " 1 ' 2 . If the im-
purity excitations have a Boltzmann velocity distribu-
tion, this type of dependence of μ̂  on Τ is, as already
noted, characteristic for the motion of a solid sphere
in a gas of impurities8':

TABLE I. Anion parameters in weak He3-He4 solutions,
obtained from experimental data. l 4 0 1

(2.14)

R. is the effective radius of the solid sphere. Numeri-
cal values of R. that follow from the experimental
data"1·1 at low temperatures, and the values of μ̂  given
by (2.14), are collected in Table I and turn out to be R.
~ 27 ± 1 A, i. e., they exceed appreciably the charac-
teristic value of R. for an anion in pure He4.

As the temperature increases, the cross section for
the scattering of volume impurity excitations is found to
decrease sharply in a relatively narrow temperature in-
terval, giving rise to an increase in the anion mobility
in this temperature band. Thereafter, the anion size
ceases to vary, assuming the value Ri ~20 A, which is
not very different from the R. in pure He4. It is natural
to associate this change in the cross section for the
scattering of impurity excitations by anions with the "es-
cape" of impurities adsorbed on the anion surface into

8 )To obtain (2.14), we substitute the short-wave limit of the
scattering amplitude./of impurity excitation on a sphere of
radius A. in (2.1). In this limit, β,θ) = {fiJ2)+f1(B) (see1281,
p. 451), where/((β) is the so-called "shadow" peak in the
scattering amplitude which is nonzero at small angles 9. The
contribution of this peak to the transport cross section turns
out to be equal to zero. As a result, atT = irRi and (2.1) as-
sumes the form given by (2.14).

c

3.43-10-3
0.726
0,578
0,170
0.077

(!μ—, arbitrary units
(T=0.(15 °K)

5-3.42 = 17.3
24-0.726=17.4
30-0.578=17.3
90-0.170=15.3

180-0.077=14

if-, Λ

26
27
27
28,9
31

R O , A

19
18
19
20

T'F, =K

0.15+0.02
0.10
0.09
0.07
0.06

tL, ·Κ

0.27+0,03
0.28+0.04
0.26+0.04
0.26+0.05
0.26+0.06

It is clear from the table that the product cp~3 begins to depend on c in
the region of low concentrations. For this reason, the values of R. and ι
R? obtained for the last concentration c=0.077 X 10"3are too high and
were not included in the calculation.

the body of the liquid helium. As the impurity surface
levels are emptied with increasing temperature, the ef-
fective anion size ceases to depend on temperature.

Unfortunately, the influence of impurities adsorbed on
an anion surface on its mobility in weak He3-He4 solu-
tions is not equivalent to a change in the surface tension
which would define the radius of the anion. In addition
to this channel, which is sensitive to the presence of
surface impurities, and can be used to obtain a rigorous
description in terms of a phenomenological law of dis-
persion for the surface impurities throughout the tem-
perature range, there is a direct interaction between
the surface and volume impurity excitations. The ab-
sence of a clear theory of this interaction which pro-
vides an appreciable contribution to the anomalous be-
havior of the temperature dependence of μ3 impedes the
development of a rigorous theory of mobility of anions
in weak solutions of helium. At present, there are only
certain qualitative ideas that can be used to estimate the
parameters of the spectrum of impurity excitations on
the anion surface.

The formal problem of the properties of s impurities
on a spherical surface begins with the determination of
the excitation spectrum. As in the case of the plane
surface, this problem has a simple solution for a low-
lying energy level"7 1:

2msRl '

ei = - ε ο + χ / (

χ/(/ + 1)<εο,

1).

1 = 0, 1, 2, . . . ;

(2.15)

where ε0 > 0, ms is the mass of the s impurity, and the
energy ε, is measured from the bottom of the y-impuri-
ty band. The expression given by (2.15) is valid when
R.» λ, where λ is the characteristic length for the at-
tenuation of wave functions of s impurities within the
liquid. In our case, when R.» 20 A and λ ~ H(2mst0)'1/2

(εο«2°Κ, w s «10" 2 3 g, i . e . , λ « 2 - 3 A), the condition
R.» λ is, in fact, satisfied. It is important to note
that, in general, the spectrum of s impurities on a
sphere and the spectrum on a plane surface have a more
complicated form: επ, = -ε°π + χΙ(1+ 1). This is illustrated
by the model example considered in[ 3 7 : l. For particular
values of ε0 and ms, known from the two-dimensional
problem, the probability of the existence of levels with
« > 0 turns out to be less than or of the order of one-
half.

Once we have the excitation spectrum, we can readily
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establish the relation between the total number Ns of s
impurities and the chemical potential of the given sys-
tem:

(2.16)

where ε, is given by (2.15) and L = lnax is defined by the
requirement that

ε0 - XL (L + 1) > 0. (2.16a)

It follows from general thermodynamic considerations138-1

that the magnitude of the chemical potential μ.Β must be
equal to the chemical potential μ,, of the impurities fill-
ing the volume of the solvent:

μ._μ,, • —Τ Ι η Γ · ^ - ( m*T Vn~\ (2.17)

where ρ is the solvent density, c is the relative volume
concentration of the solution, and ra3 and mi are the He3

and He4 masses under volume conditions.

Combining (2.16) and (2.17), we have

(2.18)

This relates Ns and c, i. e., it solves the above problem
of the dependence of Ns on the volume parameters of the
solution.

As already noted, the mobility of ions at low tempera-
tures is sufficiently well represented by (2.14) with R.
~ 27 ± 1 A. As the temperature rises, the s impurities
begin to leave the s levels. The onset of this process
corresponds to the neighborhood of the minima on the
curves in Fig. 12. The position of the minima on the
μ'3{Τ) curve will thus qualitatively characterize the de-
generacy temperature TF for s impurities on the sur-
face levels. Using (2.18) for Ns, we can readily deter-
mine TF from

cp
(2.19)

Using this expression and the experimental values of c
and T'F, which determine the positions of the minima on
μ,(ο, Γ), we can estimate the shallowest surface level
zL. The values of zL, calculated for different concen-
trations c, are collected together in the above table.
The fact that tL remains roughly constant as c varies in
a broad range of values indicates that TF has been rea-
sonably chosen.

The observed increase AR in the anion radius for Τ
« TF is the same for different concentrations of the so-
lution (see table) and, together with the temperature-
independent limit for Ns

ΛΜτ-ο-·-Σ2(2Ζ + 1),
ο

the existence of which qualitatively justifies the appear-
ance of AR, can be regarded as clear evidence for the

FIG. 13. Position of temperature Intervals in which the mobil-
ity of charges in liquid He3 can be calculated from the kinetic
equation.'391 The corresponding temperature intervals are
shaded. The values of ί$(Τ) in these intervals are indicated.

existence of s impurities on the anion surface. More-
over, the observed values of AR and zL, together with
qualitative discussions137-1 of the reasons for the in-
crease in R (due to the change in the surface tension and
the direct interaction between the ν and s impurities)
enable us to estimate the parameters of the spectrum
of impurity excitations: εο£2. 4-2. 5°K, m s £ l . 2 x l 0 " 2 3

g, and L ~ 17-18.

C. Fermi-particle mobility

If we consider the various mechanism responsible for
the low-temperature mobility of helium ions in order of
increased complexity, we must introduce the Fermi
particle mobility after the phonon and impurity mobili-
ties. The Fermi particle mobility is observed when

Τ < εΓ, (2. 20)

where ε̂  is the Fermi energy of pure He3 or of He3 in
the He3-He4 solution.

The first serious problem for the theory of Fermi-
particle mobility of ions arises in connection with the
desire to have the usual kinetic equation for particular
calculations. Analysis of this question, performed in
the most complete form by Mel'nikov,t 3 9 ] shows that,
for charged particles of radius R with ξ =pFR» 1, where
pF is the Fermi momentum, the kinetic equation exists
both at high and low pressures. The results reported
in t a 9 ] are illustrated schematically in Fig. 13. The re-
gions of existence of the kinetic equations are shaded.
For low temperatures, Γ^ξ"4 and μ.Ε^Τ'ζ. At inter-
mediate temperatures, for which the kinetic equation is
not valid, the mobility is reduced by a factor of ξβ.

The existence of a high-temperature asymptotic be-
havior of μΡί which is independent of temperature, was
first established by Davis and Dagonnier.C21] By ana-
lyzing the range of applicability of the Fokker-Planck
method of transforming the collision integral to a dif-
ferential form, the authors of[21] showed that, when Τ
« zF, this could be done provided

where m3 is the effective mass of the impurity. Under
these conditions, the mobility is given by (2.1) or, in
explicit form,

(2.21)
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where atT(qF) is the transport cross section for the scat-
tering of Fermi particles by a helium ion. As the tem-
perature is reduced until Τ <ξ 2 , the arguments used
in [ 2 1 ] lose their force. However, a more general analy-
sis, given inC 3 9 ], leads to the conclusion that (2.21) will
remain valid down to temperatures Τ > | ' 2 (see Fig. 13).
Violation of the inequality T«eF in the direction of in-
creasing temperature leads to the appearance of Fermi-
liquid corrections to the temperature dependence of ion
mobility. The most important of these is proportional
to T 2 l n T . t 4 0 ]

At low temperatures, T«{m3/M±)zF) the restriction
on the region of integration with respect to the momen-
tum of the ion in the collision integral of the kinetic
equation, which enables us to use the Fokker-Planck
approximation, becomes unimportant because scattering
then occurs only through small angles. Denoting by/g
the zero-angle scattering amplitude, linearizing the
original kinetic equation with respect to the electric
field E, and using dimensionless variables, we obtain
the following expression for the mobility at low tem-
peraturesC 3 9 : l:

(2. 22)

where the function φ(χ) is determined by the following
equation:

Several authors[ 4 1 ] have obtained μραζ τ'ζ at low tem-
peratures. It is also interesting to note that the mobility
given by (2. 22) is inversely proportional to the square
of the ion mass, i. e., M~2. The appearance of Μ in the
expression for μ^ is characteristic for situations in
which the momentum of incident excitations substantially
exceeds the thermal momentum of the ion.

For strong degeneracy, T«tF, and the dependence
of the transport cross section on the wave number of
the incident excitations does not influence the tempera-
ture behavior of the mobility. This is why the explicit
form of the function OtT{qF) is not usually discussed in

eos

FIG. 14. A$ as a function of Τ at low external pressure. U 3 1

The various series of points shown in Figs. 14 and 15 correspond
to cells of different design at pressures in the range 0—78 cmHg.
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FIG. 15. i£p as a function of Τ at low external pressures.l 4 3 1

the theory of Fermi particle mobility (in contrast to the
case of phonon and impurity mobilities). At the same
time, this question is significant when we investigate
the behavior of μ£ as a function of the Fermi energy of
the incident Fermi particles. This can be done experi-
mentally by introducing charged particles into degen-
erate He3-He4 solutions and varying the He3 concentra-
tion. The expected effect can be predicted, at least for
positive ions. By taking into account the definition of
the transport scattering cross section for impurity ex-
citations on a cation, given by (2.12), and the range of
validity of these definitions, we can readily find the
function μ^ε^-) for a cation in weak degenerate He3-He*
solutions14211:

1 + (16/15) π/ρqF

(2.23)

where /32 is given by (2.10) and Rt is the Atkins radius.

Let us now compare the theoretical predictions with
observations.

1) The presence of a temperature-independent asymp-
totic behavior of nF, predicted by (2. 21), can be com-
pared with the experimental data of Anderson et al.C43:l

(see Figs. 14 and 15), which confirm the existence of
this plateau. Comparison of the experimental and cal-
culated values of μ'Ρ (2.21), using a~tT = Tr(R*)z (R? is the
geometric radius of the anion in pure He3), enables us
to estimate R?. This yields /if ~ 20 A, which is in rea-
sonable agreement with the numerical value of /if (1. 5)
for liquid He3.

The Value of /if deduced from experimental data on
μ^ and μ'ρ in the neighborhood of the plateau, and from
the expression for the mobility μ^ given by (2.21), can
conveniently be written in the form

if«|/I. (2.24)

Since R? « 20 A, we have the estimate /if » 9-10 A.
This result for /if exceeds somewhat the Atkins radius
i , » 6-7 A. The structure of /if remains an open ques-
tion.

2) At low temperatures, the ion mobility should in-
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crease with temperature, in accordance with μρ~ Γ " 2 .
A tendency to increase mobility should, according to"9-1

(see Fig. 13), appear earlier for ions with the smaller
radius, i . e . , the cations. This is, in fact, confirmed
by experiment. It is clear from Figs. 14 and 15 that
the mobility μΓ begins to increase toward lower tem-
peratures at higher Τ than the mobility μ'Ρ. However,
the asymptotic behavior μ£| T,o <* T'2 has not as yet been
confirmed experimentally.

3) Attention is called to the increased mobility as the
temperature increases from the region T/tF« 1 to the
region T/cFS 1. This behavior is largely hydrodynamic
in origin since the inequality l/R S 1 begins to be satis-
fied in this temperature region {I is the free path of the
Fermi excitations), and the viscosity η of the Fermi
liquid decreases with increasing temperature as η
_ j.-2_ :44j rpn e insufficiently small value of the param-
eter l/R S 1 during the initial stage of the increase in
mobility complicates the temperature dependence which
then takes the form μFI T ^ £F <χ τ z inT. "°3

D. Roton mobility

At temperatures Τ > 0. 8 °K, the mobility of ions in
pure He4 begins to be limited by collisions with rotons.
Under the "kinetic conditions," when 0.8 « Τ « 1. 7 %
the main contribution to the mobility of ions is due to
single-particle collisions with rotons. For tempera-
tures T£1.8°K, on the other hand, the interactions of
rotons with one another become appreciable, and the
ion mobility assumes the Stokes character.

Several experiments/4 5 3 performed under kinetic con-
ditions, have led to the conclusion that the temperature
dependence of roton mobility of ions is essentially ex-
ponential in form, but the activation energies Δ* are
different:

ccexp( f - i
(2.25)

where Δ* = 8.65-8.8 °K, Δ" = 7.7-8.1 °K. For compari-
son, the gap Δ in the roton part of the spectrum of pure
He4 at zero pressure is Δ = 8.6 °K.[ 4 4 ]

Attempts to interpret the observed deviations of the
temperature dependence of μ*οί from the law μ ^ cce~*/T

have encountered a number of serious difficulties.

1) First of all, the momentum p0 of rotons is high and
comparable with the thermal momentum pl

T of ions at
Γ ~ 1 °K. This resembles the Fermi particle situation
except that, in the problem of Fermi particle mobility,
there are definite temperature intervals (both at high
and low temperatures; see Fig. 13) for which the kinetic
description of the motion of ions through a Fermi gas
turns out to be relatively simple. It is precisely in this
region that the calculation of μ% could be taken to com-
pletion. In the roton problem, on the other hand, the
temperature cannot be varied within broad limits. The
required solution should refer to the temperature region
0.8 S Τ 31 .7 °K, where the ratio po/p'T is of the order of
unity. Under these conditions, it is very difficult to in-
vestigate the kinetic equation for ions moving through a
roton gas. Nevertheless, the kinetic equation has been

•
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• Kuchnii

03 Ιβ

FIG. 16. Temperature dependence of roton mobility μ* .̂
Solid lines—calculation14" with the following parameter values:
cations—«1=0, «=9.81 A, M = 40»nH,4; anions—Η(=0, R
= 18.65 A, M = 170mH,4. Experimental points: Schwarz,145"'
Brody, U 5 c l Kuohnir.'53bI

used to calculate the roton mobility of ions. The best-
founded results in this direction were obtained by Bow-
ley"·481 and Barrera and Baym. l i l 2 These workers used
the method put forward by Josephson and LeknerC48] for
the solution of the problem of Fermi particle mobility,
which enabled them to take into account the finite value
of the parameter ti=pl(pi

T)
2 = pl/2TMi in the course of

the solution of the kinetic equation. The final expres-
sion for μ ,̂4 obtained from a variational principle is as
follows14":

fret
) + R\Ft (ζ±) (2. 26)

f, (z) = -l-aT» + -1. <r* [ ( 3x + i ) Ko (x) - (3i - 1 - ζ"1) Α', (ι) ] ;

where pn is the roton density, vmt is the thermal veloci-
ty of rotons, R, flj are constants of the theory, and /ζ,,
Kx are Bessel functions of an imaginary argument. As
£ - 0 , F{.t)-Q, we have ίΊ(£')—3/8 and the expression
given by (2.26) assumes the simpler form:

—-*l/?fl;p,,Proi. (2.27)

This result can be obtained from elementary kinetic
considerations. In the opposite limiting case, when ξ
» 1 (this is possible formally for />0-°°), we have F(t)
<χ j ' 1 and μ^4 ^ ( M j " 1 . In other words, in this limit, the
dependence of μ^, on Mt is similar to the dependence of
μ£ on Mt, given by (2. 22).

Barrera and Baymc47:i have shown that the expression
for μ*ο1 given by (2. 26) provides a satisfactory descrip-
tion of the observed difference in the behavior of μ^,,ίΤ)
when the constants R, Rl} M., and U. are suitably
chosen (Fig. 16). The main reason for the difference
in μίοΛ?") i n t n i s interpretation is the difference between
the f ± for cations and anions. This proposition has
stimulated the publication of the interesting experimen-
tal paper by Glaberson and Johnson.C 4 9 ] These workers
have found a method of introducing singly ionized atoms
of different elements into helium and were able to vary
the mass of the helium ions. They were thus able to
measure the dependence of μΓΟί on M. Unfortunately,
the results reported in c 4 e ] are not in agreement with
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FIG. 17. Roton mobility of 48Ca and 40Ca ions with equal
charges but different bare masses. t 4 9 1 The variation in the
ion mass does not lead to the expected'46·471 change in the slope
of the temperature dependence of mobility. Solid curve—
theoretical line lying nearest to the experimental points ob-
tained from (2.26) with fij/fi = 0 and Μ - 53raHe4. Broken curve-
analogous maximum possible approach to the experimental
points which follow from1461.

(2.26), and the discrepancy is shown in Fig. 17.

2) The other trouble with the theory of roton mobility,
which, by the way, has been ignored in1-*8·47·1, is con-
nected with adsorption phenomena. In the case of ca-
tions, this involves localized roton states in the region
of excess pressure9' surrounding the bare charge.

For anions, the existence of surface roton states is
less obvious but their presence can be admitted by
adopting the hypothesis of surface rotons on the vapor-
liquid interface in liquid helium, which has been used
to explain the observed temperature dependence of sur-
face tension.c 5 0 :

The effect of thermal excitations localized in the
neighborhood of an ion on the temperature dependence
of its mobility has already been discussed in connection
with the properties of the impurity mobility of anions
(see Sec. Β in Chap. 2). Analogous phenomena can, at
least in principle, accompany the motion of ions in the
roton gas. Qualitative estimates, reported by Bonda-
rev t 5 1 ] in connection with the role of localized rotons in
the determination of the effective radius of a cation,
confirm the reality of this effect.

Summarizing the foregoing survey, we may conclude
that the development of a self-consistent theory of ro-
ton mobility of ions is not as yet complete.

3. OTHER TYPES OF MOBILITY

A. Stokes mobility

1) The hydrodynamic definition of the mobility of heli-
um ions, which is valid for KR {I is the range and R is
the ion radius), can be used in a broad temperature
range for liquid He3, in the neighborhood of the λ point
in the case of superfluid helium, for which ps«pn, and

"The roton gap in homogeneous helium decreases with increas-
ing pressure. Consequently, the region of excess pressure
surrounding the cation should act as a potential well for the
rotons.

for Τ > Tx. Thus, to calculate the Stokes force acting
on the ions, there is, in fact, no necessity to use the
equations of two-fluid hydrodynamics, so that the ini-
tial predictions of the theory are very simple in this
case. For bubbles, we have to consider the Stokes
force calculated by Rybczynski (seet E 3 ], p. 91):

F_ = (3.1)

where V is the ion velocity and η is the first viscosity
coefficient. For positive ions

F+ = 6π/ϊ+ηΥ, (3.2)

where the effective radius Rt is of the order of the At-
kins radius.

The presence of the excess-density region around the
cation means that we must consider the role of this re-
gion and of the second viscosity in the hydrodynamic
mechanism of retarding of cations. The corresponding
calculations, performed by Svidzinsktf, i sz i yield the fol-
lowing expression for the additional force due to the in-
crease in density:

^^•T'i-k-^(k)]' —sSf! (3-3)

where F. is given by (3.2), α is the polarizability of he-
lium, m4 and c0 are the mass of the He4 atom and the
velocity of sound in undisturbed helium, respectively,
and ζ is the second viscosity of helium. In the case of
helium, s = 1/3. It follows that, since the numerical co-
efficients are small, the additional force (3.3) can be
neglected in mobility calculations.

Measurements of ionic mobility in the "Stokes region"
performed by different authors153·1 are shown in Fig. 18.
According to these data, μ,/μή = 1. 7 at Γ « 2 , 4°. Using
(3.1) and (3. 2) together with this result, we can readily

o-Northby
Δ-Meyer, Reif
O-Meyer, Davis, Reif, and Donnelly
•-Dahm, Levin, Penley, and Sanders
V—Kuchnir

FIG. 18. Experimental data on the mobility of ions in the
Stokes temperature region: Kuchnir,153bI Meyer et al.[53cI

The Meyer-Reif data on the roton mobility of ions are taken
from1 4 5·1. The other references to the experimental results in
the roton region are given by Dahm and Sanders.C 5 3 a l Solid
lines correspond to the Stokes definition of mobility, taking
into account the viscosity data inI 5 4 a l and the data on the coef-
ficient of surface tension in this temperature region.
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show that R./R. = 1.5x1.7 = 2.5, which corresponds to
the "usual" helium ion radii Rt = 6-7 A and R. = 17-18 A.

The temperature dependence of μ* in the region Τ
> 2 °K is determined by the temperature dependence of
the viscosity ηc54a] and by the change in the bubble size
with increasing temperature.

2) The relative simplicity of the description and the
experimental conditions corresponding to the hydrody-
namic region of the definition of mobility have stimu-
lated various further experimental developments. One
of these is the determination of the frequency depen-
dence of mobility. Analysis of the equation of motion

shows that the imaginary part of the frequency depen-
dence of mobility

Im μ± (ω) = μ± (0) - ;i± (0) = :

should have a maximum at ωτ± ~ 1. By measuring the
position of the relaxation maximum, i. e., by estimating
the quantity r±, and using the static mobility of a given
ion for ω—0, we can calculate the effective ion mass
from the formula

M±-
μ* (0) '

This was, in fact, the method used in the first measure-
ment of the effective mass of the helium ionC 5 3 a l (Fig.
19). The precision of this method is, however, inferior
to that attainable in the resonance method,[ 4 > 5 ] which
was proposed later. Experiment shows that M± is a
function of temperature. There is, as yet, no interpre-
tation of this effect although, in the case of anions, it
may be related to the change in R. due to the tempera-
ture dependence of surface tension.

3) The variation of Stokes mobility of ions with in-
creasing pressure was investigated by Keshishev et
al.t5S:l It was expected to confirm the dependence of R±
on pressure. In the case of positive ions, the Atkins
radius is expected to vary with increasing pressure. If
Ρ and Ps denote, respectively, the external pressure
and the solidification pressure of helium, the dependence

FIG. 20. Ion mobility in
liquid helium as a function
of pressure.l551 Open cir-
cles—cations; triangles—
anions. Curves 1 and 2
were obtained at 4.2 and
2.63°K, respectively. Ar-
rows show the solidifica-
tion pressure at the given
temperatures. The curves
clearly show the presence
of maxima at Ρ ~ 10 atm.

P, atm

(3.4) of Λ, on Ρ has the form [compare this with (1. 2)]

"* ~2v,l P-P.\ •

AsP-Pj we have Λ,-<

(3.5)

For anions, the imposition of an external pressure
should lead to an initial reduction in the size of the bub-
ble and, correspondingly, an increase in the anion mo-
bility in the Stokes region (this effect must be dis-
tinguished from the effect of external pressure on the
phonon mobility of ions discussed above; see Sec. A of
Chap. 2). However, polarization forces subsequently
come into play and the model is, roughly speaking, cov-
ered by a layer of solid helium so that the effective ra-
dius of the anion begins to increase with increasing
pressure like Rt. As a result, the anion mobility as a
function of applied external pressure should at first in-
crease and then, having reached a certain maximum,
fall again. A qualitative description of this type of non-
monotonic dependence of μ̂  on Ρ is described by Arkhi-
pov in[ 2 : i. This effect and the change in R, with pres-
sure has been confirmed experimentally.t 5 5 : The posi-
tion of the maximum on the μ̂  versus Ρ curve is shown
by Fig. 20, which is taken from[ S 5 ], to occur at Ρ ~ 10
atm. Finally, the expected dependence of Rt on P, giv-
en by (3.5), occurs only at pressures that are not too
high (see Fig. 21). For Ρ > 10 atm, the experimental

ft*
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° - Anions
" - Cations

230 BW №
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T, °K

FIG. 19. Effective mass of helium ions obtained in[ S 3 a I from
measurements of the frequency dependence of ion mobility.

FIG. 21. Comparison of
experimental mobility data
with the calculated Stokes
mobility in which Rt is
given by (3.4) and the
viscosity is taken
from"6"·551. Solid l ines-
experiment: 1) T = 4.2°K;
2) T = 2.63°K, Dashed
lines—theory. Insert
shows the dimensionless
quantity ξ =Ri/2vtJPs/ae*
as a function of relative
press»*—

so m
P, atm
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dependence of Λ, on Ρ is somewhat shallower than the
theoretical prediction.

4) The temperature region immediately adjacent to Tx

deserves particular attention. The behavior of mobility
in this temperature region has not as yet been investi-
gated theoretically although it might be thought that the
fact that the order parameter vanishes on the surface
of the ion (this is the boundary condition for the Ginz-
burg-Pitaevskii equationc56]) should lead to a deforma-
tion of the order parameter in the neighborhood of the
ion and, consequently, to some observable effects on
mobility. Experimental results obtained by Ahlers and
GamotaC57] show that the radius of helium ions does, in
fact, vary somewhat in the neighborhood of the λ point
(Fig. 22). This conclusion is reached if, in addition to
ionic mobility data, one uses independent measurements
of the viscosity η of helium in the neighborhood of 7\
and expresses R± in terms of μ* and η through the Stokes
formulas

" fcnu»; • 4ίΐημ"

The generally different behavior of R. and Λ, in the
region Τ &ΤΧ, which is indicated by Fig. 22, has a sim-
ple explanation. The radius of the bubble is determined
largely by the surface tension which decreases with in-
creasing pressure. As a result, the radius R. increases
monotonically with increasing temperature, and a small
anomaly 6R. appears against this background in the
neighborhood of the λ point. So far as the radius Rt is
concerned, its variation near Τ is connected only with
the proximity to the λ point. No such variations should
occur well away from Tx, and this is clear from Fig.
22. It is interesting to note that the maximum of R, is
shifted somewhat relative to the λ point in the direction
of lower temperatures. This fact is still unexplained.

B. Electron mobility in dense gaseous helium

The development of a quantitative theory of the mo-
bility of electrons in the neighborhood of a critical gas
concentration «c r i t, sufficient for the appearance of elec-
tron bubbles in helium, is an interesting and complicated
problem for the theory of unordered spectra. An ac-
count of the general results obtained by different work-
ers in this area[ 5 8 ] would be a relatively difficult and
laborious task. Nevertheless, without pretence to a de-

scription of mobility that would be valid throughout the
intermediate region of gas concentrations, and ap-
proaching the critical region n ~ Kcrlt from either direc-
tion, it is possible to determine the interaction of slow
electrons with the fluctuating gas density in the language
of the well-established theory of scattering of light and
of slow neutrons in continuous media.

1) Suppose that n <nCTlt. If, in addition,

λ 2 ;
2meT

(3.6)

where λ is the thermal-electron wavelength and me the
electron mass, then we are dealing with the mobility of
an electron in a gaseous medium. This mobility is giv-
en byc 2 0 ]

32n/J V 2nmeT
(3.7)

where/0 is the scattering amplitude for an electron on
an individual helium atom. For temperatures Γ ~ 4 °K,
the inequality λ««" 1 / 3 and the expression given by (3. 7)
are valid for η £ 101β cm"3.

The inequality given by (3.6) is violated as η in-
creases. Under such conditions,

K's < η < η'αΛ (3. 8)

the concept of single-particle collisions loses its mean-
ing, and we have to consider the character of the inter-
action of the electron with dense gaseous medium.

The proposed calculation of mobility is based on the
following ideas. We shall write the interaction between
electrons and the fluctuating medium in the form

ew.-^β*, (3.9)

which follows from (1. 4), where δ« is the density fluc-
tuation. This interaction resembles the electron-phonon
interaction in semiconductors, and may be used in the
corresponding formalism for calculating the electron
mobility if well-defined phonons of required wavelength
are present in the gaseous helium.

Conservation laws that apply to the electron-phonon
collision show that the maximum phonon wave numbers
<7max contributing to electron scattering are of the order

2k, (3.10)

where k is the characteristic electron wave number. In
very weak electric fields, when there is no appreciable
heating of the electron gas, the electron temperature is
equal to the temperature of the gaseous medium, i. e.,
as already noted, k S 10e cm"1 for Τ ~ 4-5 °K. Conse-
quently, phonons participating in the slowing down of
electrons should have wave numbers qmLX 510e cm"1.
The region in which such waves exist is restricted in the
short-wave limit by wavelengths of the order of the mean
free path of the gas atom. t 3 S l In gaseous helium, the
characteristic mean path I of the gas atoms is of the or-
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der of a few interatomic distances, i. e., Ι δ 10"* cm for
« ~ 1019 cm"*. Consequently, the maximum wave num-
bers of acoustic phonons under the conditions in which
we are interested are of the order of q,^ ~ 106 cm"1,
and this agrees in order of magnitude with the scale of
qnax necessary for (3.10) to be satisfied. This agree-
ment means that the electron-phonon interpretation of
the interaction (3.9) is reasonable. The dispersion re-
lation for the corresponding gas phonons is

ω = cq, c2- • cumi ' (3.11)

where Cp/cv is the ratio of specific heats. For helium,
cp/cv= 1.66.

Calculations of the electron-phonon mobility of elec-
trons in a gas differ from the analogous calculations for
semiconductors only in the meanings of the constants of
the theory. We shall not, therefore, reproduce the
derivation and merely quote the final expression"9 3:

9 (cplcv) e
(3.12)

This expression is practically identical with (3.7).
The only difference is in the values of the numerical co-
efficients and in the interpretation of the scattering
cross sections. Whereas, in (3. 7), we were concerned
with single-particle s scattering of an electron by an in-
dividual He4 atom, in (3.12) the quantity <z0 is an effec-
tive scattering length which arises in the optical model
of the interaction between the low-energy electron and
the dense gaseous medium. This similarity is the main
reason for the fact noted i n c l l : that the formula given by
(3. 7) provides a sufficiently good description of the mo-
bility of electrons in gaseous helium right up to η < 5
x 1020 cm"3. It is clear that the basic condition λ « η " 1 / 3

has long been violated in this region and, in fact, we
have to consider the agreement of experimental data
with (3.12) and not (3. 7).

2) In the opposite limiting case, i .e . , η >« c r i t , the
electrons tend to localize, and the "depth" δ of a local-
ized electron level relative to the energy of the electron
in the unlocalized state begins to exceed the tempera-
ture quite appreciably. We then have the possibility of
the subsivision of the electrons introduced into helium
into localized electrons with concentration w, and free
electrons with concentration ne. In thermodynamic
equilibrium, the chemical potentials of localized and
free electrons should be equal, and this is the basis for
the following expression for the relative concentration
of localized electrons:

• ^ = ( - ^ - ) 3 / 2 e x p ( - ^ ) ; (3.13)

where M, is the effective mass of an anion in the gas
which is equal to the associated mass of the bubble, M{

»(2/3)Λ?., and ρ is the density of helium. The quantity
6F0 is taken from the numerical calculations described
in Chap. 1 [see Eq. (1.13)], or is obtained by solving
the model problem on the localization of an electron in
dense helium in which the helium density distribution is

approximated by a rectangular and spherically sym-
metric well. : M 1

Using (3.13) and introducing the idea of an effective
mobility of electrons in gaseous helium through the ex-
pression

(3.14)

we can compare μ* with existing experimental data on
electron mobility in dense gas (see Fig. 2). In the above
expressions, μβ is given by (3.12) and η is the first vis-
cosity coefficient of the gas. This type of comparison
establishes an important fact which enables us to im-
prove quite substantially the position of the critical den-
sity wc r l t in Fig. 2. The point is that the observed re-
sult is μβ/μ< ~ 105. At the same time, according to
(3.13), the ratio ne/n{ should be of the order of 10'7 even
for 6F0/T ~ 1 because of the large difference between
the masses me and M{ which is of the order of 100mH<|4.

The final result is that, in the region of self-localiza-
tion of electrons, the effective mobility μ* given by
(3.14) is practically equal to μ{ and, consequently, is
a relatively slowly-varying function of n. This, how-
ever, means that n c r l t should lie in the lower part of the
transition region on the μ*(κ) graph, where the depen-
dence of μ* on n exhibits the asymptotic Stokes be-
havior. All this is well correlated with the calculated
value Μο,.̂ » 2x102 1 cm"3 obtained in Chap. 1, Sec. C.

It is important to note that agreement between calcu-
lations and measured values of μ* was achieved in1 5 8 3

throughout the intermediate region of values of n. How-
ever, an account of these results would require the in-
troduction of a series of special definitions from the
theory of unordered spectra and from percolation the-
ory (see, for example, the review given in" 1 3 ) , which
lie outside the scope of the present review.

3) As noted in Chap. 1, the introduction of a strong
magnetic field leads to the appearance of large-radius
anions for n<ncrlt. These take the form of ellipsoids of
revolution, highly elongated along the magnetic field and
producing a small perturbation on the initial gas den-
sity. The size of the large-radius anion for n S1021 cm
and Η S10* G is appreciably greater than the mean free
path of the gas atoms at comparable densities and tem-
peratures ( r 0 ~3xl0" 7 cm, Λ,,» 8x 10"7 cm, and i « 10"7

cm). As a result, we can use the hydrodynamic ap-
proximation in estimates of the mobility of large-radius
anions in the direction of the magnetic field.

The motion of the variable-density region in the di-
rection of the magnetic field with velocity V leads to the
appearance of a velocity field which can be determined
from the equations

,. ν a± „
divv=—χ--;?- ι rotv = 0,

(3.15)

where ip(r, z) is given by (1.10a) in Chap. 1.

If we know the field v, we can calculate the energy
dissipation W in the viscous fluid, using existing hydro-
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dynamic formulas. On the other hand, the work done
by the guiding electric field per unit time during the mo-
tion of the ion with constant velocity V is eEV. The
equation eEV= W will define V and hence the mobility of
the large-radius anionc l E ]:

(3.16)

where γ is given by (1.15). The quantity μΗ obtained
under the conditions defined by (1.16a), is lower by two
or three orders of magnitude than the mobility of free
electrons at the same gas density and temperature.

Large-radius anions have not as yet been observed.

C. Mobility in solid helium

The ambiguity in the definition of the structure of he-
lium ions in solid helium, noted in Chap. 1, forces us
to consider the various ways in which charges can be
transported through the helium lattice. For charges in
the form of point defects, this may involve different
modifications of the hopping mechanism in which the
motion of a charge through the lattice is achieved by
successive hops through the interatomic distance. If,
on the other hand, the ion is a macroscopic formation
(for example, a bubble of radius ~ 10 A), its motion
through the lattice is probably of the viscous diffusion
or plastic origin.

1) Mobility of charged point defects

Experimental studies of the diffusion of point defects
in solid helium (we have in mind the diffusion of He3

atoms in an He4 host and spin diffusion in solid He3) have
established that the displacement of such defects through
the helium lattice occurs largely through the use of va-
cancies in the original host matrix. In other words,
the most probable process determining the diffusion co-
efficient for a point impurity in helium is a hop to a
neighboring site as soon as the site becomes vacant.
Detailed arguments in favor of this mechanism of diffu-
sion are given in a recent review by Andreev.: β 2 ] Since
this review gives a complete description of the situation
in the study of quantum diffusion of uncharged defects

ff.t if

FIG. 23. Temperature dependence of the mobility of cations
in hep He4 at different pressures. I 6 4 ' Arrows show the melting
points corresponding to these pressures.
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in solid helium, we shall confine our attention to certain
properties of the mobility of charged point defects as
compared with uncharged defects.

The mobility of cations in solid helium, and these ca-
tions are undoubtedly charged point defects, has been
measured by different methods by various work-
ers. c15·16·83·8*! The results of the most recent and most
careful measurements of cation mobility in solid He4

were carried out by Kishishev and Shal'nikov:e43 and are
shown in Fig. 23. Moreover, Fig. 24 shows the experi-
mental data on the cation diffusion coefficient D+ and the
He3-atom diffusion coefficient D3 in the He4 lattice for
equal molar volumes and temperatures. The data on D3

are taken from[ 6 5 ]. The results shown in Figs. 23 and
24 lead to the following conclusions: a) the diffusion co-
efficients D3 and D. are practically equal in the thermal
activation region; b) as the temperature is reduced, the
He3 atoms lose their localization and begin to tunnel
through the lattice, and c) no tendency toward delocal-
ization is observed for cations.

The difference between the behavior of D3 and Z>, at
low temperatures can readily be explained by recalling
that the charged impurity will interact with the lattice
more intensively than an uncharged impurity. We are,
of course, concerned here with the polarization inter-
action between the lattice atoms and the point charge,
which gives rise to a local deformation of the lattice in
the charge localization neighborhood. A similar inter-
action in liquid helium leads to the appearance of a
spherical solidified-helium region (Atkins sphere)
around the bare positive charge. In this case, the po-
larization interaction reduces sharply the probability
of cation tunneling through the solid helium lattice, as
compared with an uncharged point impurity and this has
been confirmed experimentally.

The existence of the strong polarization interaction
between a charge and the lattice atoms might be ex-
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pected to give rise to an appreciable change in the en-
ergy of the interaction between the vacancy and the
charged defect, so that the above difference between Dt

and D3 at low temperatures should continue into the
thermal-activation region. In reality, this is not so.
The point is that the effective interaction f* between
the charge and the vacancy is determined by the sum of
two interactions, namely,

(3.17)

where Va is the direct interaction between the vacancy
and the charge, which is repulsive (the helium atom is
attracted to the charge due to polarization forces and,
correspondingly, the vacancy should be repelled by the
same charge with the same strength), so that the inter-
action Va appears as a result of the presence of an ad-
ditional elastic deformation of polarization origin around
the charge. The second term is given by Va= (n)ikaik,
where aik are the elastic stresses due to polarization
forces and wik is the change in the lattice volume due to
the presence of vacancies in it. In the special case of
an isotropic elastic medium, we have ω(Λ— t*)v6ik, and the
expression for Va assumes the form νσ~ it>vau. In the
case of a vacancy, the quantity ωυ is usually assumed to
be negative,[ 8 6 ] so that the components Va and Va of the
resultant interaction V* have different signs. Since the
two components of (3.17) have the same coordinate de-
pendence, i . e . , Vacc Vaccr~*, it is readily verified that,
for reasonable values ω* ~ α3 (a is the interatomic dis-
tance), strong compensation of one term by the other is
possible, and

T 7 + 1 ae2 Γ . (3 — 5σ) ~] /« i«_\
v* ' 7 T l-ey» ,._„·, , (3.17a)

where α is the atomic polarizability of helium, η is the
mean density of atoms in the solid helium lattice, and
σ is the Poisson ratio. When

(3.18)

we have F* - 0 and, consequently, the thermal-activa-
tion diffusion coefficient for cations, D+, which is of
vacancy origin, will not be different from the diffusion
coefficient D3 in this region.

It is important to note that the possibility of strong
renormalization of the interaction V*v between the cation
and the vacancy is analogous to the renormalization of
the interaction V\ between impurity excitations and cat-
ions in weak solutions of He3 in He* [see the definition
of VI given by (2.10) and the discussion of this]. The
difference is only that, in the case of cation mobility in
weak liquid He3-He4 solutions, the degree of compensa-
tion is known from independent measurements. The
theory of cation mobility in weak Hes-He* solutions can
therefore provide quantitative predictions on the magni-
tude of μ| and its temperature behavior. In the case of
cation mobility in solid helium, the quantity ω, or, more
precisely, u>jt is not as yet known. It follows that the
possibility of strong renormalization can only by hypoth-
esized, and the scale of ωυ can be determined with the
aid of (3.18).

The observed properties of the temperature depen-
dence of the cation mobility in solid helium (as com-
pared with the mobility of uncharged point impurities at
similar temperatures and pressures) can thus be rea-
sonably explained in a qualitative fashion.

2) Diffusion mobility of anions

2.1. Stationary mobility. One of the possible mecha-
nisms for the mobility of a macroscopic anion in solid
helium is of diffusion origin. t l 8 ] An electron in a spher-
ical cavity begins to exert asymmetric pressure on the
bubble walls when an external electric field Ε is applied.
After a certain transient period, this pressure leads to
the appearance of stationary diffusion currents of vacan-
cies from regions with enhanced pressure to points with
reduced pressure. The existence of such currents is,
in fact, responsible for the motion of the bubble as a
whole in the direction of the guiding field E. Diffusion
problems of this type have already been encountered
(see, for example,[β7]) in the case of the viscous-diffuse
flow of polycrystals under the action of external pres-
sure. The necessary set of equations and its derivation
can therefore be taken over as they stand from such
work.

The stationary volume vacancy field c(r) is described
by the harmonic equation10'

Ac = 0

subject to the boundary condition

(3.19)

(3.20)

where Pn is the normal pressure on the surface of the
ion of radius R., cs is the equilibrium concentration of
vacancies on the surface of the ion, ωυ is the volume of
one vacancy, and Τ is the temperature. The normal
currents of vacancies on the surface of the ion deter-
mine the local velocity Vn(e) of an element of the anion
surface:

O0|L|R =νη(θ), (3.21)

where Dv is the vacancy diffusion coefficient.

The condition Vn{9)= V0cos9, where Vo is the velocity
of the ion as a whole, will ensure that the ion will move
as one whole without deformation. Having thus deter-
mined the pressure on the surface of the ion, and hav-
ing solved the harmonic problem defined by (3.19)-
(3. 21), we can relate Vo to the applied electric field,
i. e., determine the mobility of the ion μ = Vo/E.

The electron pressure on the surface of the ion,
δΡβ Ι, can be obtained from formulas similar to (2.7) in
which ip(r, θ) is the solution of the SchrOdinger equation

10'We are neglecting surface diffusion over the surface of the
ion because the surface layer of the ion is under high spheri-
cally symmetric electron pressure, so that surface diffusion
cannot appreciably exceed volume diffusion.
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for the electron in a spherical potential well, specified

by the boundary condition ip(r, 0)lR_ = O, in the presence

of the perturbing electric field E.

The resulting formula for δΡΒΐ is given by the follow-

ing order-of-magnitude expression:

w (3.22)

where W is the energy of the electron in the ground
state, P°i i s the spherically symmetric pressure of the
electron on the surface of the bubble, and ω{ is the vol-
ume of the bubble.

Using the relation between Ε and 6Pe l, and solving the
set of equations (3.19)-(3. 21), we can readily obtain the
expression for the mobility of the charged bubble:

eED. (3.23)

To define the mobility μ] given by (3.23) fully, we
must elucidate the significance of cs. In the general
case of an anisotropic elastic medium, the concentra-
tion of vacancies on the surface of the charged spherical
cavity in solid helium may be different from the equi-
librium concentration co(T) well away from the anion.
However, in the approximation of an isotropic elastic
medium, and using the considerations leading to (3.17a)
as a representation of the interaction between the point
charge and the vacancy, we find that the concentration
of vacancies on the surface of the bubble is the same as
the volume concentration, i .e., cs{T)^>c0{T).

2. 2. Mobility in alternating field. We recall that the
high-frequency mobility of ions in liquid helium contains
a number of relaxation peaks (3.4), the positions of
which enable us to estimate the relaxation time and the
effective mass of helium ions in liquid helium. Anal-
ogous peaks on the frequency dependence of mobility
should be observed for ions in solid helium. It is only
their particular positions that are determined by other
parameters.

The problem of the frequency dependence of the mo-
bility of negative ions in solid helium is formally dif-
ferent from the set of equations (3.19)-(3.21) in that
(3.19) is replaced by the diffusion equation

«oc = Dv&c. (3. 24)

It is readily shown, by solving this set of equations,
that

(3.25)

This is completely analogous to (3.4) and indicates the
existence of a relaxation maximum at frequency ω
~/2Dv/Rz.

2.3. Some quantum features of mobility. The mobility
of ions in solid helium is interesting not only in itself.
There is added interest in connection with the possibility
of being able to investigate the properties of defects in
the solid helium lattice with the aid of charged particles.

For example, Andreev and Lifshits"8·1 have discussed
in a general way the possible existence in solid helium
of vacancies of quantum origin, which have a nonzero
concentration as T-0 . In addition, even at sufficiently
high temperatures, helium vacancies should lose their
localization and transform into quasiparticles, i. e.,
"vacancions." All these features of the behavior of va-
cancies have a direct relationship to the mobility of
negative ions.

As the temperature is reduced, calculations of the
mobility of anions must, first of all, be corrected for
the loss of localization by the vacancies. According to
Pushkarov's estimates,[β9:ι the mean free path of vacan-
cies becomes appreciably greater than the interatomic
distance for temperatures T<TD/8, i .e . , for T^1°K.
The relationship between the boundary values of the ex-
cess concentration of vacancies and the pressure on the
surface of the ion is still of the classical form in this
case, i .e . ,

However, the spatial distribution of the vacancies and
the corresponding vacancy currents must now be deter-
mined with the aid of the diffusion equation and not from
the solution of the kinetic equation for the vacancy dis-
tribution function.

Details of these calculations are given in118·1. Here
we merely reproduce the final expression for the veloci-
ty of the ion under these conditions:

- ω" Λ/ (3.26)

where m* is the effective mass of the "vacancion" and
R. is the ion radius. This result is qualitatively dif-
ferent from the diffusion formula given by (3.23) and has
a simple physical interpretation. When the "vacancions"
freely approach and leave the surface of the ion, the
velocity of the ion as a whole is limited by only two fac-
tors, namely, the concentration of nonequilibrium va-
cancies on the ion surface, which can be estimated from

and the rate of escape (arrival) of vacancies on the sur-
face, i. e., the thermal velocity of vacancies vT »(2T/
m*)in. As a result, V0&vT6c, which is also predicted
by (3.26).

It is clear that the result given by (3.26) is valid pro-
vided T« Δυ, where Δν is the width of the "vacancion"
band (it is suggested inc e 2 ] that \ ~ 1 °K). If, on the
other hand, the temperature of the medium is higher
than Av, the characteristic velocity of the "vacancion"
is given by ν ~ aA^"1. Correspondingly, the diffusion
coefficient D. and the anion mobility μ' assume the form

(3. 26a)

provided cs(T)« co(T), where co{T) is the equilibrium
concentration of vacancies, eo(r) = eoexp(-#/7'), and <S
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is the vacancy activation energy. Comparing D. as giv-
en by (3.26) and (3.26a) with the definition of D3 or Dt

in the thermal-activation region, as given in [ 6 2 ] , we ob-
tain

D D
3 ~ +

(3.27)

where σίΒ is the cross section for the inelastic scatter-
ing of a "vacancion" by a point defect (by definition,l6Z2

an inelastic scatter is the collision between a defect and
a vacancy accompanied by a hop of the defect through
the interatomic distance; in the second limiting case,
T« \ , we use ν ~ V T/m*, m* ~ Κζ/αζΔυ), and it may
be concluded that

(3.28)

2.4. Measurements of the mobility of onions in solid
He4 have been carried out in the most complete form by
Kishishev and Shal'nikov.tM] The measured mobilities
reported in t 6 4 : as functions of temperature and pressure
are collected together in Fig. 25. In addition, Fig. 26
shows the activation energies <S for the cation and anion
mobility as functions of the molecular volume of solid
hep He4.

Comparison of experimental data shown in Figs. 23,
25, and 26 enabled us to conclude that for pressures Ρ
£ 40 atm, the cation and anion mobilities are practical-
ly equal. This could be regarded as a demonstration of
the absence of bubbles with R.» a in solid helium if the
quantity σ1η in the expression given by (3. 27) for Dt

were of the order σ 1 η ~ α 2 . In reality, however, the true
value of σ1η, determined with the aid of (3. 27) and the
data in Fig. 23, turns out to be much smaller, i. e., σ,η

3! 10" 1 α 2 . 1 1 ) For this low value of the cross section for
the scattering of a vacancy by a point defect, the ob-
served numerical equality of Dt and D. is, according to
(3.28), equivalent to {R./a)z £ 10. This inequality is not
inconsistent with R.» a, i. e., it cannot be used as an
argument in favor of the point structure of anions in
solid helium.

'"if Δ,, ί 1 °K and is a slowly varying function of pressure (ac-
cording to the calculations of Mineev,ί701 a change in the
molar volume of hep He4 within the range 20. 23 - 18. 23 cm3/
mole gives rise to a change in Δ, within the range 1 $ Δ,
£ 1. 5°K), then if we use the first of the asymptotic expres-
sions in (3.27) and the data in Fig. 23, we find that, for pres-
sures between 21.8 and 50.5 atm, the cross section σ1η is an
increasing function of pressure and assumes values in the
range 5xlO"3a2 Sa,,S 5xlO"V, a «3.5 A.

In the other limiting case, when Δ,,> 1 °K (the basis for this
limiting case is the numerical value Δ^ » 4—5 °K, obtained by
Keshishev and Shal'nikov'641 in the interpretation of experi-
mental data on effects in the motion of charges through solid
helium, which are nonlinear in the electric field), we would
have to use the second asymptotic formula in (3.27) to inter-
pret the experimental data in Fig. 23. As a result, the
cross section σ1η at the same pressures turns out to be some-
what lower: lO"3^2 £ σ[Β <, 10Αα2. It is important to note that,
in the second method of analyzing the pre-exponential factors
in the graphs of Fig. 23, the results for σ,π are practically in-
dependent of the temperature (as expected), whereas, in the
first variant, the cross section is temperature-dependent.

0)

FIG. 25. Temperature dependence of the mobility of anions in
hep He4 for different pressure. ( M 1 Arrows show the melting
points at the corresponding pressures.

At low pressures, P<40 atm, the behavior of cations
and anions is known to be different. According to Fig.
23, the cation mobility increases monotonically as the
pressure is reduced. The mobility of anions (Fig. 25)
at first increases with decreasing pressure, then passes
through a maximum and, finally, falls again for P « 40
atm. A similar difference between the cation and anion
mobilities as functions of pressure is observed in liquid
helium (see Fig. 20 and a discussion in text). How-
ever, in the case of solid helium, the interpretation of
this difference is very much less clear. The anomalous
behavior of the activation energy for the anion mobility
at low pressures (Fig. 26) is of particular interest.
The bubble model of an anion suggests a possible origin
for this behavior of the activation energy.

The solution of the equilibrium problem for an elastic
medium with a spherical cavity of radius R.» a contain-
ing a localized electron in the presence of an isotropic
compressive pressure P., at infinity yields

where Ρ, and Pa are the Laplace and polarization pres-
sures on the surface of the bubble (polarization forces
are, in general, distributed throughout the volume of the
elastic medium but, in the case of the determination of
the effective radius of the bubble, they can be replaced
by the equivalent pressure on the surface of the bubble.
The radius R. is obtained from the condition P e l = P«

FIG. 26. Activation energy for anion
(1) and cation (2) mobilities as functions
of molar volume of solid He 4 . c e 4 1

13 II .. Zt
Κ αη'/mole
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+ P,+Pa. As a result, an elastic stress field aik(r) ap-
pears around the charged spherical cavity, which de-
pends on r and has the property au = 3P«. Consequently,
within the framework of the theory of isotropic elastic
media, the energy of a vacancy in the neighborhood of a
charged bubble, 7σ, written in the form of νσ= ωνσΗ, is
independent of the coordinates. However, since, in re-
ality, we are dealing not with an isotropic elastic medi-
um or a cubic crystal (we are interested in solid He4

with a hep lattice), the general expression Va= uikaik

may turn out to be a function of the coordinates and, by
definition, have a minimum at r=R.. The surface con-
centration of vacancies on the boundary of the bubble
will then be given by

i. e., it will differ exponentially from the equilibrium
concentration of vacancies c0. The presence of en-
hanced concentration of vacancies on the surface of the
bubble, which increases exponentially with increasing
pressure at infinity, must, of course, be compared with
observed anomalies in the behavior of activation energy
for anion mobility.

The author is indebted to A. F. Andreev and L. P.
Mezhov-Deglin for numerous discussions of the prob-
lems raised in this review and to Κ. Ο. Kishishev for
placing at his disposal experimental data on the mobility
of ions in solid helium, which were part of his thesis.
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