M. A, Shifman, Charmonium and asymptotic free-
dom. We are witnessing the development of a new had-
ron theory. Dubbed quantum chromodynamics, this is
a renormalizable theory of the Yang-Mills type, in which
the interaction is realized by an octet of massless vec-
tor gluons connected with the color degrees of freedom
of the quarks. A unique property of guantum chromo-
dynamics is a logarithmic decrease of the coupling con-
stant o, over small distances™

)
~Tn (ro/r) (1)

g (r)
The unlimited growth of the constant at large distances
gives grounds for hoping that all the objects with non-
zero color charge (quarks, diquarks, gluons, etc.) have
infinite mass, so that the physical sector of the theory
covers only colorless states. It must be emphasized
that despite the noticeable progress, color confinement
has not yet been proved, and no quantitative approach to
the problem of large distances has been developed in
chromodynamics (as already mentioned in Polyakov’s
paper).

Whereas the theoreticians’ attack on this flank of the
theory is still tactical, strong positions have been won
on another flank, in the region of short distances. The
logarithmic exclusion of the interaction (1), dubbed
asymptotic freedom, has explained qualitatively a large
number of phenomena connected with deep-inelastic
processes.®! A large number of quantitative corollaries
was obtained after the discovery of the ¥ family of par-
ticles. Being made up of heavy charmed quarks c¢,
these particles (now usually designated by the term
“charmonium”) annihilate into ordinary hadrons over
distances on the order of the Compton wavelength of the
c-quark, At these distances, the effective coupling con-
stant is already small, 3!

ag(mg = 0.2, (2)

and the well-developed formalism of perturbation theory
can already be used. For a long time, the rich possibil-
ities connected with this circumstance could not be re-
alized fully, since it was impossible to “get rid” of the
effects of the relatively large distances inevitably en-
countered in charmonium, since the radius of the latter
is quite large ~1~0.5 GeV. A solution of the problem
was proposed int*~%  where a new dispersion approach
to charmonium was developed. Using the dispersion
method, it is possible to calculate, solely from “first”
(asymptotic freedom, unitarity, and analyticity), the

o+ c o
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leptonic widths of all the charmonium levels without ex-
ception. In conjunction with the Appelquist-Politzer
prescription, *! this predicts also the hadronic widths.,
None of the results contradict the presently available ex-
perimental data,

We shall illustrate the method using the calculation of
the -~ e*e” decay width as an example. We begin with
an examination of the production of a pair of charmed
particles in electron-positron annihilation at s~0,
where Vs is the total e*e” energy in the c.m.s. Itis
obvious that such a process cannot be real, in view of
the energy-momentum conservation, but can only be
virtual. According to the uncertainty principle,
charmed particles are produced within a time 7~ 1/2m,
and diverge to a distance S ¢7. We find ourselves thus
in the region of asymptotic freedom. Bearing estimate
(2) on mind, we can state that the contribution of the
“charming” to the amplitude of the elastic e e~ scatter-
ing at s is given, at any rate accurate to 20%, by the
bare quark loop (Fig. 1), while inclusion of one gluon
(Fig. 2) improves the accuracy to ~4%. Diagrams 1 and
2 can be easily calculated.

On the other hand, the same amplitude can be ex-
pressed, by virtue of unitarity and analyticity, in terms
of the dispersion integral of the cross section for the
production of real mesons, both with latent charm of y,
¢', and of the pairs DD, FF, etc. We get thus a set of
relations of the type

ds An
+em —> charm) = 4n?0%2 — 2" __
\ o O (ete charm) = 45°Q20 Gt

(n=1,2,...), (3)

where @,=2/3 is the charge of the c-quark, a=1/137,
A, are dimensionless constants known in the forms of
series in o (m,), and the mass m, of the c-quark is the
only fit parameter of the theory. With increasing n, the
accuracy of the calculation of the constants A, by per-
turbation theory becomes worse, inasmuch as at suffi-
ciently large = the relations (3) should be violated. Di-
rect calculations, however, show that, say at n=3 or

4, the relation (3) are still accurate within several per
cent, but on the other hand the contribution of the region
s>4mfJ is already small, less than several per cent, At
these values of n, the left-hand side of (3) is saturated

mainly by the contribution of the ¥ meson. Eliminating
m,, we find!"!
g — e*e‘):aT:-—j:—“;—?j— my=25 keV . (4)

Let us recall that the experimental width of the
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-¢*e” decay is 5+ 0.5 keV. It is easy also to determine
the mass of the c-quark from (3).

Having obtained such splendid agreement in the e*e”
channel and having determined m,_, it is natural to pro-
ceed to the next step—the calculation of the widths of
charmonium in other channels. Analysis of the ampli-
tude of scattering of light by light yielded the probabili-
ties of the decays!®!

Xo —> 2y,

X2 > 27y,

ne = 2y, mp > 2y (5)

The contributions of the other charmonium levels (1S,
1Dz) could be separated by introducing auxiliary external
currents with suitable quantum numbers. ®? For ex-
ample, to find the 1D.‘, widths it is necessary to consider
the polarization of the vacuum by the current

P ©

where k=(p, - p,)/2 and g =p, +p, in the annihilation chan-
nel. Thus method turned out to be useful also in another
respect. The point is that after going through several of
the simplest variants of external currents and calculat-
ing the corresponding polarization operators at s~0, we
found again the probabilities of the decays (5). The re-
sults obtained in this manner are in splendid agreement
with the preceding estimates. Bearing in mind that the
two calculation methods are utterly independent, we can
state that the dispersion approach to charmonium is in-
ternally self-consistent.

In Refs. 4-6 are given also the charmonium hadronic
widths obtained from the leptonic widths by the recal-
culation procedure of Appelquist and Politzer.

We see that charmonium is a splendid theoretical lab-
oratory that allows us to investigate quantum chromo-
dynamics even now, without awaiting the final solution
of the large-distance problem. The “neat” predictions
that follow from the dispersion approach are in good
agreement with experiment. Moreover, they agree also
qualitatively with the results of potential models in the
case when the potential between the ¢ and ¢ quarks en-
sures confinement, and are in strong disagreement with

1032 Sov. Phys. Usp. 20(12), Dec. 1977

the results for potentials that do not increase with dis-
tance. In this sense it can be stated that asymptotic
freedom at short distances plus the dispersion relations
require confinement of the quarks at large distances.

Many applications have not been touched upon in this
paper for lack of time. We list only the most important
ones. Restrictions on the constants of pure leptonic
decays of the charmed mesons D, F, D* and F* were
obtained in'*), where it was shown that an analysis of
these restrictions and their comparison with experimen-
tal data, when obtained, can cast light on the mechanism
of spontaneous breaking of chiral symmetry. A sum
rule is derived in'® for the cross section of the photo-
production of charmed particles. It is predicted that
photoproduction of pairs of charmed mesons, not yet
observed, should be more intense by approximately one '
order of magnitude than the photoproduction of § mesons.
In' is considered the production of charmed particles
in beams of electrons, muons, and neutrinos at moder-
ate values of @* corresponding to the existing experi-
mental capabilities.
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