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INTRODUCTION

A vacuum alteration analogous to an ordinary phase
transition can take place in a sufficiently strong field.
This transition occurs when the energy of an individual
particle or a pair vanishes in an external field and spon-
taneous particle production becomes possible. To this
end, the particle energy gain in the field must compen-
sate for the rest energy of the particle. This is why
this process begins with particles of smallest mass.
Since it will be shown that the mechanism of the phe-
nomenon differs substantially in bosons and in fermions,
we shall hereafter be particularly interested in the fer-
mions and bosons that have the smallest known mass,
i .e. , electrons and pions.

Such an alteration of the vacuum takes place near nu-
clei with charges Ζ > Zc = 170. The new ground state of
the vacuum corresponds to a nonzero charge. This
charge is equal to the number of electronic states that
drop below the value - me2 as the charge of the nucleus
is increased. These phenomena were investigated in C l - 3 ]

and expounded in detail in the reviewc43. The present
article deals with the mechanism of vacuum alteration
near a nucleus with Ζ > Zc, and offers a consistent phys-
ical interpretation of the phenomenon. The alteration
of the vacuum should be accompanied by the emission of
positrons, and these should be observable in collisions
between two uranium nuclei, when a system having a
field larger than critical is produced for some time by
the mutual approach of the nuclei. It will be shown that
allowance for the electron-positron interaction leads to
the appearance of bound states of electron-positron pairs
and influences the energy distribution of the positrons
emitted when the nuclei come close together.C53 In the
case of supercharged nuclei with Zez » 1 (whose possible
existence is discussed below), the electrons produced
as a result of the alteration of the vacuum ("electron
condensation") screen the nuclear charge and decrease
substantially its Coulomb energy.C 6 ] Electron conden-
sation, as will be shown, influences the interaction of
the charged particles at ultrashort distances.

No less interesting are the consequences of the alter-
ation of a boson vacuum in an external field. : 7 ] Partic-

ular interest attaches to the alteration of a pion field in
a sufficiently dense nucleonic medium. In this case the
role of the potential we-1 is played by the effective field
acting on the pion and due to the nucleons of the medium.
At a sufficiently high nucleon density, the pion energy
vanishes and a phase transition takes place—"pion con-
densation. " This produces an additional pion field ("pion
condensate"). The most important physical consequence
of this phase transition is the possibility, in principle,
of the existence of superdense nuclei in which the energy
gained in the phase transition offsets the energy loss due
to compression.

The pion instability of vacuum in strong field and the
ensuing possible existence of superdense nuclei was
theoretically deduced in1-71.

The uncertainty in the estimate of the critical density
does not exclude the possibility that the phase transition
had already taken place in ordinary nuclei. This possi-
bility was first discussed in t e l, where a method was de-
veloped for determining the spectrum of an excitation
having pion quantum numbers. This method makes use
of the result of the Landau theory of the Fermi liquid
and the theory of finite Fermi systems." 1 The presence
of ν condensate in a nucleus would manifest itself in a
periodic nucleon spin-density structure, having a wave
vector ko«pF and capable of influencing the scattering
of nucleons and electrons by nuclei . t l 0 ]

Regardless of whether the phase transition has taken
place or not, the proximity of the nuclei to condensation
manifests itself in a large number of experimental facts,
namely, in all phenomena in which a substantial role is
played by processes with exchange of one pion excita-
tion. Proximity to condensation makes the pion degree
of freedom "soft, " thereby leading to enhancement of
the matrix elements having pion symmetry. Among the
phenomena strongly influenced by the decrease of the
pion energy in nuclear matter are: shifts of the levels

0", 1*, 2", relative to their positions in the shell mode,
enhancement of Ml transitions with change of orbital
momentum by two units (/-forbidden transitions), and
enhancement of Gamow-Teller β transitions. The soft-
ening of the pion degree of freedom must also be taken
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into account in calculations of the suppression of the spin
parts of the magnetic moments in the nucleus. Proxim-
ity to condensation exerts a particularly strong influ-
ence on the intensity of the Z-forbidden transitions—the
intensity of these transitions is in some cases several
dozen times larger than the calculated values obtained
without allowance for the proximity to condensation.CU]

The theoretically predicted decrease of the energy of
the pion in the nucleus, manifests itself directly in the
spectral data of the jr-atom (see Sec. 3 of Chap. ΙΠ).

Sawyert121 and Scalapinocl3] have proposed a π-conden-
sation model in a neutron star, with the π'-meson con-
densate assumed in the form of a traveling wave, there-
by greatly simplifying the calculations. Exclusion of
the IT* mesons corresponds to a description of the pion
field with the aid of a Schrudinger equation instead of a
Klein—Gordon-Fock (KGF) equation. A consistent solu-
tion of the problem of nucleons interacting with a travel-
ing-wave-type pion field was given in1143. The pion-
field Lagrangian constructed there corresponds to a de-
scription of the pions with the aid of the KGF equation,
i. e., takes the positive and negative pions automatically
into account. Analogous results were obtained incl51

with the aid of the Hamiltonian formalism, and in c i e : by'
a variational method.

The traveling-wave method proposed in"2 '1 3 3 and de-
veloped inC15·16] turned out to be essential to further
work aimed at finding the energy of a strongly developed
condensate in a more realistic model (seeC17'181). These
results make it possible to estimate the energy of the
nucleus at a density greatly exceeding that of ordinary
nuclei, and are used to verify the possible existence of
superdense nuclei1·191 (see Sec. 4 of Chap. ΙΠ).

Pion condensation leads to a number of interesting
phenomena associated with the structure of neutron
stars. We start with an explanation of the physical gist
of it condensation in a neutron medium.

Sawyer and Scalapinoci2llsl interpreted condensation
as the result of instability of the neutron matter to the
reaction Μ-p+ff". Yet, as shown in t u i , neutronmatter
is stable with respect to this reaction, since the chemi-
cal potentials of the neutron, proton, and π'-meson sat-
isfy the inequality

For a correct physical interpretation of the condensation
it is necessary to use the language of pion and nucleon
excitations (quasiparticles), as is customary in the the-
ory of phase transitions, rather than the language of
bare particles. It then becomes clear that the instabil-
ity observed in t l 2 ' l s l is a manifestation of an instability
investigated in a more realistic model,te>20:i and consists
in the following: At a neutron density noticeably lower
than the nuclear density no(«*~ 0.4«o), a new excitation
mode appears in the medium, with the quantum numbers
of the π* meson and with negative energy (ω* < 0). The
quasiparticles corresponding to this excitation mode
(π*3 mesons) can be interpreted as bound states of a pro-
ton and a neutron hole (just as excitation of zero sound

is interpreted as a bound state of a particle and a
hole"3). At a neutron density η > η*, condensation of the
π* mesons begins. With further increase of the density,
the energy u>* of the π* mesons decreases (its absolute
value increases) and at a certain density Μ = «*»ΗΟ the
sum of the energies of the IT' and π* particles becomes
equal to zero:

ω" + ωί = 0 ,

i. e., the system becomes unstable to the production of
•n"ir*s pairs. It is just this instability which appears in
the model of:i2'133. This instability leads to a strong
softening of the equation of state of the star and can re-
verse the sign of the compressibility of the neutronmat-
ter.

As a result, a noticeable part of the neutron star
should go over in a short time into a state with a density
corresponding to a new phase

η = n m = (3 - 6) n0.

This transition should be accompanied by a release of
an energy comparable with the gravitational energy of
the star.

To understand all these phenomena, it is useful to
trace the mechanism of π condensation by first using
simple examples of condensation in an external scalar
or electrical field, and only then proceed to the most in-
teresting case, ν condensation in a nucleon medium.

Pion condensation in an external field, besides being
of methodological interest, is of physical interest in it-
self, because of the possible existence of supercharged
nuclei in which the energy gain from τ condensation in
the electric field of the nucleus is partially offset by the
energy loss due to the Coulomb repulsion of the protons
(see Sec. 5 of Chap. ΠΙ).

I. FERMIONS IN STRONG FIELDS

1. Alteration of electron-positron vacuum in the field of a
nucleus with a large charge

Let us ascertain how the electron-positron vacuum is
altered in the field of a nucleus with a large charge Z,
when the energy level of the Κ electron drops to a value
— me?.

It is known that the Dirac equation in the field of a
pointlike nucleus becomes meaningless at Ζ > Zc = 137.
In fact, the ground-state energy is given by (#= m = c = 1)

and becomes imaginary at Ζ > 137. Allowance for the
finite dimensions of the nucleus eliminates this difficulty.
At Ζ «170, however, the energy of the lowest state
reaches a value ω0 = — 1 and the pair energy becomes
equal to zero, i. e., the vacuum becomes unstable to the
production of electron-positron pairs. Thus, atZ=Ze

the Dirac equation loses the meaning of an equation for
one particle. If the Κ shell is not filled, two pairs can
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be produced; if the Κ shell has one electron, then ac-
cording to the Pauli principle only one pair can be pro-
duced; finally, if the shell is filled the vacuum remains
stable notwithstanding the appearance of a level ω0 = - ι.

As shown in1*3, at Ζ >ZC the vacuum is altered—the
ground state corresponds to a state with charge - 2e.
At Ζ -Zc«Ze this charge is distributed in space with a
density close to the charge distribution in the Κ shell for
Z = ZC — Q, i.e., the charge is localized near the nucleus.
The transition to this state is the result of production of
one or two electron-positron pairs, with the positrons
going off to infinity and the electrons distributed near
the nucleus to form a new vacuum state.

The foregoing picture of the restructuring of the elec-
tron-positron vacuum near Ζ =ZC was obtained without
allowance for the electron-positron interaction. Yet at
Ζ κ Zc the problem has degeneracy. In fact, in the case
of an unfilled shell, if the interaction is not taken into
account, the following three states have the same en-
ergy: 1) bare nucleus, 2) nucleus with one pair, 3) nu-
cleus with two pairs. For the case of one electron on
the Κ shell, two states have the same energy: 1) one
electron, 2) one electron + a pair. The filled-shell state
is not degenerate. Allowance for the interaction lifts
the degeneracy and influences strongly the system level
positions at Z*Zc.

i5:l

The physical meaning of the results is the following:
As shown inC21], at Ζ >ZC the positron acquires a long-
lived quasistationary state described by a wave function
close to the φ function of the Κ electron. The interaction
mixes the aforementioned degenerate states, with the
pair corresponding to an electron on the Κ shell and a
positron in the quasistationary state.

The onset of a positron quasistationary state is very
natural. If we write down the particle equation of mo-
tion in the form of an equivalent Schrfldinger equation,
then the effective potential in this equation isC 3 ]

where V is the usual potential and ω is the particle en-
ergy. For Bose particles this is an exact expression
(see Sec. 1 of Chap. Π), and for Fermi particles it in-
cludes also small spin corrections. Thus, at any sign
of the potential V (i. e., at any sign of the particle
charge) the effective potential U is negative at large V,
meaning attraction.

For a positron of energy ω χ 1, the effective potential
is the same as for an electron with energy ωχ- 1—an
attraction region near the nucleus and a potential bar-
rier outside this region. At Ζ =ZC the quasistationary
level of the positron has an energy ω = 1, so that allow-
ance for the attraction to the electron located on the Κ
shell suffices to obtain a bound electron-positron pair
state. Indeed, allowance for the interaction leads to
pair bound states in the interval AZ = Ζ — Zc ~ 1, and
these states go over into a quasistationary state with
further increase. If the Κ shell is filled, then at Ζ >ZC

the electrons go over, as it were, into a negative con-
tinuum—a vacuum Κ shell is produced.

The state with one electron in the Κ shell goes over
at Ζ > Zc into a state with one electron in the vacuum.
In the language of the "new" vacuum this is the ground
state (two electrons in the vacuum) plus a wave packet
that describes a hole in the new occupation. The state
with unfilled shell corresponds to two holes in the new
occupation.

Since the width of the quasistationary state is small
in comparison with the interaction energy, all the states
with different numbers of electrons in the vacuum shell
can be regarded as stationary, and any of them can be
called the vacuum state.

None the less, the "old" vacuum has a physical ad-
vantage over the "new" one, its somewhat higher energy
notwithstanding. A hole in the "new" vacuum does not
always denote the presence of a positron. Thus, for ex-
ample, a state without a charge on the vacuum Κ shell,
which corresponds to two holes in the "new" vacuum,
does of course not mean that two physical positrons are
present. A physical positron is a positively charged
particle produced in the "old" uncharged vacuum. Two
positrons should interact with each other, whereas two
such holes in the "new" vaccum do not interact.

Thus, after the vacuum has acquired additional states
coming from the discrete spectrum, just as the single-
particle analysis with the aid of the Dirac equation is in-
validated, the hole interpretation of the positron be-
comes modified.

The state with two electrons on the vacuum Κ shell
and a positron in a quasistationary state does not reduce
to the state of one electron on the Κ shell.

The change of the interpretation of the positron as a
hole in the vacuum occupation applies to only one state
in the continuum of the vacuum states, and is therefore
practically immaterial. The only danger is that accord-
ing to the hole interpretation the positron quasistationary
state corresponds to the same distribution over the neg-
ative states of the continuous spectrum as for the elec-
of the vacuum Κ shell, and it may seem on the face of
it that the appearance of a positron is equivalent to the
vanishing of an electron. This feeling contradicts the
physical picture of a positron as an independent particle
that can be in its own quasistationary state regardless
of the charge of the vacuum Κ shell.

The existence of a quasistationary state of a positron
at any charge of the vacuum Κ shell is verified by a
Gedanken experiment of positron scattering by a nucle-
us. The existence of the positron quasistationary state
is determined only by the depth of the effective potential
hole and manifests itself in the form of a pole in the
scattering amplitude at any occupation of the vacuum Κ
shell.

These statements will made particularly clear later,
in the analysis of Fig. 2, which shows how the electron
levels of the vacuum shell appear. Simultaneously with
the appearance of these levels, positron quasistationary
states come into being and exist Independently of the
occupation of the vacuum shell.

That the primitive hole interpretation of the positron
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is incorrect can be seen also from the following reason-
ing. Consider the state "electron on a vacuum Κ shell
and a positron in a quasistationary state." When account
is taken of the interaction, the electron moves in a field
having a charge somewhat larger than that of the nucle-
us, owing to the influence of the positron charge. On
the other hand, because of the influence of the electron,
the positron is acted upon by a field having an effective
charge smaller than that of the nucleus. This shifts the
position of the maximum of the distribution over the
continuum functions of the electron and of the holes cor-
responding to the quasistationary state of the positron.
As a result, the positron state corresponds to holes in
another vacuum that has a nuclear charge different from
that of the electron vacuum. The maximum in the dis-
tribution of the holes corresponding to the positron state
is shifted relative to the electron maximum by an en-
ergy Δω much larger than the width of the distribution
(at Δω » γ).

Thus, to prevent errors, it is necessary to use the
language of the old vacuum. In this language a state
with a charge can have two variants: 1) one electron on
the vacuum Κ shell, 2) two electrons on the Κ shell plus
a positron.

The state due to the unfilled shell is realized in three
ways: 1) no electrons in the vacuum, 2) one electron
and one positron), 3) two electrons and two positrons.
Two states in the first case and three states in the sec-
ond have nearly equal energies if the wave function of
each of the positrons makes up a packet corresponding
to the quasistationary state.

Thus, as Ζ >ZC the problem becomes degenerate. To
lift the degeneracy it is necessary to solve the problem
of the electron-positron field with interaction taken into
account.

Allowance for the interaction alters little the coordi-
nate dependence of the wave function that describes the
positrons in the cases listed above, but alters substan-
tially the distribution in the eigenfunctions in the wave
packet. This physical picture will serve as the basis
for the method developed in the next section for taking
the electron-positron interaction into account.

In the case of an unfilled Κ shell, three levels appear
with a spacing of the order of e2 and independent of Ζ
-Ze (in first order in e2). These levels describe a sys-
tem of 0, 1, or 2 pairs. In the case of a if shell with
one electron, two levels appear with a spacing of the
same order. Accordingly, when two heavy nuclei come
close together, positrons are emitted with an energy
spectrum that has several maxima corresponding to
transitions between the indicated split states.

2. Distribution of the vacuum charge near supercharged
nuclei

We see that at Ζ > Ze the electron-positron vacuum is
so altered that the ground level of the system corre-
sponds to a state with charge - 2e.

In the case Ζ » Ze the ground state of the vacuum cor-
responds to a large number of electrons whose charge

cancels almost the entire charge of the nucleus. In so
far as such a charged vacuum is present in the ground
state of the system, it is natural call this phenomenon
electron condensation, to correspond with the analogous
phenomenon for Bose particles.

The distribution of the vacuum charge around a nu-
cleus with a charge Ζ » Ze can be easily determined,
since in this case the solution of the Dirac equation can
be obtained in the quasiclassical approximation, and the
electron density is calculated by the Thomas-Fermi
method." 1

It has been shown that the electron density in a poten-
tial well with depth V ( r ) » 1 is given by

n(r) . V 3 ( r ) (1 1)

At sufficiently large Ζ (Ze3» 1—"supercharged nucleus")
the vacuum electrons land inside the nucleus in such a
way that the cancel completely the charge of the protons
inside the nucleus, leaving an uncompensated charge only
in a narrow layer near the surface of the nucleus.

As we shall see, electron condensation plays an es-
sential role in the investigation of the possibility of for-
mation of a charged π condensate and in the calculation
of the energy of supercharged nuclei.

Allowance for the electron condensation is essential
in the investigation of the interaction between charged
particles at ultrasmall distances, and may perhaps ex-
plain the nature of the electrodynamic divergences or
help eliminate them.

3. Dielectric constant of vacuum in strong nonuniform
fields

The polarization of vacuum in strong field was already
investigated long ago. t 2 2 ] In a strong electric field, al-
lowance for the perturbation in the motion of the elec-
trons and positrons of the vacuum yields, besides the
usual expression for the energy density E2/8rr, an ad-
ditional term (at eE » 1)

The polarization vector is

The last term can be omitted if ineE» 1, and conse-
quently the dielectric constant is

- ~ \neE.
Oil

(1.2)

This expression was obtained under the assumption that
the field varies slowly in space, namely, it changes lit-
tle over the Compton wavelength of the electron or, in
our units, E?/E«\.

We shall show that the expression (1.2) is valid in
sufficiently strong fields even if Ε varies very strongly
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from point to point.
is

The criterion that we shall derive

(1.3)

The point that in the earlier derivation the authors ob-
tained a single expression for arbitrary field, while for
their expression to be valid in weak fields it is actually
necessary to satisfy the condition E1/E« 1. This is a
very frequently encountered case, when the restrictions
imposed by the method of obtaining the result become ap-
plicable to result itself. Assume that some physical
result has been obtained theoretically for parameter
values £< ξχ. If the characteristic values of ξ over which
the investigated quantity changes are ξ ~ ξ2 » ξ1} then the
result will be valid also for values of ξ much larger than
those assumed in the derivation. In more formal lan-
guage: the result obtained at ξ < ξχ can be analytically
continued into the region of large ξ up to values that are
determined by the nearest singular point of the function
under consideration. We proceed now to determine the
region of validity of (1. 2). Let the external field applied
to the vacuum be determined by charges with density
PoM = eono(r), where e0 is the bare charge. Then the
potential is determined by the Poisson formula

where n-^r) is the additional particle density resulting
from the polarization of the vacuum in the field. We
have defined the potential V as the electric potential mul-
tiplied by <%. We express wt(r) in the form

e\ jn°(p)p2dp.

n,(r)= jn(r, r')V(r')dr·. (1.4)

In weak fields Π(r, / ) = n ° ( r - / ) . In addition, since a
constant increment to the field cannot change the ob-
served quantity, we have

j II°(r —r')dr' = 0.

This condition is the simplest consequence of gauge in-
veriance, i. e., the invariance of physical quantities
under a gauge transformation of the four-dimensional
vector potential

A' — A -J- " '
V ' S i

We consider first nt(r) in weak fields. Expanding V
in a series about the point r, we obtain

We have used the fact that Π0 depends only on the abso-
lute value of the vector p. Substituting in the Poisson
equation, we obtain

where ε0 is the dielectric constant of the vacuum in weak
fields:

Since the electric fields are so defined that the dielec-
tric constant of vacuum in weak fields is equal to 1, we
must introduce an observable (in weak and slowly vary-
ing fields) electron charge

(1.5)

The simplest dimensional analysis of the quantities in
(1.4) shows that Π°(ρ) has the dimensionality 1/Z,5. Since
the Compton length 1/m can not enter in the problem at
p « l , it follows that

Π(Ρ) =
A (1.6)

At ρ » 1 the value of Π°(ρ) must decrease even more rap-
idly (calculation yields Π°(ρ)~ e'2").

Substitution in (1.4) yields an integral that diverges
at the lower limit

We have set the lower limit of the integration at r0,
which is the minimal distance at which the simple ex-
pression (1. 6) is still valid. After introducing the ob-
servable charge in place of the bare e0, the quantity r0

drops out of the final expression. Using for A the nu-
merical value obtained by calculation, we obtain from
(1. 5)

(1.7)

This is the well-known formula for the charge renormal-
ization.

Let us return to the case of strong fields. Formula
(1. 4) can be interpreted in the following manner: At
the point r' the field produces a virtual pair that contrib-
utes, as it moves in the field, to the charge density at
the point r. It is clear that if the distance R = I r - r ' l
is small compared with the curvature radius Rc of the
particle trajectories in the field, then the particle mo-
tion can be regarded as free. Consequently at ρ « R,.
we have U(r, r') = Tl°(r-r'). In the opposite case ρ » R c

the particles produced at the point r ' will not reach the
point r at alL but will be turned away by the field, so
that at ρ » Rc we have Π (r, r') = 0. It remains to esti-
mate Rc. This quantity is determined by the condition
that the change of the momentum in the field be of the
same order as the momentum itself:

eERc

Momenta that are significant at Ι Γ - r'l = Rc are of the
order of p~ \/Rc. As a result we get

Since Rc is the only length that characterizes the motion
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. of the particles in strong fields, it follows that formula
(1.2) is valid when the fields change little over this
length:

. &)'<·*•

when ίζ « r a, which corresponds to the condition Q » 1 .
To have an interpolation formula suitable at Q S 1 we re-
place Q under the logarithm sign by Q +1. At Q «1 we
obtain

The relations obtained by us make it possible not only
to estimate the region of applicability of expression
(1.2), but also to derive this expression.u*1

Introducing the observable charge, we get

where ήχ is given by

». W= j Π(ρ) V(r + p) dp- j Π" (p) p2 dpAV.

Using the "locality" property of n(r, r'):

Π(Γ Γ')-ίΠ 0 ( Γ-Γ 'Κ l ' -

we readily obtain

which leads directly, after introducing the numerical
value used above, to the expression

\V- «(£)

with a dielectric constant that coincides with (1.2).

4. Interaction of point charges at short distances

Expression (1.2) for the dielectric constant makes it
possible to determine directly the deviations from Cou-
lomb's law.

Consider a nucleus of arbitrarily small radius, having
at infinity a charge Z{Z>\, Z#«1). The charge in-
side the small radius will be larger than Z, since the
charge is screened in a dielectric medium.

In the absence of external charges we have

div D = 0,

where D is the induction, hence

1 d / , dV \ -

Introducing the charge Q(r) inside a sphere of radius r,
multiplied by e, we obtain dV/dr= Q/rz and tQ = const.
Since Q~Ze at r £ 1, we get (seeC83i)

Our expression for the dielectric constant can be used
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This expression coincides with the formula obtained in
quantum electrodynamics for the corrections to Cou-
lomb's law. At very short distances, whenQ»l, it is
necessary to take into account in the Poisson equation
for the potential V, the role of the electrons that con-
dense in the vacuum near the positive charge. We have
seen that this condensation sets in at Ze2 > 1, and in our
case, when Ze2 < 1 at infinity, the condensation will take
place near the external charge in regions where Q>1.
As a result, the equation for the distorted Coulomb po-
tential, with (1.1) taken into account, takes the form

d
dr

V (1.9)

The appearance of condensed charges is not taken into
account in the electrodynamic calculations and may lead
to substantial changes of the interaction at ultrashort
distances.

II. BOSONS IN STRONG FIELDS

1. Instability of the boson vacuum in external fields

We have seen that the restructuring of the fermion
vacuum in strong fields is restricted by the Pauli prin-
ciple.

A much more substantial alteration of the vacuum takes
takes place in the case of Bose particles, when there is
no Pauli exclusion and many particles can be produced
in the same state. The alteration of the vacuum is lim-
ited in this case only by the interaction between the par-
ticles. Once a sufficient number of particles is accu-
mulated in a "dangerous" state, further particle pro-
duction becomes energywise unprofitable because of the
repulsion between the particles. We note that in the
case of attraction between the Bose particles, the vac-
uum will be unstable even without an external field. In-
deed, at a sufficiently large particle density, the en-
ergy loss to particle production (me8) is offset by the
gain due to the attraction, and the system energy de-
creases with further particle production.

We consider first the case of a scalar external field.
The boson energy U in an external scalar field is de-
termined by solving the equation

Δφ + (o)a — 1 + U) φ = 0;

we use here the units K = m = c=\.

(2.1)

The vacuum instability manifests itself in simplest
form in the case of a scalar field in the form of a broad
square well. The influence of the external field in this
case reduces to replacement of the particle mass (c= 1)
by an effective mass

= !-£/„,
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where Uo is the depth of the well.

When the effective mass vanishes, instability sets in.
When the depth of the well is increased further, the
problem becomes meaningless,because the lowest boson
energy

becomes imaginary. The boson field will increase until
the repulsion between the particles makes further in-
crease of the field energywise unprofitable. An anal-
ogous instability sets in also in an electric field. In
this case the Klein-Gordon-Fock equation takes the
form

Δφ + [(ω - F)2 - 1] φ = 0. (2. 2)

We rewrite this equation in the Schrfidinger form

Δφ + 2(£ — U) φ = 0,

where the energy Ε is equal to

Ε. _ ω'—1

and the effective potential U is connected with the elec-
tric potential V by the relation

7=*v*+aV. (2.3)

The first term corresponds to attraction at any sign of
the particle charge. This explains the surprising fact
that in a deep potential well, when the potential tends
rapidly enough to zero at infinity, a bound state is pro-
duced not only for a particle for which the potential V
corresponds to attraction, but also to a particle of op-
posite charge, for which the potential (- V) corresponds
to repulsion. In a broad rectangular well, the lowest
energy is determined, accurate to terms ~ 1/Λ8, by the
relation

(ω + νογ = ι,

where Vo is the depth of the well. It follows from this
relation that the boson energy vanishes at Vo = 0, and
reaches a value - 1 at Vo = 2. At the latter value of Vo

the antiparticle energy is equal to 1. Consequently, in-
stability with respect to production of single particles
sets in at Vo= 1, and pair production becomes possible
at Vo= 2. Of course, production of single pairs is pos-
sible only if the boson charge can change. We consider
by way of example the case of pions in a well that is
produced by protons, with the chemical potentials of the
neutrons and protons identical (this corresponds to equi-
librium relative to β decay). Then at VQ= 1 the pion en-
ergy vanishes and instability sets in relative to the re-
action

n->- ρ + jr.

In this case the alteration of the vacuum consists of

pion accumulation. The equality of the chemical poten-
tials, μπ = βρ, will be restored on account of the β de-
cay

+ V,

if the electrons can leave the system. Such a case might
be realized in supercharged nuclei if they exist (see Sec.
5 of Chap. ΙΠ).

Greatest interest attaches to restructuring of the pion
field in a nucleon medium.

We regard the nucleon medium as the source of the
field acting on the pions. The pion energy as a function
of the momentum k can be obtained from the known re-
lation (ti=c = m,= l)

ω» = 1 + A:2 - 4nnF (ft), (2.4)

where w is the nucleon density and F(k) is the amplitude
for the scattering of a pion by a nucleon through zero
angle. The first two terms yield the energy of the free
pion, and the third term constitutes the effective field
that acts on the pions in the nucleonic medium. For
simplicity, we omit the isotopic indices. The sign of the
scattering amplitude F corresponds to attraction for both
IT* and π" mesons (F>0), and therefore at sufficient
density η the frequency can vanish, meaning instability
of the pion field. However, F{k) is small at small k and
instability sets in at k = fc0, which corresponds to the
maximum value of F(k). The instability condition is ω2

= 0 or

When the condition ω2 = 0 is satisfied for any one of the
three pion types, a pion field of the corresponding type
will accumulate at the corresponding level {k = k0). The
relation (2. 4) does not take into account the possible ex-
citation of the nucleonic medium by the moving pion—the
nucleons are regarded as an external field (the "gas"
approximation).

2. Motion of pions in a nucleon medium. Use of the
methods of the Fermi-liquid theory.

In the preceding section we regarded the effect of the
nucleon medium on the pion motion as the action of a
certain effective field (formula (2. 4)).

This approach gives only the qualitative picture. For
more exact calculations we must take into account the
possibility of virtual excitations of the nucleon medium
by the moving pion.

To this end we write down the pion energy as a func-
tion of the momentum in the form

ι Π (ft, ω), (2.4')

where Π(£, ω) (the "polarization operator") is determined
both by terms of the type (2.4) and by terms that take the
possibility of excitation of the nucleon medium into ac-
count. We proceed to discuss the method of finding the
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polarization operator.

In the case of an electromagnetic field, the analogous
quantity n ( r ) (k) is directly connected with the dielectric
constant t(k, ω), inasmuch as in this case

(0* = -

This analogy i s frequently used to obtain, in the case of
pions, a formula s imi lar to the Lorenz-Lorentz formu-
l a . 1 2 4 1 It must be assumed here that the amplitude of the
virtual ττΝ scattering (i. e . , off the m a s s shell) i s δ-like
and does not differ from the r e a l amplitude. These a s -
sumptions certainly a r e not satisfied in nuclear matter
with nuclear density. Yet, as we shall see, there exists
a consistent method of determining the polarization op-
erator, free of these res t r ic t ions . Of course, the ex-
act calculation of the polarization operator in a medium
of strongly interacting part ic les i s an unsolvable prob-
lem. It i s easy, however, to separate the slowly vary-
ing quantities, which can be regarded as constants and
determined from experiment, and express them in t e r m s
of other quantities that vary significantly in the region
of interest t o us, in analogy with the procedure used in
Fermi-l iquid t h e o r y . t M This method i s based on the
fact that all the virtual processes that determine U(k, ω)
can be divided into two c lasses : those occurring at d i s-
tances smal ler than or of the order of l/mN, and those
occurring at distances on the order of unity in pion units.
P r o c e s s e s of the former type, in a medium with a den-
sity that i s low in comparison with mj, ~ 300, proceed
just a s in vacuum, whereas processes of the latter type
are appreciably distorted by the medium. Thus, for ex-
ample, the local pion-nucleon interaction vertex, a s can
be verified by estimating the graphs that enter in it, i s
determined by the small distances ro~ l/mp or r o ~ l/w»ir,
and consequently the ^ - i n t e r a c t i o n constant in a medi-
um of nuclear density differs little from the interaction
in vacuum.

Let us make a few r e m a r k s concerning the graphic
calculation method. Graphs or diagrams constitute p r i -
mari ly a convenient method of il lustrating the occurring
processes . They can be given the meaning of quantita-
tive relations by assuming that each graph descr ibes a
definite t ransi t ion amplitude. Then, according to the
superposition principle, the total transit ion amplitude
is the sum of all the possible physically different ampli-
tudes and, in addition, any amplitude can be represented
as a sum over all the intermediate states of the products
of the amplitudes of the transit ion from the initial state
to an intermediate state and from the intermediate to
the final state, integrated over all the intermediate in-
stants of t ime. If we introduce time-independent ampli-
tudes, then this statement corresponds to the known
quantum-mechanical formula

< 2 · 5 >
Any process, no matter how complicated, is determined
by consecutive use of several simple amplitudes, which
can be obtained once and for all by comparing the corre-

sponding element of the graph with perturbation theory.
Thus, the graphic method in the form in which we shall
use it constitutes a simple utilization of the formulas of
ordinary quantum mechanics and calls for no additional
knowledge. Thus, for example, the pole part of the for-
ward scattering amplitude of a ff*-meson by an immobile
neutron can be written in the form

in the intermediate state there is a proton with momen-
tum k. According to (3.1), this amplitude is equal to

where Γ is the amplitude for the absorption of the pion
by a nucleon, ω is the pion energy, and E(k) i s the nu-
cleon energy. In the case of pole scattering of a π~-
meson by a neutron, the only possible diagram is

which corresponds to the fact that the final meson is
emitted first, after which the initial meson i s absorbed.
The amplitude in this case is

I r |*
—ω+ntjr —

(2.6)

More complicated diagrams will be explained as they
appear.

We proceed now to consider the method of separating
the essential diagrams and to the calculation of the po-
larization operator.

The increment contributed by the medium to the square
of the pion energy is expressed in the gas approxima-
tion in terms of the zero-angle scattering amplitude in
the energy normalization (Formula (2.41)). Since the
polarization operator is in fact this increment, we have
in the gas approximation

Π (Α, ω) =. — innF = nA (fc, ω),

where A = — 4nF is the scattering amplitude in the energy
normalization. The normalization of the amplitude A
is determined by the fact that in the Born approximation
A becomes the volume integral of the energy of the per-
turbation due to one nucleon. To get rid of the gas ap-
proximation, it is necessary to introduce in place of the
total density of the nucleons the Fermi distribution den-
sity nip) for the neutrons and protons and to take into
account in the calculation of A the Pauli principle and
the interaction between the nucleons in the intermediate
states. As a result, the amplitude A itself turns out to
depend on the distribution nip).

Before we proceed to the calculation of Xl(k, ω), let
us ascertain which processes determine the (π, Ν) scat-
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tering amplitude in vacuum. It is known that the (π, Ν)
scattering at low pion energies ω~ 1 is described with
good accuracy by the following processes:

A = (2.7)

The first of the graphs corresponds to one nucleon in
the intermediate state (the "pole" term of the scattering).
The second diagram corresponds to a transition to the
N*^ resonance (the resonant part of the scattering). We
shall show that both terms describe Ρ scattering. The
last of the terms in (2.7) is S scattering.

Besides the contribution from the remote resonances
via the S channel, the S scattering contains, in particu-
lar, a term corresponding to N* -resonance exchange in
the u channel. Since this term is due to intermediate
states that have large 4-momenta, it can be regarded as
local and assumed to be independent of the pion momen-
tum. The S scattering can then be represented by a
point. For the same reason we use also points to repre-
sent the vertices {ΝπΝ) and (NvN*), which can be easily
seen to contain 4-momenta mNc in the intermediate
states. However, the contribution to the Ρ scattering is
not restricted to these processes, and furthermore the
S scattering is substantially changed on going off the
mass shell. We shall determine below the additional
contribution made to the scattering amplitude by these
factors from the experimental data on vN scattering, us-
ing the low-energy theorems of current algebra, which
make it possible to determine the changes in occurring
in the amplitude on going off the mass shell.

The (NirN) vertex is written in the form (see, e. g. ,lzsl)

Γ (ΝπΝ) = /ψννν5ταψ3νφα, (2.8)

where φ i s the wave function of the nucleon, yv a re Dirac
matr ices , τα a r e the nucleon isospin matr ices, and φ α

are the components of the pion field. The fields of the
π*, π", and π° mesons a re connected with φ α by the r e -
lation

φ < ± ί φ 2 0

The constant / in (2. 8) equals g/2mK> where g i s a di-
mensionless interaction constant; gz/4v~ 14. 6 (in pion
units, mN = 6.1 a n d / = 1 . 0 ) .

For nonrelativistic nucleons, expression (2. 8) simpli-
fies to

Γ (NnN) « /ψΧτ,,ψναφβ; (2. 9)

σα i s the nucleon spin matr ix .

As follows from (2.9), the vertex is proportional to
the pion momentum, and the first te rm of (2. 7) descr ibes
Ρ scattering. Since the spin of the N* isobar is 3/2
(the resonance 2V*3(1232)), the second t e r m also c o r r e -
sponds to Ρ scattering and its vertex is also proportion-
al to the wave vector of the pion; the proportionality

coefficient can be obtained quite accurately from the
cross section for the scattering of pions with energy
close to resonance.

Accordingly, for the third term of (2.7), which de-
termines the irN- scattering amplitude, the polarization
operator at pion 4-momenta ω~ 1, and k~l, as will be
shown, is determined in a medium by the same ττΝ-
scattering mechanisms. The pole or resonant interac-
tion of the pion with the nucleons of the medium can be
described in two ways: 1) scattering of a pion with a
transition of the nucleon either into a state lying above
the Fermi boundary or into an isobar; 2) the production
of a nucleon or an isobar and the appearance of a hole
in the nucleon Fermi filling. The second approach is
for many reasons more convenient than the first and is
in fact the one used in the many-body problem and in the
Fermi-liquid theory whose results we shall use.

Thus, the polarization operator is represented by a
sum of three diagrams

Π (ft, ω) =

= ΠΒ

(2.10)
Lines with arrows directed to the left and to the right
represent holes and particles, respectively. The shaded
triangles represent vertices that take into account the
NN and NN* correlations in nuclear matter. Expres-
sions connecting these vertices with the constants of the
NN and NN* interactions will be given later on. The
first term, designated T1R, corresponds to production of
a nucleon hole in the Fermi filling and the isobar N*3

(1232) (resonant term"). The "pole" term Π^ corre-
sponds to excitation of a particle-hole type in the medi-
um. The third term takes into account the S scattering.
All the remaining diagrams that have no parts connected
by a particle and hole or by a hole and isobar are de-
termined by the large 4-momenta of the intermediate
states {~ms) and either make a small contribution, or
else differ little from the corresponding vacuum graphs
(which have already been included in the observed pion
mass or, finally, are contained in the effective mass
m* of the nucleon, which will be used below (m* «0.9
XmN).

In other words, these graphs are characterized by
spatial dimensions ~ l/mN and are not greatly distorted
in nuclear matter, where the distance between particles
is of the order of m*. These graphs depend little on the
4-momenta of the input ends, since we are interested in
4-momenta ~mt. They can therefore be replaced by
constants, which should be obtained from experiment.

As is well known, the same idea is used in Fermi-
liquid theory to introduce the constants that determine
the interaction near the Fermi surface, and also to in-
troduce the effective mass and the effective local
"charge" of quasiparticles in an external field.C9:l

By way of illustration we estimate now the pion-mass
error resulting from the fact that the incoming pion
ends in Π are taken not on the mass shell, but at)? — n&,
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= Π~ m*. Since the vacuum part of the polarization op-
erator changes significantly at momenta on the order of
mN or on the order of the mass of the corresponding
resonance, it follows that

# = 0 . 7 - 0 . 8 ^ — (0.4+0.2C02) ω2.

We see that this error is small.

Thus, the use of the methods of the many-body prob-
lem makes it possible to separate and calculate diagrams
that vary strongly in the range of variables of interest
to us, and replace the remaining diagrams by constants
obtained from experiment.

Analysis of the diagrams (2.10) shows that all but the
pole graph are determined by high energies in the inter-
mediate states. The contribution of these diagrams
(which we shall call local) to the polarization operator
can therefore be written in the form (2.6):

Π toe №. ω) = ηλ (k, ω),

where A is the amplitude of the forward vN scattering in
the energy normalization after subtracting the pole term
of the amplitude. Allowance for interaction (say, NN*)
in the nuclear matter reduces to multiplying the ampli-
tude by a factor that varies in the range Γ » 0.8 -1.2,
depending on the assumptions made concerning the char-
acter of the NN* interaction. In estimates we can put
Γ = 1.

The amplitude A enters in the problem at ω8 Φ1 + kz,
i.e., off the pion mass shell.

Let us demonstrate the determination of the amplitude
•ιϊ (k, ω). We denote the incoming and outgoing 4-momen-
ta of the pion and the nucleon by q, <f and ρ, p' and in-
troduce the standard symbols

Let the nucleon be on the mass shell p2 =p'z = m2. The
scattering amplitude can be regarded as a function of
the variables t, ν = (s - u)/4m = ω+ {t/Am) and ν = {/f + q'z)/
2, where ω is the pion in the 1. s. On the mass shell
i. e., at q* = q'z = 1 (v = 1), the scattering amplitude was
obtained from an analysis of the experimental data at
k~ 1 and ω~1 with the aid of the dispersion relations. t2e]

Since the amplitude Ά does not contain terms that have
singularities near the mass shell, it can be expanded in
powers of {v -1). Confining ourselves to the amplitude
increment linear in (v - 1), we get

4 = ifmass she. +O.(v—l).

To determine α we must use the "consistency condition"
derived in current algebra (see the review11211). Accord-
ing to this condition A should vanish at φ = 1, q' — 0, i. e.,
at t = 1, ν = 0, v = \. It is this condition that determines
the constant a.

The result is the following expression for the zero-
angle scattering amplitude (i = 0):

(2.11)

where A* and A" are the isotopically symmetrical and
isotopically_antisymmetrical parts of the scattering
amplitude (A* and A" are respectively the half-sum and
half-difference of the amplitudes of v" and rr* scattering
by a proton or v* and if scattering by a neutron).

The scattering amplitudes, and accordingly the polar-
ization operators, for the t and jf-mesons are inter-
connected by the isotopic invariance condition together
with the crossing-symmetry requirement. Crossing
symmetry means that any transition amplitude (and, in
particular, any polarization operator) should remain un-
changed if we change from the particle to the antiparticle
and simultaneously reverse the signs of the energy of
the momentum (absorption of a particle with 4-momen-
tum k is equivalent to production of an antiparticle with
momentum -k).

The following relations are obtained:

Π<π+·")(ω, ^ = Π<π"·"»(-ω, _ k ) = n ( " " ' n ) ( - w , k),

Π(π*·")(ω, ί) = η^·ν)(ω, k).

With the aid of (2. 6) we obtain

1 1 loc =

= < " » - np>A

(2.12)

Let us show now how to determine the polarization-
operator pole part that corresponds to the second graph
of (2.10). It is easy to obtain for the scattering of a ir*
meson in a neutron medium, using (2. 5) and (2.9),

f ———^HlMJlE

where Γ (ω, k) is a vertex defined by the sum of graphs

(ω, k) =

where the shaded rectangle denotes effective interac-
tion in the nucleon medium.

Sums of this type are expressed in193 in terms of the
nucleon'-nucleon interaction constants and universal
functions of k and ω.

Expression (2.13) becomes exact if the intermediate
state is taken to mean not the state of the free nucleon
and free hole, but the state of the corresponding quasi-
particle and quasihole. By the same token, account is
taken of all the graphs that distort the motion of the nu-
cleon in the medium. The changeover to quasiparticles
complicates the E{p) dependence, but for energies not
very far from the Fermi energies, the excitations can
be characterized by two terms—the Fermi and the quasi-
particle.

In a medium with N~ Ζ these quantities are known
quite well from nuclear experiments (m* «0. 9m, e f=45
Mev).
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We present by way of illustration the pole part of the
polarization operator for the case N=Z (the polariza-
tion operator for an arbitrary ratio Z/N was obtained
in t 2 0 3):

m*pF Φ (k, ω)

, ω)
(2.14)

where g" = gm — gnp, gm, ^"'-are constants that character-
ize the spin-spin interaction in the nucleon medium. The
constants g"" and gnp were obtained with the aid of the
theory of finite Fermi systems from nuclear experimen-
tal data (§•""« 1. 5, gnp*-0.2, g-'«1.7).

The function Φ(&, ω) is quite complicated in form
(seeCe:1). We present its value only for k « 2pF:

Φ (Α-, ω) - l - -
hK2

-In ω -\- k (2.14')

3. Separation of pion degrees of freedom. Outline of
consistent theory of nucleon matter

It was assumed in the theory of finite Fermi sys-
tems'-93 that after the particle-hole exchange graphs are
separated the remaining terms of the NN interaction
have are δ-like and can be characterized by several pa-
rameters. This assumption is valid for phenomena in
which the important role is played by sufficiently small
momentum transfers. At momentum transfers ~ 1 in
pion units it is necessary to separate, besides the par-
ticle-hole exchange, also the one-pion exchange. The
remaining part of the interaction is then characterized,
as can be readily verified, by 4-momentum on the order
of )Πχ, and can be replaced by a δ-like interaction at
momentum transfers on the order of unity. As a result,
as shown inC20], the constant g~, which characterizes the
spin-isospin interaction of two nucleon quasiparticles in
the nucleus, is replaced by a function g't(k, ω) of the 4-
momentum (ω, k) transferred via the particle-hole chan-
nel. We have

ΛΤ (A·) •(f.'""-if'"')f=r-r2
* f ω - - ( Ι - ί - - - - Ι Γ ) • (2.15)

Since the considered part of the interaction does not
contain, by definition, any particle-hole graphs, these
graphs must be separated from the pion operator. The
denominator contains therefore the quantity Π' = Π - Π ,̂.

To avoid misunderstanding we note that expression
(2.14) for the polarization operator contains the quantity
g~ and not gt, since the polarization operator, by defini-
tion, does not contain one-pion graphs.

The one-pion exchange graphs exert a decisive influ-
ence on the matrix elements of the effective field having
the quantum numbers of the pion. As shown in the theory
of finite Fermi systems, the exact matrix element of
the single-particle transition under the influence of the
field Vo in the nucleus reduces to a matrix element of
the effective field V produced in the nucleus under the
influence of the field Va. If the external field Vo has the
quantum numbers of the pion, then the field V contains
a pole corresponding to the pion propagator. Near the
critical point, when the pion energy vanishes, the effec-

tive-field matrix element should become infinite. If the
matrix element of the external field is represented in
the form

then the matrix element of the effective field is given by
the diagram

where the wavy line represents the pion propagator in
the medium.

Thus, as a result of the substantial distortion of the
pion propagator in the nuclear matter, the nucleon prop-
agation does not reduce to pair interaction, as is cus-
tomary assumed in the calculations of the theory of nu-
clear matter.

A correct theory of nuclear matter should be con-
structed in accordance with the following scheme: The
one-pion exchange graph is subtracted from the pair in-
teraction of the nucleons in vacuum. The remaining part
of the interaction is included in the Hamiltonian as a
paired NN interaction. Besides this interaction, irN in-
teraction with the vacuum constant / is added to the
Hamiltonian of the system (see the reasoning in Sec. 2
of Chap. Π). In addition, one adds the pion-field Ham-
iltonian, which contains the vacuum πη interaction. Of
course, such a problem involving interacting nucleon
and pion fields cannot be solved exactly. By assuming
that the local quantities in the medium are equal to their
vacuum values, we can greatly simplify the problem and
develop a consistent theory that is suitable up to suffi-
ciently high densities (n<(mK/m,)3n0).

All the AW-interaction graphs except the one-pion ex-
change graph are assumed to be δ-like and reduce to
constants that can be obtained from the vacuum interac-
tion after subtracting from it the one-pion exchange
graph. A one-pion exchange graph but with the pion
propagator distortion in the medium taken into account
is then added to the thus obtained δ-like interaction. The
first task is to express the spin-spin NN interaction in
nuclear matter in terms of its vacuum value and in
terms of the interaction corresponding to exchange of
one distorted pion.

To ensure that we are dealing here not with small
corrections but with a significant modification of the
theory of nuclear matter, we present for the pion en-
ergy the expression that follows from the formulas for
the polarization operator at small k in nuclear matter

ω 2 =1.3 4- α/c2, a = 1-0.4 —

This corresponds to a propagator D = l/[ w2 - (1.3 + ak2)].
Exchange of such a "pion" over distance r » 1 leads to
a nucleon-nucleon interaction that differs strongly from
that in vacuum. By considering elastic scattering of
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FIG. 1.

two nucleons

.Λ -p'-f

corresponding to exchange of one "pion" with q = (0, k
«1), and changing over to the coordinate representa-
tion, we readily obtain

This expression differs from the vacuum value by a
factor κ«νΐ.3/α = 1.5 in the argument of the exponential,
and by multiplication by the factor \/a~ 1.7.

4. Spectra of pion excitations

The pion-excitation spectrum is determined from re-
lation (2.4'), which can be rewritten in the form

ω» = 1 + A1 + n l o c (ft, ω) + (k, ω); (2.4")

We have left out here the isotopic symbols. The quan-
tity n l o c is defined by relations (2.11) and (2.12), while
n^is given by (2.14) and (2.14'). As seen from (2.14)
and (2.14'), relation (2.4") is a transcendental equation
for w(fe).

The theory involves three types of field: pion field,
particle-hole field, and isobar-hole field. For each
pion charge there should therefore exist, in general,
three branches of the solutions of (2.4"). These
branches can be classified in accord with the excitations
into which they go over when the vN interaction is turned
on.

As should be the case of equations that describe rela-
tivistic particles, extra branches of the spectrum arise
in the solution of (2.4") and these should be interpreted
as solutions for the antiparticle taken with a minus sign.
The criterion for the selection of physical solutions with
the quantum numbers of the ir* mesons is the condi-
tion t8·203

can be called resonant. It should be interpreted as a
bound state of an isobar and a nucleon hole. At k = 0 the
excitation energy goes over into the difference between
the isobar and nucleon masses.

The excitation energy of the middle (pion) branch goes
over into the energy of the free pions when the πΝ inter-
action is turned on (ω2 - 1 + fe2).

The lower branch can be called the spin-isospin-
sound branch. As /— 0 it goes over into a spin-isospin-
sound excitation of the nucleon medium, i.e., into an
excitation with symmetry ~ σατβ, where σ and τ are the
spin and isospin matrices acting on the nucleons (these
excitations were considered in t9]).

To clarify things we recall that Fermi systems are
subject to collective excitations called zero sound, which
can be interpreted as bound states of a particle and a
hole. These excitations can be of four types: 1) scalar
type—ordinary zero sound; 2) spin type—spin-density
waves; 3) isotopic type, corresponding to isospinwaves;
4) finally, spin-isospin waves, with the quantum num-
bers of the pion (0", Τ = 1). At η > nc a region with ω2 < 0
appears in the spin-isospin branch, meaning instability
for 7r°-meson and π* π^-pair production. The symbol s
labels the type of branch.

The picture of the spectra in a neutron medium is
somewhat more complicated.

At a density w* much less than the nuclear density w0

x(«5=:0.4n), there is no spin-sound branch. Next, at a
density η = w*(w* » n0) there appears in the spectra of the
π" and π*-mesons a point with άω/dk = — °°, correspond-
ing to vanishing of the pair energy:

at r ω" = 0.

The 7r°-meson spectrum of each of the three branches
is of the same form as in a medium with N=Z. The
spectra of the ν* and if excitations for the neutron me-
dium are shown in Fig. 2. The resonance spectrum is
left out for simplicity.

5. Pion condensation

Let us trace the restructuring of the vacuum after the
instability sets in. For this analysis, it is immaterial
to us in which field the instability has set in. It is only
important that the frequency of some degree of freedom
passes through zero. Inasmuch as the "condensation"
consists in the fact that the field <pft corresponding to
this degree of freedom is strong, we can neglect the in-
fluence of the fields corresponding to all other degrees

A similar condition exists for the 7f-mesons.

Figure 1 shows the excitation spectra obtained for the
case N=Z by numerically solving (2.4"). In this case
all three pion types (if, π", π°) have identical spectra
(isotopically symmetrical medium).

There are three spectrum branches. The upper one

• * *

FIG. 2 .
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of freedom. Then the energy of the condensate can be
written in the form

//= I dr[ (2.16)

At ω2 = 1 +/S·2 and λ = 0, Eq. (2.16) goes over into the
known expression for the energy of a free pion field.
We have introduced phenomenologically the effective
repulsion between the pions in the nucleon medium (,<£?'
= λφ*/4, λ>0).

The interaction between the pions in the nucleon me-
dium is the sum of their interaction in vacuum and the
interaction due to exchange of excitations of the nucleon
medium. The determination of this interaction is a
complicated problem, but near the transition point, when
the field <pk is not very strong, the real itn interaction
takes the form assumed in (2.16) with a dimensionless
constant λ~ 5-10.

Near the instability point, the frequency of the con-
sidered degree of freedom can be written in the form

ω2 = α (rec — re), a > 0 . (2.17)

The quantity a has a simple connection with the polar-
ization operator. At n>nc, w h e n ^ < 0 , a static con-
densate field is produced, and its value can be obtained
by minimizing (1. 5) with respect to ψ\.

Using (2.17), we obtain

(2.18)

The energy S r of the condensate is obtained by substitut-
ing (2.17) in (2.16).

ω* β («-..,)» (2 19)

In the case of a system of large size, R » 1, the fre-
quency squared wf, is negative simultaneously for a
large number of eigenvalues adjacent to the value of k0

for which I u>k I
 2 is maximal.

The minimum system energy, as follows from (2.19)
corresponds to the state ka(\ ωΛ() |

2 is maximal). All re-
maining degrees of freedom will then have positive fre-
quencies. In fact, the coefficient of <p\ in the Hamiltoni-
an consists, after making the substitution φ — <pio + <ph,
of two terms:

ω**=ωίί+3λ<φί0).

It is easy to verify that the second positive term is
larger than I fft 12, and consequently ω£2>0. Thus, the
condensate stabilizes all the degrees of freedom. We
note that this is precisely the scheme used to construct
the Landau theory of second order phase transitions, in
which the free energy was expanded in powers of the
"order" parameter. Corresponding to the phase transi-
tion was the vanishing of the coefficient of the linear
term. In our case the role of the "order" parameter is
assumed by φ ζ and that of the free energy by H. Since

the order parameter φ" increases from zero, we are
dealing with a second-order phase transition.

It is known that the theory of second-order phase
transition becomes much more complicated when account
is taken of the order-parameter fluctuations near the
critical point. Analogously, in the case of our phase
transition allowance for the pion-field fluctuations in
the immediate vicinity of the transition point in the im-
mediate vicinity of the phase transition distorts the sim-
ple results obtained above. A particularly important
role is played by diagrams representing exchange of
"soft" pions, i .e . , ns mesons.

As shown inC2e:l, a long-range pion-pion interaction
sets in near the phase-transition point. As a result,
the effective 4-boson interaction constant Λ may re-
verse sign near the transition point at a density η < nc.
In this case, a first-order transition takes place. As
we shall verify, this phase transition takes place with
a small jump of the amplitude of the condensate field φ ,
and in practice differs little from the second-order
phase transition considered above.

We confine ourselves below to symmetrical nuclear
matter (Z = N).

Let us cite the results of[28J. First to be considered
is the 7J-7T-interaction diagram corresponding to exchange
of two "dangerous" pions:

-*, ~kl -*.

As shown inC28], Λο has a pole near the critical point:

Λ = —λ —

where ωχ = 0.05λ and ω0 = ω(£0) is determined by (2.4')
and passes through zero at the critical point. The dia-
grams Λο must therefore be taken into account near the
critical point in all orders of perturbation theory. Dis-
carding the non-pole diagrams, we obtain for the effec-
tive interaction the expression

Λ = λ 1 — (ω,/ωρ)

Λ reverses sign at ωο= ωλ and with further increase of
the density (decrease of ω0) the system becomes unstable
to a first-order phase transition. This does not change
very significantly the results of the theory in which a
second-order transition is assumed, since fcij is numer-
ically small and leads to a small jump of the condensate
field at the transition point. Even at a slight excess of
density over the critical value the condensate energy
takes the form (2.19), which corresponds to a second-
order transition.

In nuclei (if a condensate exists) this phenomenon be-
comes blurred, in addition, by the fact that, since the
system is finite, the value k = k0 is reached with accu-
racy Ak~ l/R and ω2 ~ 1/Λ2 * 0 even at ω0 = 0.
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The total energy density of nuclear matter can be ex-
pressed in the form

% (n) = %„ (n) + g, (n),

where 8* is the nucleon energy density. According to
(2.19), a jump of the compressibility (a jump of dz /
dn2) takes place at n. If this jump exceeds in absolute
value the compressibility of the nuclear matter prior to
condensation, then the compressibility becomes nega-
tive after the condensation and the system will be com-
pressed until it goes over into a denser stable state.

At densities greatly exceeding the critical value, when
the pion field becomes strong enough, the simple ex-
pression used in (2.16) for the effective vn interaction
is no longer valid. The criterion is the ratio <p/kvF.
With further increase of the pion field reaches a limit-
ing value φ ~ 1 (in pion units) and the growth of the mod-
ulus of the condensate energy slows down.

The determination of the condensate energy at high
densities is a very complicated problem that has been
solved only for a condensate field assumed to have the
form of a traveling wave.

The interaction of nucleons with a pion field in the
form of a traveling wave was first considered in c l 2 ' 1 3 : i .
In this case the interaction mixes only two states: a
neutron with momentum p and a proton with momentum
p — k, where k is the wave vector of the rr'-meson field.
Therefore the determination of the nucleon energies in
the pion field reduces to a solution of a quadratic equa-
tion. Knowing the nucleon energy we can find the con-
densation energy for an arbitrary amplitude of the pion
field. However, a model of this type is quite far from
the real conditions. Account must be taken first of the
vacuum interaction of the pions and of the change of the
irN interaction in the presence of a pion field, which fol-
low from the Weinberg Lagrangian cited above (seeC27]).
It is necessary next to account for all the changes that
occur in the τπι interaction in the nucleon medium, and
finally, allowance must be made for the influence of the
N* resonance. We have seen that the allowance for
these processes is a complicated problem even in the
case of a weak pion field.

The calculation of the energy of a strongly developed
condensate, with the N* resonance and the nucleon cor-
relation taken into account, was made possible by stud-
ies'-17' l e ] in which the chiral symmetry approximation
was used and N* was described with the aid of the quark
model. Analytic expressions are obtained only in the
case of limiting fields.

III. PHYSICAL CONSEQUENCES OF PION
CONDENSATION

1. Condensation in homogeneous nucleon matter and
neutron stars

In a medium with N~Z, all three types of pions are
under identical conditions (isotopically symmetrical me-
dium), and the condensation sets in simultaneously for
the ir*s, n's and π° mesons.

The picture of condensation in a neutron star is much
more complicated. In this case the instability sets in
originally for the π* mesons. When the density n* is
reached and a spin-sound branch with energy ω̂  ^ - ε(/'
appears, the protons existing at η < τζ go over into a
bound state

The energy lost when a slow proton goes over into a
neutron over the Fermi surface is offset by a negative
energy ω* of large absolute value. The charge of the
produced π* mesons is offset by the charge of the elec-
trons present prior to the transition. With further in-
crease of the neutron density as a result of the β pro-
cess

(3.1)

the density of the π* mesons and the electron density,
which is equal to it, will increase together with increas-
ing Ι ω* I, inasmuch as at equilibrium, in accordance
with (3.1), the Fermi boundary of the electrons should
equal Ι ω*|.

It is easily seen that at densities close to rCc, the en-
ergy density of the n* condensate is equal to

K i *

and the density of the condensate is

u

(3.2)

(3.3)

The second term in (3.2) is the kinetic energy of the
electrons (at ε*?' » mec?).

Using (3. 3), we obtain

(3.4)

The energy of the condensate assumes a finite value
jumpwise. This jump, however, is offset by the change
of the nucleon energy, so that the total energy of the
system remains unchanged.

We see that near nc the condensate density and the
condensate energy are limited not by the repulsion be-
tween the pions, but by the Pauli principle for the elec-
trons. With further increase of the density, the increase
of Ι ω* | with density is slowed down by the influence of
the repulsion between the pions. Furthermore, as we
have seen, an instability for the production of the ifir,
pairs sets in (at n>n\±)), and consequently a j^-meson
field appears in the condensate in addition to the π*.

Owing to the influence of the n*s condensate, the en-
ergy of the condensate acquires a complicated dependence
on the density. However, since the numerical factor in
the denominator of (3.4) is large, the influence of the π*
condensation is small, and formula (2.19) can be used
atw>w<±).

It is easy to verify that at a density n = nc the com-
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FIG. 3.

pressibility becomes negative (the compressibility is
proportional to the second derivative of the energy den-
sity with respect to density). The condensate term (2.19)
of the energy density makes a negative contribution to
the compressibility, and this contribution is larger in
absolute value (at a density no) then the contribution of
the nucleon part of the energy density. Indeed, calcu-
lations of the neutron-matter energy density"9·1 without
allowance for condensation yields for the second deriv-
ative of the nucleon energy density with respect to η (at
w» WQ, in pion units):

d"tN

dn'
«0.2,

whereas for dz %Jdr? we have

With further increase of the density, the repulsion be-
tween the nucleons at short distances assumes an ever
increasing role, and in addition, when the pion field be-
comes strong enough, the growth of the condensate en-
ergy slows down, as a result of which the sign of the
compressibility is restored. An approximate plot of
%{n) is shown in Fig. 3.

Figure 4 shows the possible dependence of the pres-
sure on the neutron density (the characteristic points
are given for curve 2):

The region between the points n = nc and n = nm is ther-
modynamically unstable. Therefore when the density at
the center of an evolving star exceeds the critical value,
the density distribution should change abruptly. Con-
sider first the case of curve 2 (such a behavior was ob-
tained inC 3 0·3 1 1). At the radius rlt where the density is
n = n1<nc and the pressure is ρ = pu a density jump
should take place. The density in the inner part n(r)>nz

is determined by the left branch of curve 2, whereas the
density in the outer part n(r) < Wj corresponds to the
right-hand branch of this curve.

For curve 1 there is a point where p = 0. This point
should lie on the surface of the star, where the pressure
is equal to zero and the density distribution is deter-
mined by the left-hand branch of curve 1. In case 3,
finally, an unperturbed density redistribution takes place,
corresponding to a certain softening of the equation of
state. All three cases lie in a reasonable region of not-
too-well-known values of the NN- and 7riV-interaction
constants for nuclear matter.

The density redistribution should occur within a short
time, of the order of hydrodynamic times, with an en-

ergy release comparable with the gravitational energy
of the star.

We shall discuss below the possibility of the existence
of superdense neutron nuclei. If such nuclei exist, then
neutron stars of arbitrary dimensions should exist, for
in this case the equilibrium neutron state is attained be-
cause of the nuclear forces and not on account of the
force of gravity, as in ordinary neutron stars.

The sharp change of the nucleon density along the ra-
dius of the star is accompanied by a sharp change of the
;r*-meson energy, and consequently of the Fermi energy
of the electrons. But a change in the end-point energy
of the electrons means that a change takes place in the
depth of the electric potential well V(r) that retains the
electrons.

At equilibrium we have

e<?>(r) + ) = const,

As a result, strong electric fields are produced, and
can be obtained from the relation

dV

IF
(3.5)

Thus, Tt condensation exerts a strong influence on the
structure of the neutron stars.

2. Condensation in a finite system

Estimates of the critical density corresponding at Ν
= Z to the vanishing of the frequencies ofs'~'°(k0) gives a
value nc = na. The inaccuracy of this estimate is due to
the inaccuracy of the constants of the NN and nN inter-
actions in the medium, which were introduced in the
theory. The uncertainty of the estimate nc is such that
it admits fully of the possible existence of a n conden-
sate in ordinary nuclei. It is therefore of great interest
to analyze the experimental data in which a π condensate
might appear, and also experiments that make it possi-
ble to establish how close the nuclei are to condensation
if the condensation has not yet set in, and by the same
token refine the constants introduced into the theory.
This refinement of the constants is particularly im-
portant in order to assess the possibility of the existence
of superdense nuclei.

To this end it is necessary first of all to consider is
condensation in a finite system. Such an analysis shows
that in medium and heavy nuclei one obtains a conden-

FIG. 4.
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sate-energy density that differs from the case of an in-
finite system only in a thin layer δ « R near the boundary
of the nucleus. :sa3 A periodic flat structure is realized
of the condensate field

φ = a (r) c (3.6)

with the amplitude a{r) constant inside the volume and
zero in the layer δ at the boundary of the nucleus. In the
case of a deformed nucleus, the layers are oriented
perpendicular to the major axis.

The additional surface energy connected with the π
condensation is proportional not to the total surface of
the nucleus, but to the smallest equatorial section. Con-
sequently the condensation contributes to elongation of
the nucleus and could lead in principle to the appearance
of a second minimum on the plot of the nuclear energy
against the deformation, i. e., to shape isomerism.
When these results were derived, the nucleus was re-
garded as a sufficiently large system. InCS3], the criti-
cal conditions for the condensation were obtained by
methods of the theory of finite Fermi systems,C9:1 i. e.,
from the exact equation for a scattering amplitude hav-
ing the quantum numbers of the pions in the particle-
hole channel. Instead of finding the critical density, the
critical value of the constant g~ at which the pion-ex-
citation energy vanishes was determined. It was shown
that for light nuclei the instability sets in first for the
S states. For medium and heavy nuclei, the results
hardly differ from those of the macroscopic approach.

The layered structure of the condensate field (1.16)
leads as a result of the (irN) interaction, in second order
in the field amplitude, to a layered structure of the den-
sity of the neutrons and protons with wave vector 2k0

p ) (1 +I"cos2k0z). (3.7)

The layered structure (1.17) may cause a rotational
spectrum to appear in nuclei that are spherical in the
sense of the deformation parameter. In addition, a
layered structure of the proton densities should influ-
ence the nuclear electric form factor that appears in
electron scattering.

The strong decrease of the pion energy in the nucleus,
predicted by the theory, manifests itself in a number of
experimental facts. Thus, the spectral data of the τ
atom yield the "optical" potential of the pion in the nu-
cleus (i. e., the effective potential well of the pion). It
is clear that the optical potential is directly connected
with the polarization operator n(fe, ω). Reasonable
agreement is obtained between the theoretical optical
potential and the experimental one.

The symmetry breaking due to the existence of the
condensate leads to the appearance of low-lying Gold-
stone excitations. The condensate upsets the transla-
tional, rotational and (in the case of a traveling wave)
the isotopic symmetries. Accordingly, three modes of
Gtoldstone oscillations are possible. In an infinite sys-
tem the frequencies of these modes should start from
zero. In a finite system the minimal frequency contains

in the denominator the system radius R raised to some
power. According toC241, the lowest energy is possessed
by the frequency corresponding to oscillations of the di-
rection of the condensate structure relative to the direc-
tion of the elongation of the nucleus. The corresponding
frequency is of the order of

ω/ot'

where β is the deformation parameter. The transla-
tional and isotopic modes have large minimal frequencies,
that are difficult to distinguish from other excitations
with the same quantum numbers. Observation of a Gold-
stone oscillation among the nuclear excitations would be
a decisive argument in favor of the existence of the con-
densate.

One more substantial difference between condensation
in a finite system and an infinite medium is that the pion
field in the ground state executes zero-point oscillations
such that the average condensate field at each point is
zero.C351 The mean square of the pion field is, of course
different from zero and is determined by the formulas
given above. Therefore the amplitude, linear in the
field, for the scattering of any particles contains not
the average field φ but the field matrix element between
the ground and first excited states of the pion field, i. e.,
the quantity «poie"""01'· The energy is ωΜ - 5 -10 MeV
and in the case of sufficiently large energy transfer the
cross section contains the quantity φζ = Ι φ ο 1 \ ζ .

To check on the employed expression for n(fe, ω) and
to determine the constants more accurately it is essen-
tial to compare with experiment the energies of the lev-
els that have pion symmetry. These states pertain to
the levels 0", 1+, 2",... The energy shift of these levels
compared with their shell-model values is determined
to a large degree by the nucleon interaction on account
of exchange of a " softened " pion. The agreement with
experiment is satisfactory.t3el

A particularly strong influence is exerted by proxim-
ity to condensation on Morbidden Ml transitions and on
transitions with a change of the orbital angular momen-
tum by two units.C371

The intensity of such transitions contains a term due
to one-pion exchange and having a pole at the critical
point (i.e., at ws(fe0) = 0). The intensities of these tran-
sitions are in some cases dozens of times larger than
the value calculated without allowance for exchange of
a "soft"pion. This fact attests to the proximity of the
system to condensation, but leaves open the question
whether a phase transition took place.

Significant information is obtained from an analysis
of the influence of one-pion exchange on the magnetic
moment (in this case the influence is not very strong)
and on the probability of Gamow-Teller β transitions.
It is of great interest to search for anomalies in the
scattering of nucleons by nuclei, as well as an analysis
of the nuclear magnetic form factor obtained in experi-
ments on large-angle electron scattering. These ex-
periments might reveal the spin structure of the nucleon
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density (in contrast to the electric form factor, which is
determined by the charge-density structure).

Thus, analysis of the available experiments confirms
the main conclusions of the theory and so far does not
contradict the assumption that a condensate exists in nu-
clei.

It might be assumed that a more thorough analysis of
the available facts as well as of the data obtained in
scattering experiment can confirm or deny the existence
of a condensate in nuclei, and at any rate will make it
possible to refine the constants introduced into the theo-
ry to such an extent that the predictions concerning the
possible existence of superdense nuclei can be made
more definite.

We proceed to analyze possible experiments that as-
sess the proximity of nuclei to condensation.

3. Experiments that establish the proximity of nuclei to
condensation

If a condensate is present in the nucleus, i. e., the
nucleon spin density has a periodic structure, then this
structure can influence the angular dependence of the
particle-scattering amplitude.

We consider first the simplest case, when the periodic
structure of the spin density leads to a periodic struc-
ture of the nucleon density. As already mentioned, in
the case of a traveling wave, the ifn' fields do not lead
to a periodic structure—this structure is due only to the
7T° condensate, which takes the form of a standing wave
because the 770 meson field is real. Thus, assume that
in a coordinate frame fixed in the nuclear deformation
direction, we have a periodic density structure

η (τ) = B 0 (1 cos 2kor).

If the nuclei are not polarized, then in experiments on
elastic scattering, when the rotational levels are not ex-
cited, n(r) in the problem is averaged over the direc-
tions of the vector k0, i. e.,

Thus, the electron elastic-scattering form factor must
have an additional term compared with the form factor
of the smooth density distribution. This additional term
has a narrow maximum at a momentum transfer q = 2k0

= 2/>i.«3/"1. It is known that such an anomaly of the
form factor is indeed observed at momenta q close to
this value. It should be noted that a Thomas-Fermi cal-
culation of the form factor shows that for a certain
choice of the interaction constants the form-factor anom-
aly can be explained also without assuming the existence
of a condensate. It is difficult to say which explanation
is more convincing. A more convincing proof of the ex-
isting of a condensate in the nucleus might be provided
by experiments on electron scattering by polarized nu-
clei, and this would lead to an appreciable increase of
the anomalous scattering.

Experiments on nucleon scattering by an unpaired nu-

cleon of an even-odd nucleon might yield information on
the proximity of the nucleus to condensation, inasmuch
as near the critical point the pion field produced by the
odd nucleon is enhanced for wave vectors k « k0. Indeed,
the pion field produced by the nucleon is proportional to

(j?(k) has a minimum at k = k0. Elastic scattering of nu-
cleons by an odd nucleon should therefore have a maxi-
mum at a momentum transfer q=k0.

The most convincing and seemingly easiest to perform
is an experiment on single-nucleon capture of it~ me-
sons. C 3 9 ] In the absence of a condensate, single-nucleon
capture of a π"-meson from the shell of a π-atom should
be very small, since the excess momentum should be
transferred to the nucleus as a whole. In the presence
of ir condensate with amplitude a 2 a 0.04, the probability
of single-nucleon capture, as shown inc 3 9 ], increases by
a factor of 100.

Observation of large single-nucleon capture would be
an argument favoring the presence of a sufficiently well
developed condensate in the nucleus.

It should be noted that the condensate periodic struc-
ture becomes smeared out near the condensation point
by the radial zero-point Goldstone oscillations of the
pion field, and therefore all the experiments connected
with momentum nonconservation due to condensation
can give a positive result only in the case of a well de-
veloped condensate, when the zero-point oscillations
are insignificant.

The decisive experiment may turn out to be one on
photoproduction of pions and a nucleus. If a condensate
exists in the nucleus, then the photoproduction ampli-
tude, as a function of the momentum transfer q = ky- kT,
should have a maximum at q = £0, and this would corre-
spond to photoproduction with a transition of the con-
densate field into an excited state (see Sec. 2 of Chap.

m).
Significant information on the polarization operator of

the pions in the nucleus can be gained from an analysis
of the spectral data on the ir-atom, which can yield in-
formation on the nuclear optical potential of the pions.
As shown in : 4 o : l, the nuclear optical potential of the pions
is connected with the polarization operator Π(£, ω) by
the relation (we confine ourselves for simplicity to the
case Z~N)

*Όρ,= Η Δ. (3.8)

4. Possible existence of superdense and neutron nuclei and
ways of their observation

Assume that the estimates given above are valid and
that at n> nc the compressibility of the nuclear matter
reverses sign. It does not necessarily follow, however,
that superdense nuclei must exist (see"·19·41-1). For such
nuclei to exist it is necessary to satisfy a number of
conditions. First, the energy of such a nucleus should
be less than the sum of the masses of the neutrons and
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protons, otherwise it will break up into individual par-
ticles. In addition, it must be stable against fission.

It is known that the lifetime of ordinary transuranium
nuclei decreases sharply with increasing charge, owing
to their instability against fission. The stability condi-
tion of ordinary nuclei is given by Z2/A< 50. A similar
inequality should be satisfied for anomalous nuclei.
Furthermore, to be able to observe anomalous nuclei
in cosmic rays, they must be stable relative to β decay.
To formulate these conditions quantitatively, we must
have an expression for the nuclear energy at both low
nucleon densities n«Kg and at densities for which stable
anomalous nuclei are expected (calculation shows this
density to be (3 to 6)wo). The energy of the nucleus con-
sists of the pure nucleonic energy and of the energy
gained when the condensate is formed. Since the pure
nucleonic energy is minimal at the density η = w0, it fol-
lows that at η > wo it is positive and increases with in-
creasing n. The pion-condensation energy is negative
and cancels the increase of the nucleon energy partially
or fully.

Figure 5 shows the energy of the nucleus (reckoned
from the sum of the rest energy of the nucleons) as a
function of the density. The first minimum on the curves
1—3 corresponds to ordinary nuclei. The second mini-
mum, if it exists at an energy less than zero, corre-
sponds to anomalous nuclei. The total energy is the
difference of two large quantities, the positive nucleon
energy and the negative energy of the pion condensate.
Therefore even a slight inaccuracy in the calculation of
each of the term can lead to a large error in the total
energy. As seen from Fig. 5. depending on the choice
of the insufficiently well known nucleon-nucleon interac-
tion parameters, the second minimum on the curve can
either be absent or lie above zero, corresponding to
stable superdense nuclei.

It should be noted that calculation of both the nucleon
energy and of the energy of the condensate constitutes,
at high densities, a complicated problem that has been
solved only approximately. On top of the inaccuracy in
the choice of the interaction parameters, there is also
the inaccuracy of the theory itself. It is therefore im-
possible to make a definite conclusion that anomalous
nuclei exist. It can only be stated that the existence of
anomalous nuclei is likely enough to undertake most
serious efforts to prove or refute this assumption.

We note that LeeC48] has proposed a mechanism for

the production of superdense nuclei, based on the as-
sumption that sufficiently dense nuclear matter is un-
stable relative to nucleon-pair production.

According to convincing estimates made in1181, this
phenomenon, can occur, if at all, at densities hundreds
of times higher than nuclear density. We present a
simple argument indicating that a nucleon-antinucleon
instability is impossible at densities comparable with
nuclear ones.

For such an instability to set in it is necessary that
the depth of the effective well for an individual nucleon
become of the order of ms(? = 930 MeV. Yet at nuclear .
density the depth of the well is only 50 MeV. If correct
account is taken of repulsion at short distances, it should
decrease with increasing density and should even re-
verse sign at a density on the order of nuclear.

Let us return to the curves of Fig. 5. One of these
curves has a minimal energy lower than that of normal
nuclei. If this case were to be realized in nature, then
the ordinary nuclei would have to be unstable and should
go over into superdense nuclei. It is possible that the
time of this transition is so long that the number of the
superdense nuclei produced from the ordinary ones dur-
ing the lifetime of the universe is very small, and the
superdense nuclei are a small admixture to the ordinary
nuclei.

As already mentioned, even the case when the curve
on Fig. 5 has a second minimum with an energy lower
than zero, the question of the stability of the anomalous
to fission and to β decay still remains open. To answer
these questions it is necessary to know the energy of the
nucleus not only at high density, but also at an arbitrary
ratio of the nuclear charge Ζ and the number of neutrons
N. A recent calculation of the energy as a function of
the density η and of the ratio Z/N has shown that super-
dense nuclei with Z~N should have a lower energy than
nuclei with Ζ« Ν. Therefore nuclei with Z«N should
go over via a cascade of β decays into nuclei with iV» Z.
The energy of the β electrons at the start of the cascade
is 100-200 MeV, corresponding to a lifetime 10"e-10"8

sec. Under certain reasonable assumptions concerning
the interaction constants, there should exist "neutron"
nuclei that are stable to β decay and fission. Allowance
for the screening of the Coulomb field of the nucleus by
the vacuum electrons (see Sec. 5 of Chap. ΠΙ) greatly
extends the region of the stability of such nuclei.1 4 3 1

We make now a few remarks concerning the possible
experiments on the observation of anomalous nuclei.

If superdense nuclei exist, it is not clear to which nu-
clei—normal or superdense—the larger binding energy
corresponds. It is possible in principle that the larger
binding energy is possessed by superdense nuclei. In-
terest attaches in this connection to the experimental
limitation on spontaneous transitions of normal nuclei to
the superdense state. We note that the searches of nu-
clei with anomalously high binding energy have so far
yielded negative results.

It is of interest to search for stable or short-lived β-
active anomalous nuclei with small dimensions (A~ 100)
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in the fission products of ordinary nuclei.

Superdense nuclei can possibly be produced in colli-
sions of heavy ions with energies on the order of several
hundred MeV per nucleon (the energy per nucleon should
be noticeably higher than the Fermi energy ε̂  » 40 MeV).1',
The resultant shock wave can increase appreciably the
nuclear matter. It is quite probable that the compressi-
bility of the system becomes negative already at n = nc.
It suffices therefore to compress the system to a den-
sity η = nc to initiate the formation of the superdense
phase. Regardless of whether stable superdense nuclei
exist or not, pion condensation should greatly influence
the dynamics of the collision and should manifest itself
in the angular and energy distributions of the reaction
products. This possibility was considered inC441. A
more detailed investigation of the influence of the phase
transition on the dynamics of shock waves in nuclear
matter was carried out by GalitskiiandMishustin t4S]and
showed that the presence of a negative compressibility
to the equation of state should lead to a splitting of the
shock wave into two. In the first wave there is a jump
of density from η$ and nc, while in the second there is a
jump from nc to the density «m(«m~ (3-6)n0),of the super-
dense phase. This phenomenon can lead to the appear-
ance of two (instead of one) maxima in the angular dis-
tribution of the emitted particles. .

Experimental and theoretical study of the collision of
heavy ions permits an approach to the solution of the
problem existence of superdense nuclei.

Finally, one can hope to observe anomalous nuclei in
cosmic rays, as noted already in the first paper on this
subject. m

The possibility of observing in cosmic rays stable
anomalous nuclei or their ^-active fragments with anom-
alous Z/A, produced in interaction with the nuclei of the
atmosphere, should be taken into account in the formu-
lation and analysis of experiments. Thus, for example,
a photoemulsion track attributed erroneously to the
hitherto unobserved Dirac monopole should perhaps be
interpreted as the track of an anomalous (neutron) nu-
cleus. It is also of interest to search for superdense
nuclei of cosmic origin, which have accumulated in the
course of cosmological time in the surface layer of lunar
soil and in meteorites.

5. Supercharged nuclei

A few remarks concerning the possible existence of
supercharged nuclei. The idea of such nuclei in its in-
itial form" 3 was based on the following.

At Zez/R > mtc
z, which corresponds to Ze3^ 1, it is

possible for TS*TT condensation to occur in a supercharged
nuclei, and the energy gain is larger than the nucleon
Coulomb energy if Ζ is sufficiently larger than the crit-
ical value. As a result, such a nucleus may turn out to
be unstable. In the field of such a nucleon, however,
e*e pairs are produced, the positrons move off to in-

finity, and the electrons are distributed inside and out-
'side the nucleus, and screen the nuclear charge. The
distribution of the vacuum electrons near a supercharged
nucleus was obtained in c e ]. It turned out that it precisely
at Zez~ 1 that strong screening of the nuclear charge
sets in, and at Zez» 1 the proton charge is screened in-
side the nucleus in such a way that only the charge in a
layer adjacent to the surface of the nucleus remain un-
compensated. Thus, the Coulomb energy is strongly re-
duced by this screening. The electron kinetic energy,
however, which is added to the system energy, makes
such a nucleus unstable. A much larger energy gain is
obtained when account is taken of one-pion condensation,
wherein the proton charge is screened by 7f-mesons.
Even in this case, however, the system energy is still
positive. The existence of supercharged nuclei is pos-
sible only if account is taken of the influence of the nu-
cleon and if condensation is considered with a wave vec-
tor k0 corresponding to the lowest pion energy

If the critical density η is only slightly higher than no,
then ir~ condensation can occur also in stable nuclei.

In fact, consider for simplicity a nucleus with N=Z
the τΓ-meson energy in the nucleus is then determined
from the equation

, ω) —

where k = (ΐΛ)ν, ω = ω - V.

Expanding Tl(k, ω) in a series and confining ourselves
to the first terms (this is permissible if I V\ <kVF), we
get

(3.9)

where w /̂fe8) = 1 +k* + u(k, 0) has a minimum at k = fe0·

Multiplying (3.9) by φ and integrating, we easily ob-
tain

(3.10)

The bar denotes averaging over φ ζ (the integral of φ ζ is
normalized to unity). From (3.10) we have

It is easily seen that

Neglecting this quantity and using by way of estimate

where C t is a number of the order of unity, we have,
using (2.17) for ω% (2.17)

"Such an experiment was proposed by Β. Μ. Pontecorvo in
1971 in a discussion of a paper by the author. C7]

2)Assuming the amplitude ψ to be constant over the volume of
the nucleus, we get K 2 - F 2 « 0. 017 V2, V = - (6/5) Zel/R.
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,.,-ν ι -i/«("c-"o)+<Ci/u»)
T P 1 — (βΠ/βω1!

The onset of π" condensate begins at w = 0. Therefore,
at a sufficiently small excess of nc over n0 the π~ con-
densation can occur even in the region of stable nuclei
if I VI >VC1/l-(en/9(oz)l/«.

For nuclei with large change, instability to fission be-
comes significant. This instability can be eliminated
if the Coulomb energy of the nucleus is greatly weak-
ened. To this end, the 7f-meson charge must be of the
order of Z. Calculation shows that Z, ~Z at Λ~ 1 if

Thus, an appreciable reduction of the Coulomb en-
ergy can make supercharged nuclei (Zes £ 1) stable. The
question of the relation between the energy of these nu-
clei and the energy of superdense nuclei having the same
charge remains open. We hope to deal with this ques-
tion in the future.
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