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A review is given of the theory of strong interactions based on the model in which hadrons are represented

as one-dimensional elastic relativistic systems ("strings"). The relation between this model and the

concepts of quarks and partons is discussed. Basic results pertaining to Veneziano's dual theory, which

can be regarded as a consequence of the string model, and modifications of this theory are considered. A

detailed account of the classical theory of strings is given. The main emphasis is on those problems which

are important in constructing a quantum theory, namely Hamiltonian mechanics and conformal symmetry.

The quantization procedure is described and is shown to be self-consistent only in a 26-dimensional space

with a special condition on the spectrum of states. A theory of strings with distributed spin is considered.

Spin is introduced by means of the formalism of Grassman algebras. Quantization is then possible only in

a 10-dimensional space. Interactions of strings take place by virtue of their rupture and recombination. A

method of calculating interaction amplitudes is given. Discussions of the Koba-Nielsen representation, the

continuum integral, and the two-dimensional conformal group are included in an appendix.
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1. INTRODUCTION. STRINGS-Α MODEL FOR THE
DUAL THEORY OF STRONG INTERACTIONS

A. The modern view of hadronic structure

Theoretical ideas about the structure of strongly in-
teracting particles (hadrons) have been greatly enriched
during the past few years. It has already been evident
for some time that hadrons are neither "elementary"
nor "point-like, " but our conception of their internal
structure has now become clearer and more concrete.
Hadrons are pictured as extended objects, apparently

consisting of two types of matter: a small number of
"fundamental particles"—quarks, which possess quan-
tum numbers such as charge and strangeness, and vec-
tor "gluon" fields (from "glue"), which bind the quarks
together. This picture is somewhat reminiscent of a
system of positive and negative particles (such as elec-
trons and positrons) bound by the electromagnetic field.
However, neither free quarks nor strongly interacting
"photons" (gluons) have been observed experimentally.
This may be due to the unusual properties of the gluon
field: unlike photons, gluons interact strongly with each

179 Sov. Phys. Usp., Vol. 20, No. 3, March 1977 Copyright © 1977 American Institute of Physics 179



other. The theory lacks complete clarity, but it can be
assumed that, owing to this self-interaction, the gluon
field is not dissipated in space like the electric field
(rather slowly, falling off according to a power law at
large distances from the charges), but is concentrated
within narrow tubes which join the sources of the field—
the quarks. In this case it is possible, for example,
that the energy of a two-body system like the hydrogen
atom (or positronium) would increase without limit at
large inter-particle distances instead of decreasing. If
this is the case, no external force would be capable of
dislodging an individual quark from the system. Like
quarks, gluons are also "charged," and it is natural to
expect that, for the same reason, free gluons cannot be
radiated into space.

These considerations stem from three main sources.
First, there is the classification of hadrons on the basis
of higher symmetries, which led to the concept of
quarks. Secondly, there is a new unified theory of the
weak and electromagnetic interactions, in which charged
vector fields play a major role. Thirdly, there are dual
models, one of the most intensively analyzed approaches
to the theory of the strong interactions. In fact, dual
theories and their physical interpretation constitute the
subject of the present review.

The principle on which dual models (henceforth ab-
breviated DMs) are based— reggeon-resonance duality-
is a unification of two of the most fruitful approaches to
the physics of strong interactions. The first of these ap-
proaches makes use of the idea that particles interact
through the exchange of quanta of some field. For ex-
ample, the most important part of the nucleon-nucleon
interaction in a nucleus is due to the exchange of pions.
In scattering at large non-relativistic energies, when the
nucleons approach each other more closely, there are
exchanges of ρ and ω mesons, which are heavier than
pions. At high energies, exchanges of more complex
"particle-like" systems—reggeons—play a major role.
The second approach involves the idea that collisions of
hadrons can give rise to metastable intermediate states—
resonances (analogous to the compound nuclei formed in
nuclear reactions)—which dominate the scattering of
hadrons at moderate energies. The principle of duality
asserts that these two approaches, which are in general
independent, are not "complementary," but have a com-
mon dynamical character.

It has recently become apparent that this idea, which
originated as an elegant mathematical construction, can
be associated with a physical picture which is surpris-
ingly easy to understand intuitively. All particles, both
stable and short-lived, are represented as stationary
states of a one-dimensional material system, usually
known as a relativistic string. It has been proved that
the quantum theory of interacting strings leads to the
same predictions about the nature of hadronic collision
processes as those obtained from formal considerations
in the dual theory. Although DMs have many attractive
features, they suffer from certain serious defects which
prevent them from being adopted as a realistic theory of
hadrons. Their interpretation in the language of strings
has made it possible to greatly simplify the formalism

and to achieve a better understanding of the reason for
the difficulties inherent in this approach. Many theorists
working in this field hope that it will still be possible to
modify the dual scheme in such a way that it will be able
to serve as a theory of the strong interactions. From
this point of view, the theory of strings is of definite
heuristic value.

B. General principles and hadronic phenomenology

For over a quarter of a century, the theory of the in-
teraction of electrons and photons—quantum electrody-
namics—has been the model of a consistent theory of
elementary particles. It is the only example of a local
relativistic quantum field theory in which the probability
of any physical process due to the electromagnetic inter-
action can in principle be based on the principle of least
action, with a Lagrangian for the interacting fields which
is constructed in analogy with the classical theory. The
method of calculation is perturbation theory—an expan- ,
sion in powers of the electron charge. Despite incredible
efforts, it has not been possible to construct a theory of
the strong interactions on the basis of this model. The
reason for this lack of success is not only that the
"charge" which determines the strength of the hadronic
interaction (the coupling constant) must be large, thus
rendering perturbation theory inapplicable, nor even the
fact that the renormalization technique and the summa-
tion of the perturbation series for large coupling con-
stants are of doubtful validity. The principal difficulty
is that it has not been possible to formulate a basic
framework for the theory and to determine the funda-
mental fields and their interaction Lagrangian. In elec-
trodynamics, "matter" consists of structureless
"atoms"—point-like electrons—and a massless photon
"field" which is of long range and which has therefore
been well studied by macroscopic methods. These cir-
cumstances, which have made it possible to construct the
classical and quantum theories of electromagnetism,
do not apply to the physics of hadrons, so that we can
hardly hope to find a local Lagrangian formalism in this
case.

It is usually assumed that every process involving par-
ticle interactions is described by some particular prob-
ability amplitude. These amplitudes are related to the
matrix elements of the S-matrix, a unitary operator in
the space of states characterized by a set of free par-
ticles having definite momenta. Each amplitude is a
function of the kinematic variables of the process, the
momenta and spins of the colliding particles and of the
particles produced as a result of their interaction. Even
if it is not possible to construct a complete theory which
could be used to calculate the amplitudes, we can at
least attempt to find certain general properties of the
amplitudes as elements of an overall S-matrix. The "S-
matrix approach" to the theory of hadrons is to formu-
late general laws for constructing amplitudes and to
analyze their applications to specific processes.

The generally accepted principles of the theory are as
follows:

I. The homogeneity and isotropy of four-dimensional
space-time. This condition implies that an amplitude
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is non-zero only when the total energy and momentum
are conserved. A consequence of relativistic invariance
is that the amplitudes are functions of kinematic invari-
ants—masses and scalar products of the momenta. When
allowance is made for the spin variables, the ampli-
tude become matrices with definite transformation prop-
erties in going from one coordinate system to another.

II. The conservation of probability. The sum of the
probabilities for all possible outcomes of any particular
physical process is equal to unity. This requirement can
be satisfied by taking the S-matrix to be a unitary op-
erator. The unitarity condition leads to a system of
quadratic integral equations for the (complex) interaction
amplitudes.

III. Causality. A signal cannot propagate in space
(either in a vacuum or in a medium) faster than light in
a vacuum. If the space-time formulation is translated
into one involving the energies and momenta of the par-
ticles, this natural requirement implies that the ampli-
tudes must possess certain analytic properties as func-
tions of complex variables. In particular, an amplitude
can have no singularities in the energy, apart from those
due to the intermediate states which can occur in the
process in question. The nature of the singularities
which do occur is determined by the unitarity condition.

IV. Crossing symmetry (or simply "crossing"). It is
easy to see that if a particle is described by a field which
is local in space-time, then the same field also describes
its antiparticle. Let A(p) be the amplitude for some
process involving the absorption of a particle a with 4-
momentum p. Then, by virtue of the locality condition,
A{-p) describes a process in which the antiparticle a is
emitted. On the other hand, by the principle ΠΙ (analy-
ticity), the functions A(p) and A(-p) can be related to
one another by analytic continuation. Thus, for exam-
ple, the amplitudes for processes such as τι*ρ~ ir*p,

ir'p - ir'p, and pp - ir*ir' are described by a single analytic
function, evaluated in different regions of its variables.

The principles I-IV hold in local Lagrangian field the-
ory to arbitrary order of the expansion in the coupling
constant. However, the corresponding equations aris-
ing from the unitarity condition, which are quadratic in
the amplitudes, are naturally not satisfied identically,
but only in an approximation in which terms of higher
order are neglected.

Apart from perturbation theory, no concrete example
of a set of interaction amplitudes satisfying the general
principles has hitherto been considered. DMs provide
an interesting example of this type, although they satisfy
the unitarity condition only in an approximation in which
all intermediate states other than single-particle states
are neglected. Ideas about the nature of the strong in-
teractions based on the interpretation of extensive ex-
perimental data suggest that this approximation is rea-
sonable.

The most important qualitative features of the strong
interactions include the following two circumstances.
First, hadronic collisions have a large probability of ex-
citing a whole spectrum of short-lived compound sys-
tems, or "resonances." Scattering of particles at low

and intermediate energies depends mainly on resonant
intermediate states. Experiments have shown that there
exist resonances with rather high masses, exceeding the
mass of the nucleon by a factor 2-3, and that these reso-
nances have relatively large lifetimes (small "widths").
Secondly, many characteristics of interaction processes
at high energies are well described in terms of reg-
geons, which in a sense constitute an "analytic continua-
tion" of the resonances in the crossed channel. Thus
pole singularities in the interaction amplitudes play a
major role: at low energies we have poles describing
resonances, whereas at high energies we have poles in
the complex angular-momentum plane—reggeons.

C. Dual theories: their advantages and disadvantages

Attempts to construct a theory which provides a good
description of both high and low energies led to the con-
cept of reggeon-resonance duality. The hypothesis of
duality is the assumption that the interaction amplitudes
have only pole singularities and satisfy the principles
I-IV. This assumption naturally requires an infinite
number of poles; in other words, the model requires an
infinite spectrum of resonances. The theory is con-
structed in such a way that at high energies the super-
position of a large number of resonances effectively
leads to reggeon exchanges, while at low energies the
summation of many reggeon poles gives a resonant be-
havior in the energy. An explicit example of such an
amplitude for the simplest process of the pion-pion in-
teraction was first given by Veneziano in 1968 (the dual
theory for the interaction of scalar particles is generally
known as the Veneziano model). The Veneziano ampli-
tude is expressed in terms of the Euler Γ-function (see
Sec. 2 and Sec. A of the Appendix). It has been found
that the hypothesis of duality is equivalent to the imposi-
tion of very strong constraints on the form of the ampli-
tudes, so that the structure of the entire theory is prac-
tically unique. The model predicts the entire spectrum
of resonances. The qualitative predictions of the model
are, on the whole, consistent with experiment.

However, the model is too primitive and has the prop-
erties of unitarity and analyticity only in the limit of a
crude "single-particle" form. Only the contribution of
single-particle intermediate states is taken into account
in the unitarity condition, and the only singularities of
the amplitudes are sequences of poles in the complex
planes of the invariant variables. There are no cuts due
to multi-particle intermediate states. The resonant
states are assumed to have infinitesimally small widths,
with a spectrum that is equally spaced and highly degen-
erate. Moreover, it is impossible to construct a theory
which incorporates a reggeon having the quantum num-
bers of the vacuum (the Pomeranchuk pole), which plays
a major role in elastic scattering at high energies. How-
ever, it is possible that the simplest dual amplitudes
should be regarded as a first approximation, or a set of
"Born terms" which, when iterated, would ultimately
lead to a consistent theory. Although this procedure is
far from simple, the hope of the enthusiasts of this ap-
proach is that the non-trivial character of the first ap-
proximation and the richness of its properties will gua-
rantee that the method converges rapidly. In fact, cer-
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\ / FIG. 1. A Feynman "net" diagram. The
virtual momenta around each contour are
assumed to be small.

tain qualitative features of the strong interactions, such
as the "integral" properties of multi-particle processes,
are already given correctly by the first approximation.
However, it should be pointed out that, even from this
point of view, the dual theory cannot be regarded as com-
plete in principle. The theory is self-consistent (con-
tains no negative probabilities) only in a space with an
unphysical number of dimensions (26 or 10, instead of
4). In addition, the states of lowest mass are very dif-
ferent from the observed particles. Certain variants of
the theory contain particles with imaginary mass—
"tachyons."

The literature on DMs, even the review literature, is
very extensive.u Venezianoci] gave a lucid formulation
of the basic principles underlying the construction of
DMs and their physical motivation. Kaidalov123 also pro-
vided an introduction to the physics of DMs. Applica-
tions of DMs to specific physical processes and compari-
sons of the theoretical predictions with experimental data
have been reviewed by LevinC3a] and by Jenkovszky and
Shelest.C3b] A review of Sivers and Yellinc4] contains an
analysis of the properties of the interaction amplitudes
in various DMs and their possible modifications. The
mathematical formalism has been discussed in detail by
Alessandrini et al.C5] (the operator method) and by
Schwarz163 (further development of the operator method,
the Virasoro algebra, the Neveu-Schwarz model, the
Shapiro-Virasoro model, etc.). Gervais and SakitaC7]

gave an account of applications of functional integration
to various DMs. Rebbit8] reviewed the approach to DMs
based on the concept of a relativistic string. Discus-
sions of DMs which include the theory of strings have
also been published by MandelstamC9] and Scherk.tl0] A
phenomenological approach to DMs can be found in a
paper by Phillips and Roy.C113 A concise and lucid re-
view of the subject was given by OliveC123 in his report
at the 1974 London Conference.

D. The microscopic picture: partons and quarks

After the formulation of simple and elegant expres-
sions for dual amplitudes, attempts were made to under-
stand DMs from the standpoint of local quantum field the-
ory and to establish a space-time description of interac-
tions which possess dual properties. In particular, it
was shown"33 that an approximate summation of a cer-
tain class of Feynman diagrams (Fig. 1) leads to Vene-
ziano amplitudes. In other words, dual amplitudes
arise when particles are exchanged in the form of com -

''The cited literature includes those papers which, in the opin-
ion of the author, are most lucidly written and which may be
particularly useful for gaining an understanding of the sub-
ject. An exhaustive bibliography which scrupulously reflects
the priorities of all investigations of dual models is hardly
appropriate in the present review.

plex systems consisting of a large number of strongly in-
teracting particles. This led to the view1143 that DMs
are closely related to parton dynamics (for a discussion
of partons, see, e.g., Feynman's paper1·153).

Harari t i e i ] and Rosnertieb] had already pointed out that
reggeon-resonance duality can be expressed in a natural
way in the language of quarks. It can be regarded as es-
tablished that there are neither resonances nor Regge
poles with "exotic" quantum numbers (such as mesons
with isospin 2 or hyperons with strangeness +1) and that
all particles belong to the simplest representations of
the group SU(3): the singlet, the octet, or (for baryons)
the decuplet. This observation can also be understood as
follows: all the meson states (resonances and Regge
poles) are constructed from quark-antiquark pairs (qq),
while the baryon states are constructed from three
quarks (qqq). Of course, from the point of view of quan-
tum field theory, a particle is also necessarily associ-
ated with an indefinite number of "virtual pairs" qq, but
these pairs are coupled in such a way that they do not al-
ter the total quantum numbers of the system. It can be
assumed that the same types of intermediate states (qq
or qqq) play the major role in all strong interactions of
particles, (in addition, elastic scattering is dominated
by diffraction, which is due to the exchange of the Po-
meranchuk pole; this component must be taken into ac-
count separately.) This hypothesis can be formulated in
terms of simple diagrams such as those shown in Fig. 2,
known as Harari-Rosner diagrams, which by definition
contain no virtual quark loops or intersections of quark
lines, i. e., they are "planar. " Independently of the de-
tails of quark dynamics and the accuracy of SU(3) sym-
metry, this picture leads to a number of qualitative pre-
dictions, which are generally in agreement with experi-
ment. On the other hand, the Harari- Rosner diagrams
provide an intuitively obvious representation of duality
if each channel contains only single-particle "allowed"
(qq or qqq) intermediate states.

The parton and quark approaches are consistent with
one another if it is assumed that the lines around the
edge of the Feynman diagram in Fig. 1 represent the
motion of quarks, while the internal lines represent the
virtual particles ("gluons") which bind the quarks to-
gether. A particularly clear picture emerges if the glu-
ons are represented as quark-antiquark pairs and the
concepts of "quarks" and "partons" are identified. A

FIG. 2. Scattering of particles as a process involving quark
interactions. Harari-Rosner diagrams: a) ir* ιΓ — π* π", with
duality of the s- and f-channels; b) ifp ^p IT", with duality of
the s- and «-channels and an important contribution to back-
ward scattering; c) Ι Ι - Ί Ι Ι Ι Γ , an example of an inelastic
process (κ and d in the diagrams label the "proton" and "neu-
tron" quarks).
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FIG. 3. Meson scattering.
a) Quark chains collide and
join at their extremities;
b) the intermediate state
—a single chain; c) rupture
of the chain and emission of
mesons.

meson is represented as a chain {qqqq · · · q) in which
only "neighboring" (in momentum space) pairs qq inter-
act. Each quark is "bivalent, " so that only the quarks
at the extremities are responsible for the interaction
with other particles. The scheme of ir*ir" scattering is
shown in Fig. 3. A chain can be in an excited state (a
resonance). A change in the length of a chain under the
action of an external force leads to a change in the num-
ber of particles, while the average density of mass per
unit length is determined by the local dynamics and does
not change. This density, which has the dimensions
mzc/K, is a fundamental constant of the theory; as we
shall show later, it is related to the slope a' of a Regge
trajectory.

When all the virtual momenta are small in comparison
with the masses, the diagram of Fig. 1 leads to a dual
amplitude in the limit of an infinite number of virtual
particles. The production of a qq pair with a large rela-
tive momentum must be interpreted as a rupture of the
chain. There exist arguments that this process has a
relatively small probability. This fact can be regarded
as an argument in favor of DMs, since it explains why
intermediate states containing a single resonance are
dominant.

E. The relativistic string as a model of a hadron

The planar character of the dual diagrams indicates
that the field which mediates the interaction between
quarks is concentrated for some reason within a narrow
region of space near the line joining the quarks. On the
other hand, it is natural to interpret the equal-spacing
character of the spectrum associated with DMs as the
result of an excitation of a large number of harmonic os-
cillators with multiple frequencies. A classical system
of this type is an elastic string. This was the origin of
the idea that particles are quantum states of a one-di-
mensional continuous system. U1~ln These considera-
tions lead to the problem of the classical and quantum
descriptions of a relativistic one-dimensional struc-
ture— a "string."

The classical Lagrangian of a relativistic string in the
context of DMs was first written down by NambuC20:l and
was subsequently analyzed by several Japanese physi-
cistsC 2 l~2 3 ]. A method of quantization was proposed by
Goddard et al. C 2 4 ] In addition to the model which de-
scribes the interaction of scalar particles in terms of
generalized Veneziano amplitudes, there exist other
DMs, in particular the Shapiro-Virasoro model
(seeC 2 5 t 2 e J), which possesses the property of "non-plan-
ar" duality, and the "fermion" models of Neveu and
Schwarz127·1 and Ramond.C28] The Shapiro-Virasoro mod-
el arises naturally in considering closed strings.C 2 9 ]

The "fermion" models are obtained from strings with
distributed spin. The idea of constructing a chain of
spin-f partons was first proposed by Aharonov et al.:301

A consistent theory of strings with spin was developed
by Iwasaki and Kikkawa.t3U The next step was a theory
of the interaction of strings, which was developed by
Mandelstam, who used the method of functional integra-
tion for both ordinary strings1 3 2 3 and strings with spin.t 3 3 ]

Thus the basic results which have hitherto been ob-
tained from DMs are reproduced by the theory of rela-
tivistic strings. This means that it may be possible to
gain a better understanding of the physical significance
of the hypothesis which lead to DMs and to avoid their
inherent difficulties. We note that the formal identifica-
tion of DMs with the theory of strings was not totally un-
expected, since it has long been knownC34] that it is pos-
sible to translate DMs into the language of quantum field
theory with one spatial dimension, and the introduction
of strings merely made it possible to identify this di-
mension with a line in ordinary space. : 3 5 ]

The mechanical model which leads to the dual theory
and which is an idealization of a quark-parton chain
should not be called a "string, " which we normally take
to be of fixed length, but a "spring. " We shall show that
this object is similar to the "spring" that forms the
American toy known as "slinky," which is used in Craw-
ford's textbook"61 to illustrate wave phenomena. This
is a helix of thin elastic wire consisting of a large num-
ber of looops. In its equilibrium state the stationary
spring is compressed into a length of several centime-
ters, but it can be stretched to a length of several me-
ters without irreversible changes. Owing to the absence
of transverse elasticity and the large range of elastic ex-
tensions, the reactions of the spring to external forces
are surprising and amusing; in particular, the name
"slinky" originates from the fact that it easily and quick-
ly avoids obstacles, i . e . , it "slinks. " When the spring
is stretched to a length L, there is a tension T = Y.(L- I),
where I is its initial length and κ is its coefficient of
rigidity. For sufficiently large deformations L » I, the
force is proportional to the length, and harmonic oscil-
lations of large amplitude can occur. As an idealization
for small I we can take such a spring as a model of a
material point with an internal structure which is excited
by external forces. To apply this model to elementary
particles, we must also assume that the wire is not only
infinitesimally thin, but is also infinitesimally light, so
that the "proper mass" of the spring is equal to zero.
Of course, it is then necessary to work within the frame-
work of the theory of relativity. Extensions lead to an
elastic energy, i. e., a distributed mass. However, we
shall continue to employ the conventional term "string"
in what follows.

The simplest non-trivial state of a free string (in the
absence of an external field) is shown in Fig. 4. The ex-
tremities of the string are not stretched, so that they
have zero mass and move with the velocity of light, and
the elasticity produces a centripetal force. The state
of such a string is completely determined by its length.
In this connection, there is an important relation be-
tween the mass and the angular momentum: J= a'Mz
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FIG. 4. The simplest non-trivial state
of a string—the leading Regge trajectory.

(where a' is a constant of the theory). After quantiza-
tion, J (as well as Μ and the length of the string) takes
only discrete values; in addition, there is a new con-
stant a0 such that J= a'Mz+ aji. This is the obvious in-
terpretation of the family of particles contained on the
leading Regge trajectory. More complex states are
described in Chap. 3.

The fact that this model involves a linear Regge tra-
jectory can be understood by means of the following
qualitative argument. The total energy Mcz of the string
consists of the elastic potential energy and the kinetic
energy of the internal motion. It is natural to assume
that these two terms are of the same order of magnitude
(as is usually the case in stationary systems) and that
the elastic energy is proportional to the length, i. e.,
M~ L. On the other hand, J~ PL, where Ρ is the effec-
tive momentum of the rotational motion. Since the ex-
tremities of the string move with the velocity of light,
we have P~ Me and hence J~ML~ M2. In the quantum
case, the energy must also include a contribution ttnv/2
from the zero-point oscillations, where η is the effective
number of oscillators and ν is the characteristic fre-
quency. Since the oscillation propagates along the string
with the velocity of light, we have v~c/L and M~L
+ /3Z,"1, where β is some constant. If the second term
here is smaller than the first, then J~ ML~ Mz + (frao/a'),
where ao~β.

Interactions of particles and resonances are repre-
sented as ruptures or recombinations of strings. De-
cays of resonances are described as follows: a string
of length Lo breaks into two strings of length Lt and Z,2,
which in turn break, leading finally to the production of
a certain number of compressed strings having no mass
and moving with the velocity of light. A rupture involves
a partial contraction and a transformation of elastic en-
ergy into kinetic energy of motion. This picture corre-
sponds to the idea of a cascade mechanism of resonance
decay. For example, the A2 meson (of mass 1340 MeV/
c2) decays mainly according to the scheme Λ2 — ρτι-~ (inr)ir.
It is somewhat more difficult to imagine the inverse pro-
cess—the recombination of strings. When two strings
collide, their extremities become linked and they exist
in the form of a single string until a rupture occurs,
possibly at a different position. This is the description
of a binary process—the scattering of two particles (or
resonances) (see Figs. 2 and 3). Of course, it is diffi-
cult to imagine the contact interaction representing the
collision of two material points (the extremities of the
strings) in classical mechanics. However, this is per-
fectly natural in the quantum theory; it is sufficient to
recall the example of ve scattering in Fermi's theory.

By virtue of the uncertainty relation, a beam of parti-
cles having a definite momentum is described by a wave
function which extends over a large region of space.
There is therefore a large probability amplitude for the
encounter of two particles at a single point. This argu-
ment holds in any local theory and is perfectly applicable
to the interaction between the extremities of the strings.
It should be noted, incidentally, that a rupture, like any
spontaneous process, cannot be described within the
framework of classical mechanics.

It is extremely significant that the foregoing intuitive
arguments, together with the contemporary formalism
of quantum theory, have made it possible to calculate
the interaction amplitudes and to obtain the equations of
the dual theory (this result is due to Mandelstam). Of
course, the pole character of the interaction amplitude
is obvious from the outset, since the intermediate state
here is a string with an equally spaced discrete spec-
trum. However, the crossing symmetry of the ampli-
tude is non-trivial. It is also significant that strings re-
produce the entire dual theory, together with correc-
tions for multi-particle intermediate states (virtual
resonance loops). The contribution from a two-reso-
nance intermediate state in a scattering process has a
particularly simple interpretation: the string breaks,
the fragments recombine, and a final rupture then oc-
curs (see Chap. 2 for further details).

Despite its apparent simplicity, the theory of strings
is by no means trivial. The presence of an infinite num-
ber of degrees of freedom leads to difficulties in quan-
tization. Moreover, despite the formulation of several
new variants, nobody has yet been able to find a clas-
sical model for a non-local one-dimensional system
which can be quantized in a consistent manner. Thus
the fundamental difficulties which had previously been
found to be inherent in dual models acquired an explicit
physical interpretation.

Apart from its possible application to the physics of
strong interactions, the relativistic string is of great in-
terest from a purely theoretical point of view. This is a
beautiful example of a non-local relativistic system
which is constructed as a natural generalization of the
mechanics of a material point. The difficulties in quan-
tizing the theory are specific to quantum field theory, the
simplest two-dimensional variant of which is the me-
chanics of a string, and are due to the typical peculiari-
ties of the contemporary theory, such as the non-Abelian
gauge group and the Schwinger terms in current algebra
(in this connection, see Chap. 4).

F. Content of the review

In Chap. 2 we give the basic results concerning Vene-
ziano's dual model and its modifications. On the whole,
this section contains no proofs, but merely describes the
qualitative features of the theory. Chapter 3 contains the
classical theory of relativistic strings. We concentrate
on problems which are important for the construction of
a quantum theory—the canonical formalism and confor-
mal symmetry. In Chap. 4 we describe the canonical
quantization procedure and show that the quantum theory
is self-consistent only with special conditions on the
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character of the spectrum and in a 26-dimensional space.
Chapter 5 is devoted to the classical and quantum theo-
ries of strings with distributed spin. To describe the
spin degrees of freedom in the classical theory, it is
necessary to introduce anticommuting classical vari-
ables, i. e., mechanics with a Grassman algebra. An
account is given of the theory of a classical particle with
spin. Strings with spin are constructed as a natural
generalization. The quantization procedure is self-con-
sistent in this case only in a 10-dimensional space. It
is shown in Sec. 6 how integrals over trajectories can
be used to construct quantum amplitudes for the interac-
tions of strings and to reproduce DMs. Some technically
complicated problems are relegated to the appendix.

Several interesting problems are beyond the scope of
the present review. One such problem is why the field
energy is concentrated within a narrow, almost one-di-
mensional, region of space, in other words the problem
of the "microstructure" of strings. It has been sug-
gested that such a situation might occur in field theories
which admit spontaneous symmetry breaking.C37] The
appearance of structures such as strings is related to
problems like "quark confinement" and infrared diver-
gences in Yang-Mills theories of vector mesons. A dis-
cussion of these ideas can be found inC38~42].

Spontaneous symmetry breaking of dual models con-
nected with a degeneracy of the resonances in the mass
and spin may significantly alter current ideas and render
the theory more realistic. This approach to duality and
its quark interpretation has been developed by Volkov
et ah t 4 3 l 4 4 ] and by Bardakci and Halpern,t 4 5·4"

In dual theories such as the Veneziano model, which
can be interpreted in terms of interacting strings, had-
ronic resonances have zero widths in the first approxi-
mation. In the present review, we do not consider modi-
fications of the dual theory which dispense with the zero-
width approximation. In such models, the initial ampli-
tudes already have the branch points required by the
unitarity condition. An example of such a theory which
has been analyzed in detail is the construction of dual
amplitudes with Mandelstam analyticity.C47] By intro-
ducing finite widths in the dual amplitudes, interesting
predictions are obtained for the observed resonances.t48]

Dual theories with infinitesimally narrow resonances
cannot yet be taken to be a realistic description of the
observed particles: their advantages are the intuitively
clear space-time picture of the interactions which they
provide and their mathematical elegance.

2. BASIC PROPERTIES OF DUAL MODELS21

A. The construction of dual amplitudes

Consider the elastic scattering of identical scalar par-
ticles. In the simplest DM, proposed by Veneziano,C49]

the scattering amplitude is represented in the form

A(s, t, u) = S

F(«, () = -

s, t)-\-V{t, u)+V(u,

(2.1)

where a(z)= ao + a'z; g, a0, and a' are constants, s, t,
and u are the Mandelstam variables, and Γ and Β are the
well-known Euler functions. In the case of scattering of
non-identical particles, the coefficients of V for the vari-
ous channels and the parameters a0 for the functions
a(s), ait), and a(u) may be different. However, the
"slope parameter" a' must be universal. The function
V(s,t) has simple poles at a(s) = 0,1,2,. . . , with resi-
dues which depend polynomially on t. The amplitude
takes a particularly symmetric form if we impose the
further condition

α Ξ a (s) -f tz (/) -·- a (u) — 3a 0 -f 4a'μ- — — i, (2.2)

where μ is the mass of the colliding particles. In this
case, the amplitude (2.1) can be written in the form

J| (2.3)

2)The reader who is familiar with DMs or who is not interested
in the application of the theory of relativistic strings to the
strong interactions may omit this section.

At first sight, the condition (2.2) seems unrealistic.
In fact, if we require that the first pole of the scattering
amplitude corresponds to the external particle, i. e.,
α(μ2) = 0, then (2. 2) implies that a0 = 1 and μ2 = - I/a'.
Of course, the occurrence of a particle with imaginary
mass, a "tachyon, " is a major defect of the model.
However, as we shall see later, the condition ao= 1 is
very attractive and is even necessary in this variant of
the DM ο

The amplitude (2.1) is a solution of the problem of
finding a symmetric function of two variables which pos-
sesses the following properties (which together define
the property of duality): a) there are no singularities in
either of the variables, apart from poles on the real
semi-axis; b) the residue at each pole in one of the vari-
ables is a polynomial in the other variable. It was shown
by CoonC50] that Eq. (2.1) gives the only elementary solu-
tion of this problem3' if we reject a model with logarith-
mic pole trajectories, which has certain defects. The
requirement of duality has the following consequences:

a) an equal-spacing rule in the spectrum, i. e., there
are poles at the points s =M\= (k - ao)/a' with k = 0,1,...;
b) a linear relation between the square of the mass and
the spin, since the residue Rk{t) at the fc-th pole in the
variable s is a polynomial in t of degree k; c) degeneracy
in the masses of the states with different angular mo-
menta, since Rk(t) does not reduce to P*(cos0), where
cos# = 1 + 2<(Μ2,-4μ2)"1; d) a power-law "Regge" asymp-
totic behavior as I s\ — °° with args > 0, i. e., V
~exp[a(f)lns].

Multi-particle dual amplitudes can be constructed on
the basis of a requirement of "planar duality" which
generalizes the foregoing properties of the 4-particle
amplitude, i .e. , meromorphy and polynomial behavior

of the residues. More precisely, let VK{px PN) be
an invariant function of the momenta of Ν particles with
/>i + · · · +pK= 0 (Fig. 5), this function being symmetric
with respect to cyclic permutations of its arguments.

3)The general solution has the form of a sum of terms of the
type (2.1) with the substitutions a(s)-Oi(s) — m and a(t)
— ci(t) — n, where m and η are positive integers (see Eq.
(A.5) in the Appendix).
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FIG. 5. An .W-particle interaction am-
plitude. The cut of the diagram corre-
sponds to the interaction channel.

We can assume that VN depends only on the invariant
variables of the form smn = (pmtl + · · · +pn)

z = (pml + ·••
+pm)z. Each of these variables corresponds to a particu-
lar channel—a reaction in which (w- m) particles are
transformed into {N- n + m) particles. Planar duality
can be formulated in terms of the following require-
ments: a) VN has no singularities, apart from poles in
the variables smn:

Vv^V(!m,,-^)-· *<"»"; (2.4)
ft

b) the residues at these poles have no singularities in
the "transverse" variables sm,n., where m'< m and n'
<n (or m' >n and n'> m). Functions which possess these
properties have been determined (see, e. g., the work
of Goebel and Sakita[S13), and a manifestly symmetric in-
tegral representation was constructed for these func-
tions"23 (see also Sec. A of the Appendix). However, it
was necessary to verify that this purely analytic ap-
proach leads to amplitudes which are consistent with
unitarity (which was naturally expressed in the single-
particle form assumed in DMs). This was shown to be
the case by Fubini and Veneziano,"33 who also estab-
lished new important properties of the particle spec-
trum.

B. The spectrum of single-particle states

The poles of the amplitudes are interpreted as reso-
nances. We must therefore obviously assume that all
the amplitudes have poles at the same positions, i. e.,

Jlfi = - (2.5)

as in the simplest case (2.1). Now unitarity implies that
the residue at a pole must have the form of a product of
transition matrix elements or, if there is degeneracy,
a sum of such products:

h

V 1 ' · • • 1 rnl J μ ( . , _ μ (2.6)

here r'1'"' is an irreducible tensor4' of rank I, i. e., I is
the angular momentum of a resonance and ν is an index
associated with the additional degeneracy. The tensors
Τ"1"' have the same duality properties as functions of
the momenta as for the amplitude as a whole; in particu-
lar, they have pole singularities in their "internal" in-
variant variables. It is very significant that the expan-
sion (2.6) holds for any residue of any amplitude, where
T(l·"» is a universal system of tensor functions. The
first proof of this factC53] was very cumbersome. It was

4)A symmetric tensor is said to be irreducible if its contraction
with respect to any pair of indices is equal to zero.

possible to simplify it greatlyCS4] by introducing an op-
erator formalism. However, the factorization of the
residues (Eq. (2.6)) is obtained only at the expense of a
large degeneracy: the number of terms in the sum rises
rapidly with increasing k.

This circumstance is easily understood. For a given
value of I, the irreducible tensors TH'^.ul(pu...,ρ})
differ from one another essentially by the way in which
their indices μ^..., μ, are distributed among their vec-
tor arguments ρχ,...,ρ}. (Since we are considering am-
plitudes with an arbitrary number of particles, we can
always assume that; >l). Crudely speaking, the number
of different tensors Γ " · " ' (for fixed I) is therefore equal
to the number of representations of the number I as a
sum of integers, P(l). The solution of this classical
problem in the theory of numbers has long been known;
in particular, for large I we have"53 P(l)~ cr'expiy^T),
where c and γ are certain constants. Thus, for each
value of the mass Mk, there exist a certain number of
resonances, D(k), and this number rises rapidly with in-
creasing k (and mass): D(k)~ exp(y/¥).

Nevertheless, this problem has not been completely
solved. From the point of view of unitarity, the resi-
dues for elastic transitions must be positive, i. e., the
operators Rk with matrix elements (2.6) must be posi-
tive definite. In other words, there must not be any
"ghosts"—states with negative norm—among the reso-
nances. However, owing to the pseudo-Euclidean met-
ric, the tensor contraction (2.6) contains negative terms
associated with the energy components of the momenta.
These terms give no ghosts only if they are cancelled by
contributions from the spatial components of the mo-
menta. An analysis has shown (see the review by
Schwarzcei for further details) that ghosts can be uni-
versally eliminated only under the condition ao= 1. This
is a highly undesirable restriction, since it makes it im-
possible to identify the external scalar particles with the
basic state contained on the trajectory a(s)(fc = 0). The
theory also contains a massless particle of spin 1 (a
strongly interacting "photon"). At Mz= I/a' there is a
pair of degenerate states—particles with spins 2 and 0.
At Mz = 2/a' we have a state with spin 3 and two states
with spin 1 and opposite parities, etc. The odd poles
are cancelled in the fully symmetrized amplitude (2.1).
However, odd-spin resonances occur in the multi-parti-
cle amplitudes.

The foregoing picture is quite unlike the observed
resonance spectrum. Nevertheless, we can hardly dis-
pense with the restriction at0 = 1 in this approach. The
formal reason for this is that the dual amplitudes with
a0 = 1 possess a strong additional symmetry associated
with the Lie algebra found by Virasoro"63 (see Sec. C
of the Appendix), which makes it possible to eliminate
the time components.

These shortcomings of the simplest model described
above were one of the reasons why more complex DMs
have been constructed; however, the latter have also
not yet overcome the difficulties which are inherent in
this approach.
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FIG. 6. An interaction amplitude as a sum over resonances
(the pole approximation).

FIG. 8. A single-loop diagram of the dual
theory. The wavy lines represent infinite
sequences of resonances.

C. Higher orders and various modifications of the dual
theory

The simplest dual amplitudes of the form (2.1) can
serve as a description of the contribution from single-
particle intermediate states (Fig. 6). Iterations of the
pole amplitudes should in principle take into account -
more complex intermediate states (Fig. 7). It was
shown by Kikkawa et al.l51iM see also the review151)
that it is possible to construct a consistent theory of the
iteration of dual amplitudes in analogy with perturbation
theory by representing the interaction amplitudes as
series whose terms correspond to diagrams similar to
Feynman diagrams (Fig. 8).

Incidentally, we note that these series reduce to pre-
cisely the perturbation series of ordinary quantum field
theory for gz= α'λ2 — Ο, where λ is fixed. In fact, it is
easy to see (see Sec. A of the Appendix) that

lim g
a'-O

(2.7)

where Mz = - ao/a', i .e . , the Veneziano amplitude re-
duces in this limit to the Born amplitude in the theory of
a scalar field with the interaction \ φ 3 . It can be shown
(see"9"6 1 1) that if ao= 1, the limit gives massless scalar
electrodynamics, while for ao = 2 (the Virasoro model)
it gives a theory similar to gravitation. A clear indica-
tion of the possibility of such a limit is the fact that
when a' —0 the distance between the poles tends to in-
finity, leaving only the lowest state of the entire family
of resonances.

Complex (non-pole) dual resonance diagrams can also
be interpreted in terms of ordinary Feynman diagrams
(Fig. 9), as has been pointed out by Fairlie and Niel-
sen" 2 1 (see also: 3 4 > 6 3 ] in this connection). Thus the ex-
pansion in the number of resonance loops corresponds to
isolating classes of Feynman diagrams characterized by
a given number of contours which carry a large virtual
momentum. In the language of quarks and gluons, a
resonance loop corresponds to virtual production of a
quark-antiquark pair (Fig. 10).

We can in principle calculate dual resonance diagrams
with any number of loops, but this calculation is by no
means as simple as in the case of Feynman diagrams.
However, an analysis shows that the expansion obtained
in this way contains no small parameter and that each
new term radically alters the amplitude. In particular,
the single-loop approximation (see Fig. 8) already leads
to complicated singularities[β43 and leaves no trace of
the simple dual picture. Nevertheless, it is remarkable
that the single-loop approximation can be used to obtain

FIG. 7. A two-resonance intermediate state.

an amplitude which has no singularities other than sim-
ple poles on the new ("loop") linear trajectory

(2.8)

provided that the dimensionality of space is 26 (see"-653).
The resulting amplitude is then completely symmetric
and can be reduced to the form proposed previously by
Virasoro.C 2 5 ] The Virasoro amplitude

, f, «) = 4 ,
Γ (-(1/2) a (2)) (2.9)

where a= a(s)+ α(ί) + at(u), has poles in each of the three
channels, i. e., it possesses the property of "non-planar"
duality. If a = - 1, the amplitude W reduces to the form
(2.1) (or (2. 3)), provided that g% = gz/Jv. However, it
is more appropriate for the amplitude (2. 9) to adopt the
condition a= - 2, which is in agreement with Eq. (2. 8)
with ao= 1 if μ2 = - 4/α' for the external particles. With
a trajectory of the form

ct(s) = 2 + - i «'«

the Virasoro model gives no ghost states (like the Vene-
ziano model with aa= 1), and a symmetric and complete-
ly dual integral representation can be written for the
multi-particle interaction amplitude (see Sec. A of the
Appendix). It was pointed out by Shapiro1-26·1 that the am-
plitude (2.9) can be obtained from a Feynman diagram
spanning a closed surface, with small virtual momenta
(as in the diagram of Fig. 1).

A crude interpretation of these results is as follows.
The trajectory which appears in the Veneziano ampli-
tude (2.1) corresponds to the physical mesons (such as
the ρ meson). The resonances which appear in the Vira-
soro amplitude (2.9) are two-particle bound states of
"p-meson" resonances and lie on the vacuum trajectory,
which has double the intercept on the vertical axis and
half the slope (according to Eq. (2. 8)). This picture was
an attractive one, since it has been "established" exper-
imentally that the vacuum trajectory has a^py « 1 and a'p
~Q. 5 GeV2, while the p-meson trajectory has a^ '»0 . 5
and O!p= 1 GeV"2. However, we must remember that a
consistent theory is obtained only when α^ρ) = α^>)/2 = 1
and in a 26-dimensional space!

The fact that some of the defects of the simplest DMs
due to Veneziano (or Virasoro) are avoided in a 26-di-

FIG. 9. Feynman diagrams
I + . . . for the single-loop dual

diagram.
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ο -Μ-
FIG. 10. Quark interpretation of the diagram in Fig. 8.

mensional space suggests that the theory should include
some additional degrees of freedom which might assume
the function of some of the spatial components. This
heuristic argument turns out to be quite correct: by
classifying the states according to new quantum num-
bers, it is possible to reduce the critical dimensionality
of the space. The most direct (but by no means trivial)
method of doing this is to introduce an internal sym-
metry with respect to the group Si/Ov); this is the Bar-
dakci-Halpernmodelcee] (see also1*75 and the review by
SchwarzC6]). This procedure reduces the critical di-
mensionality to dct = 26- N, but the model is clearly not
a realistic one.

A more interesting generalization of the DM involves
the introduction of additional fermion degrees of free-
dom. In particular, this makes it possible to construct
a DM for the interaction of fermions (the Ramond mod-
elcae]). From the point of view of the quark picture, this
approach for the interactions of bosons (the Neveu-
Schwarz model1273) can be interpreted simply as a method
of allowing for the spin \ of the quarks. One finds two
families of resonances produced by a quark-antiquark
pair in states of total spin 0 and 1 ("pion" and "p-meson"
trajectories). The amplitudes for the meson-meson in-
teraction which are obtained in this way have the same
structure as the Veneziano amplitude (2.1). In particu-
lar, for 7Γ7Γ scattering we have

on the trajectories have μ\ = ~ 1/2 α' and μ|=0 (instead
of μ2 = - Ι/α', as in the Veneziano model). It is also
possible to construct a variant of the Neveu- Schwarz
model which satisfies non-planar duality.cee: With a cer-
tain modification"*"713 of the Neveu-Schwarz theory (the
introduction of an additional fermion variable), it has
even been possible to eliminate the states with μ2< 0
("tachyons"), although this model is far from reality.
The critical dimensionality for DMs with spin is 10 (in-
stead of 26). A simple interpretation of the Neveu-
Schwarz and Ramond models involves the idea of a
"string" with distributed spin, which is described in
Chap. 5.

In Table I we show the main qualitative characteris-
tics of dual models (tachyons are absent in the Neveu-
Schwarz model only if an appropriate modification is
made"»"7").

The mathematics required for the description of DMs
is very formal and rather complicated. The introduc-
tion of relativistic strings has made these models much
easier to understand and more accessible to physical
intuition, and in certain cases it has even simplified the
calculations.

3. RELATIVISTIC STRINGS.
THEORY

THE CLASSICAL

A. Kinematics and the variational principle

The motion of a point in the theory of relativity is de-
scribed by a line in four-dimensional space-time: xu

= xll(r), where τ is a parameter which varies along the
line. The classical action for a free material point is
proportional to the arc length of this line"21:

Γ(1-αο«-αρ(ί))
(2.10)

However, the spectrum of states is different from that
described in Sec. 2B. For example, the lowest states

(3.1)

where m is the mass of the point and xti = dxli/dT is the

TABLE I.

Model

Veneziano

Virasoro

Ramond

Neveu—Schwarz

Addition of
an internal
symmetry

Leading
trajectory

<*(s)

1 + a's

2 + l/2a's

1/2 + a's

(/>/): 1 + a's
(τω): a's

Spin
at

M=0

I-i

2

1/2

1
0

Tachyon,
a'fx2

•— 1

- 4

None

As in the original dual model

Critical
dimensionality d

26

26

10

10

d—N

Limit
a'—0

λ φ'6 scalar
theory

Quantized
gravitation

Massless
electro-
dynamics

Scalar
electro-
dynamics

Yang-Mills
theory

Properties
of string

Free string

Closed string

String with
distributed
spin. Quarks
at the ends

String with
distributed
spin. Quark
and antiquark
at the ends

No simple
interpretation
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tangent vector, which lies inside the light cone, x2 > 0.
The action tf is invariant with respect to Lorentz trans-
formations and the choice of the parameter τ. It is usu-
al to use one of two possible parametrizations: 1) τ is
the "laboratory" time, x0 = τ, and x2=l- v2; 2) τ is the
"proper" time and 'x2 = 1.

Consider a one-dimensional material system of finite
length, whose points are characterized by an "internal
coordinate" σ in the range 0 ^ σ « σ0. The motion of such
a system is described by a two-dimensional surface
χβ(τ,σ) in Minkowski space. Systems for which the ac-
tion is invariant with respect to the choice of the parame-
ters τ and σ are naturally of special interest. This prop-
erty holds for an action5' which is proportional to the
area of the region on the surface bounded by the lines
r=Tt and τ = τ}:

or, equivalently,

(χ ± x'Y = 0.

if- ---- -A
J " ο

(xx')2-x2x'2; (3.2)

here A is a constant of dimensionality m2, xu =άχίί/άτ,
and χ'μ = dxjdo. The expression under the square root
sign in (3.2) is positive if the surface is time-like, i. e.,
if at each point of this surface there exists a tangent vec-
tor contained within the light cone.e ) We also take i2>0,
so that τ can be regarded as "intrinsic time. " In prin-
ciple, we can also consider two- and three-dimensional
systems7' (see, e. g. , t 8 0 ] ) .

The action (3.2) is obviously invariant with respect to
changes of variables of the form

= / (τ, σ), • σ = h (τ, σ), (3.3)

where / and h are arbitrary differentiate functions. It
is important only that the Jacobian of the transformation
(3. 3) is everywhere non-zero and that the boundary of
the surface has its original form, i. e., h(r, 0)= 0 and
/ζ(τ, σο) = σο= const.

It is convenient to define an orthonormal coordinate
system on the surface by the invariant conditions

(3.4b)

An important property of a two-dimensional pseudo-
Euclidean surface is that the conditions (3.4a) and (3O 4b)
do not completely fix the system of parameters, but they
merely distinguish certain systems—in fact, a very wide
class of systems. It is easy to see that these conditions,
as well as the boundary of the surface, are invariant with
respect to transformations of the form

χ = ΐι + τ + g (τ -f- σ) + g (τ — σ),
σ = σ -f- g (τ + σ) — g (τ — σ), (3.5)

where τι is a constant and g(u) is an arbitrary periodic
function g(u) = g(u + 2a0) such that θ(τ,σ)/θ(τ, σ)*0, i .e . ,

(3.6)

for any M. Equation (3. 5) describes a conformal trans-
formation (see Sec. C of the Appendix).

The simplest and most obvious parametrization is the
"laboratory" parametrization

τ — τ τ — 1 r — ι) τ·' — Π -τ' — „, • ί^ 7 α ί
**Ό — *ι **Ό — -1· ·*"( ~~ ''it χ ο — " ' i — «'i> VwofA/

here v is the velocity of the point, w is a vector tangent
of the curve x(x0, σ) with I w I = dl/da, and dl is the ele-
ment of length along this curve. It follows from the con-
ditions (3.4) that

(vw) = 0 , w 2 = 1 — v ! . (3.7b)

Thus the velocity of any point is always directed along
the normal to the instantaneous position of the curve.
The proper length Lo of the curve and its "laboratory"
length L (which takes into account the Lorentz contrac-
tion) are defined by the equations

£ „ « - \ dl=

(3.8)

(xx') = 0, (3.4a)
L (τ) = j YT^2 dl = j (1 - v2) da

5>Lagrangians of the form (3.2) were considered by DiracC733

and by Barbashov and ChernikovC741 before the advent of dual
models and the interest in relativistic strings which they
created. In addition to the work which we have already men-
tioned, t2 0"2 4 3 the system described by the action (3.2) has been
studied by Chang, Mansouri, and Nambu, [ 7 ί μ 7 η Konisi,C78]

and Barbashov and Chernikov.C791

6>An arbitrary vector tangent to the surface has the form yu

= axli + bx'ii. A part of the surface lies inside the light cone
if there exist two different zero vectors, y 2 =0. This implies
that (*x') 2 -xV 2 >0.

7)In this case, χι1 = χβ(τ,σ1,σ2) or χμ. = χιι(τ,σί,σ2,σ3), and the
action has the form

tf = A \ i t f Π da F,

where.F2=detll(*(c"*<e))ll with α, β=0, 1, 2, 3, and 4 ° "
= dxjdoa with σο=τ.

The length L is in general not conserved in the process
of motion. The action (3.2) has the form if= — !L(r)dT,
so that the principle of minimum <ί° can be regarded as a
combination of Hamilton's dynamical principle for points
of the string and the static condition of the minimum
length L. In spite of the established terminology, it
would therefore be more correct to think of the system
in question not as a string, but as a thin and elastic
spring. It is essential, however, that the system is
relativistic. In the simplest case, the spring has zero
length and zero mass and moves with the velocity of
light. Non-trivial solutions are described in the follow-
ing subsection.

B. Equations of motion and conservation laws

Let us determine the variation of the action (3.2) for
an arbitrary variation δχΜ(τ,σ) (of course, 6XU(T,)
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= δ*μ(τ/) = 0):

where

X=-AV(XX'?-'X*X'\

Let

(3.10)

The equations of motion corresponding to the variational
principle 6^ = 0 take the form

β τ da (3.11)

The boundary conditions for a free string8' (with arbi-
trary variations 6xu at the end-points), which also fol-
low from (3.9), have the form

π» (τ, 0) = π» (τ, σ0) = 0.

Note that the explicit form of X implies that

π 2 = -

(3.12)

(3.13)

and, in particular, that i 2 = 0 if σ = 0 or σ0. In other
words, the ends of the string move with the velocity of
light. This is a perfectly natural result, since the sys-
tem is characterized by zero density of rest mass—the
mass y of the system as a whole is due to the internal
motion and tension.

The invariance of the action leads to various conserva-
tion laws. Using Eq. (3.9) with δ*,, = const, we obtain
the conservation law for the total momentum, which is
given by

(3.14)

where Γ is an arbitrary curve intersecting the surface
and p$dy =p"da- nudT. In particular, if Γ is a line τ
= const, then p*dy =p"da. Of course, the conservation
of the momentum (3.14) can also be regarded as a triv-
ial consequence of Eq. (3.11), which has the form of a
conservation law for the flux of the two-dimensional vec-
tor (p, it) on the surface (τ, σ). Taking 6xlt=wlll,3^, Eq.
(3.9) leads to a conservation law for the total angular
momentum

- ί (3.15)

We shall now adopt an orthogonal parametrization
(τ, σ), i. e., we add the supplementary conditions (3.4)
to the Lagrangian. The Lagrangian can then be repre-
sented in the manifestly conformally invariant form

8)See Sec. 3D for the case of a closed string.

(3.16)

while the equations of motion and boundary conditions
take the particularly simple form9'

χ'μ(τ, 0) = ΐμ(τ, σβ) = 0.

(3.17a)
(3.17b)

In the laboratory parametrization (3.7), Eq. (3.17a) can
be rewritten in the form of Newton's second law for an
element of the string:

da (Γη), (3.18)

where ρ = A-J1 - v2 is the linear density of mass, Τ
= AV1 - vz is the tension at a given point, and η is a unit
tangent vector. Thus points of the string at which the
tension is equal to zero move with the velocity of light,
since the density of mass at these points is also equal
to zero.

The general solution of the problem (3.17) has the
form

* μ (τ, σ) + /μ (τ + ο) + /μ (τ — σ), (3.19)

where ru is a constant vector and /„(«) is a differential
vector function satisfying the identities

ύ (») = Μ " + 2σ0), (3.20a)

(3.20b)

The first identity follows from the boundary condition
(3.17b), while the second follows from (3.4b). The ini-
tial data determine the function fu(u) on the interval

| U |

'" " + ε {u) 1 *(0' σ) da - r " u ] •
(3.21)

The vector ru is related to the total momentum of the
system by the equation

(3.22)

We note that in the laboratory parametrization (3.7) we
have/0(w)H0 and r^ is a unit vector with components
(1,0,0,0), so that the parameter σ0 in this case is re-
lated to the mass by the simple equation

Μ = 4σ 0 .

Let us consider an interesting particular case,
pose that the initial conditions have the form

(3.23)

Sup-

8 )Let us verify that the conditions (3.4) are consistent with the
equations of motion. By Eq. (3.17a), the scalar functions
φ±= (A ±x')1 satisfy the condition Φ4= ±φ'±. Hence if <p±= 0 for
all σ at the initial instant τ = T{, then φ± = 0 for all τ and σ.
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FIG. 11. A folded rotating
string—the basis solution
(3.26). a) N=l; b) N=i.

, (Ο, σ) = tiitW» cos ωΛ.σ, ζ μ (0, σ) τμ + Τ μ cos ω Λ σ.
(3. 24)

tional to its mass. The length of the string is indepen-
dent of the time for the solution (3.26).

C. The Hamiltonian formalism

To carry out the canonical quantization, we must de-
termine the Hamiltonian corresponding to the proper
time τ, rewrite the equations of motion in Hamilton's
form, and introduce the algebra of Poisson brackets.
Owing to the invariance with respect to the general
transformations (3. 3), the original Lagrangian (3. 9) de-
scribes a system which is degenerate in Dirac's
sense, [ 8 1 3 since the equation

ρμ(τ, σ) = -^- (3.29)

Then it follows from (3.4) that

(rV) = (rW) = (VW) = 0, r2 = —V* = —W\ (3. 25a)

Let us choose the center-of-mass system, in which Ρ = 0
and P0 = M is the total mass, and introduce units of mea-
surement on the surface (τ, σ) which lead to the "labora-
tory" parametrization (3.7). Then

- = l, r = 0, F o = (3. 25b)

where V and W are mutually orthogonal unit vectors.
The solution of (3.19) takes the form

χ(τ, σ) = (3.26)

It is easy to see that these equations describe a string
folded Ν times in the form of a straight-line segment and
rotating in the plane (V, W) about its midpoint with an
angular velocity such that its end-points move with the
velocity of light (see Fig. 11). Let us calculate the an-
gular momentum J of the system, using Eq. (3.15).
This is a vector normal to the plane (V,W) and of length

W*. (3.27)

Thus we obtain the linear dependence between the angular
momentum and the square of the mass which is charac-
teristic of dual models (in the classical limit J » 1 or
a o ~ 0). It is now obvious that the fundamental constant
A is related to the slope of the Regge trajectory by the
equation

A = (2ηα')-\ (3.28)

The state with N= 1 corresponds to the leading trajectory
while for iV> 1 we obtain some of the resonances on the
"daughter" trajectories. We recall that the quantity A
is equal to the tension of the string at the point with ν = 0
(see (3.18)). Taking a' = mj? and transforming the usual
units, we obtain A = mpc

z/\p = 1.6 x 10"3/L 3x 10"13 erg/cm
«13m (here \p = 2irK/mpc is the Compton wavelength of
the proton). Noting that vz = COS2O)̂ CT for the solution
(3.26), we find from (3. 8) that the "laboratory" and
"property" lengths of the string are given by L = σο/2
= M/2A and Lo - 2σα/π; the length of the string is propor-

cannot be solved for χβ. it is easy to see that this equa-
tion leads to the conditions10'

φ ± (χ, ρ) = (ρ ± Αχ')' = 0. (3. 30)

According to Dirac's theory, the Hamiltonian density in
this case has the form

$6 (z,, p) = x,,' — X + ι>+φ+ -f v_<p_, (3. 31)

where v±{o) are arbitrary functions, whose choice fixes
the "gauge. " The first two terms cancel one another.
Putting v* = v. = - 1/4A, we have

Η ="\ SS (χ, ρ) do =, l- ? (-^ + Αχ'Α da. (3. 32)

The Poisson brackets for the canonical variables have
the usual form11'

{Pn ("i)> *v (0 2 )}P.B = — £μν δ (σ, — σ 2 ) .

The equations of motion

*μ = -^ΪΓ=--χ-, Ρμ=--^Γ=-

(3. 33)

(3. 34)

are equivalent to (3.17a), so that our gauge agrees with
the choice of the orthonormal coordinate system on the
surface given by the conditions (3.4).

We now replace σ by an independent variable θ in the
range - σ ο « 0« σ0 and transform to the new dynamical
variables yj.r, Θ) given by

for (3,35)

We impose the boundary conditions yli(T, + 0) = ytl(T,-0)
and y^WjC^^y^ij-, - σ0), which are equivalent to (3.17b).
In these variables, the Poisson brackets take the form

"'Similarly, in the case of a material point with the action
(3.1), invariance with respect to the choice of the parameter
τ leads to the condition/>2 = m2.

U)We employ the metricg m = 1 a.nagVt= — 1 for fe = l , 2, 3. The
Poisson brackets are defined as in the books1·81'843.
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{ViX Φί), !/v (Θ»)}Ρ.Β = J Λ#μνδ' (θ, — θ8), ( 3 . 3 6 )

with the condition

y* (θ) = 0, (3. 37)

and the Hamiltonian and total momentum are given by

- σ ο

»μ(θ)<ίθ.

(3. 38)

(3. 39)

It is natural to interpret yu(6) as a generalized mo-
mentum density. "Neighboring" points interact, lead-
ing to a non-canonical form for the Poisson brackets;
thus, owing to the "contact" character of the interaction,
the Hamiltonian has a quasi-free form. We note that the
Hamiltonian for a point particle obtained from the action
(3.1) under the condition x2 = 1 (where τ is the proper
time) is Η = - (pz- ma)/2m (see Appendix A of Feyn-
man's paperC821 and the work of Casalbuoni et al.t83]).
The condition (3.37) indicates that the string consists of
"massless" matter. We recall that two vectors yw(a)
and >'u(- σ) are specified at each point of the string, one
of which can be interpreted as a parton momentum and
the other as an antiparton momentum.

Note that the Hamiltonian (3.38) determines the evolu-
tion of the dynamical variables as a function of the pa-
rameter τ and is not identical with the energy Po (Eq.
(3.39), which determines the time development of the
system from the point of view of an external observer.

The equations of motion for the Hamiltonian (3.38)

0τ (3.40)

with the boundary condition J>U(T, σ0) =yμ(τ, - σ) have the
simple solution

* (τ, θ) = Υμ (τ + θ),

Υμ (u) = ϊ μ (0, u) = Υμ (u + 2σ0).
(3.41)

It will be useful for what follows to make a further change
of variables. Let us expand )>μ(θ) in a Fourier series:

(3.42)

be obtained directly from Eq. (3.19) by expanding the
function/M(w) in a Fourier series. The particular solu-
tion (3.26) corresponds to the initial condition α μ = 0
with ηιΦΝ, i.e., an excitation of only the iV-th oscilla-
tor.

The Poisson brackets for the normal coordinates, ob-
tained from (3. 36), are

η), (3.45)

where 6Cfe) = 0 for fe*0 and δ(θ) = 1. A specific feature of
this system is the presence of constraints. Expanding
the left-hand side of Eq. (3.37) in a Fourier series, we
obtain

n>0

•) = 0 ,

α··ο™-")-0.

(3.

(3.

46a)

46b)

The quantities Lm(.r) obviously satisfy equations of the
form (3.43), so that Lm(r) = KmeiUmT, where Am are con-
stants, and the conditions Lm = 0 are consistent with the
equations of motion. Using (3.45), we find

{Lm, Ln}p.

= «majf+n,

= i(m—n) Lm+n.

(3.47a)
(3.47b)

Since the Poisson brackets for the quantities Lm are ex-
pressed linearly in terms of these same quantities (the
Lm form a Lie algebra), the conditions (3.46) define con-
straints of the first kind (in Dirac's terminology"11), and
the Lm are generators of a symmetry group. It is easy
to see that this is the group of conformal transformations
(3.5) (for further details, see Sec. C of the Appendix).

The real and imaginary parts of the variables σ^ are
related to the Fourier expansions of the momenta and co-
ordinates of points of the string:

pu (τ, σ) = σ;1 [Ρμ + (πΛ)>η 2 ο? (τ) cos <amo],

xu(τ, σ) = Χ μ (τ) + "1" Σ (τ) cos <omo.
(3.48)

Here Χμ is the coordinate of the center of mass; it fol-
lows from the equations of motion that Χμ(τ) = ί μ + τΡμ/
Ασ0, where q μ is a constant vector. Using (3.15), we
can evaluate the total angular momentum in the new vari-
ables:

the term with m = 0 is written separately here, in ac-
cordance with (3. 39). The equations of motion in the
variables a" and their solutions have the form

(3.43)
(3.44)

If we regard the string as an oscillating system with an
infinite number of degrees of freedom, the quantities a™
are analogous to the "normal coordinates" (see,
e. g., C M : ) . Of course, the solution (3.42) and (3.44) can

Σ
m:>0

(3.49)

The first term in this expression is the orbital angular
momentum of the string as a whole, while the second
term is the total spin associated with its internal motion.
According to Eq. (3.46a), the mass of the string is given
by

(o"o-m).
0

(3. 50)
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D. Closed strings

The theory described in the preceding subsections can
easily be extended to a system represented by a closed
curve in space. Such a system is of interest in connec-
tion with the Shapiro-Virasoro model. We shall assume
that the parameter σ in the case of a closed string varies
within the range [- σο,σο], so that xu(- σο) = χι1(σο). The
equations of motion (3.11) remain valid. We must take
6xu(a0) = 6xll(-a0) in varying the action; the extremal
condition then leads to the condition πμ(σ0) = TTW(- σ0) in-
stead of (3.12). Thus, in the orthogonal coordinate sys-
tem (3.4) we have the equation (3.17a) with the boundary
conditions

ζμ(τ, σο) = ΐμ(τ, — σ0), ζμ(τ, σ ο )=ΐ μ (τ, — σ0). ( 3 . 5 1 )

Instead of (3.19), the general solution takes the form

where

(3. 53a)

(3.53b)

The functions f^\u) on the interval [- σ0, σ0] and the
vector rw are determined by the initial conditions:

? •
(2σ0)-' I iu(0, a) da,

t

4 - {**( 0·σ ) ±
(3. 54)

In analogy with (3. 35), we can introduce new variables
in phase space:

) = γ (Ρμ (Ο) + ^ ' № - 0 σ0. (3. 55)

The general solution (3. 52) can then be written in the
form

»(τ) e

(3. 56)

The general momentum is Pu =P£*' +P(~\ Thus we have
two independent sets of normal coordinates a'*' and a'"',
and accordingly two systems of constraints of the form
(3.46), L^ and L^\ The total Hamiltonian has the

form H= - + L(

0

m))/2a0.

A closed string possesses all the solutions which exist
for an open string. These solutions are obtained by
"folding" the string and requiring that the bends have the
velocity of light (the tension at the bends is equal to
zero). This corresponds to initial conditions for which
f^dd^f^iu). In particular, we obtain the "linear tra-
jectories" described by Eq. (3.27), although we now
have N= 2 for the leading trajectory (Fig. 12). In effect,
this leads to half the slope, in complete agreement with

FIG. 12. The simplest non-trivial motion of a
closed string.

the ideas discussed in Sec. 2C (see Eq. (2. 8)).

There are also solutions which are specific to a closed
string (details have been given by Barbashov and Cherni-
kovn 9 1). For example, the string can have the form of a
circle at any instant of time. In this case,

x(t, σ) = R sin -—η (σ), ν (τ, σ) —cos — η (α), (3. 57)

where η(σ) is a unit vector with components (coswa/a0,
slnira/a0, 0). The maximum velocity of points of the
string is equal to the velocity of light c, the maximum
radius of the circle is R = ojtt, and the mass is M= Za^A.
The string pulsates with a frequency ν = 1/2σ0 = (2πα'Λί)"1

between zero radius and the maximum radius R. It is
easy to find even more complicated planar motions. Sup-
pose that the string has the shape of a certain planar
curve at some instant of time. Then the velocity, which
lies in the same plane, is uniquely determined in direc-
tion and magnitude by the conditions (3. 7). Having found
the velocity, it is easy to determine the solution at an
arbitrary instant of time.

4. RELATIVISTIC STRINGS. THE QUANTUM
THEORY

A. Canonical quantization

The transition to the quantum theory is effected by
means of the usual prescription1·104·1 of replacing the
Poisson brackets for the canonical variables by the com-
mators: - i%{- · ·}Ρ.Β ~ [ ' " ]· A complete set of vari-
ables for the string consists of the vectors X^, Pu, and
β™ (see (3.48)), so that the covariant quantization condi-
tions have the form

[α™ guvS (m -f- re).

(4. la)
(4. lb)

Thus ck = a™/4m (k = 1, 2, 3 and m > 0) is the creation
operator and cj = ejm//m is the annihilation operator for
the m-th oscillator. The time components have the op-
posite sign on the right-hand side, leading to states with
a negative norm ("ghosts"). This is a consequence of
the vector character of the dynamical variable, and a
similar situation is well known in the theory of the quan-
tization of the electromagnetic field. In quantum elec-
trodynamics, the difficulty is eliminated by gauge in-
variance; the physically admissible states are restricted
by a condition which corresponds to the choice of the
Lorentz gauge in the classical theory (see, e. g., the
book of Akhiezer and Berestetskiice5J):

-ί^|Φ> = 0; (4.2)
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here A'u is the part of the electromagnetic field operator
Αμ{χ) which contains the annihilation operators of the
photon, and ΙΦ) is a physical state vector. Similarly,
owing to the presence of the group of confonnal trans-
formations (3. 5), "ghosts" are eliminated when the
string is quantized.

Let us begin by writing down the generators of the
symmetry in normal operator form:

(4. 4a)L» = (2π4)-' Ρ* + 2 (ama-m),

= ipA) - " 2 (PaT
m-1

2 (α·-"Ο +-| 2 α™"η°"·

(4.4b)
The operators in the sum that determines Lm commute,
and we have merely regrouped the terms. As to Lo, the
transition to the quantum expression is not unique: the
operator Lo is determined only to within a c-number
term, a fact which must be taken into account in what
follows. Using (4.1), we obtain12'

\Lm, (4.5)

where d is the dimensionality of space-time (we are con-
sidering the d- dimensional case because the theory was
inconsistent for d = A). Quantization leads to an extra
term in this commutator in comparison with (3.47b).
This effect is characteristic of systems with an infinite
number of degrees of freedom (see the discussion inCM1).
Such "extra" terms in the quantum theory are known as
Schwinger terms (see, e.g., the bookt87]). It is easy to
derive Eq. (4. 5) by calculating the vacuum average

<Ρΐω^|ο>- ( o i l 2 (a""V) 2 («-'«'-")I»)
n - 1 1-1

m-1

= -J-^v?"v 2 »("»-»)·
n—1

(4.6)
Thus the operators Lm no longer form a closed l ie alge-
bra; this is the formal reason for the inconsistency of
the theory.

As usual, quantization transforms the constraints into
conditions on the admissible vectors in Hilbert space de-
scribing the physical states:

Z,o | φ ) = _ α β | Φ),

L.m | Φ) = 0, m > 0 ;

(4.7a)
(4.7b)

here a0, a new constant of the theory, is a number con-
nected with the ambiguity in the choice of the operator
Lo. As in electrodynamics, the physical states are an-
nihilated only by the "annihilation" operators L.m, and
the condition (4.7b) for all m would contradict the com-
mutation relations. However, since Lm = (!>.„)*, the ma-
trix elements involving physical states vanish for any
operator Lm. We have a reasonable theory if the sub-

space of physical states is closed and contains no states
with a negative norm.

A complete basis in Hilbert space can be constructed
in terms of the creation operators

«CM», P),
l

mn>0, (4.8)

where 10, P) describes a non-excited state of the string
with momentum Ρ μ . These vectors include, in particu-
lar, vectors with a negative norm, due to the action of
the operators a". The physical states ΙΦ) are certain
linear combinations of the vectors (4.8) satisfying the
conditions (4.7). It can be proved that the vectors ΙΦ)
include no states with a negative norm if d « 26 and that
the subspace is closed if d = 26 and ao= 1. This proof
is very complicated and will not be reproduced here
(see, e.g., the review of Scherk1101). We consider now
a simpler approach developed by Goddard et al., Κ 4 1

which makes it possible to see that all the physical states
have a positive norm.

B. Non-covariant quantization and "transverse"
physical states

The construction of a Hamiltonian formalism and the
quantization of systems with constraints in phase space
usually pose a dilemma: one can either postulate the
Poisson brackets and commutators in the usual form to
eliminate some of the variables, thus "distorting" phase
space and replacing the Poisson brackets by Dirac brack-
ets. (The quantization of systems with constraints was
first considered by Dirac, who gave a review of this
work in his book.cen Dirac's ideas were further devel-
oped by Faddeev1883 and by Hanson, Regge, and Teitel-
boim.t89]) The simplest example is the case of a rela-
tivistic point particle. The first approach is to postulate
the commutator (4. la) for the coordinate and momentum,
imposing the condition (P 2 - Mz)\ Φ) = 0 on the states (this
leads to the invariant Klein-Giordan equation). The sec-
ond approach is to postulate the commutators for the
space components of Ρ and X and to express Po in terms
of Ρ in the form Po= (Ρ2 + Λί*)1/2. In this case, the states
are arbitrary functions of P, and we have a commutator
[P0,X]*0. The invariant quantization of a string was
discussed in the preceding subsection; we found that it
leads to difficulties in constructing the physical states.
Let us consider the second approach.

We take the xraxis along the vector P. We shall
make use of the gauge invariance (3. 5) and identify the
parameter r with the coordinate %.:

x* (τ, σ) • (4.9)

This parametrization is analogous to the "laboratory"
parametrization (3.7a), but it makes use of a variable
on the light cone instead of the usual time variable. The
role of the energy is now played by the variable P. = (Po

- Pj/i/%, which must be expressed in terms of the re-
maining momentum components13':
u>We employ the following notation: for any pair of vectors

6μ and cu, the scalar product is given by

12>We employ a system of unite in which K= 1 in what follows. (»c) where
4— 1

2 t
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P.=
P. (4.10)

The conditions (3.46) and (4.9) enable us to explicitly
eliminate the longitudinal components of the vectors
a™ (this is the advantage of the choice (4. 9)):

(4.11a)

(4.11b)

for all m*0. The transverse components of the vectors
am are independent, and it is only these components
which must be used to construct the physical states:

Ν

(4.12)

where7',, = 2 , . . . ,d- 1. Thus we have eliminated the
"time" oscillators with negative norm, together with one
of the space dimensions.

To calculate the mass spectrum, it is sufficient to
make use of the condition (4.7a):

mNm)\ON),
0

(4.13)

where Nm are the occupation numbers, which are the
eigenvalues of the operator («™a'm)/m, satisfying £ Λ^
= N. Thus we have obtained the equally spaced and high-
ly degenerate spectrum described in Sec. 2. The state
(4.12) is described by a tensor of rank Ν in the "trans-
verse" space. By decomposing this tensor into irre-
ducible components, we obtain the various spins from 0
to N. If only the first oscillator is excited, i. e., if Nt

= Ν and Nm = 0 for m > 1, then the classical motion is as
shown in Fig. 4, where the Λ^-axis is perpendicular to
the plane of rotation. Calculating the spin of this state
by means of Eq. (3.49), we obtain an equation for the
leading trajectory in the form

a'M2, (4.14)

where a' = (2πΑ)~ι, in accordance with the classical ar-
gument given in Sec. 3B.

Since the construction was not relativistically invari-
ant, we must verify that the result is covariant. In oth-
er words, a Lorentz transformation must not take a vec-
tor out of the space of physical states; this condition re-
quires that the operators ,,„ constructed from Eq. (3.49)
satisfy the ordinary commutation relations. It was easy
to verify that this condition was satisfied for the Poisson
brackets in the classical case. In the quantum case,
there appear Schwinger terms, which spoil the algebra.
To see this, we must find the commutator [ ( . , Jm),
which should be equal to zero. However, it can be shown
that

Ifi- fj-]

(4.15)

This calculation makes use of Eq. (4. lib), and a non-

zero result is obtained for the same reason as in the
case of the second term in the commutator (4. 5). Thus
the theory is consistent only if

1, d = 26. (4.16)

The requirement a0 = 1 has a simple interpretation. A
vector particle corresponding to N= ΛΊ = 1 has an invariant
description in terms of a transverse wave function only
if its mass is equal to zero. The condition rf = 26 does
not have such a simple interpretation, it can be formu-
lated as the requirement that the actual number of de-
grees of freedom of the system is 4! = 24. Dirac pointed
out in his book1-81-1 that there may exist systems with con-
straints for which it is not possible to construct a quan-
tum theory. A string is an example of such a system.

Actually, if we are considering an individual string,
we can forego the 26-dimensional space, provided that
we are not concerned with the excitations of the oscilla-
tors associated with "extra" 22 transverse coordinates.
From the formal point of view, the result (4.16) is un-
satisfactory because it is not always possible to trans-
form to the "conical" time (4. 9) (this observation is due
to Patrascioiuc9o:l). To make the change of variables,
we require nondegeneracy of the Jacobian (3.6), which
in this case takes the form

(4.17)

for all u; here rM and/^w) determine the solution ac-
cording to Eq. (3.19). On the other hand, by virtue of
the condition (3.20b), the inequality (4.17) can hold only
if the velocity of the extremity of the string is never in
the "forward" direction, i. e., parallel to P. The class
of such states is not defined in an invariant manner, and
it is not surprising that the generators of the Lorentz
group do not form a closed algebra. Several auth-
ors c90~933 have attempted to find a quantization procedure
which does not involve variables on the cone. However,
the conclusion that the conditions (4.16) are necessary
appears to remain valid.t 9 4 J A simple field-theoretic in-
terpretation of the critical dimensionality of space-time
was proposed by Brink and Nielson. m : These authors
calculated the energy of the zero-point quantum fluctua-
tions and showed that renormalization leads to a rea-
sonable result only if the conditions (4.16) hold.

Nevertheless, even if it were possible to quantize a
free string, we would still require a self-consistent de-
scription of the interaction. It was shown by Mandel-
stamC 3 2 ] that this again leads to the requirement that
d=26.

5. STRINGS WITH SPIN

Since it has not been possible to construct a consistent
quantum theory of a relativistic string, the question
arises as to whether it is possible to modify the theory
in order to make it self-consistent and more realistic.
The most interesting possibility would be to introduce
spin variables in addition to the coordinates. This is
also motivated by the fact that an ordinary string cannot
serve as a model for a particle with half-integral spin.
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The introduction of spin is a particularly obvious step
from the point of view of the parton picture: it is natur-
al to assume that the fundamental particles have spin \
(this idea is due to Aharonov et al.C30]). Dual models
with spin variables have been constructed, B 7 'Μ : ι and Ger-
vais and Sakitat9e] showed that these models are related
to the introduction of fermion fields in two-dimensional
space-time. This work, together with other independent
approaches, [ 9 1 · β 8 ] served as a basis for a new theoretical
trend—the study of symmetry groups with anticommut-
ing parameters, or "supersymmetries" (see the review
by OgievetskU and Mezincescu,C99) which contains an ex-
tensive bibliography).

A quantum theory with anticommutators can be con-
structed by quantizing generalized classical mechanics-
in the case of a Grassman algebra with anticommuting
generators. Such a generalization of mechanics is de-
scribed inc l 0 0 1. A quantum action principle for the anti-
commuting canonical variables was first considered by
Schwinger.tl01J The idea of constructing a Grassman
analog of mechanics was also clearly formulated by
Martin.t l 0 2 ] In the next subsection, we give an account
of the classical theory of a relativistic particle with
spin, as considered in detail in11001. After doing this,
it is perfectly natural to introduce strings with spin.

A. Classical dynamics of a particle with spin

In the non-relativistic theory, we shall describe the
spin by a three-dimensional vector ξ with anticommut-
ing components:

6»ίι = 0; l, 2, 3 (5.1)

(in particular, ξ| = 0). The phase space of a particle
with spin is constructed by supplementing the ordinary
six-dimensional space (q,p) with a three-dimensional
space (ξ). In other words, the dynamical variables,
i.e., functions in phase space, are elements of a Grass-
man algebra G3 with the three generators ξ4. Although
the elements of the Grassman algebra are not functions
in the ordinary sense, it is possible to construct for
them analogs of the concepts of ordinary analysis, such
as differentiation and integration l 4 ) . Suppose that the
total action is an even real element of the algebra G3.
Then it can be written in the form

v\*. (5.2)

where SS is the Hamiltonian function. Any element of G3

can be written as a polynomial in ξ of degree no greater
than 3. Since the Hamiltonian Η is also an even element
of G3 (it commutes with any | f t ) , it depends linearly on
the spin angular-momentum vector

sh ~ — 2 e (5.3)

"'Precise definitions and many results can be found in Bere-
zin'sbook."031

The most general local Hamiltonian has the form

«(P. q.!)=-£ (5.4)

where L = qxp is the orbital angular momentum, V0(q)
and Vt(q) are potential functions, and B(q) is a vector
field. The third term in the Hamiltonian describes the
spin-orbit interaction, while the last term describes
the interaction with the external magnetic field.

The action (5.2) leads to the following expression for
the Poisson brackets:

(5.5)

where 9 and 9 denote the right and left derivatives, re-
spectively, (see the book:i033). In particular,

ft*. (5.6)

The dynamics is determined by the "Heisenberg" equa-
tions

/ = {•». Op. Β (5.7)

for any function/(p,q, ξ). In particular, the equations of
motion which follow from the variational principle for the
action (5.2) have the form

(5.8)

The quantization procedure is to replace the funda-
mental bracket (5.6) by an anticommutator divided by
-iH:

[Ik. (5.9)

Introducing the notation %k = -lH/2ok, we find that the op-
erators tsk satisfy the relations [σ,,, σ,] = 2δ*,, which are
realized for the Pauli matrices. The spin operator (5.3)
then takes the usual form

s ί e ε 1 * · ; fc iM
*λ =—2-e*!m!ISm = '2'«<'k· VD. *-V)

Thus the quantization procedure reproduces the usual
theory of a spin-! particle.

The action for a free relativistic particle can be writ-
ten in the form

τ,

dx, ( 5 . 1 1 )

where z= №)υζ, uli = xu/z, and ξμ is a four-dimensional
vector with anticommuting components. The action is
constructed in such a way that in the rest system it is in-
dependent of ξ0 and agrees with (5.2). The matrix of the
bilinear form in ξ and ξ in (5.11) is degenerate, so that
an equation of motion cannot be written for the longitu-
dinal component of the vector ξ. To completely define
the dynamics, we require a constraint, which can be
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written in an invariant form by introducing a fifth coor-

dinate in spin space:

(U|) - h = 0. (5.12)

Following Dirac , c e u we incorporate the constraint in the

action by means of an undetermined multiplier:

(«ί)-Ε5) λ] } Λ, (5.13)

where λ anticommutes with all the ξ. The canonical

momentum

satisfies the constraint equations

p' - m ' = 0, (ρξ) - mU = 0.

(5.14)

(5.15)

The total action for a free particle in Hamilton's form

can be written

xt

(5.16)

where v and λ are arbitrary functions.

The equations (5.15) are consequences of the symme-

try of the Lagrangian with respect to two groups of

transformations. The first symmetry, "gauge" sym-

metry, is due to the freedom in choosing the parameter

τ (as in the case of a spinless particle). The infinitesi-

mal transformations of the second kind have the form

(5.17)

(/>" = 0, Upy) — m]i|i = 0. (5. 20)

Thus, we have derived the Dirac equation from the clas-
sical action (5.11).

In the case of a massless particle (w = 0), it is natural

to rewrite the action (5.16) in the form

(5.21)#= f [-(pi)--£(ii)+-i-i5L+»p2+y

The constraints then have the form pz=0 and (/>£) = 0, and
ξ5=0, i .e . , the theory is "y5-invariant." We note that
there is no Lagrangian action principle for a massless
particle.

B. The classical theory of strings with spin

To describe a s tr ing with spin, we introduce not only

the generalized momenta y^h, Θ) of points of the str ing

(see Sec. 3C), but also anticommuting spin variables

ξΗ(τ, θ). In other words, at every point of the str ing we

specify a pair of vectors ξ Η (τ, σ) and ξ^(τ, - σ), one of

which describes the spin of a parton and the other the

spin of an antiparton. We postulate canonical Poisson

brackets analogous to (5.6),

{ ξ μ ( θ ι ) > S v ( f l i ) } p - B 1 - θ.). (5.22)

ί μ ΐ

The constraint equations which generalize (3. 37) and

(5.15) can be written in the form

(yl) = o, y* + ±-A$; = o. (5.23)

The first of these equations enables us to eliminate the

longitudinal component of the vector ξ; the second equa-

tion is determined by the closure condition of the Lie

albegra for the constraint equation (see Dirac's bookC81]).

To derive this result, we use (3. 36) and (5.22) to calcu-

late the Poisson brackets for the functionals

where η(τ) is an anticommuting "parameter, " which has

an arbitrary dependence on τ but satisfies η(τί) = η(τ/)

= 0. Following the terminology introduced inC96], we

shall call the transformation (5.17) a "supergauge"

transformation. Here λ can be chosen arbitrarily and

fixes the dependence of ξ5 on τ. Note that the momen-

tum (5.14) is not proportional to the velocity χβ, as in

the ordinary case, but also contains spin terms. This

phenomenon was considered by Schrodinger in the quan-

tum theory (for discussions, see the books by Dirac1 1 0 4 1

(Sec. 69) and Bethe[ l o s ]) and is known as the "zitter-

bewegung" of the electron.

Quantization leads to the relations

ίΐμ, = ~ »*μ,. *, ΙΙμ. UU - 0, (5.18)

which can be represented by the algebra of the Dirac
matrices:

ρ , / Ί ί
ία-}/ -5-?5Ϊμ.

(5.19)

The constraints reduce to the following conditions on the
state:
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Φ ( φ ) = (*ξ)φ(β)«*θ, *"(/) =
- σ ο - σ 0

, (5.24)

where φ(θ) and/(#) are differentiate functions satisfy-
ing φ(- σ0) = φ(σ0) and f{- σ0) =/(σ0). We have

{Φ(φ,),Φ(φ2)}Ρ. Β=

(5.25)

The constraint equations (5.23) are equivalent to the con-
ditions Φ = 0 and F = 0 for any φ and / . The presence of
a closed system of constraints leads to a symmetry of
the system with respect to a group of transformations.
The infinitesimal transformations of this group can be
determined by considering the functionals

f yub (Θ) d6, Ω μ (ω) = f ξ^ω (θ) άθ, (5.26)

{F(f),B

{F(f),Q,

{Φ (Φ),

{Φ (φ),

μ ( « ) } Ρ . Β =

Ωμ(ω)}Ρ.

= .4Ωμ Ι /ω'

Β= — jA

Β = ίΒμ (φο

Μ. S. Marinov

(5.27)

(5.28)
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It follows from (5.28) that φ{φ) generates the supergauge we can go over to the normal variables by taking the
transformations (cf. Eq. (5.17)) Fourier transform16':

(5.29)

where η = εφ (θ) is a function which anticommutes with
ξ B, and ε is an infinitesimal parameter of the super-
group. It is also easy to see that the functional F(f)
generates a transformation of the form

'Μθ)--β0μ(θ), (5.30)

where for small/we have θ = θ-Α/(θ) and β=1-Α/'.
For finite/, the function δ =g(e) is determined by the
equation h(g) = h(e) + l, where ti =[- AfiO)]'1; we then
have &=0)/fiS) = g' (see also Sec. C of the Appendix).

For a string with spin which is symmetric with re-
spect to these transformations, the Hamiltonian action
can be written in the form

(5.31)

This form corresponds to introducing the constraints
(5.23) with the coefficients 0 and -A'1, respectively (as
in (3.38)). The variational principle leads to the equa-
tions of motion

dx 3Θ * &x dv

and the boundary conditions

V» (°θ) = y» ( — σ0), ξ δ ξ 1 σ = 0 ο = ξδξ |ο—On,

(5. 32)

(5. 33)

where δξΒ is the variation of ξμ. The solution for 3>μ(τ,σ)
is again of the form (3.41), while for the spin variable
we have15'

ξμ (τ, θ) = ζ μ (χ + θ), ζ μ (Β) *- ξμ (0, u),

ζ μ (u + 2σ0) = εζμ (u), ε = ± 1 . (5.34)

The last result follows from the boundary condition, and
e = +1 describes a string which behaves as a whole like
a fermion (the Ramond model), while e = - 1 describes
a boson string (the Neveu-Schwarz model). These solu-
tions are invariant with respect to the conformal trans-
formations (3. 5). The constraints (5.23) are also in-
variant if the pair of functions yu(T,±a) = y*ll transforms
like a two-dimensional conformal vector, while the pair
ξμ(τ,±σ) = ξ*μ transforms like a two-dimensional spinor
on the surface (τ, σ) (see also"3), in accordance with
(5.30).

16)The form of the Hamiltonian in (5.31) shows that the solu-
tion of the equations of motion can be regarded as a result
of the transformation (5.30) with /= - τ/A. In this case,

and β = 1.

ξ μ (χ, θ) = ( 2 σ 0 ) - " 2 2 *>μ Μ e""«, (6Γ

μ)· = 6JΓ, (5. 35)

(5. 36)

The solution of the equations of motion has the form

&μ(τ)«»Ρμί«·Γτ. (5.37)

Rewriting the constraints (5.23) in terms of the normal
variables (3.42) and (5.35), we obtain

(5. 38)

(2ni4)-» f + Σ (ο"α"η) - i Σ τ (Vb") = 0, (5. 39)
n^0 r>0

(aAyi№ (Ptf) + 2 (o"6r-") = 0,
n,M>

Using (5.25), we can calculate the Poisson brackets:

{G,, G,}p.B= -2<£r+., {Gr, M

= i ( r - i m ) G r + m , (5.40)

The mass and total angular momentum are also readily
expressed in terms of these variables:

U (5.41)Jl f>= -

-0o

_ ( α η θ — i 2 '
n>0 r>0

5. 42)

(Cf. Eqs. (3.49) and (3. 50).)

C. Quantization

In quantizing the string with spin, we must supplement
the commutators (4.1) with the Fermi commutation rela-
tions for the operators 6*1» (we put K= 1):

[6μ, ΐ^]+= —£μνδ (r + s)- (5. 43)

The operators α and S always commute. As in the case
of a spinless string, we take the normal ordering of the
factors in the sums in the operator Lo. The algebra of
the symmetry operators, Eq. (5.40), is modified in the
relations containing Lo (cf. (4. 5)):

l G , , l m l . = (r—i-m)Gr + m, (5.44)

[Lm, ln\. = (m - n) Lm + n -}- i dm ( m2 —i- (1 - ε)) δ (m + n).

16>In this subsection, r, s = 0, ± 1 , ±2, . . . for e = 1 (a fermion
string) and r, s = ±1/2, ± 3 / 2 , . . . for t= — 1 (a boson string);
m and n are integers and ωΛ=£ιτ/σ0.
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The state vectors are distinguished by the occupation
numbers for the boson and fermion oscillators. In the
fermion case (ε = + 1), there is also a vector operator
6°, which is represented by the matrices Y5yu/J% and
which has the interpretation of the average spin vector
of the string. The lowest state in this case has spin \
and mass 0, and the constraint Go = 0 reduces to the
Dirac equation (Ργ)ψ = 0. As in the spinless case, the
leading trajectory has the form J= ao+ a'Mz. The con-
stant a 0 is related to the constraint equation Lo\ Φ)
= - («o~ ί ) ' *)> m analogy with (4. 7a). In the case of a
fermion string, the theory is self-consistent only if a0

= i , so that μ = 0 (where μ is the mass of the lowest state
on the leading trajectory). This can be seen simply
from the fact that LQ = - &a and Ga\Φ) = 0. In the meson
case, we also have the condition ao=i» a n d t n e lowest
state (the analog of the pion) is a tachyon with μ2 = - \a!.
The next trajectory corresponds to an excitation of a
spin oscillation with the minimum frequency, r = \ (a
spin wave of length 4σ0). The equation of this trajectory
has the form J= a o + | + a'Mz, The lowest state on this
trajectory (the ρ meson) is a massless vector particle.
We note that the model predicts the correct relation a{j>)

- η(r) - A

Since the Lagrangian is an even function of ξ, the the-
ory of a string with spin possesses a symmetry with re-
spect to the inversion ξ - - ξ, which Neveu and
SchwarzC27:l expressed in terms of ^-parity. This sym-
metry manifests itself in the fact that the parity
of the number of spin excitations is conserved. In
other words,_ we have a conservation law for the oper-
ator C = (- 1)-̂ , where F = - lr>0 (brb'r). The transition
ρ — 2π is literally forbidden in this model. The picture
becomes more realistic if we introduce the isospin /; we
then have a conservation law for the operator G- (- l)Ftl,
and the transition ττ— 2p instead of p— 2ir is forbidden.
A more detailed discussion can be found in Mandelstam's
review.c9:l

As in Sec. 4B, states satisfying the constraint equa-
tions can be constructed by means of variables on the
light cone. The supergauge transformation can be used to
impose the additional condition

(5.45)

and bi can be expressed in terms of the transverse com-
ponents in Eq. (5. 38). By performing calculations simi-
lar to those which led to (4.15), it can be seen that the
theory is self-consistent only if

«ο = Τ · 10. (5.46)

The interpretation of this result is that for each orbital
degree of freedom there are two spin degrees of free-
dom, and the required number of transverse oscillations
is given by the rule 8 + 2 χ 8 = 24.

6. INTERACTIONS

We have so far been considering free strings. In go-
ing over to a theory describing the motion of a string

under the action of forces, we must bear in mind that,
if quantization is to be possible, it is essential to have
a theory which is invariant with respect to changes of
the variables (τ, σ) (Eq. (3. 3) and (3. 5)). This sym-
metry must not be violated when an interaction is intro-
duced, otherwise we are again faced with the problem of
"ghosts. " A consequence of this restriction is that only
the extreme points are "valent."

A. A string with an external field

The effect of an external electromagnetic field with
intensity Fuvix) on a string can be described in a con-
formally invariant manner by adding the following term
to the action (see the work of Ademollo et al. K 9 ] ) :

— eF^ (χ)χμζ'ν = — e (Ew + w [ ν Χ Η ] )
(6.1)

where e is the charge, ν is the velocity, and w is the
tangent vector (3. 7). Equation (6.1) describes the ener-
gy of an electric dipole in an external field (E,H) and is
consistent with the idea of a string as a parton-antipar-
ton chain. In this picture, however, the material of the
string is neutral on the average. In fact, by substituting
Fu"=dA"/dxli - dAu/dxv and integrating with respect to
σ, we can transform ife..m to the form

e Ι Λ \(χΑ) !„«,„- (χΑ) | σ » 0 ] . (6.2)

This action corresponds to a neutral string with charges
±e at the extremities. Additional arbitrary charges can
also be placed at either extremity. We note that this pic-
ture predicts a gyromagnetic ratio equal to 1 for reso-
nances on the leading trajectory. The magnetic moment
due to a charge e0 at the extremity of a rotating string
(Fig. 4) is given by

(6.3)

where Lo is the proper length of the string.

This simple model is clearly in conflict with the known
electromagnetic structure of hadrons. Owing to the need
to preserve conformal symmetry, no reasonable pro-
cedure has yet been proposed for introducing the elec-
tromagnetic (or weak) current in "string matter"; this
is one of the generally recognized defects of dual mod-
els, (in this connection, see the papers of Nambut75]

and Willemsen.t l 0 6 ])

B. The interaction of strings

As we pointed out in Sec. 3A, the physical picture of in-
teractions between strings is very simple: strings can
divide or recombine at their extremities. However, this
intuitive idea leads to non-trivial mathematics. The
complexity of the theoretical description of interactions
is due to the fact that the free motion has a simple form
in the normal coordinates, while the interaction is lo-
calized in #-space. Certain additional complications re-
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FIG. 13. The surface in Minkowski space
representing the scattering of two strings.

' t
FIG. 15. Mapping of the surface of
Fig. 13 into the complex plane.

«£ */

suit from the presence of conditions due to conformal
invariance.

The mathematical model for the rupture of a string is
formulated as follows in the classical theory. Suppose
that the function/(σ) is specified on the interval [A, C] by
a Fourier series with coefficients a1" and on the interval
[C, B] by a Fourier series with coefficients bm. Then the
coefficients c" of the Fourier series for the interval
[A, B] can be expressed linearly in terms of {a} and {δ}.
To apply this model to the string (see, e. g., the paper
of Rebbi11"71), we must match the coordinate systems
(τ, σ) on three interacting strings. It is most convenient
to use the "conical" gauge (4.9). The parameter σ0 is
then not proportional to the mass, as in the "laboratory"
gauge (3.23), but is proportional to the "conical momen-
tum" Pt, and the law of conservation of momentum leads
to the conservation of lengths along the σ-axis: for the
decay c - a+ b, we obtain σ(

0

ο) = σ£ο) + σ£'. In addition, the
constraints (4.11), which eliminate the longitudinal and
"time" oscillations, are automatically taken into ac-
count. However, this approach again entails the prob-
lem of relativistic invariance. Mandelstamtloe:i showed
that the model is self- consistent in the quantum case only
under the condition (4.16).

The general principle for constructing interaction am-
plitudes can be formulated in a natural way in the lan-
guage of Feynman's continuum integral. The S-matrix
is represented as an integral of expiiff/K) over all pos-
sible two-dimensional surfaces in Minkowski space,
where <f is the classical action (3.2). The topology of
the surfaces determines the initial, intermediate, and
final states. For example, for the pole amplitude for
(inelastic) scattering of two resonances (see Fig. 3), the
surfaces have the form shown in Fig. 13. The integra-
tion is carried out over the coordinates of all the points
of the surface and over the instants of "time" at which
the recombination (τχ) and rupture (τ2) occur. To illus-
trate this formalism, let us consider the usual theory of
scalar fields φ(χ) and Φ{χ) with masses m and Μ and an
interaction Lagrangian \ψ2φ. The simplest pole ampli-
tude for the scattering of φ particles corresponds to
classical trajectories of the form shown in Fig. 14. The
integral contains only the action for free particles, and
it is easy to evaluate the integrals with respect to *μ(τ).
For τ, — - « and Tf — + °°, the result depends only on τ2

- Tj. The integration with respect to T1 and τ2 leads to
a propagator (P 2 - Ai2)*1 (for details on this approach,
see"31). From this point of view, the Feynman dia-
grams determine the topology of the world-lines in x-
space which contribute to the continuum integral for the
scattering amplitude. The action for a string, as in the
case of a particle, has the form of a quadratic functional
(see (3.16) or (3.32)), and this enables us to calculate
the continuum integral. Mandelstam"21 carried out this
calculation by transforming to the variable τ = ir (the
"Wick rotation") and reducing the problem to an integra-
tion over functions of the complex variable ρ = τ + ίσ (an
analog of the conformal variable τ+σ) in a strip with
cuts (Fig. 15). Applying the Christoffel-Schwarz trans-
formation, this region is mapped into the unit circle and
the calculation of the continuum integral is reduced to a
Neumann problem (see Sec. Β of the Appendix). For the
N-particle amplitude, the integration with respect to
rlf..., τκ.ζ (the instants of rupture and recombination)
leads to the Koba-Nielson representation (see Sec. A of
the Appendix). Owing to the presence of constraints,
one must either apply Faddeev's method,ce" preserving
the explicit invariance (as was done by Gervais and
Sakita"53), or integrate only with respect to the trans-
verse coordinates. The second procedure is simpler
and has been successfully carried through,t38] but the in-
variance of the result again requires the condition (4.16).

As in ordinary field theory, functional integration is
not the only method of defining the S-matrix. The inter-
action can be described by considering the evolution of a
quantum string under the action of the classical field
produced by another string. This approach was devel-
oped by Ademollo et al.C29] (see also the review by Reb-
bice3). Its drawback is that it lacks explicit duality.
Several authors1-109"111-1 have constructed non-local field
theories for quantized strings which also lead to dual
amplitudes. Independently of the result, the procedure
for constructing the amplitudes leads to simple rules
analogous to the Feynman rules. Incidentally, it should
be pointed out that, in contrast with the case of Schwing-
er-Feynman electrodynamics, these rules were already
known before string theory was developed (see, e. g.,
the reviews"1"). Suppose that we are interested in the
no-loop ("Born") N-particle amplitude. Let us repre-
sent this amplitude by a Harari-Rosner quark diagram
(such as that shown in Fig. 2) and construct (in an ar-
bitrary manner) a "tree" diagram, as in Fig. 16. The
vertices at which particles are emitted and the internal
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FIG. 14. World-lines of scattering point
particles in the pole approximation.
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resonance lines correspond to operators which are ex-
pressed in terms of the normal variables a":

0 = - i o e ' ( (6.4)

where />„ is the momentum of the emitted particle, a'
= (2itA)'1, and g is the coupling constant. The index u is
used for a particle which is emitted "upward" in the dia-
gram of Fig. 16, the index d is used for a particle which
is emitted "downward," x^ = xj ( σ = 0 ) Ι *£ 4 > =* μ Ι ,„«„>, the
operator £„ has the form (3.48), and the operator £ 0 is
defined in (4.4a). Clearly, D has poles at PZ = M\, where
Mk are the resonance masses (2. 5). The amplitude cor-
responding to Fig. 16 has the form

• Vx (Pi, ..., pn) = (0, Pl | fa (p2) DVU (Pi) DFd (Pi) . . . DVU ( p . v . , ) 10, p x ) .

This matrix element can be calculated by the method of
"coherent states." To construct more complicated dia-
grams, we also introduce an operator for resonance
emission (the "triple-reggeon vertex") and a "twisting"
operator f such that f£tT= fd and T2= 1. Each internal
line can be "twisted, " in which case it is represented by
the operator DT.

Interactions of strings with spin have also been con-
sidered; this was done by Mandelstamt33:l using the con-
tinuum integral, and by Kaku: u 2 1 using non-local quan-
tum field theory. Mandelstam's method appears to be
more suitable for the problem. In particular, it was
Mandelstam who first calculated dual amplitudes for
fermion-antifermion scattering in Ramond's model.
This problem has not been fully solved using the opera-
tor approach (see t l l 3 ' l t 4 J ) .

When they interact, open strings can combine into
closed strings, which are represented by tubular sur-
faces in Minkowski space (Fig. 17) and have the inter-
pretation of resonances contained on the Pomeranchuk
trajectory and its daughter trajectories ("pomerons").
The theory of resonance-pomeron interactions has been
considered ί η

[ 9 ' 2 9 · η 5 : ι . The dual theory of interacting
pomerons in lowest order (the no-loop approximation;
Fig. 18) is the Shapiro-Virasoro model.

7. CONCLUSIONS

The theory of interacting strings which has been de-
veloped in recent years is an important stage in theo-
retical physics. This is the first model of extended rela-
tivistic objects which has a firm basis in the form of a
complete classical theory. Intuitive ideas are very at-
tractive, but the physical world is too complex; in at-
tempting to describe it, we are forced to digress from
the simple "mechanical" picture. The first step, which
is not yet totally divorced from geometry, is the intro-

FIG. 17. The surface representing
the scattering of two resonances with
exchange of the Pomeranchuk pole.

FIG. 18. Pomeron-pomeron scattering
—the Virasoro amplitude.

duction of spin. In the same way, it is possible to de-
scribe an internal symmetry, for example by introducing
an anticommuting field with the properties of an isovec-
tor on the string. To construct the most interesting ex-
ample of a dual theory, the Bardakci-Halpern model,C66]

we must introduce a Fermi spinor field with the proper-
ties of the quark representation SU(N). Whether it is
worth retaining the name "string" after introducing such
complications is a question of terminology.

New "string-like" objects can be devised by abandoning
the space-time picture. In particular, a model which
permits a consistent quantization in any number of di-
mensions has been f o u n d . l l m However, the value of this
model is greatly lessened by an arbitrariness in the en-
ergy-momentum operator. But the main drawback of
this theory is that, in the absence of a clear geometric
picture, there is no means of constructing a casual in-
teraction.

From a formal point of view, a string is an example
of a system with an infinite number of internal degrees
of freedom, for which the generators of the Poincare
group (energy, momentum, and angular momentum) are

.represented as integrals over the internal variables
(Eqs. (3.14), (3.15), and (3. 39)). In the classical the-
ory, these observable quantities form a Lie algebra
which is correct from a geometric point of view. Thus
a string is a non-trivial example of a realization of the
general program of Dirac c i l 7 ] for constructing a rela-
tivistic system of dynamics. Nobody has yet succeeded
in finding a satisfactory variant of the model. It will
probaby be necessary to consider a more complicated
geometry, different internal spaces, and new types of
fields.

We conclude by recalling the necessary elements of
particle physics which are absent in the contemporary
theory of strings: 1) a realistic spectrum of states with
no "tachyons" and with the correct multiplet structure;
2) a consistent quantization procedure in a four-dimen-
sional space; 3) a convergent "perturbation theory" in
the number of loops and renormalization procedure; 4)
a model for the baryons as states constructed from trip-
lets of quarks (and a set of pairs?); 5) electromagnetic
and weak currents.

The author is deeply grateful to K. G. Boreskov,
A. B. Kaidalov, V. I. Ogievetskii, and L. B. Okun' for
their interest in this paper and for constructive criticism.

APPENDICES

A. INTEGRAL REPRESENTATIONS OF DUAL
AMPLITUDES

1. The Veneziano amplitude

The B-function in the expression (2.1) for the Vene-
ziano amplitude can be represented in the form
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" - 1 dx. (A.1)

This integral is defined for a(s) < 0 and a(t) < 0. It can
be analytically continued into the physical region by
rewriting it in the form of a contour integral in the com-
plex plane (see, e. g., the book"1"). Expanding the sec-
ond factor under the integral sign in a series in x, we
obtain

(A. 2)

where Gn{a)= Γ(α + «)/Γ(α) is the Pochhammer polynomi-
al. t l i e ] The asymptotic form for I a(s)\ - « and args*0
can be found by making the substitution x=e~". Putting
a(s)= ao+a's< 0 and I si—0 0, we obtain

7(1, f
0

(A. 3)

Thus V(s, t) has only pole singularities (with polynomial
residues) and a "Regge" asymptotic form, i. e., it pos-
sesses the property of "duality."

The model can be generalized by introducing a "weight"
function pbc) with no singularities for O s x i l under the
integral sign. If this function is represented in the form
of a series

2
m, n=0

(A. 4)

where Pm,n(s, t) is a polynomial in the variables s and t
of degrees m and n, respectively, then the amplitude
takes the form

This does not alter the character of the spectrum or the
asymptotic behavior. This limit as α'-O (Eq. (2.7))
can be evaluated directly from (A. 1) by dividing the
range of integration into the two parts [0, | ] and [|, 1] and
making an expansion in the parameter a'.

2. The Koba-Nielsen representation

The integrand in (A. 1) has power singularities for
x— 1, °o, and 0, which give rise to poles in the ampli-
tude in the variables t, u, and s, respectively. Let us
make the change of variable

It— (A. 6)

where y3<y1<>'2 are some fixed points on the y-axis.
The variable χ is equal to the cross- ratio of the four
points (yi,3>2,:y3,3>) and is therefore invariant with re-
spect to projective (bilinear) transformations11' of the y-

m The relation between the special functions and the group of
projective transformations of the line is discussed in Chap.
ΥΠ of Vilenkin's book."193

axis. We shall show that the substitution (A. 6) is con-
venient for the generalization to multi-particle ampli-
tudes, particularly in establishing the property of cross-
ing symmetry. Writing y4 = y and β= α0- 2(αο+ α'μ8) and
making use of the relations

l - i ) (K-

we obtain

v=c j ^ u ) Π («'π-*»)-20'"""1'"1. (Α. 7)

where the element of integration has the form

= (*2 — — yj)(ii3 — ίΐ)ι Ϊ0 = Ϊ4.

and the range of integration is y3 < y4 < yt. The integral
(A. 7) is invariant with respect to cyclic permutation of
the indices 1, 2, 3, 4. The integral representation (A.7)
can be generalized in a natural way to an arbitrary num-
ber of particles N. The element d^.f,{y) simplifies con-
siderably if we adopt a "self-consistency" condition: the
external particles lie on the same trajectory a(pz) as
the resonances. In this case, α(μ2) = 0 and β= αο. An
equivalent but even more symmetric representation is
obtained by transforming the line - °° < y < °o into the unit
circle ζ = eie with - u < θ «it and applying the complex bi-
linear transformation

(A. 8)

(Fig. 19). We note that if β= α0, the element of integra-
tion is invariant with respect to bilinear transforma-
tions. Thus the amplitude for the Jv-particle depicted in
Fig. 16 has the representation

τηφη
Ν Ν

βμΐ»(«)= Π I'n-'n-il00"1 Π
η 1 4

(Α. 9)

where C=\(zl- za)(z2-ζ3){ζ%- zjI and the integration is

over the region θ2
« θΝ « θ1# The amplitude

constructed in this way has the property of "planar dual-
ity, " as suggested by the region of integration and the
expression for the element of integration. We note that
a bilinear transformation which leaves the unit circle
invariant can be used to map the points (z1,zz,zz) into
any other triplet of points without changing the amplitude
(it is important here that £ ^J,lpn = 0). This implies that

©
Ν

Ο FIG. 19. The Koba-Nielsen variables.
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the function VN is symmetric with respect to all cyclic
permutations of its arguments.1 8 )

The integral (A. 9) becomes particularly symmetric
when aa= 1 (the Virasoro condition1561). In this case, the
element of integration is invariant with respect to all
conformal transformations of the z- plane and has the
representation

Ν

II dan. (A. 10)

where zn = Ζ(ση) are points belonging to a closed curve Ζ
in the 2-plane which can be obtained by applying a cer-
tain conformal transformation to the unit circle, and σ
is a variable which is equal to the arc length on the curve
Z. In this case, the element of integration is also inde-
pendent of the order of the indices, so that the total N-
particle amplitude is given by the integral (A. 9) with - π
«s ΘΠ « π for any η.

Analyses of certain group properties of the function
V№ can be found in1 1 2 0"1 2 2 3 .

3. The Shapiro-Virasoro amplitures

In the preceding subsection, we gave an integral rep-
resentation of an amplitude which has the property of "pla-
nar" duality. Shapirot 2 e : found an analogous representa-
tion for a fully dual amplitude. In the case when TV = 4
and a(s)+ a(t)+ a(u)=- 2, his result has the form

W(t, t, u) = e J JJ \yn-ymr2a'ir"l'"n>\(y2-yi)(!/3-y2)(u3-!/i)t2^!,i,
n>m

(A. 11)
where c = g£/n, the points yn are in the complex plane,
and the integration is over all y4. We shall evaluate this
integral and show that it leads to Eq. (2.10) when ao= 2.
If ΣΑι = 0> t n e integral (A. 11) is invariant with respect to
bilinear transformations and is independent of the choice
of the points yu y2, and y3. Lety 1 = l, y2-°°, andji3 = 0;
then

W(s, t, u) = e (A. 12)

The integral is symmetric with respect to the substitu-
tions y ( l - y) and y - y'1, so that W(s, t, u) is a sym-
metric function of its arguments. To evaluate the inte-
gral, we make use of the identity

»-V= lV-l.-««, (A. 13)

complex y-plane onto a sphere by means of a stereo-
graphic projection (analogous to (A. 8)), we can trans-
form (A. 11) to an explicitly dual form.

By considering an integral over an «-dimensional
sphere, Brower and Goddardt l 2 3 ] found dual amplitudes
with ao = n, of which (A. 9) and (A. 11) are particular
cases with η = 1 and 2. By analytically continuing this
integral in n, Kudryavtsev11243 found an integral repre-
sentation for any a0.

B. THE CONTINUUM INTEGRAL IN THE DUAL
THEORY

The interaction amplitudes in dual models can be rep-
resented as continuum integrals. This representation
has a universal character, since it provides a unified
form which can be used to determine the contributions
of diagrams with any number of loops in various models,
including fermion models. This approach has been ap-
plied by Sakita et ah " .i3b,34.35J

Let us first calculate the Gaussian continuum integral
(Appendix C in Feynman's paper1-125-1):

I\S\ =
Z>[/]exp[~-~ (/,/ΙΛ + ί (£,/

(B.I)

where / and g are vectors in some Hubert space Si, A is
a linear Hermitian operator in Si, and L{f] is the ele-
ment of integration. In our case, Si is the set of square-
integrable functions and A is a differential operator.
Evaluating l[g] by taking the limit for multiple integrals,
we obtain

I Is] = exp [ — i (y, Bg) J , Β = A"'. (B.2)

Let / b e functions in a region D of the plane (ξ, η)
bounded by a curve Γ, and let g be a function on Γ such
that

= f lAfdidr,- j f~dy, (g, /) = j g (v) / (v) df, (B.3)

where A = Bz/d£2 + dz/dif, d/dn is the normal derivative,
and y is the arc length on the curve Γ. The kernel of
the operator which is inverse to A satisfies the equa-
tions (£! = ξ, £z = η)

Using this representation for the powers of the variables
ao= \y 12 and ax = 11 - y 12, we can transform the integral
(A. 12) to a Gaussian form in y. The remaining double
integral with respect to (tB, f,) can be evaluated by mak-
ing the substitutions tQ = tz'1 and tl = t(l - z)'1.

The generalization of the integral (A. 11) to the case
of an arbitrary number of particles Ν is just as obvious
as the Koba-Nielsen representation. By mapping the

18)When all the variables (pnpm) are equal, the integral (A.9)
reduces to a product of Γ-functions (see c m ' 1 2 9 ] ) .

> (ζ, ζ'). -θ(ν-ϊ'). (Β. 4)

Thus Β(ζ, ζ') is the Green's function of the Neumann
problem for Laplace's equation in the region D (see
Chaps. 6 and 7 of the book11261).

If D is the unit circle, then

(B.5)

where z = ξ + ir\ is the complex coordinate in the plane.
On the circle Iz\ = 1 we have l/z=z*, so that

203 Sov. Phys. Usp., Vol. 20, No. 3, March 1977 M. S. Marinov 203



(g, Bg)

Λ

(B.6)
where the functions/(j) and g(t) are related by the equa-
tion

Taking the functions / and g to be four-dimensional
vectors and putting

ΊΜ1-Μ.
/«>•"<•

(C.3)

(B.7)

we obtain the representation (B. 1) for the integrand in
(A. 9). (We must also eliminate self-energy terms
~ρΙ[6(γ-θη)]ζ here; see" 3 for further details.)

The quantum theory of the interaction of strings leads
naturally to a continuum integral (see Sec. 6) in which
fli=xli is the coordinate of a point of the string. The
strip with cuts (see Fig. 15) is transformed into a half-
plane by means of the substitution

y—y»), 2λ"~ο· (Β. 8)

where \n = Pln) and the lengths of the strings are ~ Ιλ,Ι.
The half-plane Rey * 0 is then transformed into the unit
circle by means of the mapping (A. 8). Multi-loop dia-
grams are described by the representation (B. 1)-(B. 3)
with multiply connected regions D. To introduce fer-
mion degrees of freedom, we must add a two-dimension-
al fermion field to the "Lagrangian" (B. 3) (see, e. g.,
(C. 9)). The integral (B. 1) can also arise from the cal-
culation of the "net" diagrams shown in Fig. 1
(fromtl3bl l9]). To obtain this integral, the propagators
for pz«mz must be represented in the form (pz- m2)"1

« - m\\ + (/>2/m2)] = - m2 exp(/>8/m2). The limit of an in-
finite number of contours leads to the Gaussian continu-
um integral.

C. THE TWO-DIMENSIONAL CON FORMAL GROUP
AND THE SUPERGROUP

The conformal group (CG) is the set of all continuous
transformations of space for which the interval between
two infinites imally spaced points is multiplied by a posi-
tive function (for a discussion, see, e. g., Rosen's pa-
per11213). These transformations preserve the angles
formed by pairs of lines having a common point. For a
d-dimensional space, the elements of the CG depend on
(d+ l){d+ 2)/2 parameters. The CG for d = 2 is infinite-
dimensional and is isomorphic to the direct product
ΓχΓ, where Γ is the group of all continuous transforma-
tions of a single variable.

Let us first consider the structure of the group Γ.
Suppose that £ is a coordinate on the line with - °° < ζ
<oo and φ(ζ) is an infinitely differentiate function. The
change of variable

= f (0. (C.I)

where git) is a smooth monotonic function, can be rep-
resented in the operator form

<K0 -» ?(D = f (5=f Φ (0. f - βχρ [ ΛΟ - i ] (C.2)

The Laurent expansion of the function /(£) gives the sys-
tem of generators of the group Γ:

« 0 = 2 «kC*. f = « p ( - 2 "m^tm),

£>»= - ζ " 1 * 1 d/άζ, [£m, £„]_=.(m-n) £.„,*„.
(C.4)

Thus the l i e algebra of the group Γ is isomorphic to the
Virasoro algebra (cf. (3.47b)). The operators Ltl, Lo,
and £_! form a closed subalgebra which is isomorphic to
the l i e algebra of the group St<l, 1)~SL(2,«) (for the
definitions, see Vilenkin's book"193):

£„]_ (C.5)

This triplet of operators generates the group of projec-
tive (bilinear) transformations of the line. In this case,
the function/fe) is a quadratic trinomial, and the sub-
stitution (C. 1) can be represented in the form

[a ( (C.6)

Consider now the CG for a pseudo-Euclidean plane
with coordinates (τ, σ). Introducing the variables ζ±

= τ±σ, the element of length in the plane can be repre-
sented in the form dsz= di2 - da2 = άζάζ.. Independent
substitutions of the form (C.I) for the variables £* lead
to conformal transformations of the plane. For these
transformations, the neighborhood of each point of the
plane is stretched by a scale factor μ and undergoes a
hyperbolic rotation through an angle ω:

μ=νΛίΰΓ7 a>=lu.if, (C.7)

where &' = d\jdt±. Following Gervais and Sakita, " 3 we
shall specify an irreducible conformal field by a pair of
indices «- and;, and we write the transformation law in
the form

(C. 8)

A pair of fields with κ = - \ and; =± \ is called a con-
formal spinor, and a pair of fields with κ = - 1 and ; = ± 1
is called a conformal vector. In particular, 8±i»0l0 is a
conformal vector (here 8*Ξ8/8£4).

The two-dimensional field theory with the Lagrangian

•1. ( C . 9 )

where φ is a scalar field and ψ4 is an anticommuting
conformal spinor, is invariant with respect to the CG.
This theory also possesses an additional symmetry.
Let Tjj = η±(ξ±) be an anticommuting field with κ = + | and
j =τ \ (the conjugate conformal spinor; ψ,η+ + ψ.η. is an
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invariant of the CG). The Lagrangian (C. 9) remains
unchanged under the transformations

Si"^ = β ± φ η ± , ?><p = ' Wvi+ + Ψ-η4· ( C . 1 0 )

This is the simplest example of a supersymmetry (for
further details, see the review1·99·1). Conformally invari-
ant two-dimensional theories were considered by Ita-
bashi.C13O]

The conformal transformations which leave a line in
the plane fixed form a subgroup TCTx Γ (for example,
for the line σ = 0 we have gt(t) = g-(£))' The requirement
that a pair of parallel lines is fixed leads to a contrac-
tion onto a subgroup for whose elements the function
g(l) is periodic. A relativistic string with spin is an
example of a system with the Lagrangian (C.9)but some-
what complicated by the presence of an additional vector
index, which is invariant with respect to transformations
which leave the lines σ = 0 and σ = σ0 fixed.

D. COMMENTS ON THE BIBLIOGRAPHY

Within the volume of the present paper, we have not
been able to touch upon a number of new lines of devel-
opment of the basic theme. Moreover, it is not clear
at the present time which of the theoretical results that
have been obtained will be important for an understand-
ing of particle physics and which are merely formal ex-
ercises. In order to assist the reader who proposes to
work actively in this field to find the papers on the sub-
ject in which he is interested, we have appended a sup-
plementary list of references to this review. This list
also contains some interesting papers on the basic theme
of the review which were not cited in the main text. As
a guide to both lists of references, we give here a sub-
ject index to the literature:

1) Reviews· u-1 .206,239.267,276,293,298:

2) The classical and quantum theory of relativistic
S t r i n g s • C 8 ~ 1 0 ' l '-24, 73-80,89-95,201,208, 227,228,279,280,283,286]

3) The closed string and the Virasoro-Shapiro model:
[25,26,29,31,65,68,115,249,252,253,258,271,282,295]

4) The string with spin and supersymmetry:t27·28·33·
68-71, 96-100,112,207.221,226,253,256,258,259,273,283,295,296,298]

5) Internal s y m m e t r i e s : £6,86.67,204,205,207,218.231,256,268,273,
274]

6) Specific models of baryons and mesons: t"·»·^-*».
220,222,232, 235.237, 244, 246-248,251,254, 264,265,279]

7) Interactions of strings. Strings in external fields:
19,29,32,33,35, 75,94,106-115,201,209,213,217, 243,245, 249,252,258,263,265,

270,275,278,284,285,295]

8) Partons, quarks, and Feynman "net" diagrams:
[13-19,30,213.250,266,268,273,297]

9) Functional integration in dual models:C 7·9'3 2·3 3"3 5·
240,262,263,266,285]

10) Operator algebra: [5.β·25.27,2β.54,5β,β9-7ΐ,ιΐ3,ιΐ4,2ΐο,2ΐ4.
221,223,242,257,287]

11) Miscellaneous variants of dual models: m·"-*3.».
123,124,203,206,210,236,238,240,257.264,270,274.275,297].

12) Integral representations of dual amplitudes: Ee·51·
52,62-65,120-124,128,129,236,261,262]

13) Higher orders ("loop diagrams"):C 4·5·5 7-5 9-2 0 4·2 0 9·
269, 277]

14) Spontaneous symmetry breaking: ι«-4β.202.2θ4,250.27β]#

15) Modifications of string theory: distributed mass,
quarks at the extremit ies, e t c . : [116,208.212.215,218,219,225,
229-232,244,346,251,255,259,265,268,280,284,288,291,292]

16) Field models of string production: gauge fields,
vortices, monopoles, e t c . : [37-42.211,216-219,224,233,234.239,
241,248,255,260,268.281,262,286,289-292,294]

17) The limit a' — 0 and the relation to local theories:
[59-61,271,272.294]
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