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At ν = vc the "critical strip" either contains a self-inter-
section point (case (a), a type-X point), or degenerates
into a point (case b), O-type points). The critical
points (points of type X and O) are located near the lines
of the parabolic points and if we neglect the speed of
sound (s/v — 0), there they are located on the line it-
self. The change of the topology of the strip produce
a singularity (in terms of I v - vc I) in Γ β = Imw and, nat-
urally, in Rew (see Table I). Each line of parabolic
points corresponds to a cone of critical directions vc.
The scale of the singularity is the same as in a phase
transition of order 2 5: the magnitude of the jump and
the coefficient of the logarithm is ~ uW m/M, where m
is the electron mass and Μ is the ion mass. Since
bVcn<ss~q andRew--^, the singularities of Imco and Rea>
must be treated as singularities of the speed of sound
s =s (v). The inversion center which is mandatory for
the Fermi surface causes each critical point to have
an "antipode" with an antiparallel velocity. As the re-
sult, all the described singularities (in v) should make
up closely-lying pairs. We emphasize that at T=0 and
I =°° the singularity (as ω - 0) is not spread out in any
manner. Under real conditions, the spreading factor
is the largest of the quantities Ku>/zF, T/zF, 1/qh

3. The existence of singularities (in v) in the struc-
ture of the strip (3) should lead to singularities of many
characteristics of metals (the resistances of thin plates,
the impedance under conditions of the anomalous skin
effect, and others). Apparently one of the most sensi-

tive effects may be the Pippard (geometric) resonance
in sound absorption18·1: the topological change of the
"strip" should be accompanied by a change of the fre-
quency spectrum with increasing oscillation amplitude.

Since the parabolic points were points where the sur-
face becomes flattened, it follows that the diameter
joining two such points with antiparallel velocities
should generate an enhanced Migdal-Kohn singularity"3

(see Fig. 3 and also1 1 0 3). All the singularities listed
here are the consequences of singularities of the local
geometry of the Fermi surface, which of necessity ex-
ist in practically all metals.

We take the opportunity to thank A. F. Andreev for
a useful remark made at the session. It is reflected in
the present exposition.
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V. D. Natsik. Conduction electrons and mobility of
dislocations in normal metals and in superconductors.
The problem of the influence of conduction electrons
on dislocation mobility in metals arose in connection
with experimental observations of the influence of the
superconducting transition on the dislocation absorption
of ultrasound'1'2] and on the kinetics of plastic deforma-
tion[3~51 (we are citing here only papers in which the ef-
fects in question have been observed for the first time;
a detailed bibliography can be found in the review [ e :).
The dissipative properties of metals at low tempera-
tures are determined, as is well known, by the absorp-
tivity of the conduction electrons. Under these condi-
tions, the electron viscosity turns out to be the princi-
pal mechanism of the dynamic losses of dislocations,
and any change in the viscosity (for example, an abrupt
reduction in the course of a superconducting transi-
tion) should be accompanied by a change of the mobility
of the dislocations and by the same token influence the

metal's mechanical characteristics that are governed
by this location motion.

The force of the electron friction of a dislocation in
a normal metal was first calculated by Kravchenko17·1

and independently by Goldstein (see the appendix of [ 2 )).
Various details of this problem were subsequently in-
vestigated inC 8~ i n . The interaction of the conduction
electrons with the dislocation deformation field is us-
ually described phenomenologically by introducing a
certain potential U(T, t), which goes over, at distances
from the dislocation line that are large in comparison
with interatomic distances, into the deformation poten-
tial U(r,t) =XjnKin(r, t) (uin is the elastic deformation
tensor of the moving dislocation and λίη are constants
of the order of the width of the electron band). Owing
to this potential, the moving dislocation produces tran-
sitions in the electron system and thereby expends en-
ergy; the equivalent stopping force is defined as the en-
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ergy absorbed by the electrons when the dislocation
moves over a unit path. It is customarily assumed that
max\U(r, t)\<zF (cF is the Fermi energy), i .e . , the
presence of the dislocation does not lead to a radical
change of the electronic structure of the metal, and,
in particular, does not upset the systematics of the en-
ergy bands; this condition makes it possible to obtain
a semi-quantitative estimate of the friction force in the
linear-response approximation. When calculating the
friction force of a uniformly moving dislocation it is
convenient to represent the potential Z7(r - Vi) (V is the
dislocation velocity) in the form of a superposition of
waves

(1)

In the linear-response approximation, the action of
each of these waves on the electrons can be considered
independently, so that the rest of the calculation is sim-
ilar to the calculation of the absorption of ultrasound in
metals. It turns out that the main contribution to the
stopping force is made by waves with extremely large
wave numbers q~ I/a (a is the lattice constant). These
waves always satisfy the inequality ql>l (I is the elec-
tron mean free path), so that their interaction with the
electron can be regarded as a quantum-mechanical
electron-phonon collision. The calculation of the stop-
ping force by this method reduces to counting the num-
ber of electron transitions with absorption of energy

to umklapp, are significant only for dislocations with
small core widths (2(s/3) mind- 1) and are exponentially
small otherwise.

We call attention also to a unique electroplastic ef-
fect: a dragging force is exerted on the dislocation by
the current flowing in the metal. [ 1 2 : l This force should
in principle cause displacement of the dislocations, i .e . ,
plastic deformation. The dragging force is given by

where V is the electron drift velocity. To obtain a
noticable effect, however, rather high current densi-
ties are required.

The complicated energy spectrum of a superconduc-
tor (the presence of a gap Δ =Δ(Τ)) leads to a substan-
tial complication of the velocity dependence and to the
appearance of a strong temperature dependence of the
friction force. m " 1 5 3 The interaction of the electronic
excitations of the superconductor with the waves (1)
reduces to processes of two types: scattering of the
excitations and generation of excitation pairs (the break-
ing of Cooper pairs). Processes of the first type are
possible only at T* 0 (at T = 0 there are not excitations)
and lead to a friction-force term that is linear in the
velocity:

B.(T)V, B,---- (3)

In the simplest case of the free electron gas, this
method leads c l ' 2 ] to the following expression for the
friction force FN per unit dislocation length in a normal
metal:

Processes of the second type, in the case of a super-
conducting gas of free electrons, can produce in the
friction force a threshold-dependent term, namely, the
energy conservation law

, Β.ν = - (2)
Vie (p) — 8F] ! + Δ1 + (p + flq) - Δ 1 = Γ/ω,

here b is the Burgers vector of the dislocation, η is the
electron density, pF=KkF is the Fermi momentum, and
s =V/V. The upper bound ZkF of the limit of integration
with respect to q is due to well-known Migdal-Kohn
singularity, which is the result of the Fermi statistics,
and to the non-commensurability of the electron and dis-
location velocities (V<«u f): the electron momentum an
energy conservation laws are reduced to the equalities
ε(ρ +-ftq) - ε(ρ) = Κωη and ε(ρ) = cF, which hold true only
if q < 2kjr. Allowance for the singularities of the real
electronic structure of the metal (complicated shape
of the Fermi surface, the Bloch character of the elec-
tronic excitations, etc.) leads in a number of cases to
a significant change in expression (2). In particular,
the presence of large flat sections on the Fermi sur-
face can make the friction coefficient BN dependent on
the electron mean free path at certain dislocation ori-
entations. [ 1 0 ] Allowance for umklapp processes leads
to the expression BN ='ΖΒΒ^), where the summation is
over the reciprocal-lattice vectors andBg"' are terms
of the type (2), in which the argument of the function
C/(q) must be replaced by q + β. At large values of β we
have I U(q. + 0) 12« e'

z{s6)d (d is the width of the disloca-
tion core), so that the terms with β * 0, which are due

is satisfied, when the condition q < 2kF is taken into ac-
count, only at dislocation velocities V> V0 = &/pF. The
corresponding part of the stopping force is given by

FB. = t (V - To) Φ (4)

where χ is a unit step function and Φ(ν, Γ) is a regular
monotonically increasing function of its arguments,
which goes over as T - Tc and at V » Vo into the function
Fs =BNV, while 1ίπιΦ(ν, Τ) =0. Allowance for umklapp
processes'1 1 1 leads, strictly speaking, to vanishing of
the threshold effect: the conservation laws in the pro-
cesses of the second type reduce in this case to the
quality V [ε (ρ) - εΓ]

2 + Δ 2 + V [ε (ρ + £q) - tF ]2 + Δ2 = Ηω^β,
which holds true for arbitrarily small velocities V, if
umklapps with sufficiently large values of β are taken
into account. At T=0, the stopping force takes the
form

(V)
1 \sP/fc,.j (5)

where *S(V) are monotonically increasing functions that
go over at V » Ve into B^s) · V and vanish at V = Ve. The
function FS(V, 0) at Τ =0 is shown schematically in Fig.
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FIG. 1. Schematic form of the velocity dependence of the elec-
tronic dislocation stopping force at T = 0: 1—stopping force in
a normal metal; 2—stopping force in a superconductor, with
allowance for umklapp processes; 3—stopping force in a super-
conductor for the free-electron model.

7 *, i f zl^

FIG. 2. Velocity dependence of the electronic dislocation stop-
ping force in a quantizing magnetic field (the dislocation line is
directed along the field). The dashed line shows the stopping
force in the absence of a field.

1. It must be noted that for dislocations with wide
cores (2(s0)mlI1if» 1) the role of the umklapp processes
is negligible and the threshold effect is qualitatively
preserved.

Nor does allowance for the umklapp processes dis-
turb the linear dependence (3) of the friction force
FS(V, T) on the velocity at sufficiently low velocities
V« Vo at any size of the core; naturally, however, the
coefficient BN in (3) must be calculated with umklapp
taken into account.

The friction-force discontinuity FN -Fa in a super -
conducting transition leads to a jump of the deforming
stress 6afls = (Ffl -Fs)/b, which ensures dislocation mo-
tion with a given velocity V when the friction force is
changed. At velocities V < Vo we have

fow, τ~ Ih-2T·

For typical superconductors (5aNs/mu~ 1-10 kgf/
cm2), this estimate agrees in order of magnitude with
the experimentally recorded jump of the deforming
stress in superconducting transitions.

The effect of strong magnetic fields on dislocation
mobility in metals is of definite interest. The dissipa-
tive properties of electrons, and with them the disloca-
tion stopping force, undergo in a magnetic field changes
due to the restructuring of the electron spectrum as a
result of Landau quantization. Investigations have
shown' l e~1 8 1 that appreciable effects are produced in
strong (quantizing) magnetic fields ωΗτ»1(ωΗ is the
cyclotron frequency and τ is the electron free-path
time). The greatest influence in exerted by the mag-
netic field on the mobility of linear dislocations oriented
strictly along the field. For such dislocations, fric-
tion force FH at low velocities V« uH/2kF i s c l e ' U ]

, , ~ 1 . Η τ * Γ . (7)

At velocities V> o>H/2kF, oscillations take place in the
FH(V) dependence with a period wH/2kF,

cl7] due to elec-

tronic transitions between different Landau levels (Fig.
2). Deviation of the field direction from the dislocation
line by an angle φ » (2kFrH)mi· (rH is the Larmor radius)
eliminates the strong influence of the field on its mobil-
ity c l 8 ]; only weak quantum oscillations of the stopping
force with changing magnetic field remain, and these
duplicate the well-known oscillations of the density of
the electronic states.
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