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After briefly presenting the history of the problem, we describe the fundamental properties of the nerve
cell, its electrical characteristics, and the phenomenological pattern of the excitability phenomenon. We
discuss in detail ion transport through biological membranes and models for them, in particular through
bilayer lipid membranes. We present the fundamental views on transport mechanisms and discuss the
molecular bases of this process. We present the experimental facts concerning the ion channels of
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physical mechanisms that govern the relationship of the conductivity of the channels to the electric field.
We discuss the process of propagation of impulses along nerve fibers.
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1. INTRODUCTION

Modern biology is developing no less swiftly than
physics was at the beginning of the 20th Century. These
advances have been made possible by using the most
modern physical and physicochemical methods of r e -
search. Studies in the field of biological membranes
are acquiring ever greater importance in connection
with such branches of biology as molecular genetics,
protein synthesis, and enzymatic catalysis. The func-
tions of cell membranes are highly varied. One of the
major ones is the generation and conduction of nerve
impulses.

The problem of the nerve impulse has a rich, and at
times dramatic, history. It would be naive to try in
this review to throw light on it in more or less detail.1'
Yet it is hard to resist the temptation of at least listing
the fundamental stages of the path taken. This is also
important because a brief historical digression into the
problem of the nerve impulse makes it clear how closely
physics and biology are intertwined here. The biophys-
ics of excitable membranes is now experiencing a new
boost that involves a shift to the molecular level of stud-
ies. This is expressed in attempts at reconstructing ion
channels, at analyzing their composition and structure,
and at developing new relaxation methods and measure-
ments of electric fluctuation spectra. Theoretical views

1 'One can find an excellent presentation of the history of the
problem in the introductory article by A. V. Lebedinskli
in the Russian translation of Selected studies on animal elec-
tricity of Galvani and Volta. H :

on the nature of bioelectrical phenomena are also de-
veloping in parallel with the experimentation.

An extensive literature has been devoted to the prob-
lem of the nerve impulse. The wealth of details, the
fine distinctions in the characteristics of different sys-
tems, and the large number of empirical relationships
that have been developed on the computer are charac-
teristic of the physiological approach (and undoubtedly
justified). Yet in order to understand the physics of the
subject, we must abstract from the less important de-
tails, and try to see the general and principal points that
are inherent in the problem as a whole. This is precise-
ly the principle on which we have based the following
presentation.

2. THE NERVE FIBER: FUNDAMENTAL PROPERTIES

a) On the history of the problem

It was thought as early as the 17th Century that nerve
fibers serve as information-transfer channels from the
brain to the muscels. Various hypotheses have been ad-
vanced on the nature of the information carrier that have
reflected the level of scientific views of each epoch.
Descartes spoke of "animal spirits." Depending on their
quality, they cause contractions or softening of muscles.
The physiologists, who were already armed with the
microscope, were inclined to believe that the nerve fi-
ber is a tube along which a "nervous fluid" flows. In
his Principia, Newton wrote of an elastic wave that prop-
agates along the fiber, as was quite natural in the cen-
tury of triumph of mechanics. However, this hypothesis
was soon refuted, and mechanical concepts came to be
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replaced by electrical ones. The so-called electric
fishes played a certain role in confirming the latter.

The ability of certain fishes to give a shock has been
known for a long time. Even the Roman physician Scri-
bonius Largus recommended using the discharges of the
skate Torpedo as a remedy for gout, headache, and epi-
lepsy. In 1776 Cavendish measured the electric field
intensity distribution around the skate Torpedo held in a
vessel containing water. These experiments served to
prove that the shock given by the skate is an electric
discharge, which they compared with the discharge of a
Leyden jar.2 ) At about the same time, information had
been collected on the effect of external electric fields on
the organism. It was natural to assume from all these
facts that there is a certain relation between the "ner-
vous forces" and the external electric field. Yet the
problem of the nature of the "nervous fluid" remained
open. And in 1791 Galvani published the Commentary
on the Effect of Electricity on Muscular Motion, for
which a remarkable fate was in store. Upon bringing
two different metals into contact with a nerve-muscle
preparation of a frog, he observed contraction of the
muscle.3' Since he already knew from his previous ex-
periments about the effect of atmospheric electricity on
muscular contraction, Galvani assumed that this twitch-
ing of the leg was caused by electricity. It remained
unclear just what was the source of this electricity, the
living object or the metals. Galvani assumed that the
contraction of the muscle was caused by bioelectricity,
whereby the nerve fiber played the role of a conductor.
When combined with the metallic electrodes, it closed
the circuit and facilitated a discharge of the muscle
equivalent to that of a Leyden jar. As a recognized
authority in the field of electricity, Volta interested him-
self in Galvani's experiments and duplicated them. How-
ever, his subsequent experiments established that the
source of the electricity was the contact of unlike met-
als with an electrolyte solution. Thus a new class of
current sources was discovered, which were later
called galvanic elements. The scientific dispute of the
physiologist and the physicist didn't stop at this.

In his treatise of 1797, Galvani described the phenom-
enon of contraction of a muscle upon contact with a nerve
without inclusion of metals in the system. However, his
experiment, which the founder of modern electrophysi-
ology du Bois-Reymond later called "the fundamental
experiment of nerve-muscle physiology" could not yet
overcome the skepticism of the physicists—the victory
in the polemic remained with Volta. The rehabilitation
of bioelectricity, which dates back to the mid-19th Cen-
tury, required considerably more sensitive measuring
technique. The experiments of Matteucci (in the 1840's)
played a large role in resurrecting galvanism. The lat-
ter tried to substantiate physically the appearance of
electricity in living tissues "according to Volta" by con-
tact phenomena at the surface of the muscle fiber.

FIG. 1. Diagram of the struc-
ture of a nerve cell (spinal mo-
tor neuron of frog).C31

2)The electric skate generates 50-A pulses at 60 V, while the
electric eel creates pulsed fields of 500 V.

''According to the testimony of one of his contemporaries,
"the prepared frogs happened to be on his table on the oc-
casion of his preparing soup for his ailing wife" (see Ref. 1).

Faraday showed great interest in the problem of bio-
electricity. "However amazing the electrical phenom-
ena are that inhere in inorganic matter," he wrote,
"they do not in any way compare with those that involve
the activity of the nervous system and vital processes."
The full triumph of Galvani's ideas followed the studies
of du Bois-Reymond and his school (1843), who mea-
sured the rest currents of muscle and nerve, and then
the action currents that arose after stimulation. At the
same time, Helmholtz and Bernstein measured the ve-
locity of propagation of nerve impulses. The physical
views that Bernstein developed on the source of bio-
electricity were based on the studies of Gibbs, Helm-
holtz, Nernst, and Ostwald on the thermodynamics of
the galvanic cell. We shall touch upon the fundamental
views of this theory in the presentation below. Appli-
cation of more refined experimental technique has led
to a substantial development of Bernstein's views. The
phenomenological theory of bioelectrical phenomena de-
veloped by Hodgkin and Huxley excellently describes a
vast bulk of factual material. The most recent develop-
ment in this field of science is characterized by deeper
penetration into the molecular nature of membrane phe-
nomena.

b) Structure and properties of the nerve cell

The fundamental structural element of the nervous
system of higher organisms is the neuron, which con-
sists of a cell body from which many processes emerge:
the dendrites (Fig. 1). One of these processes in the
peripheral neurons is much longer than the others—this
is the axon, which can sometimes be as much as meters
long, while its diameter is of the order of 1-100 μπι.
As a rule, the axons are surrounded by a thick fatty
(myelin) envelope that is interrupted periodically (every
1-2 mm) by the nodes of Ranvier (1 μπι). The meylin
segments play the roles of insulating sleeves, and the
nerve fiber in these regions is analogous to a passive
cable. Only the part of the membrane in the nodes of
Ranvier is electrically active. The nonmyelinated axons
of squid offer great convenience for study, and they
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TABLE I. Concentration of elec-
trolytes (mmol/l) for squid axon.

Ion

Na*

cr

Outside, c°

460
10

, 540

Inside, c'

50
400
40-100

sometimes attain diameters of a millimeter. In these
fibers, which are also called smooth fibers, the whole
membrane possesses electric activity. Henceforth, un-
less specified otherwise, we shall be discussing smooth
nerve fibers.

We can picture the axon as a hollow tube filled with
an electrolyte solution. The wall of this tube (the axon
membrane) consists of lipids and proteins. The thick-
ness of the membrane amounts to ~ 70 A. In a state of
rest, the electric resistance of the membrane is very
high (about 103 ohm · cm2), while its capacitance amounts
to about 1 μ,Έ/αχ?. The axon membrane separates the
inner solution from the outer one, which has a different
composition. Thus, the concentration of potassium ions
is high inside in the axoplasm and the concentration of
sodium and chloride ions is low as compared with the
surrounding medium (Table I). The inside of the cell at
rest is negatively charged with respect to the outer me-
dium, and a potential difference is developed at the mem-
brane of about 60 mV. In Bernstein's theory, the ap-
pearance of the rest potential is explained as follows.
One assumes that the membrane is permeable only to
potassium ions. Then, in order to equilibrate the diffu-
sion current of potassium ions, the following potential
difference must be established at the membrane:

kT , CK+ /-ι \

The experimentally obtained values of the rest potential
do not fully agree with those calculated from (1), but
this aroused no special concern until people were able
directly to measure the currents of the different ions
through the membrane, and thus to test Bernstein's fun-
damental postulate. It turned out that the membrane in
a state of rest is permeable not only to potassium ions
but also to sodium and chloride ions. Indeed the perme-
ability to sodium and chloride is considerably smaller
than for potassium (PK : P N a : P 0 1 = 1: 0.04:0.45), but
this did not save the old membrane theory from crisis.
Actually, the sodium ions, which occur in excess in the
outer medium, enter the cell under the action of both
diffusional and electrical forces. Therefore people had
to assume that a specific mechanism acts in the mem-
brane: a sodium pump that performs the so-called ac- ·
tive transport. That is, it removes the sodium ions to
the outside against the electrochemical potential gradi-
ent by expending metabolic energy.4' The pump is con-

4)We shall henceforth not deal with the problems of active
transport, since the process of generation of the nerve im-
pulse is an independent phenomenon. The fundamental role
of active transport consists in maintaining a concentration
drop at the membrane. When the pumps are turned off, the
concentration is gradually equalized, both in the excited and
in the resting cell.

structed in such a way that the sodium transport to the
outside is coupled with potassium transport into the
cell. The stoichiometry of the pump with respect to
sodium and potassium differs from 1:1. That is, the
process of active transport is electrogenic. However,
its contribution to the rest potential of the giant squid
axon amounts to only 2.5 mV. Therefore we can treat
the problem of calculating the rest potential while di-
gressing from the existence of active transport. Since
the membrane is permeable to an entire set of ions, the
rest state is not one of thermodynamic equilibrium. It
is stationary because of the action of the ion pumps, and
here the membrane potential under open-circuit condi-
tions is found from the condition that the total electric
current should be zero. Hence the calculation of the
'rest potential must be based on the definite pattern of
ion transport through the biomembrane.

c) The excitability phenomenon

If one passes through an axon a small current impulse
that gives rise to a subthreshold depolarization of the
membrane, i. e., it shifts the potential of the cell to the
positive side, then the potential monotonically returns
to the original level after the external stimulus has been
removed. That is, the axon behaves like a passive elec-
tric circuit consisting of a capacitor and an approxi-
mately constant resistance.

However, everything looks different if the current im-
pulse is large. Then the potential continues to vary
even after the perturbation has been removed; it passes
through zero, becomes positive, and only later does it
return to the rest level (Fig. 2). The response of the
membrane no longer depends on the perturbation. Such
a response is called a nerve impulse or action potential.
Hodgkin and HuxleyC5] have given a correct phenomeno-
logical interpretation of the mechanism of generation of
the nerve impulse that is based on voltage-clamping ex-
periments. The essence of this method is that one im-
poses a potential on the membrane in the form of a step
function of varying amplitude and records the current
as a function of time. Special experiments showed that
the total ion current (curve 1 in Fig. 3) is made of three
components, a potassium current, a sodium current,

FIG. 2 Response of a nerve fi-
ber (membrane potential (b) and
ion current (c)) to an external
current impulse (a). 1—sub-
threshold effect, 2—superthresh-
old effect.
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FIG. 3. Separation of the
membrane current (1) into
the potassium (2) and so-
dium (3) components. The
variations in the currents
are elicited by a rapid shift
in the potential inside the
fiber by+ 56 mV (upper
garph). c>
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FIG. 5. Direct measurement of the
instantaneous sodium conductivity (1).
Curve (2) corresponds to the peak
volt-ampere characteristic. t 6 1

and a leakage current. The potassium current sets in
after a lag, and it reaches its steady-state value within
a time of the order of several milliseconds (curve 2 in
Fig. 3). The sodium current, which is directed inward,
increases rapidly in size, reaches a maximum, and then
slowly declines (curve 3). The latter phase is called the
inactivation of the sodium current. Upon measuring a
series of J—t curves for different amplitudes of the po-
tential fixed at the membrane, one can construct the
volt-ampere characteristics of the system (Fig. 4).
Evidently, the steady-state volt-ampere characteristic
will coincide with the potassium characteristic. As re-
gards the sodium current, one customarily describes it
in terms of the relationship of the peak value of J K a to
the potential (Fig. 4b). The current J N a vanishes at a
potential that coincides with the equilibrium sodium po-
tential, VNa = №21/e)ln(cSa/cNa). The fact draws atten-
tion that the J N a — φ curve is nonmonotonic. In the vicini-
ty of VKU the sodium volt-ampere characteristic is
close to linear, and the sodium current is proportional
to (φ — <pNa). The volt-ampere characteristic shows no
hysteresis in the linear region. We can convince our-
selves of this by imposing short voltage impulses of any
amplitude and sign on a membrane that has preliminarily
been depolarized to potentials lying to the right of the
minimum point in Fig. 4b. Figure 5 shows the corre-
sponding instantaneous volt-ampere characteristic. To
the left of the minimum point, the sodium current shows
hysteresis and it is characterized by a more complicated

mV

ss,sr

FIG. 4. Typical data on voltage clamping, a) Ion current den-
sity at the different voltage values indicated in the diagram,
b) the peak (1) and steady-state (2) volt-ampere character-
is t ics ." 1

dependence on φ . Yet even in this region, the system
behaves ohmically in response to fast voltage pulses.
The falling region on the curve of the J-s^—φ relationship
can be naturally explained by an increase in sodium con-
ductivity with.increasing shift of the potential to the
positive side. Here this conductivity, just like that for
potassium, shows hysteresis. The sodium conductivity
reaches a constant value to the right of the minimum
point in Fig. 4b.

Pharmacological agents (especially tetraethylammo-
nium—TEA) and toxins (especially tetrodotoxin—TTX)
have been a powerful tool for studying the nature of the
ion currents. When TEA is introduced into an axon,
the potassium current is completely suppressed, while
the sodium current is not altered. Conversely, intro-
duction of TTX suppresses the sodium current. These
experiments practically prove the existence of separate
(sodium and potassium) conduction mechanisms. We
should also recall some experiments on intracellular in-
troduction of the enzyme pronase, which abolishes the
sodium inactivation without changing either the kinetics
of the potassium current nor the kinetics of sodium ac-
tivation. En masse, all these facts convincingly indi-
cate two independent systems of ion transport in the
membrane, the sodium system being regulated by two
separate mechanisms: activational and inactivational.
The presented results allow one to give a qualitative ex-
planation of the excitability phenomenon. In the course
of development of a nerve impulse, the permeability of
the membrane to sodium sharply increases, and a cur-
rent of these ions rushes into the fiber. It is highly es-
sential that the process proves to be self-accelerating—
the increase in sodium permeability facilitates an in-
crease in potential on the inner side of the membrane,
which in turn increases the sodium permeability. Con-
sequently the system approaches the equilibrium sodium
potential. Simultaneously the potassium-transport sys-
tem is turned on, and it removes the positive charge
from the cell, and restores the membrane potential to
its original value.

d) The Hodgkin-Huxley equations

The electrical phenomena in excitable membranes are
quantitatively described by the equations proposed by
Hodgkin and Huxley. Although these equations are em-
pirical in nature, they play an extremely large role in
biophysics, and actually comprise the language in which
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FIG. 6. Curves of the relationship of the rate constants a and

β to the membrane potential. : 6 1

all the experimental material is discussed. Apparently
the success of the Hodgkin-Huxley formalism indicates
that it is based on a correct physical picture of the
processes that occur in excitable biological systems.
Hence it is reasonable to take up this problem briefly.

The time behavior of the membrane potential under
spatially uniform excitation of the fiber is described by
the equation

(2)

Here C is the capacitance of the membrane, while the
ion current J is composed of two partial currents, a
potassium and a sodium current:

/ = JK + -/NB-

As experiment implies, each of these currents can be

treated as a current produced by a battery of constant

emf and variable hysteretic conductivity:

N a ? N a ( ) l a )

JK = gK ( φ — <Ρκ)· (3)

The separation of the linear hysteresis-free coefficients
(φ -Ψι) is experimentally justified (see the right-hand
line in Fig. 5). The central problem is how to describe
the dynamics and the potential-dependence of the hys-
teretic conductivities gVi andgK. Hodgkin and Huxley153

introduced the "unobservable" variables m, h, and n,
which obey the following linear dynamic equations:

•^ = 00,(1-ft)-frfc,

*L = a n ( l - » ) - ? „ » ·

(4)

The conductivities g are defined as nonlinear functions
of these variables:

N a = 0.12 Ω " 1 cm"2

(5)

The relationship of the kinetic coefficients α and β to the
membrane potential (Fig. 6) was chosen by the condition
of best match of the J—t curves as calculated and as
measured by the voltage-clamp method. These same
arguments dictated the choice of the exponents in the
relationships (5). For example, the relationshipgK~n*

FIG. 7. Relationship of the
steady-state values of m, n,
and h to the membrane poten-
tial. c "

+40

φ, mV

describes well the hysteresis of the potassium current.
The introduction of two variables m and h to describe the
dynamics of sodium conduction involves the existence of
two independent processes, activation and inactivation,
while the concrete exponents also arise from the hys-
teresis of the sodium current. Figure 7 shows the re-
lationship of the steady-state values of m, n, and h to
the membrane potential. It is evident here that a steady-
state potassium current can flow over a broad potential
range, whereas the steady-state sodium current is re-
stricted to the narrow region in which m% and k simul-
taneously differ from zero.

We shall discuss below the physical interpretation of
the Hodgkin-Huxley equations. Here we shall restrict
ourselves solely to a general conclusion that amounts
to the idea that the membrane of a nerve fiber consti-
tutes a nonlinear ionic conductor whose properties depend
substantially on the electric field. Hence it will be use-
ful to examine the features of ion transport through bio-
logical membranes and models for them.

3. ION TRANSPORT THROUGH MEMBRANES

a) Bilayer lipid membranes

People have represented the structure of cell mem-
branes over the last several decades by using the Daniel-
li-Davson model/7-1 A double layer of lipid molecules
lies in the middle of the membrane. This lipid sandwich
is covered on the outside by a layer of proteins, which
can penetrate into the interior of the membrane to form
various functional structures, e. g., polar pores (Fig.
8a). The thickness of this structure is of the order of
100 A. The Danielli-Davson model, which has recently
been considerably refined, has played a substantial role
in the development of membrane studies. As early as
the thirties of this century, the first attempts were un-
dertaken to prepare thin, stable lipid or proteolipid

FIG. 8. The Danielli-Davson model, a) cell membrane, b)
lipid bilayer.
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model structures. These attempts were crowned with
success in 1961, when Mueller et al.liJ found that a sus-
pension of oxidized beef-brain phospholipids in aqueous
solution spontaneously forms a bimolecular (black) film.

The idea of the experiment proved to be amazingly

simple. A certain amount of phospholipid is dissolved

in a liquid hydrocarbon, e. g., w-decane. A teflon dia-

phragm having a small aperture is placed in a vessel

containing water. A drop of the lipid solution is intro-

duced at this aperture. Upon gradually spreading, it is

first converted into a thick film showing rainbow patterns,

and then it thins down and becomes black.

First of all, it was interesting to determine the thick-
ness of the black films. The simplest and most wide-
spread method consists in measuring the electric capaci-
tance of the film. If we know the dielectric constant of
the lipids (it lies in the range from 2 to 3), we can cal-
culate the thickness directly from the formula for a
plane condenser. While slightly varying as a function of
the composition of the lipids, the thickness proved to be
approximately 50 A. This exactly matches twice the
length of the chains of the lipid molecules. Optical mea-
surements give the value 70 A, which apparently includes
also the polar heads of the lipids.

Thus we can represent a bilayer lipid membrane
(BLM) intheway shown in Fig. 8b. The question arises
of the state and arrangement of the solvent molecules in
the membrane. In principle, they can lie either between
the two lipid layers, or within each layer between the
molecules of the lipids. The obtained estimates rule out
the first possibility. It has been shown by studying a
BLM made of phosphatidylcholine191 that one lipid mole-
cule in the film takes up an area of about 75 A2, whereas
the minimum possible area is 58 A2. This made it pos-
sible to rule out the idea that the solvent molecules exist
in each layer between the lipid molecules in about a 1:1
ratio. This is just the situation depicted in Fig. 8b.
Apparently the role of the simple solvent molecules is
played in natural membranes by the more polar fillers.

Thus a BLM is a thin film of hydrocarbons stabilized
in the aqueous phase by the lipid molecules, which in
themselves contribute substantially to the volume of this
film. Thermodynamic analysis of these films implies1101

that molecules that can form such structures must pos-
sess a high energy of adsorption, both on oil and on wa-
ter. These conditions are naturally satisfied by lipids
that contain long hydrocarbon chains and short, strongly
polar groups. Another requirement that the lipids also
satisfy is the condition that their heads should not
strongly differ in cross section from the hydrocarbon
chains,

A quite unique feature of the BLMs is that they have
molecular dimensions in one direction, but macroscopic
dimensions in another. Usually these distances differ by
a factor of 10e. Rather many problems arise thereby
that have no exhaustive answers as yet. First of all,
this pertains to the structure, stability, and phase tran-
sitions in these films. In spite of individual studies,
much yet remains to be done in this field.

Bilayer lipid membranes are a model for the skeleton

of the cellular membrane, which amounts to a barrier

between two volumes of liquid. If one deposits on this

skeleton or matrix suitable functional groups, then one

can confer definite functions on it that are inherent in

cell membranes. Thus, by using alamethicin together

with the surface-active protein protamine, Mueller and

Rudin have been able to reconstruct the phenomenon of

electric excitability in an artificial membrane.1111 Sub-

sequently various authors have been able to reconstruct

a whole series of membrane phenomena by using differ-

ent substances and cell fractions.

b) Charge transport through membranes

Even the first measurements of electrical properties
of BLMs showed that they differ considerably from
cell membranes. While the electric conductivity of
cell membranes amounts to about 10"3 ohm"1 cm"2, the
electric conductivity of BLMs varies over the range
from 10"* to 10"10 ohm"1 cm"2, depending on the experi-
mental conditions. We can take 10'e ohm"1 cm"2 as the
most typical value. This is a very low conductivity.
For the sake of illustration, we shall compare it with
the conductivity of the surrounding electrolyte solution.
If this solution contains KC1 in 0.01 Μ concentration,
the conductivity of an aqueous layer of the same thick-
ness as the BLM amounts to 104 ohm"1 cm"2. The dif-
ference is as great as a factor of 10 lz.

A very important discovery has been a class of sub-
stances that can radically change the electrical proper-
ties of membranes (for a review, see Refs. 12 and 13).
They have been called ionophores. Their presence in-
creases the conductivity of membranes by many orders
of magnitude. The ionophor themselves are needed in
small amount; they only effect transport of other ions
existing in the solution through the membrane. Here
the conductivity is selective in nature. The ionophors
include fat-soluble acids (2, 4-dinitrophenol, dicumarol,
tetrachlorotrifluoromethylbenzimidazole (TTFB), etc.),
polypeptides (valinomycin, the group of nactins, grami-
cidins A, B, and C, and alamethicin).

The overwhelming majority of studies on electrical
properties have treated lipid membranes as a homoge-
neous phase. The limitations of this approach are quite
obvious, but still it permits one to obtain rather impor-
tant results. The conductivity of the membrane is de-
termined by the concentration of current carriers exist-
ing in it and by their mobility. The extremely low di-
electric constant of lipids (it lies in the range from 2 to
3) is very unfavorable for incorporation of charged par-
ticles into the membrane. The distribution coefficient
of the particles between the lipid and the aqueous phases
is

(6)

Here W is the energy of a particle in the lipid, as re-
ferred to its energy in water. It is composed of the
electrostatic energy and the energy of hydrophobic inter-
action:
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(8)

FIG. 9. Illustrating the calcula-
tion of the energy of an ion in a
membrane, a) Effect of the image
forces; b) formation of ion pairs;
c) hydrophilic pore in a membrane;
d) effect of complex formation.

W = W, + Wn.

The major term is the first one. For spherical parti-
cles of radius a, it takes on the form

W, _ia./j i_\
' " > \ e m tw I' (7)

2kT

At the temperature 25 °C for a valency of one, <?0 = 282 A.
If we assume the radius of the ion to be 2 A, and the di-
electric constant of the membrane e m =3, then the distri-
bution coefficient proves to be 10"zo. Then the conductiv-
ity of bilayer membranes would be substantially lower
than the values indicated above. The situation can be
somewhat improved by the hydrophobic interactions,
which elevate the distribution coefficient to favor the
lipid phase. Moreover, there is an entire set of circum-
stances that can diminish the energy of a particle inside
a membrane. We shall now proceed to discuss them.

There are at least four factors that diminish the en-
ergy of an ion in a membrane1·14·1:

1) the membrane has a finite thickness;

2) the ions can form ion pairs inside the membrane;

3) the membrane can have pores of high dielectric
constant through which the particles pass;

4) the ion can be wrapped in a neutral carrier mole-
cule of high polarizability that solvates it (increases its
effective radius a), and thus facilitates its solution in
the membrane phase.

Calculation of each of these effects yields the follow-
ing results.

a) Image forces arise at the boundary between the
membrane and the aqueous phase. The electrostatic
energy We of the ion in the membrane is diminished, and
it acquires the form of the curve shown in Fig. 9. t153 At
the center of the membrane, the image forces decrease
energy by the following amount:

When ε», = 80 and ε =2, the relative difference from the
energy of the ion in an infinite medium amounts to 1.4
a/I. That is, it does not exceed several percent. This
example makes it pictorially evident that the hydrocar-
bon part of the membrane constitutes a substantial bar-
rier to the passage of ions. The height of the barrier
amounts to several tens of kcal/mole.

b) Formation of ion pairs from two close-lying
spheres upon ion interaction also does not yield an ap-
preciable gain. The electrostatic energy of two parti-
cles of radii a+ and a. separated by the distance d (see
Fig. 9b) is

Ψ-- (9)

Hence we see that the maximum reduction in energy will
be no more than twofold. Only a covalent bond between
the charged particles will substantially diminish the
electric field around them, but this would now imply the
discharging of the two associated particles.

c) Pores having high polarizability can substantially
diminish the energy of a charge in a membrane (see Fig.
9c). When b«l, the energy of a particle on the axis
of the pore is

(10)

The second term in this formula arises from the image
forces in the walls of the pore. It is inversely propor-
tional to the radius b of the pore. The function P{x) has
been calculated numerically/143 Its maximum value does
not exceed 0.25. If, for example, the value of ε, is
comparable with cw, then the height of the barrier for
an ion passing through the membrane is given simply by
the second term. When ε,, =2, it is

Here 6 is expressed in Angstrom units.

d) Finally let us examine the possibility of complex
formation. Let a neutral molecule of high polarizability
form a spherical complex with the ion. If the outer ra-
dius of the complex is b, then its energy in the medium
has the form

(12)

In the case in which the molecules of the complex-for-
mer have high polarizability and we neglect the second
term, the energy of the complex is still considerable in
comparison with the thermal energy, though consider-
ably smaller than the energy of a "bare" ion. For ex-
ample, if b- 5-10 A, then at 25 °C we have

Wc = 16. 5-8.2 kcal/mole or 9.8-4.9 feT/ion .

We should note another circumstance of no small im-
portance. If the increase in electrostatic energy of the
ion in the hydrocarbon phase is large, then a powerful
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FIG. 10. Conductivity fluctuations of a bilayer membrane
containing gramicidin A.

electrostriction can arise in the membrane. Estimates
show that pressures arise of the order of an atmosphere.
It is not ruled out that this can locally thin the mem-
brane, and thus substantially affect ion transport.

Of course, the estimates made are very crude in na-
ture. Yet they clearly indicate that the barrier for
passage of an ion through a membrane can be consider-
ably reduced by complex formation or by special pores.
Now returning to the ionophores, which substantially
facilitate ion transport through membranes, we can as-
sume that they act by one of these two mechanisms.

An extensive literature has been concerned with the
theory of induced ion transport.113-1 Methods have been
developed in detail there for "electrical diagnostics" of
mechanisms of ion transport. However, it is of inter-
est to study the mechanisms by directly determining the
activation energy of conduction. In Ref. 16, they mea-
sured the temperature-dependence of the conductivity of
membranes in the presence of a number of ionophores.
In the studied temperature range from 17 to 45 °C, the
conductivity is described by the formula

Here Η is the activation enthalpy of the overall trans-
port process. Here for monactin, Η proved to be 32. 5
kcal/mole, for valinomycin 55 kcal/mole, and for gram-
icidin A 9.3 kcal/mole. Studies of a different type had
shown even earlier that valinomycin and monactin are
mobile carriers, while gramicidin A must form a polar
pore inside the membrane. The numbers given above
confirm this conclusion. Moreover, Hladky and Hay-
don'17·1 studied the conductivity of membranes at low
concentrations of gramicidin, and observed discrete
fluctuations of conductivity (Fig. 10). Each step in this
diagram corresponds to creation or destruction of a
single channel.

The difference between the two mechanisms has been
demonstrated also in Ref. 18. Specially selected lipid
membranes could be "frozen" or "melted" by changing
the temperature. In the presence of valinomycin and
nonactin, the conductivity sharply declined upon freez-
ing the membrane, while the properties of gramicidin
A were not altered. A very simple explanation of this
phenomenon again consisted in the idea that valinomycin
and nonactin, in contrast to gramicidin A, act as mo-
bile carriers whose mobility is sharply diminished upon
freezing the membrane. At the same time, the status
of the surrounding lipid molecules need not exert an ap-
preciable influence on the properties of a pore.

Thus the induced transport that arises in the presence
of ionophors can be effected by the mechanism of mo-

bile carriers 1 1 9 1 and with the aid of special pores. The
latter mechanism is also called the relay mechanism,
since the pore can be formed of several molecules lying
in sequence, between which the ion is transferred. A
variety of the mobile-carrier mechanism is possible in
which the ion is transported not by one molecule, but by
several together—this variant is called collective trans-
port. If we add to this the mechanism of direct passage
of large fat-soluble ions such as tetraphenylborate and
dipicrylamine, then we get all the fundamental types of
mechanisms that have been treated in the literature (Fig.
I D / 1 * 3 The simplest mechanism is that of direct pass-
age of ions through the membrane. We shall begin there
the presentation of the laws of ion transport. However,
at first we shall spend a little time on a more detailed
molecular description of membranes.

c) The molecular approach

Thus far we have been treating the lipid membrane as
a perfectly homogeneous, continuous phase. Evidently
this is only an approximation to reality, and it does not
fit many important properties of membranes. There-
fore attempts have been made at more detailed descrip-
tion of the membrane, and in particular, of the process
of transport of particles through it.

First of all, we note that a bilayer lipid membrane
exists in the liquid-crystalline state. On the one hand,
it is very fluid—its individual components are mobile,
while on the other hand, the molecules of the lipids are
ordered to a very high degree—they lie in two layers,
and their hydrocarbon tails are extended. A greater or
lesser degree of order can exist within each layer. In
Ref. 20, they studied electron diffraction from bilayers

°-G,O-D, ®-N, -H-band

FIG. 11. Mechanism of transport of ions through membranes,
a) Mobile carriers with a 'bmall turnstile" (the carrier Τ is
confined within the membrane, while complex formation oc-
curs at the membrane-solution phase boundaries; b) mobile
carriers with a "large turnstile" (the carrier Τ occurs both
in the membrane and in solution, and complex formation oc-
curs in solution); c) collective transport (the ion A is trans-
ported by several particles of the carrier T); d) relay trans-
port; e) direct passage; f) structure of the molecular of
valinomycin.Cl2]
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made of phosphatidylcholine. The diffraction patterns
showed that the bilayer consists of a large number of
small but well-packed regions whose orientation differs
somewhat from the orientation of their neighbors. The
size of the crystallites is estimated to be several hun-
dred Angstrom units. Such structures should be dynam-
ic in nature, and should change in form as time passes.

The mobility of the lipid molecules that constitute the
membrane is important from the standpoint of transport
of particles through the membrane. The movement can
be parallel to the surface of the membrane or trans-
verse. Even Langmuir t 2 u had studied the transverse
movement of molecules with the example of polylayers
of barium stearate. In recent years the development of
sensitive methods, and in particular the use of spin la-
bels, has made it possible to study this process in
greater detail. It has been shown^23 that barium stea-
rate molecules exchange with one another between the
individual layers with a characteristic "half-decay" time
of 25 minutes at 25 °C. They also advanced the hypoth-
esis that exchange processes involving lipids in the
"fluid regions" of biological membranes must occur at
a high rate.

The transfer of lipid molecules from one layer to
another has one essential feature: the molecule must
not only move to a new site, but must also turn around
as well, since its polar head must be directed to the
opposite side. Apparently this situation can play a sub-
stantial role in transport processes. We shall illustrate
it with the example of transport of chlorine through lipid
membranes.

It has been noted in a number of studies that the flux
of chloride ions as calculated from the electric conduc-
tivity of the membrane and as measured with labeled
atoms has different values. Here the isotope flux proves
to be three orders of magnitude larger. t 2 3 ] An electric
potential applied to the membrane exerts no effect on it.
Thus some process acts in the membrane that is not
manifested electrically, and which leads to intensive
ion transport. Similar phenomena are rather well known
in biology, and they are attributed to exchange process-
es in which ions are exchanged from one reservoir for
an equivalent number of the same type of ions in another.
Exchange diffusion is most easily effected with carriers
that can migrate through the membrane only in the load-
ed state. However, the studied membranes contained
nothing but the lipids themselves. Hence the hypothesis
naturally arose that the lipids themselves carry out the
exchange function. Chloride ions combine with the polar
heads of the lipids, and the complexes that are formed
are transported through the membrane. Such a mech-
anism explains not only the difference between the elec-
trical and isotope fluxes, but also the saturation of the
fluxes with increasing concentration. Such a turnover
or flip-flop of the lipid molecules runs at varying rates,
depending on the composition of the membrane and the
experimental conditions. Thus the characteristic flip-
flop time for phosphatidylcholine amounts to several
hours.

Flip-flop is geometrically a rather complicated pro-

ν
FIG. 12. Conformational rearrangement of a hydrocarbon
chain, a) Extended chain, b) chain with a simple kink, c) com-
bination of two 2gi kinks. One should note the effective short-
ening of the chain. The lateral view of the chains is shown at
the right.

cess. In order to turn over a large molecule, a large
space must be freed in advance. Hence the most prob-
able course is the flip-flop of not one molecule, but si-
multaneously of two from different layers.1 2 4 1 Such a
simultaneous flip-flop of two molecules frees a site in
each of the layers for incorporation of new molecules.
The entrainment of two, and possible even more, mole-
cules apparently can explain the rather large activation
energy of the process, which is as much as 19.4 kcal/
mole.

Of course, not every type of membrane transport in-
volves flip-flop of lipid molecules. Yet some displace-
ment of membrane components must occur in every case.
This problem is closely connected with the diffusion of
molecules in polymeric materials. Experimental and
theoretical studies of mechanical relaxation in polyethyl-
ene, paraffins, and other polymeric materials show that
polymeric materials, both in the crystalline and in the
liquid-crystalline states, contain definite types of mo-
bile structural defects. These are the so-called
kinks, t 2 5 t 2 e ] which stem from conformational rearrange-
ments of the hydrocarbon chains. When existing in the
hydrocarbon part of a membrane, the kinks form small
mobile pockets or bubbles of free space of varying di-
mensions, depending on their type and position. The
molecule to be transported from the aqueous phase near
the membrane can enter the free space of a kink at the
surface of the membrane and then diffuse through the
membrane along with the mobile kink.07-1

The origin of the kinks involves the specific nature
of the hydrocarbon chain. In an extended chain (Fig. 12),
all the bonds adopt the trans conformation. However,
each C-C bond can rotate by an angle of ±120°. This
state is called the gauche conformation. If one rotates
an extended hydrocarbon chain about any C-C bond by
a 120° angle, and then about another C-C bond lying one
unit away from the original one by the angle —120°, then
one gets the conformation (Fig. 12) that has been called
the elementary kink 2g\.C25] The linear molecule be-
comes as though doubly bent; it consists of two regions
whose axes are mutually displaced. Figure 13 shows a
photograph of molecular models of such chains . t 2 7 ]

In kink formation the chain is effectively shortened by
the length of one CHg group. Therefore it is improbable
that kinks would be formed or disappear in the middle
of a chain, since then the rather long ends of the mole-
cule would have to be drawn in. Kinks can be formed
(or disappear) far more easily at the surface, whence
they can migrate into the interior of the membrane.
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FIG. 13.
kink.

Molecular model of a hydrocarbon chain having a

The energy difference between the trans and gauche
conformations can be calculated with the example of the
butane molecule,^8·1 and it proved to be 0.8 kcal/mole.
Hence formation of a single kink increases the intrinsic
energy of an isolated chain by 2 x 0.8 = 1.6 kcal/mole.
The activation energy of the transition from the trans
to the gauche conformation amounts to 2.4 kcal/mole.
This gives 4.8 kcal/mole per two bonds. However, kink
formation considerably increases the entropy of the sys-
tem. Hence kinks are rather favored thermodynamically
The free energy of formation and migration of kinks is
comparable with the thermal energy at room tempera-
ture (kT = 0.6 kcal/mole). Hence we can expect that the
hydrocarbon part of a membrane in equilibrium contains
rather many kinks, which constantly move along the
nolecular chains.

A statistical calculation has been performed1128-1 of the
concentration of kinks. In the general case, the fraction
of the CH2 groups occurring in the gauche conformation
increases with the temperature. In paraffins and linear
polymers, just as in lipids, the concentration of kinks
undergoes two sharp jumps with increasing temperature.
One rotational phase transition occurs at the tempera-
ture Tt! which lies below the melting point of the mate-
rial, and a second one atthe melting point Tm. When Τ
« Tt, the concentration ξ of kinks is no greater than
0.05, while when T>Tt) ξ lies in the range from 0.1 to
0. 5. For the most membrane lipids, room temperature
lies above the transition temperature Tt. Hence the
concentration of kinks in a lipid membrane lies in the
range 0.1-0. 5. If we know this quantity, we can calcu-
late the absolute concentration of kinks, which in the
general case is ck = 8. 5xlO"2 mole/cm3. A suitable com-
bination of two 2gl kinks can generate rather large cavi-
ties that contain water and other particles. Most of
these cavities have a length of several links of the hydro-
carbon chain. Therefore they do not form penetrating
pores.

An increase in the concentration of kinks must ele-
vate the specific volume of the lipids. Actually x-ray
study has shown that the rotational phase transition in
a paraffin is accompanied by a volume increase of 2-

And finally, there is the mobility of the kinks. Esti-
mates show that the diffusion coefficient of the kinks
must be about 10"5 cm2/sec.C27] This value is of the
same order of magnitude as the diffusion coefficient of
particles in water.

The kink model treats the hydrocarbon phase of the
membrane as an ordered structure containing defects.
The kink mechanism will be inapplicable if the degree
of disorder is so large that the hydrocarbon phase is
more reminiscent of a liquid than of an ordered struc-
ture. Most likely, the proposed mechanism pertains to
the passage through a membrane of small neutral mole-
cules having an effective volume equal to, or somewhat
exceeding the volume of a CH2 monomer. It can partici-
pate also in passage of relatively large ions through the
membrane. However, the permeation of large mole-
cules like the cyclic antibiotics cannot be described by
a simple mechanism. The presence of large molecules
must strongly distort the hydrocarbon chains. However,
such a distortion can be described in terms of formation
of combination of kinks in adjacent chains.

d) Direct passage

Now we shall proceed to a phenomenological descrip-
tion of the laws of ion transport through thin membranes.
The simplest form of ion transport that has been studied
in greatest detail is direct passage of charged particles.
There are two approaches to describing it: discrete and
continuous. In the discrete approach, which is based on
the Eyring theory of absolute reaction rates,C 3 0 : one as-
sumes that the particle gets through the membrane by
making several discrete jumps through activation bar-
riers . The continuous approach is based on the concept
of free diffusion and migration of particles in the mem-
brane, which is treated as a continuous, homogeneous
phase. Then the flux of ions of type k is given by the ex-
pression

(13)

here zk is the charge of the ion of type k (in units of the
charge of a proton), ut is the mobility, which is related
to the diffusion coefficient Dk by the Einstein relation-
ship Dk=uk/fi (fr = e/kT=F/RT), and Ε is the electric
field intensity, which satisfies the Poisson equation

dE

~dz"'
(14)

Here ε is the dielectric constant of the membrane and
ck is the concentration of the ions of type k. In the
steady-state case we have Jk= const., i .e . , Eq. (13) is
a nonlinear first-order differential equation that contains
the unknown functions ck and Ε and the unknown constant
Jk . In the non-steady-state case, we have the continuity
equation

(15)

while the total current Jo is now composed of a displace-
ment current and an ion current:
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.=·£+Σ'» (16)

In the steady-state case, we can derive from Eq. (13)
the important integral relationship

Λ = — ?* (<p — q>k), (17)

Here <pk is the equilibrium membrane potential for the
ions of type k, while the conductivity gk is given by

(18)

FIG. 14. Potential distribution in the solvent (s)—membrane
(m) system. 1—general case, 2—equipotential distribution,
3—constant-field approximation.

The conductivity gk depends on the potential via the con-
centration profile. That is, the volt-ampere character-
istic is nonlinear. Neverthelss, it makes a certain
sense to write the equation in the form of (17), where
the factor linear with respect to the potential shift has
been isolated. First, one can use the equilibrium con-
centration profile in calculating the conductivity in the
limit of a small external field, whereupon the solution
is reduced to a single quadrature. Second, when the
external field is changing rapidly, the concentration dis-
tribution in the membrane cannot readjust. Therefore,
for short times, Eq. (17) predicts a linear current-po-
tential relationship.

The electrodiffusion problem is considerably simpli-
fied when the space charge in the membrane is small.
In order to construct and substantiate the corresponding
approximation, we must find the equilibrium potential
distribution in the membrane and in the surrounding so-
lutions for the case of a single permeating ion. In the
self-consistent-field approximation, the ion concentra-
tions are related to the potential by the Boltzmann re-
lationships. That is, the Poisson equation (14) proves
to be closed. Figure 14a, curve 1 shows the result of
the solution. The potential jump in the membrane, which
is defined as the potential difference between its center
and either of the boundaries is

(19)

Here we have φ =e<p/kT, 5 is the thickness of the mem-
brane, κJ, = nzyz/tm, x=V8jreej3/e is the Debye param-
eter, and c is the bulk concentration of the permeating
ion in the solution. Thus the potential jump in the mem-
brane is determined by the relationship between its
thickness and the shielding distance, which depends pri-
marily on the number of carriers. With typical values
of the parameters, the shielding distance exceeds the
membrane thickness by several orders of magnitude.
That is, the potential is constant (the dotted straight
line (2) in Fig. 14a). This means that when an external
field is imposed, the resulting field in the membrane
can be considered to be constant (see case (b) in Fig.
14).

The Nernst-Planck equation is considerably simplified
when Ε = const. In this approximation, the partial volt-
ampere characteristic takes on the form

Here ck(0) and ck(5) are the concentrations in the mem-
brane phase, which are related to the corresponding
concentrations ejj and c*k in the solutions by the distribu-
tion coefficients yh, e. g.,

e»(0)=wi·

This is precisely the formalism, which is based on
the concept of diffusion and migration of ions in a con-
tinuous, homogeneous phase, that has been used to de-
scribe the state of rest of biological membranes. For
example, one can easily calculate from Eq. (20) the
membrane potential, which is one of the fundamental
characteristics of the nerve cell. As we have mentioned,
the membrane of smooth fibers is permeable to sodium,
potassium, and chloride ions. Hence the state of rest is
a steady state, rather than a thermodynamic equilibrium.
For an open circuit, the steady-state condition is re-
duced to compensating the partial ion currents: ΣΛ</Λ=0.
Actually this condition is the equation for determining
the membrane potential, whose solution has the form

ψ=1η (21)

where we have introduced the so-called permeabilities

ek<0)-'k

_ , - ' » •
(20)

The relationship (21) describes satisfactorily the ex-
perimental data, provided only that the interval of con-
centrations is not too broad. This can hardly be con-
sidered as a serious argument in favor of the applica-
bility of the electrodiffusion theory for describing the
electrical characteristics of nerve cells in a state of
rest, since the unknown parameters P{ are determined
from the same set of experiments. Moreover, the en-
tire set of existing facts indicates that the treatment of
the membrane as a continuous homogeneous phase that
is adopted in the electrodiffusion theory is not adequate.
Therefore, actually the grounds for using the relation-
ships (20) and (21) is their simplicity and our lack of
reliable information on the true mechanism of ion trans-
port in a state of rest. Considerably more is known on
the phenomenon of ion transport through membranes in
the process of excitation, when the conductivity of the
system is sharply elevated. It has been firmly estab-
lished that the ion transport is effected in this case
through specialized lipoprotein structures that are called
the ion channels. We shall proceed to describe the
transport through the channels, which requires a spe-
cial formalism.
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TABLE II. Relative permeabilities of the sodium channels of
the nodes of Ranvier for univalent cations.

Ion

Sodium
Hydroxylamine
Lithium
Hydrazine
Thallium
Ammonium

ίΊοα/^Na

1.00
0.94
0.93
0.59
0.33
0.16

Ion

Formamidine
Guanidine
Hydroxyguanidine
Potassium
Aminoguanidine

0.14
0.13
0.12
0.09
0.06

4. ION CHANNELS

a) Facts and hypotheses

A multitude of arguments have now been amassed in
favor of the idea that the conducting structures of bio-
membranes act as channels, rather than mobile car-
riers/31-1 We recall in this regard the experiment of
Chandler and Meves,C32] who studied the high-frequency
conductivity of membranes under conditions in which
the permeating ions sodium and potassium were absent
in the solution. If the membrane contained charged
mobile groups, then in an ac field one would record an
electric current that was equal in order of magnitude to
the ion current under ordinary conditions. However,
the high-frequency conductivity proved to be zero within
the limits of accuracy of experiment. Hence they con-
cluded that mobile carriers were absent, and they gave
an upper estimate of the number of channels. Subse-
quent experiments on TTX and TEA binding, together
with measurements of electrical fluctuations (see Sec.
c of Chap. 5) confirmed these data: a number of the
order of hundreds of sodium channels occurs per 1 μπι2.
The conductivity of a single sodium channel is estimated
to be 4xlO"12 ohm"1, and that of a potassium channel is
12xlO'1 2 ohm' 1 . " " As yet the ion channel remains to a
considerable degree an undefined concept in the struc-
tural sense. It has not yet been possible to distinguish
and characterize the membrane proteins of excitable
biological membranes that are responsible for control-
lable ion transport. Hence highly varied concepts are
widespread in the literature on the nature of the ion
channels. Some authors rely on the analogy with the
artificial channels in BLMs, where the electric field
affects the statistical process of assembly of a channel
from subunits. They consider that biological mem-
branes contain no preexisting ion channels, while the
observed process of elevated conductivity upon depolar-
ization involves their assembly. Another viewpoint is
more widespread, which treats a channel as a rather
rigid macromolecular system that is capable of small
conformational rearrangements. An entire series of
arguments that we shall not undertake to analyze favors
the latter viewpoint." The concept of an ion channel as
being a lipoprotein complex that is characterized by a
set of conformational states allows us to treat it as a
"vector" enzyme that catalyzes an ion-transport reaction.

5 'Perhaps the most convincing argument in favor of preexisting
channels is the fact of binding of TTX to a closed sodium
channel.

A feature of this transport enzyme is that its activity is
controlled by the electric field. The analogy of mem-
brane transport systems with enzymes extends also into
the field of specificity. As studies in the field of mem-
brane-active complexons have shown,ci2] the mechanism
of interaction of an ion with a complexon initiates a con-
formational rearrangement of the entire complex, and
it is a good model for the induced fit between a sub-
strate and the active center of an enzyme.

An ion channel performs two fundamental functions:
it makes the membrane selective and field-controllable.
The natural question arises of whether a correspondence
can be established between these functions and any spe-
cific molecular groups. In a more modest (and more
realistic) formulation of the problem, this comes out as:
can one affirm that the different functions are performed
by different groups of the channel ? It does not yet seem
possible to give a categorical answer, though it is
deemed most likely that different regions of the channel
perform the transport-selective and regulator functions.
We shall begin to analyze the different functions of the
channel with studying the transport system. In other
words, we shall treat ion transport through open chan-
nels.

The ion channels are highly selective. Nevertheless,
if one replaces the sodium ions with other cations in the
outer solution and blocks the potassium channel with
tetraethylammonium, one can realize an aritifical solu-
tion in which other cations are transported through the
sodium channel. As a result one can find the set of per-
meabilities for the series of cations. Table Π,Ε4] which
is based on the data of Hille,C3" gives an example of such
a series.

Analogous experiments have recently been performed
also for the potassium channel (Table HI). By using a
set of cations with different crystallographic radii, es-
timates could be made of the geometric characteristics
of the sodium and potassium channels.

Figure 15 shows the model of the sodium channel pro-
posed by Hille.C 3 u It consists of entrance regions,
where the ion is gradually dehydrated and the water
molecules are replaced by the polar groups that line the
interior of the channel. The main barrier lies in the
selective center of the channel, which is estimated to
have a cross section of 3x5 A. The dimensions of the
cross-section are chosen from considerations of geo-
metric exclusion of the nonpermeating cations. The
longitudinal dimension (of the order of several A) is
very crudely estimated by starting with the maximum
admissible ohmic resistance of the channel as a conduc-
tor having the specific characteristics of the surrounding
solutions. The sodium channel has a very high conduc-
tivity. In the open state, the current through it amounts
to ~107 ions/sec. This compels us to narrow the main
barrier region as much as possible in order to get high
permeability along with high selectivity.

The high permeability of the sodium channel poses
the problem of whether the limiting process is the dif-
fusion of the ions in the space adjoining the membrane.
Estimates show that the limiting diffusional flux is about
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TABLE III. Relative permeabilities of the potassium channels of the nodes of Ranvier for
univalent cations'3 5 1

Ion

Potassium
Thallium
Rubidium
Ammonium
Cesium
Hydrazine

Ρΐσ*/Ρκ

1.000
0.300
0.910
0.130
0.077
0.029

Crystallographic
radius of the
ion, A

2.66
2.80
2.96
3.00
3.38
3.33

Ion

Hydroxylamine
Methylamine
Formamidine
Lithium
Sodium

Pimfas.

0.025
0.021
0.020
0.018
0.010

Crystallographic
radius of the
ion, A

3.30
3.60
3.60
1.20
1.90

an order of magnitude higher than the flux through the
channel. That is, the intramembrane transport is limit-
ing. This is all the more true for the potassium chan-
nels, whose transport capacity is ~10e ions/sec.

Upon turning to the selectivity problem, we note that
the existing theory is a thermodynamic one, and it is
based on calculating the equilibrium distribution coeffi-
cient of the ions between the aqueous solution and a cer-
tain state in the membrane. If we calculate the energy
difference of solvation simply by Born's formula (7),
this yields a selectivity series that increases mono-
tonically with the radius of the ion, whereas real chan-
nels are characterized by a more complicated variation.
Hence Eisenmant3el has introduced into the treatment
also the interaction of the ion with a fixed charge local-
ized in the membrane. It is physically obvious that ions
of small radius now take an advantageous position, since
their coulombic interaction with the fixed charge of op-
posite sign will increase their affinity for the channel.
The selectivity series that one observes in the sodium
channel compels us to assume that an anionic group lies
in the vicinity of the selective center.

Figure 16 shows a hypothetical model of the potassium
channel. The discrimination against ions of larger size
is explained by steric factors. However, one asks why
the permeability of the potassium channel to sodium is
so low when the latter has a smaller crystallographic
radius. If the cavity of the channel is rigid, the state
of the sodium ion shown in Fig. 16a is energetically un-
favorable with respect to its situation in aqueous solu-
tion (Fig. 16b), where it is fully hydrated. The case is
more favorable for potassium, since the polar groups
of the channel form a compact solvation shell around it.
The purely thermodynamic approach to the selectivity
problem does not seem satisfactory. The process of
ion transport is a kinetic phenomenon. That is, as we
shall show in the treatment below, selectivity also de-
pends on kinetic parameters.

FIG. 15. Model of the sodium
channel. The oxygen atoms that
line the channel are shown, together
with a partially hydrated sodium
ion.C 3 4 ]

b) Single-file transport

The ion channels allow only single-file movement of
ions. Consequently, the ordinary electrodiffusion de-
scription of (13), which is based on the notion of diffu-
sion of noninteracting point particles, loses force. This
is also indicated by analysis of the experimental data on
one-way ion currents. We can easily derive from (20)
an expression for the one-way ion currents by assuming
that cft(6) and ck(0) are alternately equal to zero:

n (6)

βδ(1-Γ'»")
(22)

Equation (22) implies that the one-way currents are in-
dependent in the constant-field approximation, and their
ratio is determined by the Ussing formula:

(23)

The experimental results indicate that the entering and
exiting currents are independent in the sodium channel
when sodium ions are moving through the channel.'371

Yet if the sodium in the outer solution is replaced by
other cations, the sodium channel ceases to obey the in-
dependence principle. The transport of potassium ions
through the potassium channels does not obey the inde-
pendence principle."81 Thus, for example, when the ex-
ternal potassium concentration is elevated by a factor of
10, the entering current is increased by a factor of 30,
while the exiting current diminishes by a factor of 3-4.
The ratio of the entering and the exiting potassium cur-
rents does not obey the Ussing formula (23), and it is
described by the empirical relationship

(24)

where wK2.5.

FIG. 16. Model of the potassium channel, a) Arrangement
of potassium and sodium ions in the selective center of the
potassium channel, b) The sodium ion in aqueous solution
lies in closer contact with oxygen atoms. U 1
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TABLE IV. The coefficients v( and

for a series of cations.
for a

a) b)

FIG. 17. Schematic drawing of the energy profile of an ion in

a channel, a) General case, b) three-barrier model.

According to the model of the ion channel shown in
Fig. 15, the profile of the potential energy of an ion in
the membrane can be pictured in the form of the curve
shown in Fig. 17a. Regions 1 and 3 correspond to the
entrance regions of the channel, and region 2 to the se-
lective center. Until the number of potential wells,
their depth, and the height of the barriers are concret-
ized, this picture remains rather general. If the com-
plete set of barriers includes several major, highest
ones, then we can conveniently treat the transport in a
discrete formalism. In the converse case in which the
number of barriers is large, while they are similar in
height, one can use a continuous description. The vari-
ant in which the potential profile contains only three high
barriers proves to be sufficiently interesting (Fig. 17b).
Let a solution containing the ions A lie to the left of the
membrane, and a solution containing the ions Β to the
right. Figure 17 shows the rate constants of all the
transitions through the barriers. The states of the
channel are characterized by the binary functions F(Xit

Xz), (X=A, Β, Ο) in terms of which all the current are
expressed. The functions F(XUXZ) satisfy a system of
differential equations that can be conveniently solved by
the method of directional partial diagrams.1 3 9 3 Figure
18 shows the base diagram for the three-barrier prob-
lem. The points denote the different states of the chan-
nel, and the lines denote the transitions. Arrows are
not drawn on links along which a transition can occur in

•both directions. Each line is matched with a certain
analytical expression. For example, the line 00 —AO
corresponds to fc£4efl*i/2. Here A is the concentration
of ions in solution, and φ ι is the potential jump at the
first barrier. The probability of any state i of the sys-
tem is

Ft ι ν — :
, partial diagrams directed toward state i

y2 partial diagrams directed toward state j
(25)

The partial diagrams are obtained from the base dia-
gram by breaking the minimum number of links in such
a way that the obtained diagram contains no cycles. The
directional partial diagrams are obtained from the par-
tial diagrams by orienting all the lines toward the sought
node. The one-way ion currents can be calculated es-
pecially simply in the case of a high middle barrier:

* ( 2 6 )

The combination of coefficients yAA determines the
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Ion

Sodium

Thallium

Hydroxyguanidine

Amlnoguanidine
Methylguanidine

2.6

21.7

18.0

9.3

16.3

1

0.042

0.037

0.038

0.039

probability of filling the entrance well when it is vacant;
the coefficient G characterizes the probability that the
channel is empty, while the product ve*zli is the rate
constant of the transition through the central barrier.

The ratio of the one-way currents of (26) is described
by the Ussing formula

77='*-*°· (27)

where •^>

l=k[/ki

z. As Eq. (26) implies, the one-way cur-
rents depend nonlinearly on the concentrations on the
two sides of the membrane. That is, the independence
principle does not hold. We have G * l only in the case
in which γΑΑ«\ and γΒΒ«ί, i .e . , the concentration
in the solution or the affinity of the given ions for the
entrance regions of the channels is small. Then the one-
way currents prove to be independent, and as in the
electrodiffusion theory, they are determined only by the
product of parameters ι>{γ{. Autoblockage effects are
manifested as the concentration or the affinity is in-
creased. Equation (26) implies that the permeability
in the general case becomes a function of the concentra-
tion. This also implies that the selectivity as expressed
as the ratio of one-way currents is determined not only
by the thermodynamic quantity, the affinity, but also by
the kinetic characteristic v{.

Actually the presented formulas also describe a more
general variant of the energy profile in which the en-
trance regions correspond to a series of shallow poten-
tial wells that are in equilibrium with the surrounding
solutions. Analysis of the experimental data on trans-
port of different cations through the sodium channel al-
lows us to conclude that this type of energy profile hav-
ing a single high barrier reflects certain qualitative fea-
tures that are characteristic of the sodium channel.
Without taking up the details of the processing of the ex-
perimental material, we present in Table IV the found
coefficients v{ and yt for a set of cations. It implies that
the substituted ions bind better to the entrance region of
the channel than sodium does, but their rate constants ν
for passage through the selective center are much small-
er than the corresponding constant for the sodium ion.
When the sodium ions are replaced by other cations in
equivalent concentration, the terms yBB in the blockage

FIG. 18. Base diagram of the
three-barrier model.

Markin et al. 849



FIG. 19. Energy profile of an
ion in a four-barrier channel.

coefficient G increases, since the distribution coeffi-
cient y is minimal for sodium. Hence, as we go to other
cations, we can expect deviations from the independence
principle, as is observed experimentally. We should
add to this the fact that calculation of the volt-ampere
characteristic of one-way transport allows one to get a
linear current-potential relationship over a rather broad
region, in line with the experimental data.

Let us take up briefly the allowance for Coulomb ef-
fects in one-way transport. The potential energy of an
ion in the channel is composed of its interaction with the
transport system itself and with the other permeating
particles that lie in the channel. Consequently the over-
all energy profile depends on how the channel has been
filled. In calculating the currents, we must now re-
normalize certain of the rate constants with account for
the Coulomb ion-ion interaction, whereas the scheme of
calculation remains as before. As a result, we get the
following expression for the one-way currents:

j B =
1 = 1 + yAA + yB (28)

The Ussing formula remains in force. The difference
between Eqs. (26) and (28) amounts to the term yAAyBB
in (26), which is lacking in (28). This involves the dis-
appearance of the state (AB) owing to Coulomb repul-
sion. Correspondingly, the one-way currents are ele-
vated, and the blockage effects are diminished.

c) The sodium channel with a modified energy profile

An energy profile having a high central barrier does
not contradict the measured electrical characteristics of
the sodium channel. However, it conflicts with data that

*UL-J»J

FIG. 20. Base diagram of
the four-barrier model (a)
and the current cycles that
correspond to one-particle
(b) and two-particle (c)
transport.

c)

FIG. 21. Two-particle trans-
port of ions through a channel.
The deep potential well (a) cor-
responds to the one-particle
state in the channel. Coulombic
repulsion in the two-particle
state makes the well not so deep
(d) and facilitates transport of
ion 1 into the next well (c).

indicate a fixed anionic group in the region of the selec-
tive center. The channel becomes sharply less perme-
able for cations when it becomes protonated. Hence we
can naturally suppose that the selective region in the
protonated state is equivalent to a high barrier that be-
comes lowered and split for cations when it becomes de-
protonated. Thus transport through the channel is now
a four-barrier process (Fig. 19), and the state of the
channel should be described by the three-dimensional
vector (ΧΊ,Χϋ,Χ,), with X, =A, B, or O. Now the base
diagram has the form of Fig. 20a. Here the solid lines
denote transitions between the solutions and the entrance
regions, while the dotted lines denote transitions be-
tween the entrance regions and the selective center.
The calculation of the probability of any state is consid-
erably simplified if one uses perturbation theory, while
assuming the transitions fe3 and fe4 to be slow (dotted
lines) in comparison with the transitions kx and kz (solid
lines). However, the physical pattern of the transport
process proves to be more perspicuous if we use the
method of current diagrams. Upon considering all pos-
sible current cycles, we can get information on the dif-
ferent "mechanisms" of transport of an ion through the
membrane. We should view a transport "mechanism"
as a sequence of states through which the channel passes
in this process. For illustration, Figs. 20b, c show two
examples of current cycles. The first one corresponds
to one-particle transport (b), and the second one to two-
particle transport (c). Coulomb effects cause two-parti-
cle transport to become the fundamental transport pro-
cess in a certain range of the parameters of the original
energy profile. We can explain this physically as fol-
lows. The fixed anionic center facilitates entrance of
cations into the channel by attracting them. However,
it simultaneously hinders their exit from the channel.
Evidently, exit from the central well would be facilitated
if a second cation entered the left-hand well (Fig. 21),
since repulsion by the ion 2 now weakens the interaction
of the ion 1 with the fixed charge. In other words, the
well has lost depth, and the possibility has arisen that
the ion 1 will transfer to the right-hand well. Corre-
spondingly, the ion 2 can fill the central well, as though
"dislodging" ion 1. Quantitative analysis of this problem
as performed by the method of current diagrams pre-
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FIG. 22. Energy profile of an
ion in the potassium channel.

sented above shows that such a "billiard" mechanism
does not violate the validity of the Ussing formula, and
it leads to qualitatively the same results as single-file
transport in a channel having a single high barrier.

d) The potassium channel

In all the cases mentioned above, in spite of deviations
from the independence principle, the Ussing formula
has continued to hold. However, this formula is no
longer valid for the potassium channel. Therefore we
must expand the class of potential-energy profiles of an
ion in the channel in order to find conditions under which
deviations will arise.

Properly speaking, the mechanical model of Huxley,
and also the studies of HeckmannU l : have shown the way
to seek the solution of this problem. The required mod-
ification of the energy profile must consist in introduc-
ing into the selective center not one, but at least two
strongly correlated deep potential wells (Fig. 22). The
expression for the ratio of one-way currents in this case
has the form

la (29)

The second power in the exponential seems to indicate a
doubling of the order of the ion transport reaction through
the channel. This happens because the channel exists
in a filled two-particle state. Therefore exit of a parti-
cle into the solution is accompanied by a successive
shift of ions throughout the channel. As we see from
Fig. 23, Eq. (29) satisfactorily agrees with experiment.
One can also explain quantitatively the observed devia-
tions of the one-way currents from the independence
principle. This indicates that the energy profile in Fig.
22 correctly reflects the fundamental qualitative features
of the energy profile in the potassium channel.

e) A continuous description

If we neglect correlations, then we can write the
transport between the wells m and m +1 in an inhomo-
geneous chain in the form

1m.

- n v m + l i m (1 - 6 (30)

Here 6m is the filling number of the well m. Since
^m.nrt-i i s small when there are a large number of wells,
then if we assume that 6m varies smoothly, we can
transform to a continuous description:

j (x)= -nv(x)6%-nto(x)e{l-e) a™™> , (31)

Here δ is the distance between adjacent barriers, and

μο(*) is the dimensionless standard chemical potential
of the ion. Equation (31) is a simple generalization of
the Nernst-Planck equation that takes account of the
limited number of sites that are vacant for diffusion, as
well as the inhomogeneity of the membrane.

5. DEPENDENCE OF THE CONDUCTIVITY OF THE
CHANNEL ON THE ELECTRIC FIELD

a) Interpretation of the Hodgkin-Huxley equations

The Hodgkin-Huxley equations describe the dynamics
of certain macroscopic quantities, the conductivities of
regions of the membrane that contain a large number of
individual ion channels. Therefore a given relationship
can be derived as a result of averaging the conductivity
of channels that are undergoing saltatory changes, or
else simply as the continuously varying conductivity of
a single channel multiplied by the density of channels.
Let us examine the first possibility with the example of
the potassium conductivity. As Eq. (5) implies, this
quantity is proportional to «4, where « varies from 0 to
1. We can naturally treat « as the probability that some
particle belonging to a channel should lie in a certain
position that facilitates the onset of the conductive state.
The exponent 4 then will mean that there are four of
such particles and that they are all independent, whereby
the channel exists in the conductive state only whenever
all four particles simultaneously lie in the "active" posi-
tion. As the form of the kinetic equation for η implies,
only one state exists for the «-particle besides the active
state, and its probability is 1 - n. Thus a very simple
interpretation of the Hodgkin-Huxley model gives the
following picture for the potassium channel. For the
sake of definiteness, let all of the «-particles bear a
certain positive charge. Then in a state of rest, all
four «-particles lie on the inner side of the membrane,
and the channel is closed. If we increase the membrane
potential, then the energy of the «-particle on the inside
is increased, and that on the outside is reduced. There-
fore the probability of finding a particle on the outside
of the membrane increases, and the conductivity of the
membrane increases accordingly. Finally, at large po-
tentials the «-particles spend almost all the time on the
outside of the membrane, and the conductivity reaches
its highest possible value. One can interpret analogous-
ly also the conductivity for the sodium channel, with the
distinction that here one must introduce two types of
particles, m and h, whereby one channel contains three
»2-particles and one «-particle that do not interact with
one another. The kinetic equation for the w-particles is
linear. This corresponds to the notion of a single-bar-
rier transition, or to the existence of only two states

FIG. 23. Relationship of the ra-
tio of one-way currents to the po-
tential jump at the membrane.
1—Ussing formula, 2—Eq. (29),

3—experiment. C383
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FIG. 24. Isolation of the asymmetric component of the dis-
placement currents (gating currents) when a stepwise voltage
of ± 120 mV is clamped at the membrane. The axon is perfused
with a solution of 55 mM CsF and placed in a K- and Na-free
saline solution that contains 110 mM Ca and 300 pM tetrodo-
toxin. A voltage of - 70 mV was preliminarily clamped across
the axon. a) Record of the displacement currents; b) their dif-
ference, which determines the asymmetric component of the
currents; c) logarithm of this component after correction for
the leakage currents. The curves 1 correspond to turning on
the step potential, and the curves 2 to turning it off.C43]

of the m -particle. The equilibrium constant between
these states depends on the potential as follows:

One usually assumes that the potential difference be-
tween the initial and the final states of the m-particle
coincides with the membrane potential φ . Then the
charge of the w-particle as determined near the rest
potential proves to be «4. However, it is hard to be-
come reconciled with the idea of several particles jump-
ing in the activation process over a distance of the order
of 100 A, if one starts with the idea that the channel
amounts to a rather rigid macromolecular system. One
can assume that the m-particles undergo small dis-
placements, but then one has to assume their charge to
be reasonably large. One can obviate this difficulty only
by rejecting the independence of the subunits of the chan-
nel. Undoubtedly, this idea is related to the earlier at-
tempts at accounting for the cooperative nature of the in-
teraction between the channels/423

b) Gating currents

The structural rearrangement of a channel that occurs
when the external electric field varies must be mani-
fested in an additional component of the displacement
current that has been given the graphic name of the
"gating current." It has been possible to measure it only
in recent years.tsl·4*1 The problem consisted in isolating
the extremely small useful signal. Hence people have

usually made the measurements on nerve fibers in which
the inner medium was replaced with a potassium-free
solution, and sodium ions were removed from the outer
solution. Moreover, they have added specific poisons,
TEA and TTX, which suppress the conductivity of the po-
tassium and the sodium channels. Yet even under these
conditions, the fluctuations were rather large in compar-
ison with the useful signal, so that often one had to re-
sort to a storage device that automatically averaged the
records. A typical experiment consisted in the follow-
ing. One applied to a fiber that had been preliminarily
hyperpolarized to — 90 to —100 mV a positive square-
wave voltage impulse. Here one recorded the transition
currents at the beginning and at the end of the impulse
that were directed toward the outside and the inside of
the fiber, as is shown in Fig. 24a. In order to allow
for the capacity-charging current, measurements were .
performed for a negative voltage impulse (Fig. 24b),
whereupon the results of the first and second experi-
ments were algebraically added. As a result they iso-
lated the asymmetric component of the displacement
current, which had the same sign as the current in re-
sponse to a positive voltage impulse, although the am-
plitude was considerably smaller (Fig. 24c).

A characteristic feature of the obtained asymmetric
currents is their exponential time-dependence. Analy-
sis of the characteristic relaxation time of the asym-
metric current as a function of the potential during a
positive voltage impulse showed that this time very
closely matches the relaxation time of the variable m
in the Hodgkin-Huxley model. This coincidence allowed
them to assume that the observed asymmetric current
involves particles that open and close the sodium chan-
nel. Subsequently additional facts have been found that
favor the direct relationship of the asymmetric displace-
ment currents and the gate particles.

By integrating the gating current over the time, one
can get the size of the equivalent charge that is trans-
ported from one side of the membrane to the other. Fig-
ure 25 shows the relationship of the displaced charge to
the membrane potential. The solid curve was obtained
semiempirically"3·1 under the assumption that the gate
particles have one stable state near each side of the
membrane, and that they have a charge of 1.3e. This
curve is described by the formula

<?max
(z=1.3), (32)

-4 -2 -t

FIG. 25 Fraction of transported charge as a function of the
potential. Curve 1 is constructed by Eq. (33) with a linear ap-
proximation of w(6). Curve 2 is by Eq. (32), and the dots are
from experiment. [431
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where Qmix is the maximum displaced charge, which is
approximately 2400 β/μπι2.

One can consider the gating currents to result from
jumping of the m -particles during the activation of the
membrane. From the physical standpoint, as we have
noted, the notion of jumping of several charged-particles
through the whole thickness of the membrane seems ill
convincing. Hence we must examine other possibilities
of interpretation of the gating currents. We shall take
up one of them that ascribes the gating current to a
change in the total dipole moment of the system/**3 If
the lipoprotein complex is rigid enough, then the reori-
entation of the elementary dipoles corresponding to in-
dividual bonds will be cooperative. This is very essen-
tial in explaining the steep dependence of the displaced
charge on the membrane potential that is observed ex-
perimentally (see Fig. 25). If we assume that every
elementary dipole has only two possible orientations,
then we can describe the fraction θ of dipoles that have
changed orientation by the relationship

θ (33)

Here w is a cooperativity parameter, ε =d/e6, d is the
change in the projection of the dipole moment, δ is the
thickness of the membrane, e is the unit charge, and k
is a constant. Figure 25 shows that θ(ψ) relationship
calculated for w =3. 5 and ε =0.2. The deviation of the
calculated curve from experiment at small and large θ
can be removed if we assume w to be a function of θ
that is defined by the condition that (32) and (33) should
coincide. This means that the ion channel in terms of
the dipole moment is a system with variable coopera-
tivity in which the latter increases in the regions of
small and large Θ. For example, when θ = 0.1 (or 0. 9),
w = 4.6. The gating current, which is proportional to §,
and the voltage-dependence of its relaxation time agree
qualitatively with experiment.

The change in the ion permeability during the reorien-
tation of the dipoles can arise from various factors. If
the reorientation is associated with appreciable confor-
mational changes in the system, then the "opening" or
"closing" of the channel can have its literal meaning.
That is, it amounts to a rearrangement of the molecu-
lar geometry of the channel. Another case can also oc-
cur in which the dipole reorientation doesn't change the
geometry of the channel, but affects the electrostatic
component of the energy of the ions in the channel. Thus
it affects both their concentration in the membrane and
their effective mobility. Simple estimates show that the
electrostatic mechanism of regulation can in principle
give rise to the observed potential-dependence of the
conductivity.

We can make the final choice between these two pos-
sibilities after we have found out whether the conductivi-
ty of an individual channel varies discretely or contin-
uously. It is physically evident that the "all-or-none"
rule will favor the conformational hypothesis, while a
continuous variation of the conductivity should indicate
rather the functioning of an electrostatic regulation
principle. The Hodgkin-Huxley model postulated that

an ion channel, e. g., the potassium channel, can exist
in one of five conformational states, only one of them
being conductive. Of course, this picture of the channel
is not the only possible one, if we start with the condi-
tion of matching the data of the voltage-clamping experi-
ments. For example, one can assume that all the con-
formational states are conductive, while one seeks the
conductivity distribution function from the condition of
best match with experiment. Another possibility con-
sists in introducing a single conformational state whose
conductivity is described by the following nonlinear
equation:

(34)

One can distinguish these schemes by studying the spec-
trum of the electrical fluctuations.

c) Electrical fluctuations

The spectral characteristics of membranes can be
arranged as follows in order of increasing intensity:
thermal noise < Lorentzian or shot noise, which involves
"opening" or "closing" of gates—(l/f)-type noise (flicker
noise). A (l/f)-type spectrum has been observed in the
most varied systems" 5 3: at microelectrodes, at small-
diameter apertures that separate two electrolyte solu-
tions, at porous membranes, and also at artificial phos-
pholipid and biological membranes. In all cases, a
necessary condition for a (1/f) relationship was either,
the transmission of an electric current through the sys-
tem or the existence of a concentration difference of a
permeating ion on two sides of a membrane. There is
as yet no exact theory that explains the spectral density
of (1/f)-type fluctuations. We should note the two most
widespread ones among the various attempts at theoret-
ical explanation of this type of relationship. One of these
attempts amounts to adducing a diffusion equation to de-
scribe the autocorrelation function. This equation gives
an asymptotic relationship that can be described by the
inverse square root of the time, and a corresponding
Fourier transformation gives a (l/f)-type spectrum.
An essential point is that one gets a (1/f) relationship
only in a certain frequency range. The second way of
explaining the (1/f) relationship uses the idea of in-
homogeneity. In other words, one assumes the existence
of many independent noise sources, each of which has
a Lorentzian spectrum. By selecting a certain density
distribution of these sources with respect to frequency,
one can bring the overall spectrum close to a (1/f) re-
lationship, naturally, over a certain frequency range.
Thus, although the nature of (l/f)-type noise has appar-
ently not been reliably established, we can assume that
this relationship itself is approximate and valid only
over a restricted interval.

For a long time, the shot noise directly involved in
the action of the gates in biological membranes could
not be measured against the background of the (1/f)-
type noise. Only in 1973 did Fishman"" get difference
spectra of the potential fluctuations of a native mem-
brane and of a membrane having potassium channels
blocked with TEA. Evidently, the difference spectrum
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FIG. 26. Spectra of fluctuations of
the membrane potential in a state
of rest.C 4 6 1 1-normal curve, 2—
spectrum after adding TEA, 3—
difference between curves 1 and
2, which corresponds to the po-
tassium channels.

f,Uz

corresponds to fluctuations of the electrical character-
istics of the potassium channels, and it is exactly of
Lorentzian type (see Fig. 26):

(35)

We know from the thermodynamic theory of fluctuations
that one gets a Lorentzian spectrum with one character-
istic frequency for two-level systems, or in other words,
for systems that can be described by one thermodynamic
variable. Yet if the ion channel possesses a set of con-
formational states as in the Hodgkin-Huxley model,
where they are assumed to be five in number, then sev-
eral Lorentzian terms arise in the spectrum at multiple
frequencies.1473 In fact, if the channel consists of four
sub units, each of which exists in one of two states, then
we can draw a kinetic diagram of this channel as follows:

(36)

The numbers in the squares correspond to the number
of active subunits, and the arrows and the expression
attached to them show the possible transitions and the
corresponding rate constants; the last square corre-
sponds to the conductive state. We can easily calculate
the spectrum of fluctuations in this model:

Gg (ω) = 2 Re f e^'Gg (t) dt, (37)

Here G,(i) is the correlation function of the conductivity:

(38)

Let the potassium channel have the conductivity g0 in the
conductive state, and let P(l, 0) be the probability of the
conductive state at the initial instant of time, while
P(l, 0; 1, t) is the probability that the channel will be
open at the instants of time 0 and t. Then

where P(l,f/l,0) is the conditional probability of the
conductive state of the channel at the time t under the
condition that the channel had been open at the initial
instant of time.

We can easily find expressions for the probabilities
Ρ by solving Eq. (4) while using (5). Consequently, we
get:

( 4 0 )

These formulas are easily generalized to the case having
a given distribution of the states of the channel with re-
spect to the conductivity.C48] Thus the elucidation of the
type of frequency-dependence of the spectrum together
with the potential-dependence of the characteristic fre-
quency allows one in principle to solve the problem of
the number of variables that are needed to describe the
channel. In spite of rapid progress along this line, the
level of accuracy of experiment does not allow us yet to
draw final conclusions. It has already become possible
to estimate the mean distance between channels from
the amplitude of the fluctuations and the mean value of
the fluctuating variable. This distance proved to be of
the order of several hundred A for the potassium chan-
nels in the squid axon.

6. PROPAGATION OF IMPULSES ALONG NERVE
FIBERS

a) Velocity and shape of the impulse

A very important property of the nerve impulse is its
ability to propagate along the fiber without attenuation at
a constant velocity. In the one-dimensional case the
membrane potential distribution ψ(χ, t) is determined by
the cable equation, which is a differential form of Ohm's
law:

(41)

Here C is the capacitance of the membrane per unit
length of fiber, R is the sum of the longitudinal intra-
cellular resistances, and J is the ion current flowing
through the membrane. The electric current J is a func-
tional of the potential, which in turn depends on the time
and on the coordinate. This relationship is defined by
Eqs. (3)-(5). This form of the functional J is specific
for a biological excitable medium. However, apart from
the form of J, Eq. (4) is more general in nature, and it
describes many physical phenomena, e. g., combustion.
Therefore the transmission of the nerve impulse is often
likened to the burning of a gunpowder fuse. While the
ignition process in the running flame arises from the
heat conductivity, in the nerve impulse the excitation
involves the so-called local currents (Fig. 27).

These concepts date back to the end of the past cen-
tury. Then many attempts followed to calculate the
transmission of the nerve impulse mathematically.
However, people had to know the excitation law in order
to do this. While lacking factual data on the nature of
nervous excitation, many investigators restricted them-
selves to constructing theoretical models whose proper-
ties recalled the excitation process. One can find the
most interesting of them in the review"9 1.

It became clear as experimental data accumulated that
the propagation effect itself is but little sensitive to the
details of the excitation process, and that one can get
the answer to problems involving propagation by using
very simple models that reflect only the general proper-
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FIG. 27. Local currents that effect the propagation of the
nerve impulse.

ties of excitation. The problem has interested investi-
gators of calculating the velocity of the nerve impulse
in a homogeneous fiber, as well as complicated regimes
of propagation of excitation in active media such as car-
diac muscle. As we know, the phenomenon of fluttering
or fibrillation can arise in the myocardium, and it in-
volves the spontaneous electrical activity of the medium.
Wiener and RosenbluethC50] have dealt with problems of
fibrillation. They introduced the concept of a formal
excitable medium, in which the nature of the excitation
was inessential, and they obtained ground-breaking re-
sults. Their ideas have been subsequently developed
considerably and refined in the studies of Gel'fand, Fo-
min, Tsetlin, et eLC 5 1 f 5 2 1

Another group of studies was somehow involved with
calculating the velocity of the impulse. We can include
here the well-known study of Kolmogorov et al.LS31 on the
diffusion equation with a nonlinear source. In this set of
studies, it was no longer allowed to dispense with any
notions, however simple, on the physics of the process.
They usually amounted to the idea that either discharg-
ing of the membrane capacitance began when certain
critical conditions were attained, or else a membrane
generator that had certain given properties was turned
on/54""571 Such a physical modeling allowed people to get
analytical results and to elucidate the physical laws.
Another group of studies involved solving a detailed sys-
tem of Hodgkin-Huxley equations on computers.1583 How-
ever we shall not analyze in detail these numerical meth-
ods of solution nor the formalized excitable media, and
shall directly proceed to discussing the physical models
and approaches that admit an analytical solution.

As we know, the ion current that flows through the
membrane while a nerve impulse passes changes sign.
Therefore we shall approximate the ion current JB that
flows through the membrane upon excitation with a piece-
wise constant function or two "square waves" (Fig. 28).
In other words, we shall assume that a current is turned
on at a certain instant that corresponds to the onset of
excitation. It is directed inside the fiber and is equal in
modulus to j ' . After the time r, the current reverses
and is equal to j " . This phase continues during the time
τ". Moreover, we shall allow for the passive conduc-
tivity r m of the membrane. Then the total current will
be J=Jm + (Ψ/I'm)· Now it is no longer hard to find an
automodeling solution of Eq. (41). Since the velocity of
the running wave is initially unknown, we get an eigen-
value problem. Its solution shows that there are two ad-
missible values of the velocity, each of which corre-
sponds to a running impulse of a definite shape. One of
them proves stable while the other is unstable. The
velocity of the stable impulse is

If we neglect the conductivity of the membrane in a state
of rest, we get the simple formula

(43)

which was first derived by Kompaneets and Gurovich. : s5]

The result included only the parameters of the first
phase of the excitation current. That is, the velocity of
propagation is determined by the leading front of the
running impulse. The relationship of the velocity to the
diameter of the nerve fiber is of interest. Experiments
on smooth fibers show that the rate is approximately
proportional to the square root of the diameter. The
given formula gives the same result.

We can use the obtained solution to calculate the form
of the action potential for concrete objects. A small
variation of the excitation threshold and of the amplitude
of the first phase of the current is allowable in the com-
parison with experiment. Figure 28 shows a nerve im-
pulse in a squid axon. We see that the simple analytical
model gives a very good approximation of the action po-
tential that is not inferior to that obtained from the exact
Hodgkin-Huxley equations. A choice of reasonable val-
ues of the parameters that figure in Eq. (43) gives ve-
locities very close to the experimental values/5 9 1 For
example, one gets a velocity of about 21 m/sec for the
giant axon of squid.

The obtained solution somewhat recalls the solitons,
which have been intensively studied in various systems.
Just as in the case of solitons, the nerve impulse has a
set of allowed velocities, a stable form that does not
depend on the conditions of formation, etc. However,
there are also substantial differences. Solitons are ex-
citations that arise in dynamic systems, whereas the
nerve impulse arises and propagates in an active medi-
um and is essentially a dissipative process. Another
feature of the nerve impulse is its "refractory tail,"
which rules out repeated excitation immediately after
passage of an impulse. It is therefore impossible, for
example, for impulses to overtake one another. Never-
theless, it would be interesting to try to apply the meth-
ods of the theory of solitons to this field as well.

b) Propagation of impulses along inhomogeneous fibers

The nerve fibers along which impulses propagate are
not homogeneous. Wherever the fibers branch or
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FIG. 28. Running impulse, a)
Form of a spike (1—squid axon
at 18.5 °C, 2-the studied mod-
el, 3—theoretical model of Hodg-
ldn and Huxley); b) approximation
of the ion current during excita-
tion.

t, msec
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FIG. 29. Passage of impulses along an expanding fiber, a)
Variation in the velocity of the impulse as a function of its di-
rection (1,2—the impulses pass, 3—the impulse is blocked);
b) schematic drawing of the expanding fiber.

Another inhomogeneity is a branch in the fibers. Here
different variants of passage and blockage of an impulse
can occur. If the impulse approaches the branching node
along one fiber (Fig. 30), then the condition for blockage
has the form

Of greater interest is the approach to a branching node
of impulses together along two fibers. If the impulses
move synchronously, then the blockage condition has
the form

change in cross-section, the passage of impulses can be
hindered and sometimes even simply impossible. This
problem has been studied by different authors by various
methods. They have applied both analytical methods'803

and computer calculations.1·58·81-1

Let us examine the passage of an impulse along an
expanding fiber (Fig. 29). Analysis shows that the ve-
locity of the impulse declines as we approach the ex-
pansion, while it begins to increase after the expansion
until it reaches a new steady state that exceeds the orig-
inal one. Thus, the transition to a higher velocity does
not occur monotonically, but after a delay. This delay
increases with increasing difference in the cross-sec-
tions. With a great enough expansion, the impulse can
fail to be established at all. It is of interest to calculate
the critical expansion of a fiber that will not transmit
an impulse. A calculation performed on the simple ana-
lytical model shows that the condition for blockage has
the form

(44)

here r\ and r2 are the radii of the two parts of the fiber,
and κ is a safety factor, i. e., the ratio of the amplitude
of the action potential to the threshold. Estimates with
the parameters adopted for the giant axon of squid show
that the critical expansion is somewhat larger than four-
fold. Calculations in the Hodgkin-Huxley model give a
value of the order of five.

Blockage does not occur when the impulse moves in
the opposite direction. An impulse can always be trans-
mitted from a broad to a narrow fiber. Yet the change
in velocity upon passing the inhomogeneity is opposite in
character. Upon approaching a constriction, the veloci-
ty of the impulse increases and then begins to decline to
a new steady-state value (see Fig. 29). Thus we get a
distinctive hysteresis loop on the velocity graph. The
source of the "hysteresis" is physically quite under-
standable. A forward-lying broad fiber having a large
capacitance is a powerful sink for charge. Therefore
the potential rises toward the threshold more slowly.
Yet if a constriction lies ahead, then it will not be in a
condition to absorb a large charge, and will amount to a
reflecting screen near which the potential rises more
rapidly. Hence, the velocity of the impulse increases.

Yet the problem is far more complicated when impulses
apporach at different times toward a branching node.
The blockage condition depends on the time offset. Since
it has a rather cumbersome form, we shall restrict our-
selves to a graphic illustration. If the impulses ap-
proach the node along fibers 1 and 2, which have the
same radius r, then the critical radius of the third fiber
that effects blockage depends on the time offset in the
way shown in Fig. 30.

A synchronization effect arises in the approach of im-
pulses at different times to a branching node. It is ex-
pressed in a decrease in the time offset between the im-
pulses as they approach the node. If the time offset be-
tween the impulses is small, the impulse help one an-
other in penetrating into the broad third fiber. Yet if
the offset is large enough, the impulses begin to hinder
one another. This involves the fact that the impulse that
arrives first, but is not able to excite the third fiber,
partially converts the node to the refractory state.C52]

c) Interaction of impulses

Thus far we have been treating transmission of a
nerve impulse along a single fiber of more or less com-
plicated shape. However, the nerve fibers in the organ-
isms are usually combined into bundles or nerve trunks.
This is quite visible in cross-sections of them, which
look just like the cross sections of many-stranded ca-
bles. Each fiber in such a bundle amounts to an inde-
pendent communication line, but they all have "one con-
ductor in common," the intercellular fluid. Consequent -

FIG. 30. Passage of impulses through a branching node, a)
An impulse approaches along one fiber; b) impulses approach
together along two fibers; c) relationship of the critical radius
of the third fiber to the time offset between the impulses.
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ly, when a nerve impulse runs along one of the fibers,
it creates an electric field in the intercellular fluid,
which can affect the membrane potential of the adjacent
fibers. Of course, under normal conditions the different
lines must operate without mutual interference, but the
possibility of interaction exists in principle and it can be
manifested under special, pathological conditions. Actu-
ally, if one treats nerve trunks with special chemical
substances, one can observe not only mutual interference
but also transmission of excitation to adjacent fibers.
Perhaps the clearest experiment of this type was that
performed by Katz and Schmidt. te2] Under laboratory
conditions they placed two separate nerve fibers in a
limited volume of external solution. The ends of the fi-
bers emerged in different directions, and one could ex-
cite and control them separately. They found that an
impulse running along one of the fibers simultaneously
altered the excitability of the second fiber. The change
occurs in three clearly marked stages. At first the ex-
citability of the second fiber declines (the excitation
threshold is raised). This decrease in excitability out-
runs the action potential that is running along the first
fiber, and it lasts approximately until the potential in
the first fiber reaches a maximum. Then the excitability
increases. This stage coincides in time with the process
of declining potential in the first fiber. And finally, the
excitability again declines when a small final hyperpolar-
ization of the membrane occurs in the first fiber.

They also studied experimentally the simultaneous
passage of impulses along both fibers. Interaction of
the impulses synchronized them under certain conditions
In spite of the fact that the intrinsic velocities of im-
pulses differed in the different fibers, a collective im-
pulse could arise when they were simultaneously ex-
cited. If the intrinsic velocities of the impulses were
the same, then the collective impulse had a lower ve-
locity. When the intrinsic velocities differed appreci-
ably, the collective velocity had an intermediate value.
Only those impulses can be synchronized whose veloci-
ties do not differ too greatly—by no more than 10% in
Katz and Schmidt's experiment. Here the interaction
depends very strongly on the resistance of the external
medium, and it increases with increasing resistance.

Let us proceed to describing this phenomenon mathe-
matically.

The membrane potentials of two parallel fibers satisfy
the following system of equations:

β*<Ρι

(45)

here Rx and Rz denote the longitudinal resistances of the
axoplasm of the first and the second fiber, while R3 is
the longitudinal resistance of the external medium, and
Y=R1Ri +RtR3 +RZR3. One can fix the values of the ion
currents in some way, depending on the adopted model
of nerve excitation. If one uses the simple analytical
model described above, then one can rather quickly
solve the system written above. The results amount to
the following. When one fiber is excited, a membrane

FIG. 31. On seeking the velocity of a collective impulse in in-
teracting fibers, a—distance between impulses, t>— velocity of
the collective impulse, u and w—velocities of the individual non-
interacting impulses. Curves I and Π—theoretical velocities of
impulses in each of the fibers when interacting with its neigh-
bor; their intersection points 1, 2, 3, and 4 are the collective
states.

potential that changes in sign is induced in its neighbor:
at first the fiber is hyperpolarized, then depolarized,
and finally hyperpolarized again. Evidently these three
phases correspond to the depressed, elevated, and again
depressed excitability of the. fiber. They made a special
study of the possible transmission of excitation between
adjacent fibers—the so-called ephaptic transmission.
Substitution of typical values of the parameters that enter
into the final formulas shows that under normal condi-
tions ephaptic transmission is absent in nerve trunks.
As the radius of a fiber increases, the probability of
transmission to it increases. The case of inhomoge-
neous trunks was studied especially. Transmission of
excitation from fiber to fiber proved most probable in in-
homogeneous regions, e. g., wherever fibers branch or
leave the trunk.

The problem is more interesting of the simultaneous
excitation of two adjacent fibers, and we shall treat it
in somewhat greater detail. We shall seek an automod-
eling solution of the problem in which two impulses move
at the same velocity at a constant distance from one an-
other. In this case the problem contains two unknown
parameters, the velocity ν and the distance a between
the impulses. Since the impulses affect one another,
the velocity of each of them is formally a function of the
distance between them (Fig. 31). The intersection points
of the curves constitute a collective state, since under
these conditions both impulses move at the same velocity
at a constant distance from one another. The presented
diagram contains four collective states, which are in-
dicated by the numbers 1, 2, 3, and 4; only the states
1 and 3 are stable.

State 1 corresponds to the case in which the impulse
lies ahead that has the lower intrinsic velocity. It re-
tards the second, fast impulse, and doesn't let it pass,
and they both move at a relatively low velocity. In state
3 the "fast" impulse lies ahead, and it drags the "slow"
one after it. The collective velocity proves to be close
to the intrinsic velocity of the fast impulse.

d) Accounting for the dynamics of development of
excitation

The fundamental results of this chapter have been de-
rived by using a simple analytical model. Physically
this approach is quite justified, but here the problems
remain of how exact this approximation is, and how the
true dynamics of development of excitation affects the
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propagation of an impulse."8"653 We can answer these
questions by using the Hodgkin-Huxley equations (3)-(5)
and (41). The velocity of propagation of an impulse is
governed only by its leading front. Hence we need not
treat the potassium conductivity at all. Moreover, we
need not treat the sodium inactivation, since the time
for this process is substantially longer than the time of
activation. Then, in line with the Hodgkin-Huxley equa-
tions, we get

(46)
•—TWlm~

Here we have introduced the automodeling coordinate ξ
=* + (*/») and the following notation:

Here τ(ψ) and mo(ty) are known functions. We can de-
rive from the system (46) simple expressions for the
velocity of propagation of excitation in two limiting cases:
fast and slow relaxation of the sodium variable m. In
the former case we get upon assuming τ— Ο:

This result coincides with the expressions (43) for the
velocity of propagation of an impulse in the simple mod-
el that we have treated above. We can assume that it
corresponds quantitatively to the fast relaxation of the
sodium current. In the limiting case of slow relaxation
we get

(47)

Substitution of the known values of the parameters into
(47) gives a value of the dimensionless velocity η «0.39.
The experimental value of u amounts to 0.27. It hardly
makes sense to stop to discuss the ways of more exactly
solving the system (46), which lead to a better agree-
ment of the theory (w~0.3) with experiment. It suffices
to stress that the dynamics of the sodium current exerts
a substantial influence on the velocity of propagation of
the nerve impulse.

7. CONCLUSION

Study of mechanisms of functioning of biological sys-
tems is usually based on structural studies. The situa-
tion is complicated in the case of excitable membranes
by the fact that no such structural-chemical foundation
yet exists. Hence we must view the most pressing prob-
lem of the near future as being the isolation, study, and
reconstruction of the membrane components that are re-
sponsible for selective ion transport regulated by the
electric field.

The progress attained in studying ion transport in-
volves partly the model experiments on bilayer lipid
membrane. Yet there remain many unclear points in
the very important field pertaining to problems of struc-
ture, stability, and phase transitions in membranes.
Apparently the structural defects are precisely what is

responsible for the background conductivity of the BLM;
they can govern the laws of electrical breakdown and
flicker noise that are characteristic of these systems.
There is as yet no theory of such phenomena.

Although the quantitative description of ion transport
through membranes that contain various complexons that
act as mobile carriers or fixed channels has been de-
veloped with almost exhaustive thoroughness, it is phe-
nomenological in nature. A shift to the molecular level
involves great difficulties that stem from the very na-
ture of the studied object. It seems evident that the
binding and subsequent movement of an ion involves con-
formational rearrangement of the system. Yet the com-
plete calculation of the structure of even an isolated ion
complex (e. g., potassium with valinomycin) presents a
yet unsurmounted problem. Apparently a possible path-
way consists in broader application of computers. Such
calculations are also needed for a correct solution of
the problem of selectivity.

A most intringuing problem in the physics of the nerve
impulse remains that of the mechanism of action of the
ion channels of excitable membranes that are controlled
by the electric field. The change in the conductivity of
the channel involves either an appreciable rearrange-
ment of the molecular geometry of the system or a
change in the electrostatic component of the energy of
the ion. It seems natural that in the former case the
channel will operate discretely by an "all-or-none"
principle, while in the latter case its conductivity will
vary continuously. In principle a measurement of the
spectra of current fluctuations will permit one to choose
between these two possibilities. Therefore the fluctua-
tional analysis of ion currents of biological membranes
acquires a special meaning. It is hard to overestimate
the importance also of another experimental method of
studying excitable membranes: measuring the gating
currents. If we describe an ion channel as being a cer-
tain macromolecular system that is characterized by a
set of possible conformational states, each of which cor-
responds to a definite value of an electric variable, then
the gating currents reflect the variation of this variable,
and thus reflect the conformational rearrangement.
However, the nature of the electric parameter that char-
acterizes the state of a channel still remains unclear.
A method cannot yet be seen that would permit one to
distinguish whether transport or rotation of certain
charged groups to large distances occurs, or a cooper-
ative reorientation of a set of dipoles of atomic scale.
Elucidation of this problem remains one of the pressing
problems of the biophysics of the nerve impulse.

Measurement of the gating currents is acquiring ever
more importance. If we treat ion transport through the
channels as being a vector enzymatic reaction, then
measurement of the asymmetric displacement currents
is actually a new and very convenient method of studying
conformational transitions. In modern biophysics the
problem is being vigorously discussed of whether these
transitions play a decisive role in the process of enzy-
matic catalysis,cee] or simply accompany it. The regu-
lative role of conformational transitions in membrane
transport systems is quite evident. However, the mech-
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anism has not been studied of ion-conformational inter-
action involved with the elementary event of displace-
ment of particles along the channel. Along this line, the
fundamental problem of the relationship of the dynamic
and statistical factors deserves serious study. It is
topical not only in connection with transport problems,
but is of general interest for biophysics.ce7] The mani-
festation of the dynamic laws that determine the certain
degree of "machine-like quality" in the behavior of the
system''8 3 can prove important in studying the active-
transport channels.

The theory of propagation of impulses along individual
fibers of varying geometry has been developed in rather
great detail. The next step is to study dense networks
of electrically connected nerve fibers as excitable media.
Similar systems have been studied in physics in connec-
tion with the problem of flame-front propagation. How-
ever, a biological excitable medium, which "burns but
is not consumed," is characterized by a great variety of
possible regimes of activity, among which fibrillation or
the so-called electrical turbulence is of especial inter-
est. Development of the theory of excitable media in-
volves considerable difficulties since one must consider
the nonlinear nature and memory of the function of the
source, as well as the random distribution of the param-
eters. Therefore it is not remarkable that no one has
yet been able to develop a suitable formalism. Such a
problem as the applicability of the ergodic hypothesis to
excitable media also demands special analysis. The
complexity of this problem is compensated not only by
its practical importance, but also by the inner beauty
that appears in the model approaches that have already
been developed in this field.

The epoch of unified science has long since passed,
yet the influence of physics on the progress of biology
is as great as before. And this involves not only the
new methods of study, but also the very style of thought.
Therefore it seemed natural to us to share with an audi-
ence of physicists the successes and difficulties of one
of the fascinating fields of modern biology.

'L. Galvani and A. Volta, Selected Works on Animal Elec-
tricity (Russ. transl.), Biomedgiz, M.-L., 1937.

2A. L. Hodgkin, The Conduction of the Nervous Impulse,
Thomas, Springfield, ΠΙ., 1964 (Russ. Transl., Mir, Μ.,
1965).

3 B. Katz, Nerve, Muscle, and Synapse, McGraw-Hill, Ν. Υ.,
1966 (Russ. Transl, Mir, Μ., 1968).

4 B. I. Khodorov, Obshchaya fiziologiya vozbudimykh membran
(General Physiology of Excitable Membranes), Nauka, M.,
1975.

5A. L. Hodgkin and A. F. Huxley, J. Physiol. (Lnd.) 117,
500 (1952).

6K. Cole, Ions, Potentials and Nerve Impulse, Ν. Υ., J .
WUey, 1955.

7 J. F. Danielli and H. A. Davson, J. Cell. Comp. Physiol. 5,
495 (1935).

8 P . Mueller, D. Rudin, H. Tien, and W. Wescott, Nature 194,
979 (1962).

9 T. Hanay, D. A. Haydon, and J . L. Taylor, Proc. Roy. Soc.
A281, 377 (1964).

1 0 D. A. Haydon and J . Taylor, J . Theor. Biol. 4, 281 (1963).
U P . Mueller and D. Rudin, Nature 217, 713 (1968).

12Yu. A. Ovchinnikov, V. T. Ivanov, and A. M. Shkrob, Mem-
branoaktivnye kompleksony (Membrane-Active Complexons),
Nauka, Μ., 1974.
V. S.^Markin and Yu. A. Chizmadzhev, Indutsirovannyi
ionnyi transport (Induced Ion Transport), Nauka, M., 1974.

14A. Parsegian, Nature 221, 884 (1969).
1 5 B. Neumcke and P.'Lauger, Biophys. J. 9, 1160 (1969).
l 6 S . Ginsburgand D. Noble, J . Membrane Biol. 18, 163 (1974).
n S . B. Hladky and D. A. Haydon, Nature 225, 451 (1970).
1 8S. Krasne, G. Eisenman, andG. Szabo, Science 174, 412 (1971).
1 3 E. A. Liberman and V. P. Topaly, Biofizika 14, 452 (1969).
2 0S. Hui, D. Parsons, andM. Cowden, Proc. Nat. Ac. Sci. USA

71, 5068 (1974).
2 1 L. Langmuir and D. Waugh, J . Gen. Physiol. 21, 745 (1938).
2 2D. Deamer and D. Branton, Science 158, 655 (1967).
2 S J . ToyoshimaandT. Thompson, Biochemistry 14, 1518, 1525

(1975).
2 4R. Kornbergand H. McConnell, Biochemistry 10, 1111(1971).
2SW. Pechhold, S. Blasenbrey, andS. Woerner, Kolloid Zs. 189,

14 (1963).
26W. Pechhold, ibid. 228,1 (1968).
2 7H. Trauble, J. Membrane Biol. 4, 193^(1971).
2 8M. V. Vol'kenshtein, Konfiguratsionnyi statistika poli-

mernykh tsepei (Configurational Statistics of Polymer Chains),
Izd-vo AN SSSR, Μ., 1952.

29W. Pechhold, W. Dollpohf, A. Engel, Acustica 17, 61(1966).
M F . Johnson, H. Eyring, andM. Polissar, The Kinetic Basis of

Molecular Biology, Ν. Υ., J. Wiley, 1954.
3 1 C. Armstrong, Quart. Rev. Biophys. 7, 179 (1975).
S2W. K. Chandler and H. Meves, J . Physiol. (Lnd.) 180, 788

(1965).
W F . Contiand J . De Felice, ibid. 248, 45 (1975).
3 4 B. Hille, J . Gen. Physiol. 59, 637 (1972).
3 5 B. Hille, ibid. 61, 669 (1973).
3 6G. Eisenman, Biophys. J . 2, 259 (1962).
3 7 L. Atwater, F. Bezanilla, and S. Rojas, J . Physiol. (Lnd.)

201, 657 (1969).
38A. Hodgkin and R. Keynes, ibid. 128, 6 (1954).
3 9 T. L. Hill, J . Theor. Biol. 10, 442 (1966).
40Yu. A. Chizmadzhev and S. Kh. Ait'yan, ibid. 64, 429 (1977).
41K. Heckmann, Zs. phys. Chem. (N.F.) 44, 184 (1965).
4 2S. M. Fishman, B. I. Khodorov, and M. V. Vol'kenshteui,

Biofizika 17, 421 (1972).
°R, D. Keynes and E. Rojas, J . Physiol. (Lnd.) 239, 393

(1974).
aYu. A. Chizmadzhev, V. F. Pastushenko, and B. I. Khod-

orov, Dokl. Akad. Nauk SSSR 223, 491 (1975).
45A. A. Verveen and L. J . DeFelice, Progr. Biophys. and

Molec. Biol. 28, 189 (1974).
^H. M. Fishman, Proc. Nat. Ac. Sci. USA 70, 876 (1973).
4 7 L. D. Landau and Ε. Μ. Lifshits, Statisticheskaya fizika

(Statistical Physics), Nauka, Μ., 1964 [PergamonJ.
48Y. Chen and T. Hill, Biophys. J. 13, 776 (1973).
48A. Scott, Rev. Mod. Phys. 47, 487 (1975).
5 0N. Wiener and A. Rosenbluth, Arch. Inst. Cardiol. Mex. 16,

206 (1946).
61L M. Gel'fand and M. L. Tsetlin, Dokl. Akad. Nauk SSSR

131, 1242 (1960).
5 2S. V. Fomin and M. B. Berkinblit, Matematicheskie prob-

lemy ν biologii (Mathematical Problems in Biology), Nauka,
Μ., 1973.

53A. N. Kolmogorov, I. G. Petrovskii, and N. S. Piskunov,
Byull. MGU, Ser. A, 1, 6 (1937).

5 4 F . Offner, A. Weinberg, and J. Young, Bull, Math. Biophys.
2, 61 (1940).

55A. S. Kompaneets and V. Ts. Gurovich, Biofizika 11, 913
(1966).

MYu. I. Arshavskif, M. B. Berkinblit, S. A. Kovalev, and
V. V. Smolyaninov, in Modeli strukturno-funktsional'noi
organizatskii nekotorykh biologicheskikh sistem (Models of
the Structural-Functional Organization of Some Biological

859 Sov. Phys. Usp. 20(10), Oct. 1977 Markin et a/. 859



Systems), Ed. I. M. Gel'fand, Nauka, Μ., 1966, p. 28.
5TV. S. Markin and Yu. A. Chizmadzhev, Biofizika 12, 900

(1967).
5 8B. I. Khodorov, Problema vozbudimosti (The Problem of

Excitability), Meditsina, L., 1969 (Engl. Transl., Plenum
Press, N.Y.-London, 1974).

M S . E. Bresler, Usp. Fiz. Nauk 98, 653 (1969) [Sov. Phys.
Usp. 12, 534 (1970)].

WV. S. Markin, V. F. Pastushenko, and Yu. A. Chizmadzhev,
Itogi nauki, Elektrokhimiya (Results of Science. Electro-
chemistry), Vol. 6, Izd. VEStlTI, Μ., 1971, p. 165.

a M . B. Berkinblitef al., Biofizika 16, 103(1971).
6 2 B. Katz.andO. Schmidt^ J^Physiol. (Lnd.) 97, 471 (1940).
6 3 J. Rinzell and J. B. Keller, Biophys. J . 13, 1313 (1973).

64V. F. Pastushenko, Yu. A. Chizmadzhev, and V. S. Markin,
Biofizika 20, 1078 (1975).

8 S P . J . Hunter, P. A. McNaughton, and D. Noble, Progr. Bio-
phys. and Molec. Biol. 30 (213), 99 (1975).

6 6L. A. Blyumenfel'd, Problemy biologicheskoi fiziki (Prob-
lems of Biological Physics), Nauka, Μ., 1974.

6 TE. Schrodinger, What Is Life? The Physical Aspect of the
Living Cell, Cambridge University Press, 1944 (Russ.
Transl., (What Is Life from the Standpoint of Physics?),
IL, Μ., 1947).

68Yu. I. Khurgin, D. S. Chernavskii, and S. E. Shnol', Mol.
Biol. 1, 419 (1967).

Translated by M. V. King

860 Sov. Phys. Usp. 20(10), Oct. 1977 Markin et al. 860


