
METHODOLOGICAL NOTES

Amplitude, phase, frequency—fundamental concepts of
Oscillation theory

D. E. Vakman

Institute of Improvement of Skills of the Ministry of Railroads of the USSR (Moscow Branch)

L. A. VaTnshteTn

Institute of Physical Problems, USSR Academy of Sciences
Usp. Fiz. Nauk 123, 657-682 (December 1977)

This review is concerned with applying the analytic signal in oscillation theory, where the concept of the
analytic signal was hardly ever applied until recently. We treat the mathematical properties of the Hilbert
transform and of the analytic signal, which allow one to determine the amplitude, phase, and frequency of
any oscillation at any instant of time. For narrow-band oscillations and for broad-band oscillations that
arise under slow frequency modulation, this definition agrees with the intuitive meaning of amplitude,
phase, and frequency and with the quasistationary approximation, while allowing one to estimate the
limits of applicability of the latter. We show that a number of radiotechnical devices (mixers, frequency
modulators, detectors, frequency discriminators, etc.) transform the parameters of an oscillation as
defined by the analytic signal. We establish the relationship between the adiabatic invariant and the
equation of the oscillations for the analytic signal. This relationship allows one to construct a complete
theory of the triode oscillator having a cubic characteristic, in which the capacity of the circuit and the
transconductance of the tube slowly fluctuate. Here we get a new result in the second approximation,
namely: we calculate the influence of the flicker effect on the instantaneous frequency of the oscillator;
the corresponding spectral line width is substantial in practice. In conclusion, we treat some paradoxes
and supplementary examples that illustrate the technical and physical significance of the introduced
concepts.
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—'and I wish you wouldn't keep vanishing so suddenly: you make one
quite giddy.'

'All right,' said the Cat; and this time it vanished quite slowly, be-
ginning with the end of the tail, and ending with the grin, which re-
mained some time after the rest of it had gone.

'Well! I've often seen a cat without a grin,' thought Alice; 'but a grin
without a cat! It's the most curious thing I ever saw in all my life\'

{Lewis Carroll, Alice in Wonderland)

INTRODUCTION quency (APF) of any real time function (random or de-
terministic), while in the theory of nonmonochromatic

We could also have called this review "The analytic wave fields it allows one to define field intensity, co-
signal in oscillation theory". The analytic signal (AS), herence functions, etc. In the theory of noise and partly
which was introduced in 1946 by Gabor, I I ·" permits one coherent fields, the concept of the analytic signal has
to define unambiguously the amplitude, phase, and fre- acquired full citizen's rights; at least it has become
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evident that it is easier and simpler to introduce the AS
than to do without it. C 3~ l o ]

At the same time, APF concepts are commonly used
without exact definition in oscillation theory, in radio-
technology, and in other fields that deal with determinis-
tic time processes that don't reduce to strictly harmonic
processes. Thus, for example, the phrase "the fre-
quency stability of the generator amounts to 10'10 over
such and such a period" remains, strictly speaking, un-
deciphered.

Must one define the amplitude, phase, and frequency
in a uniform manner for all cases, and moreover by
using the Hilbert transform and the analytic signal, i. e.,
in a rather complicated way? For narrow-band oscilla-
tions, one can introduce APF purely intuitively with un-
certainty that lessens as the effective frequency band
becomes narrower; one can measure them with the same
uncertainty with a detector, phase meter, frequency
meter, etc. At the same time, the AS allows one to
give an exact definition of the APF that agrees within
reasonable limits with their intuitive meaning and prac-
tical application. In particular, the convenience of this
definition is confirmed by the fact that it satisfies three
important requirements.

A. Single-valuedness

GorelikC U ] wrote that the term "sinusoidal oscillation
with slowly varying amplitude" is self-contradictory like
a "slightly bent straight line, " and he noted1·12-1 that one
cannot unambiguously discern the amplitude a(t) and the
phase <P(i) from the observed process:

(1)

w (ί) = Κ (ίω (ί)) w (t), (3)

u (I) = a (t) cos [ωοί + Φ (ί)1 = a (t) cos φ (f)

It is not evident how to separate the known function u
into the factors a and cos<P. This becomes quite evident
if we go to the complex notation w(t) = u(t)+ iv(t) by sup-
plementing the real oscillation u(t) with an arbitrary
imaginary part v(t). Then we have

w (I) = a (i) e*<'>,

where the amplitude a, the phase Ψ, and the instanta-
neous frequency ω =άφ/άί-φ are defined by the expres-
sions

a{t):-=Vu-{t)-'rv
2(t),

ω ( ί ) = -

i (i) = arccos
o(0

r(0
α ( / ) '

(2)

• ( I ) U{t) — U ( t ) L - ( l )

a-(t)

Hence in the oscillation of (1), the APF are just as arbi-
trary as the imaginary part is. If we want to give an
exact definition of the APF, then we must specify the
operator that matches each function u(t) with a function
v(t).

Without an unambiguous definition of the APF, certain
methods become fruitless that use complex notation and
pretend at heightened accuracy. Thus, the response
w(t) of a linear circuit to a modulated oscillation w(t) is
often calculated by using the quasistationary approxima-
tion

or when the modulation isn't slow enough, by using the
correcting asymptotic series"-13"15·1

» e i » « £ _ [ l t , ( / ) e -

Here Κ(ϊω) is the transfer coefficient of the circuit,
while ω(ί) is the instantaneous frequency of the input
process (the derivative of the phase), which one must
determine before calculating and correcting anything,
lest the limits of accuracy be exceeded.

B. Slowness

In many cases (in particular, when one uses the quasi-
stationary approximation, see above), one requires
slowness, or smoothness of the functions a(t), Φ(ί), and
ω(ί) = ωο + Φ(ί). Such a smoothness is obtained in solving
many problems, in particular, in nonlinear oscillation
theory, by applying the averaging method or related
methods. I16~20: l However, the APF that one determines
here make sense only within the framework of the aver-
aging method, and they have no broader meaning.

Let us take up this point in greater detail. When using
the representation of oscillations in the phase plane hav-
ing the coordinates (u, - ύωο)) one determines the APF
from the position of the imaging point at each instant,
i. e., from the system of equations

u(t) = a(t) cos [ωοί + Φ (f) ],

(4)

This is equivalent to the common definition (2) for
v(t) = - u(t)/u)0. However, the definition (4) implies that
the functions a(t) and Φ(ί) contain fast components of fre-
quency 2ωα for any narrow-band oscillation. Hence they
are not slow (as compared with cosa>0i or sina>oi).

We shall confine the treatment to a simple example.
One can naturally set a = 1 + m cos Ωί and φ = ωοί for an
oscillation having slow amplitude modulation (AM):

—
ω 0

Yet the definition (4) leads to other expressions: accu-
rate to terms of the order of ε, we get

a(t) = \ -f m cos ι sin Ωί sin 2co0i,

Thus the amplitude and phase contain fast "vibrational"
terms that are not inherent in the original oscillation and
which are compensated in the product u = a cos φ . Of
course, these vibrations drop out upon averaging, and
one gets smooth functions of a and Φ. Yet one must ac-
count for the vibrational corrections even in the first
approximation (with respect to ε), one must find them as
an extra step, E 1 ] and often even redefine the APF.

A faulty definition of the APF like (4) especially im-
pedes the construction of higher approximations. It
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turns out that the AS leads to a slow APF that agrees
under appropriate conditions with the intuitive treat-
ment, and which allows one easily to solve oscillatory
problems (Chaps. 4 and 5).

C. Integral and differential character

Although the APF take on certain values at each in-
stant, they actually are integral in character and they
characterize the process u(t) in a certain time interval,
more strictly, along the entire time axis for - » <f<».
This situation has been known for a long time:
Mandel'shtamE" pointed out that one can't understand
oscillatory phenomena without knowing the entire form
of oscillation, the entire time course of the process.

At first glance, we come here to a contradiction with
the customary differential (local) representations that
many devices and instruments are based on. All servo
systems for automatic frequency or phase control,
automatic gain control, ordinary amplitude detectors,
discriminators, limiters, etc. —all these devices are
based on the seemingly indisputable statement that one
can measure and alter (tune or limit) the instantaneous
frequency and amplitude at each instant without knowing
the entire course of the process. On the other hand,
attempts to define the APF as purely differential quanti-
ties in terms of the values of κ and ύ at each instant,
e. g., by using Eqs. (4), do not yield satisfactory re-
sults. Yet one sometimes gets an evident absurdity—
the instantaneous frequency takes on imaginary values,
or varies from 0 to « in each period, etc. E 5 ]

This contradiction is overcome by the analytic signal.
The integral character of the APF is reflected in the
Hilbert transform (Chap. 1), where the integration is
performed over the entire time axis. Yet in many cases
an approximate definition of the APF proves possible, in
which the principal contribution to the integral comes
from small (but not too small I) regions in the time or
in the spectral domain (see Chap. 6). Then these con-
cepts acquire a quasilocal character.

The situation is analogous to the transition from waves
to rays in optics. Some radiotechnical devices —fre-
quency converters, certain modulators — resemble an
interferometer or spectroscope in the sense that they
rely on integral (wave) concepts. Yet others — the cited
servo instruments — are analogous to the telescope or
microscope, which are based on local (ray) representa-
tions. Devices and instruments of the latter group can
operate successfully only when the integral concepts be-
come asymptotically degenerate (the waves are con-
verted into rays). Analysis of the pertinent conditions
explains certain paradoxrs of oscillation theory, as well
as the characteristic features of a number of modern
radio systems (see Chap. 8).

We note that one can define a and Φ by a "sliding" time
average

(5)

(see Chap. 8 for details). This definition and the AS
give similar results for narrow-band oscillations, but

the definition (5) becomes non-single-valued and unsuit-
able as the band broadens (e. g., in frequency modula-
tion), whereas the definition using the AS retains its
force and perspicuity (see Chap. 6).

Below we shall barely treat random processes (noise),
where as we have noted the AS has long occupied its
proper position. Yet in essence, there is no fundamen-
tal difference between a regular signal and a concrete
realization of noise: a signal can be noise-like, and
noise signal-like. In surfeit, this favors the application
of the AS not only to noise but also to deterministic sig-
nals.

When this article was almost ready, a new edition of
Rytov's bookE0] was published in which the AS is widely
used, though he applies with equal weight the definition
(4), the complex notation of oscillations (see Chap. 2
below), and time-averaging (the AS renders it super-
fluous; see Chaps. 2, 5, and 8 below). Our position is
more radical; we consider that the AS gives a universal
definition of the APF, while the other definitions that are
generally allowable are applicable only as long as they
agree with the AS. There are a number of counterex-
amples (video pulses and oscillations without a clearly
marked carrier), in which the notions of the APF them-
selves seem ill-useful. Yet even in these cases the in-
troduction of the APF via the AS can make sense (Chap.
8).

1. DEFINITION OF THE AMPLITUDE. PHASE, AND

FREQUENCY IN TERMS OF THE ANALYTIC SIGNAL

A strictly harmonic oscillation at the frequency ω is
given for -oo <ί<» by the expressions

u (i) =» χ cos ωί — y sin ωί = a cos (ωί + Φ) = ο cos φ , ( 1 . 1 )

Here χ, y, α, Φ, and ω are real constants (without loss
of generality we assume that a>0 and ω>0). They are
interrelated by the equations

ΟΟΟΒΦ, y = asin<b, a — Yx' + y2,

Φ = arccos — = arcsin — .
(1.2)

Customarily people call a the amplitude, φ the phase,
and ω = φ the frequency, and χ and y the (quadrature)
components of the amplitude. One obtains the complex
notation of the oscillation of (1.1):

by supplementing the oscillation u(t) with the imaginary
component

ν (t) = a sin (ωί + Φ),

which differs from u(t) by a phase shift of - ir/2.

The Hilbert transform generalizes this rule to arbi-
trary functions: if u(f) is a superposition of harmonic
oscillations, then the function v(t) that is coupled with it
by the Hilbert transform is the superposition of the same
oscillations phase-shifted by - JT/2. In particular, if
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u(t) can be represented by a Fourier integral, then

u(t) = -i-f [£/c (ω) cos ωί + £Λ, (ω) sin ωί] du>, ( 1 . 3 )
ο

v(t) = ~- f [Uc (a) sin (at —U, (ω) cos a>t] dot. (1.4)

In the time domain, this transformation has the
form K 8 ]

(1-5)

Here the integral is taken in the sense of the principal
Cauchy value. The expression (1. 5) is applicable both
for periodic functions (which are representable by
Fourier series) and for random processes (which are
representable by Fourier-Stieltjes integrals'-20·1). We
can establish the connection between the formulas (1.4)
and (1. 5) most easily by using the properties a) and b)
(see below).

One can write the relationship (1. 5) in the symbolic
form

ν = Η [it], u = - I I [v). (1.6)

Here the second relationship stems from the fact that a
double Hilbert transformation shifts all the phases by
- IT.

As we see, one can carry out the Hilbert transforma-
tion by using an ideal (- ir/2)-phase-shifter (one can do
this in real time only approximately; though with arbi-
trarily high accuracy for a signal that is known over its
entire course for — » <£<«>).

The functions u(t) and v(t) allow one to create the
analytic signal. In the case of the Fourier integral of
(1.3), it has the form

= ~ \ U (ω) e™<<fo, U (ω) = i/c (ω) — iUs(o>).

(1.7)

We define the amplitude a(t), phase cp(t), and instanta-
neous frequency ω(ί) of the oscillation u(t) according to
the formulas of (2).

Later we shall show the fruitfulness of these defini-
tions from the mathematical, physical, and technical
standpoints. Yet it is useful to bear the following in
mind:

1) We do not assert that one must introduce the con-
cepts of the APF for every function u(t); their expediency
is determined by the essence of the problem.

2) Upon defining for a given oscillation the amplitude
(the envelope) according to (1. 3)-(l. 7), we treat it as an
objective characteristic of the oscillation, which a de-
tector of some given design will reproduce with a certain
error. Of course, we could reject this approach and
assume that the envelope arises only as a result of de-
tection. Yet then the given signal will have as many
envelopes as one pleases — each detector has its own.

The abovesaid also holds for the phase and the frequency.

3) The term "analytic signal" is explained by the fact
that one can treat the variable t in the integral of (1. 7)
as being complex, and represent the function w(t) in the
form

«;(i)=- — ί = Ε-Ηη, (1.8)

while passing below the point s = t. Then w(t) is an ana-
lytic function in the upper half-plane TJ> 0 that declines
like 1/t or faster as I t | — ». i ts real and imaginary
parts (κ and v) are conjugated harmonic functions that
are related by the Cauchy-Riemann conditions. The
function w*(t) = u(t) - iv(f) has the same properties in the
lower half-plane. All of this shows that the function v,
which we match with the function u via the Hilbert trans-
form, is in a certain sense "best-fitted" to u; other
fitting methods are cruder (see Chap. 2).

Let us list the fundamental properties of the Hilbert
transform (1. 5) and of the AS.

A. The superposition principle

The operator Η is linear, i. e.,

Here the cn are arbitrary numbers and the un are ar-
bitrary functions for which H[aJ is defined.

B. The principle of harmonic correspondence

If u(t) is the harmonic oscillation of (1.1), then

ν (t) = χ sin ωί -4- y cos ωί = a sin (ωί -f Φ),
w (t) = (x + iy) e·"' = ae<(«"+*).

This again implies the relationships (1. 2). These re-
lationships stem from the identities

f COSIB, n I f sin
1 ω>0,

— 1 ω<0.

C. Uniformity in time (stationariness)

If we replace u(t) by u(t-tQ) (io = const is an arbitrary
lag), then v{t) is replaced by v(t-t0) and w(t) by w(t-t0).
This means that the Hilbert transform commutes with
any transformation that is uniform in time, e. g., dif-
ferentiation with respect to t;

D. Uniformity in phase

If we replace all the phases ωί in the spectral expan-
sion of u(t) by ω£+ θ (θ = const), then we get u(t, Θ) in
place of u{t) and w(tt Θ) in place of tv(t), with

w (t, Θ) = w (i) e ie,

That is, the envelope and the frequency remain invariant
while the instantaneous phase receives a (constant) shift
of Θ.
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Ε. Uniformity in frequency

If we replace all the phases ωί in the spectral expan-
sion by (ω + />)ί (/> = const >0), then we get the AS w(t, p),
with

w (<, p) = w (t) efi",

That is, the envelope is not altered, while the instanta-
neous frequency is shifted by p. A transformation of this
type is carried out by an ideal mixer (Chap. 3).

F. Coincidence of energy spectra

As the expressions (1.3)-(l. 4) imply, the functions u
and ν have the same energy spectrum

(Ρ)

According to Eq. (1. 7), the AS is represented by a
Fourier integral that extends only to positive frequen-
cies. This is noteworthy since only positive frequencies
have physical meaning.

2. THE ANALYTIC SIGNAL AND THE COMPLEX
FORM OF OSCILLATIONS

People often represent real oscillations of the type of
(1) by complex functions by formally replacing cos(u)0£
+ Φ) by β'(ωοί+Φ). For example, they match the Gauss-
ian and rectangular radio pulses

u (t) —jL— - cosωοί, u {t)-= -^ Π (ί) cos ωοί, (2.1)

where Π(ί) = 1 when I t \ < T, and Π(ί) =0 when I 11 > T,
with the complex functions

/ (t) = -7^=- «-<"/2TSH- f«·', / (ί) = -^Π (/) e™»', (2.2)

The latter differ from the corresponding analytic sig-
nals. Here one has implicitly asserted that the ampli-
tude of the oscillation (2.1) is I f(t) \. At first glance
this seems more natural than the definition by using
(1. 7). The "complex signal" f(t) constructed in this way
competes with the analytic signal.

The function/(i) is represented by the Fourier inte-
gral

Here the pulses of (2.1) yield:

^ (ω) = .-«/»(-—", Ρ ( α ) ^ (2.4)

Here the spectrum £/(ω) that corresponds to the AS of
(1. 7) is related to F{u) by the relationship

(2.5)

The complex notation that employs/(i) has the follow-
ing defects:

1) We can define/(i) and F(u>) only under the condition
that the original function u(t) is given by the formula

a(f) cos <p(t). That is, a separation into amplitude and
oscillatory factors has been performed (as we know, this
is equivocal). Yet if u(t) is given by a graph, oscillo-
gram, or table, one cannot construct/(i) without addi-
tional assumptions.

2) The energy spectrum of the function Im f(t) with
which we supplement u(t) according to Eqs. (2. 2)-(2.4)
does not agree with the energy spectrum of u(t), since

| F (ω) + F* (-ω) | 2 φ \ F (ω) - F* (-ω) | \

Thus the function # = H[M] supplements the function u
more naturally and generally than the function Im/(f).

In Chap. 1 we have formulated the properties a)-f) of
the analytic signal; now we shall add to them the follow-
ing:

g) The distinction of the AS from the function f (t) is
given by the inequality

(2.6)
If, as in the examples of (2.1), the spectrum £/(ω) is
concentrated near the frequency ω0, then this distinction
diminishes with increasing ω0 or with decreasing band
width δω~1/Γ. However, f(t) and w(t) exactly coincide
only when ί"(ω) = Ο when ω<0.

Let us formulate this condition in another way. Owing
to the properties a)-b), when 0<Ω<ω0, we have

Η [cos Ωί cos ωοί] = -|- Η [cos (ω0 + Ω) t + cos (ω0 — Ω) ί]

= -j- [sin (ω 0+Ω) ί + sin (ω0 — Ω) ί] = cos Ωί sin ωοί = cos Ωί Η [cos ωοί],

That is, we can remove the slowly-varying function
cos Qt outside the Hilbert-transform symbol. An ob-
vious generalization of this gives the following property:

h) The quadrature components x(t) and y(t) can be re-
moved outside the Hilbert-transform symbol if their
spectrum contains no frequencies higher than ω0, i. e.,

u(t) — χ (t) cos ωοί — y (t) sin ωοί,

ν (ί) = χ (ί) sin ω ο ί+ !/ (ί) cos ωοί,
(2.7)

(2.3) if Μ and ν are connected by the relationships (1. 5)-(l. 6).

We have derived an important generalization of the
formulas (1. 2): in forming the APF, the slow functions
x(t) and y(t) (slow in the sense that their spectra do not
overlap ω0) play the same role as constants; they define

^i | - = arcsin|i|·. (2.8)

Finally, we can easily derive the following property137·1

for the product u(t) = x(t)z(t) by generalizing (2. 7):

i) The slow (low-frequency) factor x(t) can be re-
moved outside the Hilbert-transform symbol if its spec-
trum does not overlap the spectrum of the high-fre-
quency (fast) factor z(t), i .e . ,
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FIG. 1. Two frequency-converter circuits.

Η Ixz] = χ Η [ζ]. (2.9)

This property is analogous to averaging (where also
the slow factors are removed). Yet by replacing aver-
aging by Hilbert transformation, we have lent precision
to the concept of a slow function and substantially ex-
panded it. For example, one can treat a modulating os-
cillation of 999 Hz frequency as being "slow" with a
1-kHz carrier. This is useful in solving concrete prob-
lems (see Chaps. 4 and 5).

In practice the spectra of the functions x(t) and y(t) can
slightly "overflow" the frequency ω0, and the spectra of
the functions x[t) and z(t) in Eq. (2. 9) can slightly over-
lap. In this case we have the inequality

(2.10)
|Z(v)|dv.

This is analogous to the inequality (2. 6); here the func-
tion ν is defined by the second formula of (2. 7), while
ΑΓ(ω), Υ\ω), and Ζ(ω) are the spectra of the functions
x{t), y(t), and z{t), respectively; see Eq. (2. 3).

Certain properties of the AS that seem paradoxical at
first glance will be treated below in Chap. 8; one can
find calculations of the AS i n E e ] .

3. FREQUENCY CONVERSION AND DETECTION

It turns out that the function of many radiotechnical
instruments relies on the AS, although they have been
proposed without any connection with the AS and even
long before its introduction.

Let us start with frequency conversion. t 2 9 ] A fre-
quency converter (or mixer) is a linear instrument that
consists of a multiplier and a filter (Fig. la). In the
generally adopted idealization, it shifts the spectrum by
the frequency p of the reference oscillation. If we rep-
resent the input oscillation by Eq. (1.3), we can write
the converted oscillation u(t) by replacing (in upconver-
sion of the frequency) ω by ω + p. Elementary calcula-
tions give

= " (t) cos pt — ν (t) sin pt. (3.1)

Here the Hilbert-conjugated function v{t) that corre-
sponds to Eq. (1.4) arises from the mixer circuit.
Equation (3.1) shows that a frequency converter can be
made in another way: according to the scheme in Fig.
lb, which contains a Hilbert operator (phase shifter);

this variant is used in practice in balanced mixers and
in single-band modulators. t 5 ]

In applying a mixer in a superheterodyne receiver or
for comparing a frequency to be measured against a
standard, we always assume that the amplitude of the
signal (the envelope) and the variation of the instanta-
neous frequency are conserved:

if u{t) = a (t) cos φ (<), then u (t) = a (t) cos [φ (t) + pt]. (3. 2)

Yet if this is true over some range of variation of p,
then this implies that the a cos<p and a simp that figure
here coincide respectively with the u and ν in Eq. (3.1).
That is, the mixer conserves the properties of the sig-
nal that we need only if they are defined in terms of the
AS.

The abovesaid implies that if we have applied a mixer
in a frequency meter for controlling the stability of a
quartz oscillator, we must further measure the fre-
quency as measured by the analytic signal, lest further
distortions become inevitable. Moreover, the super-
heterodyne receiver (invented in 1918) satisfactorily re-
produces messages because these messages at the trans-
mitting end modulate an amplitude or frequency as de-
fined via the AS, at least to the needed accuracy.

This is confirmed in examining the operation of modu-
lators. In particular, a detailed analysis of the opera-
tion of the Armstrong frequency modulator leads to the
conclusion129·1 that even the first system of frequency
telephony (1936) achieved frequency modulation as de-
fined via the AS (see also Chap. 5 below).

One can weaken the preceding conditions by requiring
the invariance of the amplitude alone or of the changes
in frequency alone, and also by treating the variations of
the initial phase1301 of the reference oscillation, rather
than of its frequency: in all cases we unavoidably come
to the same concepts of the APF.

Let us discuss now the operation of a quadratic de-
tector. The oscillation

after squaring gives

(3.3)

(3.4)

Here only the first term passes the filter, i. e., the
square of the envelope. People usually think that detec-
tion can be carried out only under the condition that the
spectrum of u(t) is concentrated near the carrier fre-
quency ω0 in a band that is narrow in comparison with
ω0 (dotted lines in Fig. 2). Actually the spectrum of
u(t) merely must not extend outside the limits ωο/2
<ω<3ωο/2. Then the low- and high-frequency parts of
the spectrum of uz(t) will not overlap (Fig. 2, solid
lines) and in principle one can separate them: separa-
tion of the low-frequency part amounts to detection, and
separation of the high-frequency part to frequency mul-
tiplication.

If the spectra overlap, the detector introduces distor-
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Spectrum

fay

FIG. 2. Illustrating the
theory of the quadratic de-
tector.

tions. Hence, upon accounting for property h) of the
AS, we have concluded that: a correctly functioning
quadratic detector isolates the intensity I(t) = (l/2)c?(t)
as defined in terms of the AS (the same is true of the
thermistor and the photomultiplier). In particular, this
is the basis of the principle of action of the Brown-Twiss
interferometer. E 0 ]

4. THE ADIABATIC INVARIANT AND THE
QUASISTATIONARY APPROXIMATION

Let us study an oscillation that obeys the equation

u (t) + Ω" (t) u (i) = 0, (4.1)

where the function t)P(t) varies slowly (in comparison
with u(t); the estimates are given below). For example,
this equation describes the motion of a pendulum of
variable length, for which, as we know, the amplitude
and frequency of the oscillations are related under a slow
perturbing action by the condition of adiabatic invari-
a n c e [18.31]

J = α* (ί) ω (<) = const. (4.2)

However, this condition is satisfied if a and ω are de-
fined in terms of the AS, and it is not satisfied under the
traditional definition (4). This is a cogent argument in
favor of the analytic signal.

In order to convert to the AS, let us apply the Hubert
transform to both parts of (4.1). Upon applying the
properties c) and i), we get the same equation for
W=H[M]. Therefore the AS obeys the equation

w (ί) + Ω 2 (<) w (i) = 0, (4.3)

which satisfies the condition (4.2) exactly. In order to
convince ourselves of this, we need only multiply (4.3)
by w+ and take the imaginary part.

We can treat Eq. (4. 3) as the equation of motion of a
point in the uv plane under the action of a central force
(depending on t). Then the condition (4.2) is Kepler's
law of areas. Upon seeking a solution of Eq. (4.3) in the
form

ω (ί) ds + φ 0 ,

we get the following equation for ω(ί):

ω 3ω2

2ω 4ω2

(4.4)

(4.5)

If we assume that ω = Ω (when Ω > 0 , we do not need the
value ω < - Ω , since the AS corresponds to positive fre-
quencies; see Chap. 1), we get the WKB approxima-
tion. Q 2 ]

We have made two errors. First, the property i) is
satisfied exactly when the spectra of u(t) and S?(t) do not
overlap; this is not true in the general case, but when
Ω(ί) is slow the spectra overlap slightly "in the tails,"
and we can easily estimate this error by using the in-
equalities (2.10). If we understand slowness in the
sense that the function depends on t in terms of the "slow
time" t ,,= tt with ε« 1 and we assume that the slow func-
tions u(t'), a(t'), and Φ(ί') possess derivatives up to the
rath, inclusive, then the error of the equation (4. 3) will
be of the order of ε"1*1. The second error, which in-
volves the replacement of ω by Ω in the solution (4.4),
is of the order of ε1"*2 if Ω 2 = 1 + cmg {zt), i. e., if Ω 2

varies slowly and is small (for m>0).

We must note that, if we use the definition (4), we get
an amplitude and phase for the oscillation of (4.1) that
do not agree with the condition (4.2). Only after we have
introduced the corrections and redefined the APF (which
in essence imply employing the AS) do we arrive at the
adiabatic invariant.

We have shown that the AS allows one to go from the
real equation (4.1) to the complex equation (4.3). One
can show the converse: if we replace Eq. (4.1) by its
complex analog (4. 3) and obtain the solution tv = u + iv
with a slow a(t) and Φ(ί), then w is the AS. The proof
rests on the properties a) and c) (see below), and also
on the principle of harmonic correspondence (property
b)). When the latter breaks down for the harmonic os-
cillation M, one gets a rapidly oscillating amplitude and
phase. Carson B 3 ] used this approach as applied to fre-
quency modulation as early as 1922. A recent book on
nonlinear oscillations128·1 also uses the AS implicitly.

Now let us examine the real linear equation

and its complex analog

L ("3Γ) "•'

(4.6)

(4.7)

which has the solution (3) in the quasistationary approxi-
mation, where Κ(ίω) = 1/Ζ,(ι'ω). When Ζ,(ίω) = - ω2 + ϊαω
+ ω2, this equation describes, in particular, the passage
of a FM oscillation through the circuit of a frequency
discriminator. In the case Κ(ΐω) = 1 - * β " ' ω τ , 0<k < 1, it
describes its passage through a Bernstein interferom-
eter; α β · 2 0 ] when Φ(ί) is slow, the frequency variations
are converted into amplitude variations, as is widely
used in frequency detectors and meters.

It seems at first glance that the complex equation (4. 7)
is derived from the original equation (4.6) without the
participation of the AS. Actually this is not true. Since
the APF that are converted in the discriminator must be
understood as objectively measurable parameters, one
must derive Eq. (4. 7) from (4.6) by applying some oper-
ator Η that relates u and v, and which does not depend
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FIG. 3. Triode oscillator.

on the concrete form of the oscillation. Upon comparing
the left-hand sides of the equations, we note that the
operator is linear and commutative with differentiation
(properties a) and c), Chap. 1). That is, it corresponds
to a stationary filter having a certain transfer coeffi-
cient Η(ίω). On the other hand, upon treating the trans-
formation of the right-hand sides and introducing the
quadrature components according to the formulas (2. 8),
we arrive at the relationship

//(/<»)= — i. Ζ (ω — ωο\— Ζ (ω+ωο1
2 (ω— ωο) + Ζ (ΐ»τ«οΙ *

(4.8)

Independence of u(t), i. e., of Ζ(ω) obtains only if the
spectra Ζ(ω - ω0) and Ζ(ω + ω0) do not overlap, and then
(4. 8) gives the Hilbert transform: Η(ϊω) = - i sgnw.

Thus the quasistationary approximation (3) is also
characterized by two errors: an error in the equation
(4. 7) involving the overlap of the spectra, and an error
in its solution, which is of the order of ε if a and Φ de-
pend on et. The latter can be diminished (see the Intro-
duction), but this refinement loses sense if the error
arising from overlap of the spectra is large. Moreover,
this error is often smaller than the others.

Whenever we apply (under characteristic conditions of
slowness and broad-band character) quasistationary
treatments for estimating the APF (rather than the os-
cillation itself) we are implicitly employing the AS. A
frequency discriminator is a typical quasistationary de-
vice. Hence it measures the frequency of the AS.

5. THE VAN DER POL GENERATOR AND ITS
FREQUENCY INSTABILITY CAUSED BY THE
FLICKER EFFECT

In spite of the importance of the problem and the
wealth of literature, the frequency stability of ordinary
vacuum-tube oscillators has not been studied with the
necessary thoroughness. People have studied only the
perturbing factors that allow analysis within the first
approximation with respect to ε. These first-order ef-
fects include natural fluctuations due to additive noise
(thermal and shot noise), amplitude fluctuations due to
flicker noise, frequency fluctuations due to random vari-
ations in the capacitance of the circuit, and certain
others. Yet these effects do not always determine the
practical stability. In particular, the natural fluctua-
tions give rise only to an insignificant broadening of the
spectral line (of the order of 10"15), while capacitance

fluctuations are characteristic only of certain oscillators
of poor stability.C19: We shall study below the frequency
fluctuations due to the flicker noise of the vacuum tube;
they are manifested only in the second approximation,
whose construction requires a definition of the APF more
accurate than the usual.

Let us examine a Van der Pol generator in which the
transconductance S of the tube and the capacitance C of
the circuit vary slowly in time (Fig. 3):

S(i) = i ,H + HOI, C (f) = Co [1 + η (<)], Ε < 1, η « 1 .

(5.1)

Here small fluctuations in the transconductance arise
from flicker noise. For a soft oscillation regime (cubic
characteristic of the tube), the oscillation equation is
brought into the form

dl-
(5.2)

Here we have introduced the dimensionless time ωοί and
have used the notation

= kHS0-l,

(5.3)

Here Q is the ^-factor of the circuit, k = M/L is the
coupling coefficient, and p is a measure of the limit
cycle. For the sake of a certain simplification of the
formulas, we have linearized with respect to the small
perturbations ξ and η. If perturbations are lacking
(ξ = ?7 = 0, Ω = ψ = χ = 1), then Εq. (5. 2) acquires the simple
form

^ + » = *!(»-l·3)· (5.4)
This is the Van der Pol equation, which has been solved
by the most varied methods (see Refs. 16-21). We
shall seek a solution of Eq. (5.2) in the form

u (t) = Ul (i) + EU3 (t) + e2u5 («) + . . ., (5. 5)
u1 (t) = a (t) cos φ (ί),

un (t) = xn (i) cos [ηφ (ί)] — yn (t) sin [«φ (ί)1 (re = 3, 5, . . .)·

We assume the functions a(t), xn(t), and yn{t) to be slow,
as depending on the slow time tt. Hence their deriva-
tives are of the order of ε, while we can assume that
their spectra do not overlap the high-frequency spectrum
of the oscillations u(t) and cos φ or cos ηφ and sin ηφ
(see Chap. 4). The same conditions are imposed on the
functions Ω, ψ, and χ in Eq. (5. 2).

We can derive the equation of the first approximation

by substituting the expansion of (5. 5) into Eq. (5. 2) with
account taken of terms of the order of ε. Let us apply
the Hilbert transform to it; all the slow functions are
taken outside the transform, and as in Chap. 4, we get
the following equation for w =
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Here we have

(5.6)

(5.7)

When a and Φ vary slowly, the spectra of the analytic
signals w1 and w3 practically do not overlap. There-
fore, upon separating the oscillations of different fre-
quencies, we arrive at the system of equations:

(5.8)

Here the first equation is nonlinear (y depends on a).
We can easily derive from it (by multiplying by w\ and
taking the imaginary part as in Chap. 4) the equation for
the adiabatic invariant J=azu), namely,

or / = ε (5.9)

The frequency ω is determined from the equation

(5.10)

The latter equation is analogous to (4. 5), with ω = Ω
within an error of the order of ε2. This means that in
the first approximation the amplitude and frequency mod-
ulation (AM and FM) of the triode generator are related
in the same way upon slow variation of the resonance
frequency of its circuit as in the linear system treated
in Chap. 4. When perturbations are lacking, i. e.,
Ω = φ = χ = 1, Eq. (5. 9) goes over into the abbreviated
Van der Pol equation

da*
(5.11)

We have arrived at Van der Pol's results in an essen-
tially new way—without averaging. At the same time we
have shown that the varying amplitude a(t) as determined
from the abbreviated equation, which is usually treated
only as an approximation that requires vibrational cor-
rections, t 2 n is actually the absolute value of the analytic
signal w^t). As we shall see below, this is true also in
the second approximation.

Equation (5. 9) generalizes Van der Pol's solution to
an oscillator having the variable parameters of (5.2).
It defines a quantity that is invariant under adiabatic
conditions, but which varies when adiabaticity breaks
down. If the perturbations are slow, then

/ = const, ν (0 = 0- a* (0 (0· (5.12)

The second equation of (5.8) determines the third
harmonic; in the given approximation we have

(5.13)

The frequency correction caused by the current fluc-
tuations, i .e . , the function ξ(ί), arises only in the sec-
ond approximation. In order to find it, we must keep

the terms of the order of ε2 while substituting the expan-
sion (5. 5) into Eq. (5.2): we account for the fifth har-
monic on the left-hand side and the third on the right.
Upon transforming to the AS and separating the har-
monics, we get the following system:

(5.14)

With an error of the order of ε3, we can restrict the
treatment in the first equation of (5.14) to the approxi-
mation (5.13) for w%. Then the first equation acquires
the form

1 = ψ( χ _1^-, · Ι | 1 4) . (5.15)

(5.16)

we get an equation of the form of (4.3) for W in which
Ω 8 is replaced by

If we assume that

Ω>—ί- (5.17)

Here, according to (5.15), the imaginary part of γί

introduces a term of the order of ε3 into the right-hand
side of (5.17). Therefore we can assume Ω Χ to be real,
upon replacing yt by y in (5.17), and can take an expres-
sion of the type of (4.4) for W.

We must separate the real and imaginary parts of yt

in the exponent in the second factor in (5.16), and attrib-
ute the latter to a frequency correction. Finally, the
amplitude a and the frequency ω of the AS of (5.16) are
determined in the second approximation by the relation-
ships:

Here o^ is defined by Eq. (5.10).

Equation (5.18) shows that the second approximation
introduces no changes into the amplitude, and Eq. (5.9)
continues to hold (with ω replaced by ωχ); the relation-
ships (5.12) are satisfied for an adiabatic regime. In
this regime, the dimensionless frequency of the oscilla-
tions as defined by Eqs. (5.19) and (5.10) acquires the
following form when we account for Eq. (5.12):

ω(ί) = 1—-3-

Here we have set 77 = 0 and 0 = 1, while neglecting modu-
lation of the capacitance. Upon substituting in the values
of ε, φ, and χ from the expressions (5. 3), we get the
final formulas for the (dimensionless) amplitude and os-
cillation frequency

(5. 20)
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FIG. 4. Passive shaping of an
FM signal.

Here ξ(ί) is the slow relative perturbation of the tube
current caused by the flicker effect, which affects the
transconductance S according to the first formula of
(5.1).

The expressions (5. 20) allow one to make a complete
study of the instability of the oscillator when acted on by
flicker noise, and to draw the following conclusions:

a) The measure p of the limit cycle has a different
effect on the amplitude and the frequency: while de-
creasing the amplitude fluctuations, an increase in p
substantially increases the frequency fluctuations.

b) The mechanism of production of frequency fluctua-
tions consists in the fact that the third harmonic of the
oscillation gives rise to a correction to wl upon inter-
acting with the first harmonic (the term wf2w>3 in (5.14)).
Just like the third harmonic itself (see Eq. (5.13)), this
correction is in quadrature with the original oscillation,
and its amplitude fluctuations caused by fluctuations in
the transconductance give rise to corresponding phase
and frequency fluctuations. The existence of the quadra-
ture correction also gives rise to a static frequency
shift (the term -pz/l6Qz in the second formula of (5. 20)
Kobzarev t34] derived this static correction as early as
1931).

c) Flicker noise is a slow random process that can
usually be considered stationary and normalc l 9 > 2 0 1; ac-
cording to the formulas of (5. 20) it causes amplitude and
frequency modulation of oscillations. The frequency
modulation determines the width of the spectral line. If
we assume an energy spectrum of the process ξ(ί) in the
form

= 10-", λ = 0.99), (5.21)

we get the following expression for the relative width of
the spectral l ine c l 9 : :

Δω = (5.22)

Here the line shape arising from frequency modulation
is close to Gaussian. In particular, if we take p = 100,
then Δω« 10"u for Q = 10*, and Δω» 10'9 for Q = 103.
These values agree with the actual characteristics of
stable oscillators. This confirms the substantial role
of the discussed effect.

d) The results concerning the influence of the flicker
effect on frequency instability of the triode oscillator are
apparently new: we have not been able to find them in
the literature. [ l e ~ 2 3 ] These results are rather easily
derived via the AS, whereas the usual approach leads to
excessively cumbersome calculations.

e) The obtained results can be generalized in many
directions. Yet perhaps the most remarkable of them is
that the complex functions wlt w3, have proved use-
ful in the nonlinear oscillation problem.

6. PASSIVE AND ACTIVE SHAPING, ASYMPTOTIC
PROPERTIES OF BROAD-BAND FM OSCILLATIONS

In radar, in accelerator technology, and in other
fields where FM signals of preassigned shape are ap-
plied, two different methods are employed of obtaining
these signals: passive and active. In the passive meth-
od, C35~37] the signal is created at the output of a disper-
sion line (filter) excited by a delta-function pulse. The
amplitude Α(ω) and phase α(ω) characteristics of the line
are selected so as to produce the given spectrum; the
oscillation being shaped is determined by these charac-
teristics, and can be represented by the Fourier inte-
gral:

UI2

u(t) — — f Λ (ω) cos [ω£ — α(ω)]όω. (6.1)

Here we assume that the passband of the line is limited
to the interval (a>j, ω2); in addition to the phase charac-
teristic α(ω), it is convenient to treat the group retarda-
tion

τ (ω) = α' (ω). (6.2)

The latter is determined by the derivative of α(ω), and
is usually monotonic in the band (Fig. 4).

Active shaping is closer to traditional transmission
technique. It uses a frequency-controlled autogenerator
(often a carcinotron). Such oscillators were rejected in
the initial stage owing to poor stability and insufficiently
exact realization of the frequency-modulation law.
Later, however, using appropriate automatic frequency
control circuits, active shaping came into use. This has
often led to results that are practically unattainable for
passive instruments. Figure 5 shows a diagram of a
standard active transmitter138·1 that shapes (in the milli-
meter range) a linear FM signal with the specific param-
eters: pulse duration T=l ms, frequency deviation
Δ/=1000 MHz, base B=TAf= 10e.

The transmitter functions as follows. An oscillation

Oscato
(carcino-
tron)

Amplifier
(TWT)

1011 Sov. Phys. Usp. 20(12), Dec. 1977
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from an oscillator having a linear frequency variation is
retarded by the time δί0 = 1 μβ, and it is mixed with the
unretarded oscillation. A (constant) frequency differ-
ence is formed at the output of the mixer of δ/= δί,/ΓΔ/
= 1 MHz. The circuit contains a reference quartz oscil-
lator of frequency δο/ο = 1 MHz, and the difference fre-
quency is compared with δ/0 in a phase detector. An er-
ror signal appears upon phase mismatch that controls
the frequency of the main oscillator. The stabilization
thus attained in the instantaneous difference frequency
(and even in the phase) ensures shaping of the oscillation
with strictly linear frequency modulation.

Let us turn our attention to the fundamental distinction
between the passive and active methods. The passive
method is integral, and the filter takes prior account of
the shape of the oscillation over the entire time axis: if
we know the characteristics Α(ω) and α(ω) of the filter,
we can say in advance the value that the signal will take
at each instant t. Conversely, in the active method the
instantaneous frequency is measured and tuned in the
short time δί0, which is determined by the speed of ac-
tion of the servo system. No element of the circuit "has
prior knowledge" of the shape of the oscillation. In
other words, the active method uses the adiabatic con-
ception of a slowly varying frequency, while the passive
method is based on the spectral (i. e., integral) ap-
proach. However, both methods are applied for the
same purpose; a comparison of them allows one to es-
tablish an important connection between these alternative
approaches.

Let us return to the passive method. We can easily
construct the AS for the oscillation of (6.1):

w (t) = _ L f Α (ω) e««*-ort«a da. (6.3)

Upon calculating this integral, we could exactly indicate
the amplitude and instantaneous frequency (as defined
via the Hilbert transform) at each instant. Yet at each
instant t the signal is formed by a superposition of all
the spectral components. In order to determine the lat-
ter, we must in turn know the entire shape of the oscil-
lation. However, in many cases one can calculate the
integral of (6.3) approximately by using the asymptotic
stationary-phase method. According to this method, the
main contribution to (6.3) for each t comes from a small
neighborhood of the stationary point ωη which is deter-
mined by the equation

α' (ω.) = τ (ω.) = t. (6. 4)

Here the effective width of this neighborhood isC 3 9 ]:

6ω = ί4-8)] (6.5)

If this width is small in comparison with ω2 - ωί and the
neighborhood lies within the interval (ω1( ω2), i. e., if

δω ^ ω! — &>!, ωχ + δω < ω, < ω, — δω, (6. 6)

then the integral of (6. 3) is approximately equal to

Hence the instantaneous frequency φ with account taken
of (6.4) is u,(t). Thus, under conditions in which the
stationary-phase method is applicable, the instantaneous
frequency equals the frequency of the spectrum that
makes the major contribution to the value of w at the
given instant. We have arrived at the adiabatic treat-
ment: at each instant the oscillation is characterized by
only one frequency—the instantaneous frequency of the
AS, and its time variation determines the spectrum of
the oscillation. Each instant of time (or more exactly,
a small neighborhood δί around it; see below) defines
the value of the spectral function Α(ω)β'{α{ω) at the point
u}=<j)t(t). This amounts to the traditional conception of
a slowly varying frequency on which active shaping is
based. However, as is now clear, this treatment is not
always applicable, but only when the integral relation-
ship (6.3) leads to the expression (6. 7), i. e., when the
conditions (6.6) are satisfied.

Under these conditions the band width is u>2 - wt« 2πΔ/,
where Δ/ is the deviation of the instantaneous frequency,
while the difference in group retardation is Ι τ(ω2)
- ^ω,) | α τ, where Τ is the pulse duration. Since also
we have τ^(ω,)~ Τ/{ωζ — oij), we get the following inequal-
ity from the first condition of (6.6):

Β = TAf > 5 — 20'. (6.8)

That is, differential representations (the adiabatic treat-
ment) are applicable to broad-band FM oscillations hav-
ing a large base.

The second condition of (6.6) indicates distortions due
to the edge effect when the essential frequency interval
δω exceeds the filter band; this corresponds to the time
interval

— (4 — 8)1 φ(ί,) = (6.9)

that is taken up by the edge of the pulse. Edge distor-
tions unavoidably appear in active shaping (see Fig. 5),
and they restrict its potentialities.

The spectral regions distorted by the edge effect are
usually filtered out in a method that narrows the re-
ceiver band (weighting treatment). If we allow 10% en-
ergy losses, we get the condition δί« 0. 12". Upon ac-
counting for Eq. (6. 9), we get the estimate

Β = Γ Δ/ > 500 — 2000, (6.10)

which lends exactness to the condition (6.8). This esti-
mate is confirmed by practice. Thus, the authors of the
extensive review [38] of linear FM of pulses shaped by ac-
tive methods note the advantages of these methods over
the passive methods, especially for large bases—of the
order of 10e and above. Yet, in spite of the substantial
differences between the active methods and the differ-
ences in ranges and widths of pulse bands, characteris-
tically no signal having a base less than 1000 can be
shaped by the active method, in line with our condition
(6.10).
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Passive shaping dominates for bases measured in tens
and hundreds. It does not involve the adiabatic treat-
ment, and as we see, this arises from fundamental
rather than technical reasons. If we try to shape such
a signal by an active method (at one time one of us
(D. V.) participated in such an attempt), we make the
same error as in trying to get directed radiation from a
parabolic reflector of small dimensions (as compared
with the wavelength). That is, we are mechanically ap-
plying geometric optics and forgetting that the edge ef-
fects here are not small—they fully govern the radiation
and render geometric-optics representations inappli-
cable.

We note also that the difference frequency δ/and the
retardation time 6t0 chosen in the transmitter in Fig. 5
agree with the estimates of (6. 5) and (6. 9). This is
characteristic also of other active devices of this type.138·1

7. ASYMPTOTIC PROPERTIES OF NARROW-BAND
OSCILLATIONS

Above we have been treating broad-band oscillations
that arise in FM with large bases. The definition of the
APF by Eq. (5) is inapplicable to these oscillations,
whereas the definition via the AS agrees with the adia-
batic treatment and gives its limits of applicability. Ex-
amples of narrow-band oscillations are given at the
beginning of Chap. 2 (for ω0Τ» 1); more generally, if
u(t) is defined by the first formula of (2. 7) and the qua-
drature components x(t) and y(t) are slow, i .e . , the effec-
tive band δω of their spectral functions ΛΓ(ω) and Υ[ω) is
small in comparison with the carrier frequency,

then the AS acquires a simple form

(7. 1)

(7.2)

This also agrees with the adiabatic treatment.

Of course, this result involves the properties g)-i) of
the AS. Yet it is expedient to interpret it in another way,
from the standpoint of approximate calculation of the
integrals of (1. 7) and (2. 3). Just as in the integral of
(6.3), these integrals possess a substantial frequency
range that adjoins the point ω0, and which is governed
by the effective band δω. The approximate expression
(7.2) holds when this band does not exceed the bound
ω =0 in the integral of (1. 7). In this treatment the con-
dition (7.1) is quite analogous to (6.6).

Yet we have obtained two qualitatively different condi-
tions under which the integral representations involving
the AS degenerate into the ordinary adiabatic treatment
of oscillations having slowly varying parameters. The
condition (7.1) requires narrow-band character with
respect to ω0, as is customary and understandable.
Moreover, the condition (6. 8) requires a large base, or
broad-band character, whereby it doesn't involve a car-
rier frequency in any way.

In this regard we must bear in mind that these condi-
tions are alike in their mathematical essence, and that

there is only one condition for asymptotic degeneracy,
rather than two different ones. While treating, say,
shaping by the scheme of Fig. 4, we assume that the
dispersion and damping of the line depend to an equal ex-
tent on the frequency. Then it is convenient to treat the
integral of (6. 3) in the complex plane of ω, and the sta-
tionary (saddle) point ω, will also be generally com-
plex. i m It happens to lie on the real axis only in the
studied limiting cases when only amplitude or only phase
variations in the spectrum prevail. However, more
general degeneracy conditions (i. e., applicability of the
saddle-point method) reduce to the idea that the spec-
trum must vary rapidly near ωη while it is not essential
whether these variations are amplitude or phase varia-
tions.

Narrow-band oscillations amount to an amplitude Α(ω)
of the spectrum close to a delta function, while broad-
band oscillations amount to a rapidly varying phase α(ω)
caused by the dispersion of the line; in both cases a re-
placement of the integral by the differential APF is ad-
missible, i. e., an adiabatic treatment.

8. PARADOXES AND COUNTEREXAMPLES

The APF as defined via the AS are objective charac-
teristics of an oscillation that can be measured by an
amplitude detector, a frequency discriminator, etc.
Yet the principle of operation of these and many other
devices is based on the adiabatic conception of slowly
varying amplitude and frequency. We have seen that this
conception requires that the conditions (6.8) or (7.1) be
satisfied; if these conditions are violated the proposed
apparatus proves inoperable. We have already en-
countered this in Chap. 6: Active shaping methods are
applicable in practice only with long bases. Let us give
some additional examples, while paying major attention
to the condition (6. 8).

A. The Robinson paradox'41'

Upon starting with the idea of a slowly varying fre- .
quency, Robinson proposed eliminating interference from
neighboring FM transmitters by using a small deviation
Δ/ that is substantially smaller than the modulating audio
frequency F (in 1930). Evidently this assumes that at
each instant a region of the spectrum near u>(t) is being
radiated, so that there is no energy outside the limits of
the deviation. However, the decrease in the deviation
leads to a small frequency-modulation index, m = Af/F
« 1 . As we easily note, with tonal modulation this is
equal to the base B. Hence the condition (6.8) is vio-
lated and the adiabatic conception loses force and be-
comes inapplicable.

Robinson's error lies in viewing this conception as
universal. This is the same error as when one views
the conceptions of geometric optics as universal and
tries to examine in a microscope an object that is small
in comparison with the wavelength.

B. Early attempts at frequency telephony'42'

As early as 1912 attempts were made to modulate the
frequency with an arc transmitter (and later with a vac-
uum-tube transmitter) by switching a condenser micro-
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FIG. 6. Envelope of a square-wave radio pulse.

phone into the circuit. The demodulation was effected
on the slope of the resonance curve of the receiver.
The results were not satisfying—why ?

In the then-employed long-wave region the capacitance
of the circuit was thousands and tens of thousands of
picofarads, while the variable capacitance of the micro-
phone was of the order of 1%. Therefore the deviation
did not exceed 1 kHz (with a 100-kHz carrier) and modu-
lation by speech led to a small index m 5j 1 at which the
adiabatic conception is inapplicable.

Here they made the same error as Robinson—the band
was not broad. Now we attain such a modulation by em-
ploying varicaps or reactive tubes, but at much higher
frequency deviations.

The Armstrong modulator (see Chap. 3) also operated
with a small index (m 51/2), but the modulated oscilla-
tions were then frequency-multiplied, which increased
the FM index by a factor of 500.C42] Hence these oscil-
lations could be received by an ordinary discriminator
with an amplitude limiter, i. e., an apparatus based on
adiabatic views.

Now we turn to the counterexamples that involve un-
usual (more exactly, unfamiliar) properties of the AS,
and which lead to the relatively widespread opinion that
the analytic signal, while convenient and useful in the
mathematical theory, does not always make sense from
the physical or technical standpoint. ».β.2β,43-45]

C. Violation of causality

Figure 6 shows the envelope of a square-wave radio
pulse that has a forerunner and a wake. The perplexing
questions arise: How can the envelope, i. e., the con-
sequence, precede the original signal, or cause? What
does the envelope enclose when the oscillation hasn't
started yet or no longer exists? How can such an enve-
lope correspond to the result of detection, while the sig-
nal at the output of a detector does not precede the input
agent? How does the envelope manage to behave like the
grin of the Cheshire Cat in Wonderland? Of course,
from the mathematical standpoint the forerunner and the
wake are explained by the analytic character of the func-
tion w(t), which allows no jumps. Yet this result is
understandable also physically after some reflection.

For narrow-band oscillations, one can introduce the
"natural" concept of the envelope and its components by
the relationships

oz(i)=2u2(t), )=-— 2it (i) sin ω,, (8.1)

some effective interval, e. g.,

I+To

"1(t) = y- \ u*(s)ds, or

< 8 - 2 )

Of course, a(t) will depend on the method and interval of
averaging, and many of its useful mathematical proper-
ties will be lost, but the main point is that, according to
the formulas of (8.2), the envelope precedes u(t): the
forerunner is formed as the averaging interval "creeps
up on" the pulse, and the wake as it "creeps off."
Evidently any reasonable definition of the envelope (a
physical one that allows one to measure a(t) rather than
a mathematical abstraction) leads to a forerunner and a
wake of duration To ;>ir/w0.

We note that a quadratic detector operates according
to the first formula of (8.1), and synchronous detectors
according to the two others; the averaging is performed
by a filter that transmits only the low frequencies
(ω« ω0). The result depends, though weakly, on the fre-
quency characteristic of the filter. Moreover the filter
yields the functions a(t), x(t), and y(t) with a delay of the
order of To, which is inversely proportional to the filter
band. Under such an averaging there is no forerunner,
but the wake is elongated.

The AS ensures the minimal averaging time: we have
Τ0~ν/ω0 for narrow-band oscillations, while for all
others the averaging time "tunes itself" in accordance
with the structure of the process, as we see from the
expression (6.9) for δί. Thus the definition of the APF
via the AS is as "differential" as is generally possible.

D. Logarithmic singularity

Figure 7 shows the envelopes of pulses whose dura-
tions are comparable with the period 2ττ/ω0 of the car-
rier frequency. If u(t) possesses jumps, then the enve-
lope goes to infinity at these points. A logarithmic sin-
gularity at the points of discontinuity of u(t) is inherent
in the Hilbert transform. This also sometimes excites
doubt as to the physical significance of the AS. E 8 l 4°

Of course, real signals are defined by continuous func-
tions u(t), but even if we use discontinuous functions

FIG. 7. Envelopes of square-wave
radio pulses of short duration.

Here the wavy overline denotes time-averaging over
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FIG. 8. Envelope of a video pulse having a square-wave spec-
trum.

while idealizing actual phenomena, then the logarithmic
(i. e., very weak) singularity leads to no false conclu-
sions. Yet if the function u{t) is continuous, then there
are no singularities.

In the "purely differential" definition of the APF by
Eq. (4), the infinity at the points of discontinuity of u(t)
turns out to be not logarithmic, but stronger. The AS
gives an (inessential) singularity precisely because it
ensures the minimal averaging time. Moreover, a(t)
and Φ(ί) are usually treated in slow time, so that the
overshoots, forerunners, and wakes to be integrated are
generally insignificant.

E. Oscillations without a carrier

Figure 7 has already given examples of signals for
which the graphic meaning of an envelope is not very
clear. One can easily increase the number of such ex-
amples. For example, let us examine an oscillation
having the square-wave spectrum:"3 3

U (ω) = 1 at | ω — ω0 | < Δω, U (ω) = 0 at | ω — ω0 [ > Δω.

(8.3)
When ω 0 » Δω, it has a quasiharmonic nature, and the
AS gives a quite natural form of the envelope. Let us
displace the spectrum into the low-frequency region by
decreasing ω0. In the limit ωο = Δω, we get the broad-
band spectrum of a video pulse:

*7(co) at ω<2Δω, ϋ (ω) = 0 at ω > 2Δω. (8.4)

Figure 8 shows the envelope of this oscillation. People
often assume that it is better not to introduce the enve-
lope for such oscillations at all, since it does not give a
pictorial view of the course of the process, and as it
varies rapidly, it has only a nominal meaning. Η 3 · 4 5 )

However, a linear FM pulse in an intermediate-fre-
quency channel has precisely this type of spectrum after
processing in a matched filter: the amplitude spectrum
of the signal is a square wave and the phase structure is
removed in the filter. Values are quite possible in a
channel of, e.g., [ 3 β · 3 7 ] / 0 = 30 MHz, Δ/=25 MHz (so that
Δ/κ/ο)· I n this case one must introduce the envelope—
it defines the result of detection and distance resolution.
The downward displacement of the frequency spectrum
is performed in the mixer (see Chap. 3), which leaves
invariant the envelope as defined via the AS.

A still more complicated oscillation is obtained when
the middle part of the spectrum of (8.4) is rejected,
e.g., in interference suppression. Narrow bands re-

main at the edges that approximately correspond to two
sinusoids of frequencies ω1 and ω2, with ωί«ω2. This
is precisely the counterexample that gave the argument
for concluding that the envelope (the absolute value of the
AS) is devoid of physical content for broad-band oscilla-
tions. m However, one must in practice extract the
residual information about the signal also from such
envelopes, while in addition, we treated in Chap. 6 os-
cillations as broad-banded as one pleases, for which the
APF and the AS have a distinct and pictorial meaning.

In summing up the results, we can say that the enve-
lopes in many of the counterexamples are unusual, but
to declare them unreasonable a priori won't do: they
are sometimes useful and full of content.

There are also cases (see Chap. 5) in which it is not
rational to introduce a single AS and the corresponding
APF for an oscillation as a whole, while moreover it is
convenient to introduce the AS and the APF for a series
of nonoverlapping spectral bands (in Chap. 5, these are
the neighborhoods of the frequencies ω0, 3ω0, 5ω0, etc.).

An opinion exists that the AS is suitable for describing
modulation of harmonic oscillations, but not those of an
arbitrary carrier, e. g., sin2co0f. Yet the appropriate
generalization was proposed as early as 1958. β ] One
can define the amplitude and frequency modulation of an
arbitrary oscillation ^(t) as the corresponding variation
in the envelope and phase of the AS wo(t) = Uq{t) + ivo(t).
Here the functions u^(t) and vo(t) play the same role as
cos ωοί and sin u>ot in modulation of harmonic oscilla-
tions. In particular, this approach allows one easily to
derive and generalize most of the results of Ageev. m i

CONCLUSION

Above we have recalled the varied applications of the
AS in the theory of random processes and fields, in
particular, in wave optics"·10·1; in quantum optics the
AS retains its significance, since the field is written in
the form (3. 3). After transformation to operators, one
term defines radiation (creation) of photons, while the
other defines their absorption (annihilation), since only
positive frequencies figure in the one term, and only
negative in the other.

With account taken of the abovesaid, this review pur-
sues a rather modest aim: to "pull up" (in the sense
of applying the AS) oscillation theory to the level of noise
theory, coherence theory, and other fields where the
AS has already been applied for a long time and has
yielded a number of important results. We have tried
to show that the AS allows one better to understand and
calculate oscillatory phenomena in the most varied sys-
tems, though adopting it requires overcoming a certain
psychological block.

The significance of the AS increases to the extent that
the theory of oscillations invades new fields and quanti-
tative changes (mainly the expansion of signal bands)
grow into qualitative ones; then one must replace the
usual views with new ones that are more general, and
which reduce to the former only in the appropriate limit.
The analytic signal gives us a general definition of the
amplitude, phase, and frequency, the fundamental con-
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cepts of the theory of oscillations and waves.

The authors thank L. M. Fink for useful discussions.

'D. Gabor, J. IEEE 93, (pt. 3), 429 (1946).
2J. Dugundji, IRE Trans. ΓΓ-4, 53 (1958).
V. I. Bunimovich, Fluktuatsionnye protsessy ν radiopriemnykh
ustroistvakh (Fluctuation Processes in Radio Receiving De-
vices), Sov. radio, Μ., 1951.

4R. Deutsch, Nonlinear Transformations of Random Processes,
Prentice-Hall, Englewood Cliffs, N.J. , 1962 (Russ. Transl.,
Sov. radio, Μ., 1965).

5L. E. Franks, Signal Theory, Prentice-Hall, Englewood Cliffs,
N. J . , 1969 (Russ. Transl., Sov. radio, Μ., 1974).

6B. R. Levin, Teoreticheskie osnovy statisticheskoi radio-
tekhniki (Theoretical Foundations of Statistical Radiotech-
nology), Vol. 1, Sov. radio, Μ., 1966.

7D. Middleton, Introduction to Statistical Communication Theory
McGraw, I960, Vol. 1 (Russ. transl. Sov. radio, Μ., 1961).

8H. Cramer and M. R. Leadbetter, Stationary and Related
Stochastic Processes, Wiley, New York, 1967 (Russ. Transl.,
Mir, Μ., 1969).

9E. Wolf and L. Mandel, Revs. Mod. Phys. 37, 231 (1965).
10M. Born and E. Wolf, Principles of Optics, Pergamon Press,

Oxford, New York, 4th Ed., 1969, 5th Ed., 1975 (Russ.
Transl., Nauka, M., 1970).

U G. S. Gorelik, Kolebaniya i volny (Oscillations and Waves),
Fizmatgiz, Μ., 1959.

12G. S. Gorelik and G. A. Elkin, Radiotekh. Elektron. 2, 28
(1957).

1 3J. R. Carson and T. C. Fry, Bell. Syst. Techn. J. 16, 513
(1957).

1 4 I. S. Gonorovskii, Radiosignaly i perekhodnye yavieniya ν
radiotsepyakh (Radio Signals and Transition Phenomena in
Radio Circuits), Svyaz'izdat, Μ., 1954.

15D. Veiner and B. Leon, Proc. IEEE 53, (1965) [Tr. HER 53,
665 (1965)1.

1 6B. Van der Pol, Nonlinear Theory of Electrical Oscillations
(Russ. transl., Svyaz'tekhizdat, Μ., 1935).^

"A. A. Andronov, A. A. Vitt, and S. E. Khaikin, Teoriya
kolebanii (Oscillation Theory), Fizmatgiz, Μ., 1959.

18N. N. Moiseev, Asimptoticheskie metody nelineinoi mekhaniki
(Asymptotic Methods of Nonlinear Mechanics), Nauka, Μ.,
1969.

19A. N. Malakhov, Fluktuatsii ν avtokolebatel'nykh sistemakh
(Fluctuations in Autooscillatory Systems), Nauka, Μ., 1968.

2 0S. M. Rytov, Vvedenie ν statistic he skuyu radiofiziku (Intro-
duction to Statistical Radio Physics), Part 1, Sluchainye
protsessy (Random Processes), Nauka, Μ., 1976.

21N. N. Bogolyubov and Yu. A. MitroDol'skii, Asimptoticheskie
metody ν teorii nelineinykh kolebanii (Asymptotic Methods in

the Theory of Nonlinear Oscillations), Nauka, Μ., 1974.
22M. I. Kontorovich, Nelineinye kolebaniya ν radiotekhnike

(Nonlinear Oscillations in Radiotechnology), Sov. radio, Μ.,
1973.

2 3L. A. Vaihshtein and V. A. Solntsev, Lektsii po sverkhvy-
sokoehastotnoi elektronike (Lectures on Ultra-High-Frequency
Electronics), Sov. radio, Μ., 1973.

2 4L. I. Mandel'shtam, Lektsii po nekotorym voprosam teorii
kolebanii (Lectures on Some Problems of Oscillation Theory),
Poln. sobr. trudov (Complete Collected Works), Vol. 5,
Izd-vo AN SSSR, Μ., 1950.

2 5J. Shekel, PrOc. IRE 41, 548 (1953).
2 6E. C. Titchmarsh, Introduction to the Theory of Fourier In-

tegrals, Clarendon Press, Oxford, 1st Ed., 1937; 2nd Ed.,
1948 (Russ. Transl., Gostekhizdat, Μ., 1948).

2 7E. Bedrosyan, Proc. IEEE 51, (1963) [Tr. in5R 51, 887
(1963)1.

28A. K. Smolinski, Bull, de l'Acad. Polonaise des Sciences 19,
473 (1971).

2 9D. E. Vakman, Radiotekhnika 32(5), 20 (1977).
30V. I. Korzhik, Radiotekhnika 23(4), 1 (1968).
31L. D. Landau and Ε. Μ. Lifshitz, Mekhanika, Nauka, Μ.,

1958 [Pergamon].
32Dzh. Kheding, Introduction to Phase Integral Methods

(Methuen, 1962).
3 3J. Carson, Proc. IRE 10, 57 (1922).
34Yu. B. Kobzarev, Vestn. elektrotekhn., No. 10, 346 (1931).
3 5J. R. Klauder, A. C. Price, S. Darlington, and W. D. Al-

bersheim, Bell. Syst. Techn. J. 39, 745 (1960).
36Ya. D. Shirman, Razreshenie i szphatie signalov (Resolution

and Compression of Signals), Sov. radio, Μ., 1974.
37V. K. Sloka, Voprosy obrabotki radiolokatsionnykh signalov

(Problems of Processing of Radar Signals), Sov. radio, Μ.,
1970.

38V. N. Kochemasov and L. A. Belov, Zarubezh. radioelek-
tron. 8, 32 (1975).

3 9E. L. Feinberg, Rasprostranenie radiovoln vdol' zemnoi
poverkhnosti (Propagation of Radio Waves Along the Earth's
Surface), Izd-vo AN SSSR, Μ., 1961.

4 0L. A. Vainshtein, Usp. Fiz. Nauk 118, 339 (1976) [Sov. Phys.
Usp. 19, 189 (1976)1.

4 1S. M. Rytov, Usp. Fiz. Nauk 29, 147 (1946).
4 2 E. H. Armstrong, Proc. IRE 24, 689 (1936).
4 3 I . S. Gonorovskii, Radiotekhnicheskie tsepi i signaly (Radio-

technical Circuits and Signals), P a r t i , Sov. radio, Μ., 1966.
4 4L. E. VarakinandA. S. Gusel', Radiotekhnika 30(1), 17

(1975).
4 5B. G. Kaduk and V. V. Sadovskii, Problemy tekhnicheskoi

elektrodinamiki (Problems of Technical Electrodynamics),
No. 34, 3 (1972).

4 6D. V. Ageev, Radiotekhnika 30(4), 1 (1975).

Translated by M. V. King

1016 Sov. Phys. Usp. 20(12), Dec. 1977 D. E. Vakman and L. A. Vainshtein 1016


