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A review is presented of the studies on the basis of which the contemporary model of the carrier spectrum

in bismuth has been established. Descriptions are presented of the theoretical models and of experiments

that make it possible to elucidate their connection with the real spectrum and with the parameters of the

models. These experiments include investigations of the conduction electrons on the Fermi level and

measurement of the characteristics of the Fermi surface, magneto-optical investigations of the closely-

located valence and conduction bands, and investigations in a quantizing magnetic Meld. Problems that

require further refinement are considered, and experiments that can contribute to progress in this field are

proposed.
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1. INTRODUCTION

Bismuth attracts constant and unabated attention of
solid-state specialists (Fig. 1). This interest is due to
its unique electronic properties: low carrier density
~10'5 electrons/atom; low effective masses ~\0'zme

{me is the mass of the free electron), large diamagnetic
susceptibility ~ 10'5, large dielectric constant ~ 100, and
large value of the g factor, which reaches ~200.

Because of these properties, investigations of bis-
muth have played a special role in metal physics. It
suffices to state that bismuth was the substance in which
the first observations were made of strong magnetore-
sistance, c i ] of the de Haas-van Alphen effect/81 of the
Shubnikov-de Haas effect/33 of oscillating magnetostric-
tion/4 3 of cyclotron resonance in metals/5 3 and of un-
damped microwaves/63 The first detailed measurements
of the magnetic surface levels"3 and geometric oscilla-
tions of ultrasound'83 were also made with this metal.
One can state without exaggeration that the study of the
foregoing phenomena has been the reason for the prog-
ress made so far in metal physics.

The investigation of the electronic properties of bis-
muth—and it is precisely these properties which make
it unique—is of interest because of the intermediate po-
sition occupied by bismuth between good metals and
semiconductors. Bismuth is a representative of the
class of substances whose electronic properties are
closely connected with the small deviation of the crystal
lattice from a more symmetrical modification/93 Fore-
most among them are the semimetals Bi, Sb, and As,
and the binary alloys Bi-Sb, which have a rhombohedral

close-to-cubic lattice. From among these substances,
from the point of view of the experimental investigation,
bismuth offers undisputable advantages in that it is
easily obtained in the form of a high-grade single crys-
tal with large electron mean free path, as much as ~ 1
mm. This makes it possible to investigate a large group
of physical phenomena and to obtain the parameters of
the bismuth spectrum with good accuracy.

The purpose of the present review is to describe the
results of the most complete and exact contemporary in-
vestigations of the energy spectrum of the electrons in
bismuth. As a rule, we shall not pay attention to the
historical picture. The reader interested in these ques-
tions is advised to turn to the reviews'10*113. In those
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FIG. 1. Number of abstracts of articles on the properties of
bismuth and bismuth-antimony alloys, published In "Physics
Abstracts, " compared with the total number of abstracts.
1—total number of abstracts (in thousands), 2—papers on the
electronic properties of bismuth.
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FIG. 2.
muth.

Brillouin zone of bis-

cases when the large number of publications devoted to
some particular problem includes one or two papers
that overlap the material in the others, we shall present
only the results of these comprehensive papers. Com-
parison with other investigations can be found in the re-

U 2 ]
view

2. THEORETICAL PREMISES CONCERNING THE
BISMUTH SPECTRUM

a) Calculation of band structure

The first calculations of the band structure of bismuth
were performed by Mase,"3 3 who, taking into account
the special role of high-symmetry points, calculated the
energy levels along the lines Γ - Γ and Y-L of the Bril-
louin zone (Fig. 2). Subsequently, F e r r e i r a t l 4 l l 5 ] calcu-
lated the energy levels at the points Γ and Γ (symmetry
group Dtt) and X and L (group Czh). Calculations by the
augmented-plane-wave method, the results of which are
given in Table I, has established that the holes are lo-
cated at the Τ points and the electrons at the L points of
the Brillouin zone. A similar disposition of the regions
of the Fermi surface was established earlier by Abriko-
sov and Fal'kovskii on the basis of the deformation mod-
el proposed by them.19-1

A general idea concerning the band structure of bis-
muth was obtained by Golin by a pseudopotential-method
calculation.'183 The accuracy of the calculations by this
method, as is well known, usually amounts to 0. 5-0.1
eV. The characteristic energies of the electrons and
holes in bismuth are ~0.01 eV. An attempt was there-
fore made in" 6 3 to describe the carriers by choosing the
parameters of the pseudopotential in such a way that the
overlap of the bands in L and Τ and the small energy
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. Energy levels at the points Τ, Γ , L
Energy relative to the
Fermi level
i r o m l l ' l

1.57

0.89

0.52

0.02

—1.58

- 1 . 8 9

1.51

1.10

—0.019
—0.034

—1.84
- 1 . 9 5

^froml '* !

1.12

0.61
0.095

0.205

—1.3

-1.68

1.05

0.65
—0.U95

—0.335

—1.40

—1.68

•This designation corresponds

Designa-
tion of
level·

Γϊ
Τ;

Ti
Γί,
r,+

χ .

Χα

Χα

to Fig. 3.

, andX.
Energy relative to the
Fermi level
froml" !

3.04
0.65

—0.17

—0.18

—2.45

2.07

— 1.53

—3.01

e V f r o m l 1 4 '

3.15
1.00

- 0 . 3 4

—0.58
—2.55

2.43

—1.98
—3.22

> -ι

-s
-10

y
Μ

XVK 1 Γ Α Τ QWY L β A^USX. S Γ β L Η V Μ Τ

FIG. 3. Band structure according to Golin.

gap between the conduction and valence bands in L (its
presence followed from optical investigations—Ch. 4)
coincided with the experimental values.C173 The results
of Golin's calculations are given in Table I and in Fig.
3. Comparison of the calculations of"53 and"6 3 (see Ta-
ble I) with measurements of the optical absorption"83

(Table Π) leads to the conclusion that the theory accounts
for the band structure with accuracy 0.2-0.4 eV. This
conclusion, however, cannot be regarded as final, since
the number of lines observed in the optical band is rela-
tively small. At the same time, the band structure is
quite complicated (see Fig. 3) and, in principle, the ob-
served singularities can be due to transitions between
other levels that are not indicated in Table II.

The kn perturbation theory, which makes use of the
energy levels and wave functions obtained in the pseudo-
potential calculation, was employed by Golin to calcu-
late the carrier-mass tensor.C l e ] It turned out that the
mass-tensor components of both the electrons and the
holes differed from the measured ones by a factor 2—3.
In addition, according to the calculation, the angle of
inclination of the electron ellipsoid to the basal plane
was +10° and the ratio of the maximum momentum to
the minimum momentum was 6. Experiment yields for
these quantities +6°23' and 13.9, respectively (see Fig.
4; see also Ch. 3).

Thus, although the calculations by the pseudopotential
method"*3 and by the augmented-plane-wave (APW) meth-
od" 5 3 give a general idea of the band structure, they are
not very suitable for the description of the bismuth car-
riers, which have a characteristic energy (~10"a eV)
lower by one order of magnitude than the calculation ac-
curacy. It is of interest, however, to consider the in-
verse formulation of the problem—use the available ex-
perimental data to refine the positions of the energy lev-

TABLE II. Interband-transition energies measured inC181 com-
pared with the calculation by the pseudopotential method.1163

Energj

f r o m ' 1 8 '
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0
1
1
1
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92

1, eV

from

0
0
1
1
1

[161

.82

.S3

.13

.53

.83
f 2.48

b
.51

Transition
between
bands

5 ^ 6

tZl
6-*-8

4—·- 6
5—•- 7
4 ^ 7

Uvel
designations

Γ ί -

ψαζ
Lt—*-
i a -

Near
Near

%

\
Λ

Energy, eV

f r o m ' 1 8 1 ! Iron-

2

3

3

96

33

57

2.

i·
I 3

1161

94
20
19
41
02
6?
60

transition
between
bands

4-»7

\z]
3->8
4->-8
5 , g
5 ^ 6

Uvel
designations

I o — L.

r j 6 _». p~6
Γ ί —»- Γ~
Χα~Χ,

820 Sov. Phys. Usp. 20(10), Oct. 1977 V. S. Edel'man 820



FIG. 5. Band structure of bis- ,
muth in the deformation model.1283

The energy differences are in eV.

FIG. 4. Diagrams of electron (a) and hole (b) Fermi surfaces,
their orientations relative to the crystal lattice and the direc-
tions in the Brillouin zone, and the relative placement of the
electron and hole surfaces (c).

els at least at the point T, which has the highest sym-
metry. Although several attempts at this type of calcu-
lations are known/15·16'19'20-1 the problem cannot be re-
garded as finally solved. The point is that these studies
yielded 5E~0.2 eV for the distance from the valence
band, whose position practically coincides with the Fer-
mi level, to the neighboring band. At the same time,
in the optical investigations'18·213 at energies 0.1 -0.7
eV, no singularities were observed that could be con-
nected with transitions between the bands. On the other
hand, we regard it as premature to attribute the anom-
alies of the current-voltage characteristics, observed
in the same energy region in bismuth-insulator-alumi-
num junctions/223 to singularities of the band structure,
if no other reason that other workers obtained entirely
different forms for these characteristics.C 2 3·2 4 3

b) Deformation theory

The deformation theory"· 1 0 3 starts from the premise
that a real bismuth crystal, which has a rhombohedral
lattice with two atoms per unit cell, can be regarded as
a result of stretching a primitive cubic lattice along one
of the body diagonals and a relative shift of the neigh-
boring phase-centered sublattices along this diagonal.
In the initial cubic lattice, in the free-electron approxi-
mation, there isatriply degenerate level1' whose energy
is close to the Fermi energy at points located on three-
fold axes half way between the center and the face of the
Brillouin zone. The crystal field lifts the degeneracy
partially and splits off one of the levels. According to
a postulate of the theory/9 3 the doubly degenerate level
(its small splitting is due only to spin-orbit interaction)
at this point of the Brillouin zone coincides exactly with
the Fermi level and causes the electron and hole Fermi
surfaces to coincide.

An infinitesimally small shift of the sublattices double
the reciprocal-lattice period. As a result, the consid-
ered electron and hole Fermi surfaces become exactly

congruent, and the metal turns into a dielectric.2' This
state with a fourfold degenerate level is the starting
point for the construction of the spectrum within the
framework of perturbation theory at finite but small
rhombohedral deformations and sublattice shift. The
spectrum of Abrikosov and Fal'kovskii (Fig. 5) is de-
scribed by equations of fourth order in the momentum
components, and contains seven parameters that are
connected with the observed quantities by a complicated
relation/10*263 A consistent comparison of theory with
experiment calls for a computer calculation. There is
only one known attempt of this type/2 8 3 Fal'kovskii and
Razina succeeded in obtaining agreement between the
theoretical sections of the Fermi surface and the the-
oretical effective masses, on the one hand, and experi-
ment, on the other, within ~ 10-20%. Using the spec-
trum parameters calculated inC 2 e l, Fal'kovskii calcu-
lated the spin splitting.'273 The anisotropy of the g fac-
tor for the electrons agreed qualitatively with experi-
ment. For holes at Η II C3, the g factors turned out to
have half the measured value.

The difference between the theoretical and experimen-
tal g factors for holes is of fundamental significance,
since it cannot be eliminated by any choice of parame-
ters. 1 2 7 3 Abrikosov0283 calculated the spectrum at the
point Τ with account taken of all six levels referred to
at the beginning of this section. He has shown that the
effective g factor of the holes3' at Η II C3 can be larger
than two if the valence band is formed from one of the
additional levels not taken into account in the difference
variants of the deformation theory. We note also that
the addition of two more levels to the scheme shown in
Fig. 5 makes it much more similar to the Golin band
scheme'1 6 3 (see Fig. 3 and Table I).

Some conclusions of the deformation theory, concern-
ing the form of the electron spectrum, will be consid-
ered in the next section.

c) Models of electron spectrum

An important role in the investigation of bismuth is
played by the models of the electron spectrum. They

"in the absence of a field, each of these levels is additionally
doubly degenerate in spin.

2)This picture actually takes place for binary alloys of the type
PbTe, SnTe and others, which have a cubic lattice.C 2 5 ]

3)The effective g factor is the ratio of double the spin splitting
to the cyclotron splitting.
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are based on the fact known from optical investigations,
that two bands are close at the point L (Ch. 4). Taking
into account only these close bands, and using pertur-
bation theory, we obtain the spectrum known as the Lax
model

PtPk „
(1)

where P, are the momentum components, mfk is the
effective-mass tensor, Et is the gap between the bands;
the energy Ε is reckoned from the midpoint between the
valence and conduction bands. The proximity of the two
bands leads, in addition to the smallness of the effective
masses, to a large value of the# factor/3 0 3 so that the
effective g factor is exactly equal to 2, and the spin
splitting is equal to the cyclotron value. Therefore, in
a quantizing magnetic field Η II2, the spectrum (1) cor-
responds to energy levels that are determined at P,=0
by the equation" 9 · 3"

or the equivalent equation

(2)

(2')

where η is the number of the Landau level, s is the
electron spin, m* is the effective mass at the extremum
of the band and is of the order of 10'zm, (me is the mass
of the free electrons); the plus and minus signs pertain
to the conduction and valence bands, respectively.

The electron Fermi surface of bismuth is strongly
stretched along the 1 axis, which is close to the direc-
tion of the bisector axis Cx (see Fig. 4). It follows
hence that the matrix element describing the interaction
of two nearest bands in this direction should be smaller
by a factor ~ 102 than for directions perpendicular to the
elongation. Cohent323 advanced the hypothesis that there
is no interaction at all in the direction of the 1 axis, and
the spectrum is determined by the more remote bands.
Calculation within the framework of the effective-mass
method leads to the spectrum

The parameters in this formula are of the order of

m1+ w mi. « me, m2 «; ms » iO~'*mt, Eg « 10 meV.

The orthogonal coordinate axes are chosen as shown in
Fig. 4.

Abrikosov has established1333 that Cohen's spectrum
(3) can be obtained from the deformation model if Et is
assumed to be a small quantity. Later on, Beneslavskii
and Fal'kovskii1343 have shown that if the spin-orbit cou-
pling is taken into account as a small perturbation, then
there exists a direction in which there is no interaction
between the nearest bands, and in the two-band model
the equal-energy surfaces are cylindrical. By the same
token, the reason for the elongation of the Fermi sur-
face can be regarded as established, and Cohen's hypoth-

esis can be regarded as theoretically proven. In light
ofC34], the existence of the nonquadratic ellipsoidal Lax
model (1) seems impossible. Therefore Cohen's model
is the principal approximation for the spectrum at Ε
*Et and is just as fundamental as the quadratic spec-
trum at E«Ee.

The levels corresponding to the spectrum (3) were
calculated in a magnetic field by Baraff131·3 for the case
when Η is parallel to the 1 axis (or is close to it, so
long as the spin splitting differs little from the Landau
splitting) and P, =0. The levels were calculated inC343

for arbitrary Ρ,, but within the framework of a con-
crete model that takes into account the interaction of
only four bands with one another. For the Landau levels,
the expression obtained in" 4 3 coincides at j =n + (l/2)
+εΦ0, Pt=0 with that given inC s 1 3. For j =0, i.e., for
the lower level in the conduction band or the upper level
in the valence band, the result obtained in t 3 4 3 is

p' (4)

where the upper and lower signs pertain to the conduc-
tion and valence bands, respectively. The parameter
Δ± »10'V^oi describes the relatively small influence of
the remote bands, which leads to a difference between
the spin splitting and the Landau splitting (cf. formula
(2)). The term proportional to P\ corresponds to a
parabolic dependence of the energy on the momentum in
the elongation direction in Cohen's model (3).

Baraff,c313 and later Vecchi et al., m 3 proposing for
the same level a mutual interaction that, generally
speaking, should be nonexistent because of the different
parities of the valence and conduction bands,c 2 1 3 obtained
a spectrum that takes at Δ+ = - Δ. = Δ and Pe = 0 the form

(5)

which goes over into the system (4) at b =0. As noted
inC21], introduction of the finite value of b is justified by
the fact that without allowance for this quantity it is dif-
ficult to explain the experiments on magnetoreflection
(see Sec. 6 of Ch. 4).

A number of experiments have established that the
Fermi surface deviates from Cohen's model (see Ch. 3).
Models were therefore considered, in which a large
number of perturbation-theory terms were taken into
account. Their role turns out to be significant because
of the numerical smallness of the matrix elements de-
scribing the interaction of the bands in the elongation
direction. This manifests itself in the fact that the
masses mu and m[. in (3) turn out to be of the order of
me, although they could be also smaller by one order of
magnitude, as is observed for Ge or Si, which have an
energy gap ~1 eV and effective masses ~0.1 me. The
most complete electron-spectrum model, which is a
mixture of the Cohen and Lax spectra and supplements
them with fourth-order terms of the type P\*><P\t$ and
PixPi,3, was proposed by McClure and Choi." 5 3 We
shall consider it when we discuss the experimental re-
sults .
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TABLE III.

Direction
of Η

Axis 1

Axis 2

Axis 3

cu c2

* a)
«I.

10"2 me

Electrons,

0.82±0.005

11.9 ±0.05

8.8 ±0.2

0.90d)

13.8±0.2 a )

11.7±0.4 a >

21.2 ±0.05

6.39±0.03

s,, b ) ίο-42

(g-cm/sec)

ΙΟ" 2 1

angle between Ct and the 1 axis is

1.300±0.003

19.27 ±0.05

14.35 ±0.04

Holes

22.49 ±0.02

6.76 ±0.01

7.88

0.559

0.740

5.89

1.772

Curvature
radii at
the limiting
point in

g-cm/sec

ff, 107

cm/sec
Effective
g factor"'*

6°23' ± Γ , b l

0.0518
0.104
177
0.983
163
0.422

0.89"'

10.0"

7 .5"

2.18±0.02

0.5 ±0.2

1.06±0.06

8.38"'

2.52"'

<0.1

4.26±0.02

"'Measured in t l 2 > * l i M I . b)Measured i n t 2 n . "'Calculated from the results of1371. P{ is accurate to «0.2% and the curvature
radii to s» 1%. d)Calculated from the curvature radii and the velocity. "·''Calculated from the curvature radii and the results of
measurements of the resonance of the magnetic surface levels in 1 6 0 1"' and [ 5 8 ] f ) ; accuracy ~ 3%e) and ~ 1%". 8)Calculated for the
ellipsoidal model; accuracy ~ 0.5%.

*The minimum value oitheg factor is 0.70±0. 4 in the binary plane and is observed at an angle 3.5° between Η and C3.

3. THE FERMI SURFACE OF BISMUTH

At the present time there are many known experimen-
tal methods with which to establish the shape of the Fer-
mi surface of metals and the carrier velocities on these
surfaces. These include the following: investigation of
the quantum oscillations of the magnetic moment or of
the conductivity, etc., geometrical size effects, size and
resonant oscillations of ultrasound damping, galvano-
magnetic investigations, study of magnetoplasma waves,
cyclotron resonance, and observation of the magnetic
surface levels. All these methods were used to investi-
gate the electronic properties of bismuth. As a result,
a well known model of the Fermi surface has by now
been established, consisting of three strongly elongated
electronic sections, close in shape to ellipsoids, and a
hole ellipsoid of revolution (see Fig. 4).C1O] We consider
below in greater detail the experiments which at the
present time yield the most exact information on the
Fermi surface of bismuth.

a) Quantum oscillations of the conductivity. Shape of
the electron Fermi surface

It is well known that at low temperatures the thermo-
dynamic potential oscillates when the magnetic field is
varied/3 6 3 and this leads to quantum oscillations of the
magnetic moment, of the conductivity, etc. The period
of these oscillations in terms of the reciprocal magnetic
field is

(6)

where S is the area of the extremal section of the Fermi
surface. As the temperature Τ and the Dingle tempera-
ture TD (which characterizes the broadening of the Lan-

dau levels as a result of the crystal defects) decrease,
the quantum oscillations acquire in strong fields the
form of peaks with relative width ~k(T + TD)/HSi, and the
region in which they can be observed extends in a weak
field to H~k(T + TD)m*c/Ke (m* is the effective mass).
Accordingly, the measurement accuracy increases in
proportion to the decrease of (T + TB).

The smallest value TB+T «0.2 °K was attained i n " " ,
where the sections of the Fermi surface were measured
in the trigonal and binary planes accurate to ~ 0.2—0.3%
(Table ΠΙ, Fig. 6) and the spin splitting was measured
accurate to ~ 1% (Table ΠΙ and Fig. 7). The results ob-
tained in other papers devoted to the investigation of the
de Haas-van Alphen or the Shubnikov-de Haas effects
agree with the results ofC37] within the limits of mea-
surement errors of these studies, ~l-10%. The anisot-
ropy of the cross sections is described in first-order
approximation by an ellipsoidal Fermi surface

where the subscripts 1, 2, and 3 pertain to the princi-
pal axes of the ellipsoid (see Fig. A). The 1 axis lies

-m -so, c, so' da'

FIG. 6. Anisotropy of the extremal sections in the trigonal
and binary planes: 1—experiment, 2—ellipsoid.
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FIG. 7. Anisotropy of relative spin splitting in binary planes
for electrons (a) and holes near the bisector axis (b): 1—mea-
sured in t 3 n , 2—calculated from data of1171.

in the bisector plane and is inclined to the trigonal plane
at an angle 6°23' + 1·, Ρ 1 0 =8.405· 10"21, P 2 0 = 0.564
• 10'21, P 3 0 = 0.743 · 10"21 g-cm/sec. The mean squared
error in the determination of the cross section when the
Fermi surface is approximated by an ellipsoid is 1.26%,
much larger than the measurement error ~0.2-0.3%.

An analytic expression describing the shape of the
electron Fermi surface with accuracy 0.2—1% was ob-
tained inC37] by approximating the values of β(θ, φ) by a
spherical-harmonics series, as proposed by Muller.C381

As a result, it was possible to calculate the principal
geometrical characteristics of the Fermi surface, par-
ticularly the values of the momenta along the principal
axes (see Table m) and the principal curvature radii,
whose values were 0.0518 · 10"21 (in the Cu C8 plane) and
0.0558 · 10"21 g-cm/sec in the direction of the 1 axis,
177 xlO"21 and 0.983Ί0" 2 1 g-cm/sec in the direction of
the 2 axis, and 163 ·10"21 and 0.422·10"21 g-cm/sec in
the direction of the 3 axis. The value of 82S/8P2 in the
direction of the 1 axis is 0.0243 ±0.0003, which is less
by a factor 1.72 than the value obtained for the ellipsoid
with the dimensions given in Table HI.

The value obtained in t37 : l for the volume of the elec-
tron surface was Ve = (14.66 ±0.01) · 10"es g3cm3/sec3.

The combined volume of the three electron surfaces
is 3 Ve = (43.98 ± 0.04) · 10"63 g3cm3/sec3 and the electron

FIG. 8. Typical plot of the cyclotron resonance for a micro-
wave current J-L Η II C2, Nil C3, /=18.7 GHz, T = 0.65 K. The
peaks le, 2e, . . . , 2ft, . . . are the cyclotron resonances for
heavy electrons and holes with η = 1, 2, . . . , respectively.
Other singularities are connected with the turning points in the
spectrum of the magnetoplasma waves (~ 1 kOe), for the cyclo-
tron waves (structure between 2ft and 3ft, 3ft and 2e, and 4ft
and 5ft), and the waves produced as a result of the anisotropy
of the Fermi surface (near 3e and 6ft).

0.0Ί OM O.BS 0.10 m'/m.

FIG. 9. Anisotropy of the effective masses of the electrons in
the binary plane on central orbits (e2ti) and at the limiting
points (limq, lim^ 3 ) . Solid lines—ellipses with axes equal to
the maximum and minimum values of the corresponding

C413

concentration is 3.015X1017 cm"3. Using the hole sec-
tions given in Table ΠΙ and, assuming the hole Fermi
surface to be an ellipsoid, we obtain Vk = (43.99 ± 0.05)
• 10"63 g3cm3/sec3, which coincides with 3 Ve.

There are known direct methods for determining the
dimensions of the Fermi surface, based on the study of
the radio-frequency size effect139-1 and of the geometrical
ultrasound-damping oscillations."03 The results ob-
tained in these studies agree within the limits of the
measurement errors, ~l-2%, with those described in
the second section.

b) Measurement of the effective masses by the
cyclotron-resonance method

The most detailed investigations of cyclotron reso-
nance at Η IN (N is the normal to the flat surface of the
sample) in bismuth were carried out in 1 4 1 · 4 2 3, and agree
completely with one another within the limits of the
measurement errors ~l-6%. The results of141·1 were
subsequently improved by us (see Table ΠΙ) by carrying
out measurements on samples of higher quality, with a
residual relaxation time that reached ~ 2 nsec for the
electrons and ~ 5 nsec for the holes/4 3 3 The narrowing
of the resonance lines not only increased the accuracy
with which their position was measured, but also made
it possible to interpret the complicated picture of the
field dependence of the impedance, due both to the su-
perposition of resonances from different sections of the
Fermi surface and to the appearance of signularities
connected with the end points of the spectra of the mag-
netoplasma, cyclotron, and other waves (Fig. 8).C44~473

Figures 9 and 10 show the anisotropy of the electron
masses in the binary planes and of the electrons and
holes in a plane perpendicular to the 1 axis of one of the
electron surfaces, as measured inC 4 l : . It was estab-
lished from the χ ray diffraction pattern of this sample
that the electron Fermi surface is oriented relative to
the directions in the Brillouin zone in the manner shown
in Fig. 4, i. e., the angle of inclination is positive in
accordance with the notation of Falicov and Lin. t 4 8 ] The
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FIG. 10. Anisotropy of the effective masses in a plane per-
pendicular to the 1 axis of one of the sections of the Fermi sur-
face corresponding to a mass e{. e3—electrons on the central
orbit, lim^—at the limiting point, h—holes.t4n The arrows
mark the mass values measured inC 4 2 ].

same sign was obtained for the inclination angle by
Brown et al.lm

An interesting result of the investigation of the cyclo-
tron resonance was the observation of a difference be-
tween the masses on the central sections and at the
limiting points (Figs. 9 and 10; see Table m). This
provides direct experimental proof that the electron
Fermi surface is not an ellipsoid: it is known that in
the latter case the effective mass is independent of Pe.

In general outline, the anisotropy of the cyclotron
masses corresponds to the model whose scheme is
shown in Fig. 4. It is possible to trace on the angle
diagram (see Fig. 9) the deviations from the ellipsoidal
model for the electrons—the change of the mass of the
central section near the extremal value is smaller than
for an ellipsoid and the change for the mass at the lim-
iting point is faster.

Cyclotron resonance in bismuth in a Faraday geome-
try, i. e., at Η II Ν, was investigated by Gait et a/.C5]

In measurements of the absorption of circularly polar-
ized waves, they found the carrier current to be posi-
tive. Subsequently, an investigation of the transverse
focusing of the electronsC50] and the numerous studies
of the change of the shape of the Fermi surface of bis-
muth doped with a donor or acceptor impurity, has con-
firmed the results of153 (see, e. g., the article by Brandt,
Yastrebova, and Ponomareva151·1 and the earlier refer-
ences cited therein).

c) Magnetoplasma waves. Electron density

Since bismuth is a compensated metal with 'N = hN it
follows that waves analogous to the Alfve"n waves and

the fast magnetosonic wave of magnetohydrodynamics
can propagate in it in strong fields. The wave disper-
sion law at Ω/ω » 1 and for a quadratic isotropic spec-
trum takes the form (see, e. g., [ 4 β ])

(6')

θ is the angle between k and H. At an arbitrary carrier
spectrum, relations (6) retain the same form when
N("m +hm) are replaced by the components of the mass-
density tensor NF{k(m) (j designates the direction of
H), which can be calculated in the quasiclassical limits
from the formulas obtained by Fal'kovskii.C52] The cal-
culations are particularly simple for an ellipsoidal Fer-
mi surface. This approximation turns out to be suffi-
cient for bismuth, inasmuch as in a large number of
cases of practical importance the overwhelming contri-
bution to the mass density is made by the holes. For
example, at Η II Cl and k II C3 the contributions of the
holes, whose surface is ellipsoid, is 98.5% accurate
to ~0.1%.

The wave velocities were measured in t 5 3 : l for all ra-
tional directions of Η and k agreed within £10% with
those calculated for a Fermi-surface model consisting
of one hole and three electron ellipsoids. More accu-
rate later measurements and calculations of NF{h{m),
using more precise spectrum parameters, decreased
the difference to £ 1 % C S 4 : (Table IV).

Thus, the Fermi surface of pure bismuth consists of
three electron ellipsoids and one hole ellipsoid, and
there are no other carrier groups. Taking into account
the lattice symmetry CDM), we find that the extrema of
the conduction bands can be located only at the Brillouin-
zone points L or X, and those of the valence band at Τ
or Γ . Koenig et al. ,C 5 5 ] analyzing the results of experi-
ments in which the electron-hole recombination times
were obtained, have found an additional restriction on
the possible location of the carriers in the Brillouin
zone, namely, they should be either at the points L or
T, or at X and Γ . A choice between these two cases
can be made at the present time only by using a theory
that demonstrates that the first of them is realized,
namely, the electrons are localized at L and the holes
at Τ (see Sec. a of Ch. 2).

d) Measurements of electron velocity. Magnetic

surface levels

Knowledge of the shape of the Fermi surface and of
the effective masses on this surface makes it possible

TABLE IV. Components of the mass-density tensor.CM1

Experiment
Calculation

«n, l3
m,, 1 0 - 1 ' CM-'

2.09+0,01·)
2.115+0,02

0,248±0,001
0.248+0,002

l,009±0,005
l,U0±0,01

2.19+0,01
2,17+0,02

The superscript labeling the NF components indicates the direction of the mag-
• netic field.

•Measured for a sample with the angle between Ν and C3 equal to
3 ° . l s | The calculation was made for this orientation.

825 Sov. Phys. Usp. 20(10), Oct. 1977 V. S. Edel'man 825



in principle to calculate the carrier velocities. This
problem, however, can be solved simply only for sim-
ple orbits. For example, for holes, taking into account
the axial symmetry of the Fermi surface, we obtain for
the central orbit at Η11 C,

Vl = J-.yrh. = (2.52 ±0.015)-10' cm/sec.

Direct methods for the measurement of the Fermi
velocity are available. These include observation of the
Doppler-shifted cyclotron resonance and investigations
of the Landau damping of magnetoplasma waves/561 The
experiments carried out in1·563 have made it possible to
measure the velocities of the electrons and holes accu-
rate to ~ 5-10%. Naturally, within the limits of this er-
ror the velocities coincided with those expected for the
ellipsoidal model.

The electron velocities can be measured with high ac-
curacy by studying resonance transitions between mag-
netic surface levels."3 The magnetic surface levels are
the results of quantization of the periodic motion of the
electrons that experience multiple specular reflections
from the sample surface. The energy levels of these
electrons are given by t7]

where £„ is the n-th root of the Airy function,

-|2/3

J
 ;

Ρ is the curvature radius of the trajectory in phase
space; vr is the velocity in the direction perpendicular
to the field.

When the magnetic field changes, resonances are ob-
served at an external-field frequency

(8)

The energy En (formula (7)) depends only on Vp/
Since the curvature radii can be calculated from the
known model of the Fermi surface (see Sec. a of Ch. 3),
observation of the resonance transitions makes it possi-
ble to determine vF. The electron velocity measured by
us along the binary axis is vz = (10.0 ± 0.1) · 107 cm/
sec.t123 Koch and Jensen1583 have found that the electron
velocity on the minimal section of the Fermi surface
varies in accordance with an elliptic law and amount to
υ2 = (9.9±0.1)·107 and v3 = (7.5 ±0.1) · 107 cm/sec. We
have modified here their values by adding a correction
~3% due to the line shape/593 and by introducing more
accurate curvature radii.C373

Takaoka et aZ.ceo] observed, in the measurement of the
anisotropy of the magnetic surface levels in the binary
plane, deviations from the ellipsoidal model, qualita-
tively similar to those observed in the investigation of
the quantum oscillations of the conductivity (see Sec. a
of Ch. 3) and of the cyclotron resonance (Sec. b of Ch.
3). Calculations by their results yields wt = 8.9x 10*
cm/sec.

\
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FIG. 11. Period of the magnetoacoustic oscillations on the
electron surface vs. the direction of the field Η.C61 ] The wave
vector k is parallel to C t . Circles—experiment, dashed line—
calculation by the ellipsoidal model, solid line—calculation by
the model of13'3, which is based on inversion of the data on the
Shubnikov—de Haas effect.

e) Magnetoacoustic resonance

When ultrasound is considered at an angle to the mag-
netic field, the electrons for which the condition

I to — kv | = nQ, (9)

is satisfied absorb resonantly the wave energy if the
orbit has points for which k>v = 0. The latter conditions
that the trajectory has sections parallel to the wave
front and when the electrons move along these trajec-
tories they interact effectively with the waves. When
the magnetic field is decreased from a sufficiently large
value, periodic oscillations of sound absorption are ob-
served and are caused by the fact that the resonant elec-
trons with « = 1,2,3,... become effective. According to
Golik et aZ.Ce13 the period of these oscillations is exceed-
ingly sensitive to the shape of the Fermi surface. Fig-
ure 11 shows the values of the periods of the magneto-
acoustic resonance of the electrons measured ince13,
compared with those calculated by the ellipsoidal model
and by the numerical model (see Sec. a of Ch. 3). It is
seen that the small deviations from ellipsoidal leads in
this case to a change of the period by several times.

Measurements of the magnetoacoustic resonance for
holes have shown that their Fermi surface differs from
an ellipsoid by not more than ~0.1%.C613

f) Cyclotron resonance on non-extremal orbit

Cyclotron resonance is observed as a resonant singu-
larity of the surface resistance of the sample as a func-
tion of the magnetic field. In the case of a convex Fer-
mi surface and a non-quadratic spectrum, these singu-
larities occur at the end of the smooth spectrum of the
cyclotron frequencies Sl=il(Pt), corresponding to the
central section at the limiting point. The truncation of
the trajectories whose diameters are larger than the
thickness D of the plane-parallel sample produces an
aritificial end point Ω β ρ of the spectrum of the electrons
moving on closed trajectories without colliding with the
sample surface. The cyclotron resonance is observed
at this artificial end point of the spectrum. The condi-
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FIG. 12. Dependence of the effective mass of the electrons at
Η II C2 on the value of HjH™

tion for its realization is the simultaneous satisfaction,
for a certain intermediate section of the Fermi surface,
of the following equations (the χ axis is parallel to the
sample surface):

eH (10)
m'(.Pz)c ·

Decreasing the field shifts the boundary section of the
complex Fermi surface away from its central section to
the limiting point, and at η » 1 the conditions (10) are
satisfied on many intermediate sections. It thus be-
comes possible to measure m*(Px). Figure 12 shows
the dependence, measured inCei] of the effective mass
of the electrons of the small section at ΗII C3. No one
has yet succeeded in observing cyclotron resonance on
non-extremal sections for other groups.

The experiment described above provides detailed
information on the spectrum of bismuth at the Fermi
level. It is most important that all the results are in
good agreement.112·371 Their compatibility is manifest,
in particular, in the fact that it is possible to describe
the entire aggregate of the data by a relatively simple
dispersion equation (the coordinate axes correspond to
Fig. 4)" 5 ]

(ID

"13± '

This, as can be readily seen, differs from Cohen's
spectrum (3) in the presence of the following terms:
2P1Ps/mltt, which describes the asymmetry of the
surface, ElP\/2mi, which leads to a deviation of the
£(PX) plot from a parabola and brings the spectrum
closer to the Lax model, and the fourth-order terms
~P\P\.

The spectrum (11) describes, accurate to ~0.5%
(which is close to the measurement accuracy), the re-
sults of the experiments considered in Sees, a-d of Ch.
3, if the coefficients are equal to: £ = 35.6 meV, Et

= 13.5 meV, m u .=1.32, m u + = 1.46, w 1 3.=0, mls_ = 7.9,
m^O.345, w2 = 1.196-10-s, ms = 2.08-l(r s, ^ = 0 . 2 8 ,
WJ1S=0. 24. All the masses are in units of m,. The
angle of inclination of the 1 axis to the trigonal plane is
6°23'.

The agreement between the results of the measure-
ment of the magnetoacoustic resonance (see Sec. e of
Ch. 3) and of the cyclotron resonance on the nonextremal
orbits (Sec. f of Ch. 3), on the one hand, and the spec-
trum (11) on the other, has not been verified.

At present it is difficult to say to what extent the spec-
trum of McClure and Choit351 describes the electrons at
energies that differ noticeably from the Fermi energy,
since the corresponding energy levels in a magnetic
field were not calculated. This makes difficult a com-
parison with experiment on magnetoreflection (see Sec.
b of Ch. 4) and the measurement of conductivity in a
quantizing field (Ch. 5). At any rate, it provides a good
interpolation model of the electron Fermi surface, one
that is more convenient than the expansion in spherical
harmonics proposed in"73.

No deviation from ellipsoidal shape was observed for
the hole Fermi surface. According to magnetoacousto-
optical investigations (Sec. e of Ch. 3), the possible de-
viations are £0.1%. The total volume occupied by the
surface in momentum space, assuming that the surface
is ellipsoidal, is equal, within 0.1%, to the combined
volume of the three electron surfaces.

Using the hole cross section and masses listed in Ta-
ble ΠΙ, we get

= 1-003 ±0.005.

It is known that for an ellipsoid this ratio should be
equal to unity. Thus, to determine the possible non-
parabolicity of the hole spectrum from measurements
on the Fermi level, the measurement accuracy must be
increased by one more order of magnitude.

4. INVESTIGATIONS IN THE INFRARED BAND

a) Spectral measurements without a magnetic field

Investigations of bismuth in the range "10-100 μπι
have revealed a plasma resonance and an interband ab-
sorption edge.Ces3 An absorption edge connected with
direct interband transitions at the point L was ob-
servedces] at λ» 17 μπι. The photon end-point energy
J£ph«68—70 meV attests to the presence of an anom-
alously small (~ 10-20 meV) energy gap in the electron
spectrum. Thus, this experiment served as the basis
for the two-band model.

It is known that the behavior of a metal at frequencies
close to the plasma frequency is determined by the lat-
tice dielectric tensor z]k and by the high-frequency con-
ductivity tensor aJk. Recognizing that the electrons on
the Fermi level take part in the production of the screen-
ing currents, aik can be calculated, accurate to several
percent, by using the formulas obtained by Lax et al.c64]

for the ellipsoidal model. Substituting in these formulas
the parameters of the ellipsoid (Ch. 3), we obtain

mem \ 98.5. V '

Maxwell's equations with allowance for the Debye cur-
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FIG. 13. Scheme of resonant
transitions observed in experi-
ment on magnetoreflection.C2n

2-3 1-2
Ϊ-1 2-1

u-t

FIG. 14. Plot, for light elec- I
trons, of the energy of the inter-i
band transitions and of the cyclo-
tron resonance against the field
Η II Cj. Circles—experiment.
Lines—calculation by the two-
band model.c 6 7 ]

:0 iff SO SO

rents in the expression (12) for the conductivity yields
for the wave number the expression

(m)
) •

(13)

The relation (13) was experimentally verified by
Boyle and Brailsford,C83] who investigated the interfer-
ence of waves passing through a thin sample. On the
basis of this experiment it was found that tn=ttz=zs.
= 100. Kulakovskii and Egorov"·*53 obtained εχ = 110±10
from the light-reflection coefficient. For the plasma-
resonance frequency corresponding to k =0, at a polar-
ization perpendicular to C 3, values 158 ±3 cm"1 (2.98
xlO1 3 sec" 1)' 6 3 3 and 2.98X10"13 sec" 1 " 5 3 were obtained.
Substituting in (13) the numerical value of σ η from (12),
we get εχ = 104. For light polarized along the trigonal
axis, the plasma-resonance frequency is 187 cm" 1/ 6 3 3

thus yielding ε33 =ε,, =76.

Experiments performed in a wider range of photon
energies have revealed the appearance of succeeding
spectral singularities only starting with an energy 0.69
eV t 1 8 3 (see Table II).

b) Magneto-optical investigations

Absorption resonances connected with interband and
intraband resonant transitions at the point L between the
Landau levels in a magnetic field were investigated
in 1 2 1 · 8 8 " 6 8 3 . According to 1 2 1 · 8 9 3 the allowed transitions
are those with &j = 1 where j =n + (1/2) +s, and are shown
schematically in Fig. 13. The dependence of the energy
of these transitions on the magnetic field, obtained
inC87], is shown in Fig. 14 at ΗII Ct.

From the two-band-model spectrum (2), taking into
account the inequality jeHH/m*c »Er /4, which is satis-
fied under the experimental conditions, we obtain for
the transition frequency at j Φ0, accurate to £1%

(14)

The presence of other bands lifts the degeneracy of
the j - th level (atj*O), a fact that manifests itself, for
example, in the spin splitting of the quantum oscillations
(see Sec. a of Ch. 3). However, for interband transi-
tions with Δ s = 0, the spin splitting linear in the field
has a value ~ (A» + A_)/8w%j %, 1%,"43 which is less than
the line width of the resonant transition. The possible
effective-mass renormalization due to the remote band
can lift the degeneracy of the frequencies of the transi-
tions j —j +1 and j +1 — j . Inasmuch as no line splitting

was observed in experiment, Maltz and Dresselhaus167·1

have proposed that there is no mass renormalization and
that4> 4». = Δ.. Estimates show that the effects quadratic
in the field and due to the influence of the remote bands
are small even at the maximal fields #«100 kOe at which
the experiments were performed. Thus, the use of the
two-band model to describe interband transitions with j
Φ0 is perfectly justified. Relation (14) agrees well with
experiment (Fig. 14) at E^eK/m%c =93.5 ±1 meV2/
kOe. t e 7 · 6 "

In contrast to the transitions with j Φ0, the transition
frequencies at j =0 depend substantially on Et. Vecchi
et al.an have shown that all four possible transitions,
with and without change of spin, shown in Fig. 13 are
allowed. Their frequencies are determined by formula
(5) with \ = - Δ. = - (8.7 ± 1) ml1, corresponding to a de-
crease of the gap between the bands in weak fields at a
rate of 0.09 meV/kOe and to 6 = 1.5. The value obtained
earlier by Vecchi and Dresselhaus for the last parame-
ter was ~ 3.5.Ce8] The new value, however, seems more
justified, inasmuch as the measurements in1"213 were
made in a larger range of magnetic fields, and the pa-
rameters were determined by comparing the experi-
ments with the calculated dependence of the reflection
coefficient on the field. We shall return to the results
obtained here in Ch. 6.

Magneto-optical investigations are of particular inter-
est in that raising the sample temperature all the way
to ~ 300 Κ does not influence very strongly the resolving
power of the method. The reason is that even at Τ =0 Κ
the Landau levels are greatly broadened by the electron-
electron interaction of excitations whose energy greatly
differs from the Fermi energy. Therefore the charac-
teristic temperatures at which further broadening of the
levels set in are "T^slOO °K. Vecchi and Dressel-
haus" 0 3 succeeded in measuring the temperature depen-
dence of Et(T) and (eH/m*c)Et(T), which are described
by the formulas (at Η parallel to the 1 axis)

Ee (T) = 13,6 + 2,1 -10-' Τ + 2,5 -ΙΟ-Τ8 (meV),

Ε, Ji-.,»94,1-8,5.10-*Γ-2,4.10"' (meV2/kOe).

4)Since the lines have a width on the order of several percent,
appreciable deviations from these results are admissible. t123

The exact values, however, cannot be indicated at the present
time.
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In this section we have dealt so far with the spectrum
parameters of Η parallel to the 1 axis. As expected, at
other magnetic-field directions, making an angle θ with
the 1 axis C9<;70-80°), to describe the experimental re-
sults it suffices to replace wj^by m^/cosd and to as-
sume that the relative spin splitting is unchanged. So
far, no magneto-optical resonances connected with in-
terband transitions have been observed for heavy elec-
trons at Η Π C2 and Η parallel to the 3 axis for holes.

5. INVESTIGATION OF BISMUTH IN THE QUANTUM
LIMIT

a) Principle of method

Pure bismuth can be used to investigate carriers at
various energies because of the change of the end-point
energy in a strong magnetic field. For example, in a
field H>26 kOe directed along the bisector axis Clt each
of the electron conduction bands below the Fermi level
is left with only one Landau level. The electron density
at these levels at Γ =0 Κ i s " "

y .. 2'HPz (15)

(Pe is the maximum electron momentum in the field
direction), so that when the field is increased the num-
ber of electrons and holes is kept equal by a shift of the
Fermi energy EF, which leads to a decrease of Pe.

A favorable circumstance that facilitates the study of
bismuth in a quantizing field is the strong anisotropy of
the Fermi-surface sections. Therefore, when the quan-
tum-limit conditions have already been realized for the
electrons, the holes still remain in the quasiclassical
magnetic-field region, and it is possible to observe the
magnetic-moment or conductivity oscillations due to
quantization of the hole spectrum." 7 · 2 1 · 5 4 · 7 1 3

Another possibility is to measure the velocity of the
magnetoplasma waves and to determine in this manner
the variation of the mass density with changing
fields/5 4·7 8·7 3 3 or else to determine the effective mass
directly by measuring the cyclotron resonance.^201

It was shown in t 7 4 3 that a single experiment in which
both effects are investigated yields direct information
on the changes of the Fermi energy and of the carrier
density. We shall consider the capabilities of such a
method qualitatively within the framework of the quasi-
classical approach. For holes at ΗII Cx it is perfectly
satisfactory up to the fields ~ 100 kOe to which a quan-
tum number η > 4 corresponds. In the classical case,
the field corresponding to the w-th oscillations is con-
nected with the cross section by the known relation (at

.!?(#„)-(«+4-)-£-#„.

From (16) we obtain for the carrier density

(16)

The velocity of the magnetoplasma (Alfv6n) waves,
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for carriers with an anisotropic spectrum (see Sec. c
ofCh. 3), is

vH'1 = [4nJV (*m + "m linN (Hfm (i/)l""2. (18)

Comparing (17) and (18) we see that simultaneous mea-
surement of these quantities yields the functions Nlfl)
and m{H). Recalling the definition m = (1/2TT)8S/8£ and
determining from (17) and (18) the function m(S), we ob-
tain

S(H)

S(0)
2nm(S) · (19)

Thus, the experiment yields such quantities as N(jH),
EF(JS), m(E), and S(E). By using a suitable model of
the spectrum, for example the two-band model (1), it is
easy to determine from m(E) and S(E) the size of the
gap and EF(0). By the same token, it is possible to ob-
tain in principle a complete description of the carrier
spectrum.

b) Measurement of N(H) and EF (H)

Let us examine in greater detail the results of121·54·71·1.
Compared with the earlier investigations in this
field,"7·7 2·7 3 3 the measurements of"43 were made on
samples of better quality, characterized by a residual-
relaxation time ~ 2—5 nsec, and at a lower temperature,
Τ ~ 0.4 K. A s a result, the resolution and the accuracy
of the measurements of the quantum oscillations of the
conductivity (Fig. 15) and of the velocity of the magneto-
plasma waves were higher by one order of magnitude.
This has made it possible, in particular, to detect the
errors of the preceding studies (see"2 3). The measure-
ments in 1 2 1 ' 7 1 3 were performed in substantially stronger
fields than in : s 4 ] .

The values of the wave number k in strong fields, when
the displacement currents must be taken into account be-
cause of the drop of the conduction currents, are con-

, kOe
SS H, kOe

FIG. 15. Quantum oscillations of the resistance at 10 MHz,
Τ = 0.4 Κ, and Η II Cx.

tm The arrows show the positions of the
oscillations of order η for the holes (h) and electrons (e). The
insert shows a plot of the quantum oscillations of the conduc-
tivity from c l n .
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1,00

FIG. 16. Dependence of the hole density (1) and of the mass
densities NF\2 (2) and NF\3 (3) on a field Η parallel to C t . 4—
value of NF\3 Iff) assuming ε = 0. The wave frequency is 27.87
GHz. The arrows mark the positions of the quantum oscilla-
tions of order η for electrons with one axis parallel to H(e2)
and with the 1 axis making an angle 60° with H. The plus and
minus signs correspond to the different spin projections.1541

nected with the mass-tensor components by the disper-
sion equation (at ΗII C t or ΗI C3 and k lH)

*-*»£-* 4 Fia(m) = O. (20)

The indices a and j indicate the wave polarization di-
rection perpendicular to Η and k and the direction of the
field H, respectively. εαα are the components of the
dielectric tensor of the lattice.

The contribution of the electrons to NF^im) and
№ | j ( m ) is relatively small (-1.5 and 22.5%, respec-
tively) and can be taken into account by calculation.
Figures 16 and 17 show the plots of N{H) and of the con-
tribution of the holes to NF(H) obtained inCM1 at ΗII C1#

An analysis of the plots shown in Fig. 16 and of the
analogous ones at Η II C3 has shown that in strong fields
the high-frequency conductivity receives an appreciable
contribution from the displacement current. The com-
ponents ε33=65±5 and εη=ε22=100±10 were determined
by choosing the lattice dielectric constant ε such that

HFLOO

mPl1U c m

2.0
H, kOe

FIG. 17. 1,2—the same as in Fig. 16. 3—NF^UI) at/= 17.6
GHz. 4—Fermi energy of holes. The dashed lines 5 and 6
show the values of NFl2(jD/NFl

22(O) obtained in t 7 2 l 7 3 i , 7—EF(H)/
£JP(O) from1173. The right-hand scale pertains only to the solid
lines.

V

10

s - /I
5

100 H, kOe

FIG. 18. Plots of NiM) at Η II Cx (1) and Η || C2 (2), calculated
from the positions of the quantum oscillations of the holes
(marked by arrows) assuming an ellipsoidal model. The val-
ue of H2 is taken from1713, H3 and Hi are from1213, and the re-
mainder from1543; 3—calculation oiNiH) using the electron-
spectrum model obtained in t 2 1 3 at Η II C2.

the functions N(H) and NF(H) coincide in the field re-
gions Hi25-30 kOe. These values are in good agree-
ment with those given in the fourth paragraph of Sec. a
of Ch. 4.

A comparison of N(H) and NFg(H) at # = 65 kOe (see
Fig. 17) shows that the effective mass of the holes is
practically independent of the field. This means that the
hole spectrum is quite close to quadratic. Possible de-
viations from a quadratic spectrum can be estimated by
assuming a two-band-model spectrum with hE/hEien « 1 .
From the ratio

NF (H)INF (0)
.V (H)IN (0) *mf (0)

we obtain hEt e I , =0. &l%\ eV. Knowing the section of the
Fermi surface and the hole mass, we calculate the mass
at the top of the valence band, "wzJ^O. 206 ±0.003 me and
the hole Fermi energy hEF = ll. 72 ±0.10 meV reckoned
from the top of the band. The plot of hEF(H) based on
the results of experiments using the two-band-model
spectrum is shown in Fig. 17. By using the same model,
it is possible to determine N(H) and EF(H) from the re-
sults of1*1·7" for fields up to «300 kOe. A plot of N{H)
is shown in Fig. 18. Measurements"4 3 performed at
Hll C3 yielded a hole^-factor^ 3=4.26±0.02.

6. SPECTRUM OF THE ELECTRONS OF THE LOWER
LANDAU LEVEL

One of the main problems encountered in the investi-
gation of bismuth is the determination of the parameters
of the electron spectrum at the bottom of the conduction
band. The difficulty in solving this problem is due to
the fact that in pure bismuth EF=Evil/2 =35 meV and ex-
ceeds greatly the value 13.6 meV obtained for Et from
magneto-optical measurements. As a result, the pa-
rameters of the spectrum at the Fermi level depends
little on Ef. Thus, for example, it is easy to obtain
from the two-band-model spectrum (1) the ratio

(21)

Substituting here the corresponding numerical values,
we find that the factor in the parentheses differs from 1
by less than ~4%. On the other hand, we have 2S t /
•nm*Evh = l±0.02. This example shows therefore that,
on the one hand, the spectrum in a direction perpendic-
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ular to the 1 axis is in fact quite close to the two-band
spectrum. On the other hand, it is clear that from mea-
surements at the Fermi level it is practically impossi-
ble to determine the parameters of the spectrum at the
bottom of the band, all the more since one can expect
from the very outset the deviations from the simple
models to be of the same order of magnitude as the dif-
ference between the spin and orbital splittings, i. e.,
~ 10%. Such differences were in fact observed in experi-
ment (see Ch. 3). To establish the spectrum at the bot-
tom of the conduction band, it is obviously necessary to
investigate effects in which electrons located at the bot-
tom of the band take part. Such a possibility is afforded
by performing measurements in strong magnetic fields,
when only one Landau level remains below the Fermi
level. By the same token, the problem reduces to a de-
termination of the spectrum of the lower Landau level.

One experiment of this kind—measurements of the
frequencies of the intraband and interband transitions—
was described in Sec. b of Ch. 4. There is one other
possibility of investigating the electrons of the lower
Landau level, and is connected with the appreciable dis-
placement of the Fermi level and its approach to the bot-
tom of the band when a strong magnetic field is superim-
posed. Since the observation of the holes makes it pos-
sible in this case to determine the change of the Fermi
energy and of the electron momentum in the field direc-
tion (see Sec. b of Ch. 5), it becomes possible to es-
tablish the curvature of the conduction band and its shift
under the influence of the field.

The determination of the connection between the shift
of the Fermi level and the characteristics of the elec-
trons is made complicated by the fact that at those field
directions at which this influence is strongest, for ex-
ample at Η II Cu there exist non-equivalent groups of
electrons. It is therefore necessary to resort to spec-
trum models and to attempt to determine their parame-
ters by comparison with experiment. Such an approach
was used i n t l 2 | 5 4 ] , in which the Fal'kovskii-Beneslavskii
spectrum (4) was assumed for the lower Landau level.
As noted in Sec. a of Ch. 2, this spectrum is valid when
Η is close in direction to the 1 axis.

The direction of Η can be assumed to be close to the
1 axis if the effective mass m* of the central section
is close at this direction to the value

meV

2

cos(H",axisl) '
(22)

where m* is the mass at Η parallel to the 1 axis. It is
easy to verify that the condition (22) is satisfied for the
electron with an error less than ~ 1% if the angle be-
tween Η and the 1 axis is equal to 60°. Therefore at Η
II C t the spectrum takes the form (4) for all the electron
groups. For the electron sections in which the direc-
tion of the 1 axis makes an angle ~60° with the field it
is then necessary to put m, =ml /4 and a =at /2, for in
the case the effective mass is twice as large as at Η
parallel to the 1 axis, and the relative spin splitting re-
mains unchanged.

The experiment described in the preceding section

; i-i

0.350M W20MW0S 1.1 0.9 if 0.91.1

FIG. 19. Calculated values of Hn for hole quantum oscillations
of order η vs. the Fermi energy of the electrons—hatched
strips 1. The hatching of the vertical lines shows the mea-
surement error. The arrows indicate the calculated values of
ft, from 1 2".

makes it possible to determine the values of the pa-
rameters of the spectrum (4), if the following conditions
are taken into account:

a) 'N(ffl=hN(fl) independently of the field.

b) Since the electron energy connected with the cyclo-
tron motion in a field ~ 100 kOe is ~0.1 eV, the addi-
tional energy due to the application of the field is ~10"*
eV/atom, i .e . , the band structure remains unchanged.
We can therefore put

'EF (H) =-. 'EF (0) -AE (H), hEF (H) —hEP (0) + ΔΕ(Η)

(the hole energy hEF is reckoned downward from the top
of the valence band at H = 0).

c) For holes, small deviations of the spectrum from
quadratic can be described by the two-band model,
which leads, with the zero spin splitting taken into ac-
count, to Landau levels

(23)

with the parameters obtained in Sees, b of Ch. 3 and b
ofCh. 5.

Assuming that the n-th quantum oscillations of the con-
ductivity for holes (see Fig. 15) takes place in a field
Hn such that *P*n) =0, and taking the conditions listed
above into account, we readily calculate #„ as a func-
tion of the two parameters fEF(0) -Et/2) and α.

Figure 19 shows the results of a calculation of Hn for
η =2, 3, 4, 5, and 6. At each value of (eEF(0)-Et/2) the
value of α was chosen such as to make Hn agree with the
experimental ΗΊ = 32.6 ± 0.15 kOe. The errors in the
calculated values are due to the errors in the measure-
ment of ΗΊ and, to a lesser degree, of hEtttt.

In accordance with the calculation (see Fig. 19), we
must assume '£,.(0) - (Et/2) =21 ± 1 meV and {eK/2C)\
= - 0.040 ± 0.005 meV/kOe. These values were obtained
under the assumption that the spectrum (4) corresponds
exactly to the electron spectrum. To take into account
the next order of perturbation theory we can introduce
the energy dependence of the mass m1, via the substi-
tution m, - m x [1 + (E/E0)], where Eo is a parameter that
must be determined from experiment. This expression
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coincides formally with the spectrum of the two-band
model if Eo = Et /2. If E/Eo « 1 , this substitution is
equivalent to introducing into the spectrum a term pro-
portional to P*.

Numerical calculations have shown that agreement
with experiment can be obtained at E0%0.1 eV. The
value of eEF(0) - (£,/2) at E0 = 0.1 eV increases to ~25
meV, and the rate of the shift of the bottom of the band
becomes equal to —0.05 meV/kOe.

Thus, assuming the spectrum of the electrons at the
lower Landau level to be close to (4), we arrive at the
conclus ion that eEF(0) - (Et /2) < 2 5 meV. R ecalling that
the energy of the edge of the interband absorption is £ p h

= 2*^(0) =68-70 meV (see Sec. a of Ch. 4), we obtain
£,£18-20 meV, which exceeds noticeably the value Et

= 13.6 meV measured in magneto-optical investigations
(Sec. b of Ch. 4). This raises the question of whether
the electron spectrum (5), used by Vecchi et α1.1ζιΛ

might not describe the strong-field measurement results
just as well as the spectrum (4). We note that at Pz Φ0
these spectra differ not only by the term proportional to
Hz and describing the repulsion between the bands, but
also in the dependence of Ε on Pt. Namely, the depen-
dence investigated inC213 is characteristic of the two-band
model, namely, quadratic at \E-Et/2\«El/2 and be-
coming linear at IE - Et /21« Et /2.

The results of the calculations of1213 are shown in Figs.
18 and 19. It is seen that the values of Hn (see Fig. 19),
as well as those of N(H), do not agree with experiment.5'
Thus, the questions of both the electron spectrum and
of the exact value of Ee remain open. The motivation for
the last statement is that the interpretation of the experi-
ment inC213 was carried out for a concrete model, and it
is not excluded that the use of a different model might
lead to other values of the parameters.

Consider now the possibility of determining Eg from
other experiments. It is obvious that the value JE,«15
meV obtained in" 7 3 need not be taken into account, since
conceptually this is the same experiment as inC5*3 but its
accuracy is lower by many times. The same can also
be stated concerning a large number of earlier magneto-
optical studies, in which substantially larger Et were
obtained because of erroneous interpretation.

We must dwell in particular detail on the frequently
cited paper by Strom et al. , C 7 5 ] who obtained Et = 13 ±2
meV, a value that confirms the results of"13. However,
our analysis in t 1 2 3 has shown that this figure can in prin-
ciple not be obtained from the result of*753. Strom et al.
investigated cyclotron resonance at frequencies (0.9-
2.5) ·101 2 Hz (Κω~4-10 meV«0.1-0.3£ F ). Intraband
resonance transitions j~j+l, j —j + 2, j -j + 3 , . . . , were
observed, with the lower level having at Γ =0 an energy
£eEF, while the upper level an energy fEF. Putting δ

='EF - Es, we obviously have EJtn = "EF + ω - δ. Substi-
tuting these values in (2'), performing simple algebraic
manipulations, and recognizing that the mass at the
Fermi level is m* =m*Eth/Et, we obtain an equation for
the transition frequency

o—26
(24)

According to (24), the maximum deviation of the reso-
nance frequency from the classical value neH/m*c is
reached at δ = Κω or at δ =0, and amounts to ±Hu/Evh

£6-15%. If it is recognized that either b/*Er<K<a/2*EF

« 1 , or correspondingly Κω - 6/eEF« 1, then its value
can be obtained from the obvious relation

(25)

5>The opposite conclusion reached by Vecchi et al. β 1 ] is based
on the fact that they used for comparison values of Hn mea-
sured with much lower accuracy than in t 5 4 3. The difference
indicated in Fig. 19 did not exceed in this case the measure-
ment errors.

where S is the section of the Fermi surface and H} is
the field at which the j-th Landau level intersects the
Fermi level; this field is determined by investigating
the de Haas-van Alphen or the Shubnikov-de Haas ef-
fect.

Thus, the entire picture of the quantum cyclotron
resonance in the two-band model is determined com-
pletely by spectrum parameters known from other ex-
periments. Substitution of the numerical values of Ht

calculated from the data of Sec. a of Ch. 3 and m*
= 0.0094wze (Sec. b of Ch. 3) in the formulas (24) and
(25) leads to an argument between the predicted position
of the cyclotron-resonance lines at Η II C2 with all the
lines observed inC753, with an rms error 0.4%.

As seen from (24), the transition frequencies for
multiple resonances, i. e., at ηΦί, do not agree with
one another. Each of these resonances splits into η
lines whose amplitude ratio depends on the level popu-
lation and changes with increasing Γ . This circum-
stance was used by Strom et al.lni to determine eEF.
This method, however, can be used to determine only
the parameter (eEF-Ej)/kT, which determines in fact
the population, but not the very value of "EF.

Thus, there are at present no independent measure-
ments performed on pure bismuth and capable of con-
firming either of the values cited above for Et.

7. HOLE SPECTRUM

Since the holes are located at a point Τ that has high
symmetry, it is much easier to treat them theoretically
than the electrons. The reason is that, owing to the
symmetry, certain matrix elements that describe the
interaction between the bands turn out to be rigorously
equal to zero. In addition, at the point Γ all the dis-
tances between the bands are quite large, so that it be-
comes possible to use methods such as the orthogonal-
plane-wave or augmented-plane-wave methods. How-
ever, as already noted in Sec. a of Ch. 2, the known
population of this type describe the Fermi surface quite
poorly, and call for substantial corrections.

Golin t l e3 has advanced the hypothesis that the relative
positions of the bands must be altered in such a way that
the hole parameters calculated using the theoretical ma-
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trix elements coincide with the experimental measure-
ments. This method of fitting leads to two doubtful re-
sults: First, some of the levels must be shifted by ~ 1
eV and this, taking into account the calculation accuracy,
is excessive and makes the entire calculation meaning-
less. Second, the level closest to the valence band
turns out to be at a distance ~ 0.2 eV, which contradicts
the optical investigations, as already noted in Sec. a of
Ch. 2.

Some conclusions concerning the band structure can
be drawn from the experimentally obtained estimates of
the deviation of the hole spectrum from parabolic. The
starting point can be here the fact that the hole Fermi
surface is elongated along the trigonal axis, and the
corresponding masses differ by one order of magnitude.
Therefore, in analogy with the case of electrons it can
be assumed that Cohen's model holds for the holes, i. e.,
near the extremum of the valence band, in a direction
perpendicular to the C3 axis, the spectrum is described
by the two-band model with a gap hEt, and is quadratic
along C3. Strictly speaking, this assumption is refuted
by the large value, 4.26, of the ^-factor of the hole at
Η II C3 (Sec. b of Ch. 5); a value g3>4 was measured
also inC203, where ESR of the holes was observed. In
the two-band models =2, as is obtained for holes on the
basis of the deformation model.187-1 But the band ar-
rangement calculated by Golin (see Fig. 3) and the cal-
culation1203 of the nonparabolicity of the spectrum based
on this arrangement show that Cohen's model is a good
approximation.

Using the spectrum (3) and assuming hE/hEt«1, we
easily calculate the following quantities:

τ.

(26)

m-,

m*0 and m*0 are the effective masses at the extremum
of the valence band at Η II Ct and Η II C3, respectively.
Using the experimental ratio S^/mX/S^ /m% = 1.003
±0.005 (see the end of Ch. 3) and *-Ej,.«12 meV (Sec. b
of Ch. 5), we obtain the estimate *£,£600 meV. An
analogous value *£,»0. 55 ±0.25 eV can be obtained by
using the formula for m* and the value of hErttt from
Sec. b of Ch. 5.

Verdun and Drew/2 0 3 analyzing the results of measure-
ments of the cyclotron resonance at the frequency ~ 1012

Hz in fields 50-100 kOe, reached the conclusion that
hEt=0.21 eV. Their calculation is based on a compari-
son of the effective mass in strong fields, which in-
creases because of the increase of hEF (see Sec. b,
Ch. 5), with the same mass at//—0. In their analysis,
however, they used the obsolescent value m*(H-0)
= 0.203 w e from"1 3, and not the more accurate m*
= 0.212we (see Table ΠΙ). Since we are dealing with
small changes of this value with increasing field, this
difference has led to a seemingly larger nonparabolicity
of the hole spectrum and to a strongly undervalued hEt.
In fact, the experiment agrees fairly well with the large
value of hEt (Fig. 20). Thus, the results of"03 must be

FIG. 20. Coefficient of transition of a wave with λ= 311 μηι
through a bismuth sample 4.3 mm thick at Τ = 4.3 Κ vs. the
magnetic field in the Faraday configuration.t20] C3 J- H, the
angle between Η and Ν is - 2.5°, and Η II C2. The arrows
over the minima Cl and C2 indicate the positions of the hole
cyclotron resonance calculated from the parameters obtained
in Sec. b of Ch. 5.

revised. We note incidentally that according to the cal-
culation ofC803 the use of Golin's matrix element"6 3 re-
sults in an even larger nonparabolicity of the holes.

We have considered so far only experiments on pure
bismuth. It is possible to investigate the carriers in
bismuth by studying alloys with other metals. In con-
nection with the problem of determining the nonparabo-
licity of the hole spectrum, taking into account the scanty
information obtained for pure bismuth, we discuss mea-
surements made on alloys of the type Bi +Sn and Bi + Pb,
in which a small addition (~ 0.01%) of an acceptor im-
purity changes the hole density by one order of magnitude.
It is assumed that such a low concentration of the impu-
rity atoms does not alter the spectrum of the bismuth,
and merely shifts the Fermi level.

Alloys of this kind were used to investigate the Shub-
nikov—de Haas oscillations and to determine the hole
mass at Η II C3 from the dependence of their amplitude
on the temperature/ 1 9 ' 5 7 3 An increase of m* was noted
in both studies. However, whereas in' 1 9 3 at 5,ι1οτ

»3.1S 0 (San0T, So—sections of Fermi surface for the
alloy and for pure bismuth, respectively) we get m*
= 0.093w2e Brandt et al.tsn obtained m* = 0.075me under
the same conditions. Thus, the difference between these
quantities is such that it hardly pays to discuss their
deviation from the value m* =0.0639we measured in
pure bismuth. Obviously, on the basis of these mea-
surements we cannot draw any conclusions concerning
the hole spectrum, and in particular concerning the
gaps between the bands, until the reason for the discrep-
ancy between the results of identical experiments is
made clear.

Bate et aZ. t l 9 ] succeeded also in measuring the ratio
S1 /S3 for alloys with different concentrations. It turned
out that the anisotropies of the hole Fermi surface
changes quite insignificantly. Thus, St /S3 = 3.16 ± 0.1
at a hole density 3.9x 1018 cm"3, which is close to the
value 3.327 ±0.0001 for pure bismuth (see Table ΠΙ).
Using formulas (26), we can estimate from this hEt

= 170-740 meV, which in any case does not contradict
the estimate given above for eEt. Thus, measurements
with alloys have so far not yielded reliable results.
The values hEt%200 cited inC l 9 t S 7 3 and obtained on the
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basis of these experiments are in fact not substantiated.
Measurements on pure bismuth point to ^ ^ 5 0 0 meV.

8. CONCLUSION

Let us summarize the results and attempt to indicate
some prospects of further research. As follows from
the foregoing, bismuth is one of the most investigated
metals, both theoretically and experimentally. High ac-
curacy was attained in the determination of the Fermi
surface and of the effective masses, and in the estab-
lishment of the character of the energy spectrum of the
electrons and holes. The electron spectrum of bismuth
can be regarded as known with an accuracy perfectly
adequate for many applications.

However, the problem of describing the electrons
can still not be regarded as completely solved. This
problem is made exceedingly complicated by the fact that
experiment can yield information on the electron spec-
trum at the bottom of the band only if simplified theoret-
ical models are used, and the situation is such that it is
difficult to reconcile the results of various experiments
(see Fig. 6). As a result, even the value of such an im-
portant parameter as the gap between the bands cannot
be regarded as finally established.

Let us point out some experiments that can add to our
knowledge of the electronic properties of bismuth.
These can be, for example, measurements in a quantiz-
ing field at higher accuracy and a larger range of fields.
As shown by the measurements of the quantum oscilla-
tions at low temperatures,1·373 it is possible to increase
the accuracy in these experiments by one or two orders
of magnitude, especially in the field region > 70-100
kOe, which becomes more and more accessible to in-
vestigations.

The potential of magneto-optical investigations can
likewise not be regarded as fully exhausted. Although
utmost accuracy and resolution have already been at-
tained here, much can be gained from experiment in
fields /f>150 kOe, at which infrared measurements
have not yet been performed. In particular, one can ex-
pect the appearance of resonant splitting as a result of
spin splitting of the Landau levels or the deviation from
the two-band model, the relative magnitude of which in-
creases in proportion to -fS. It would be of great inter-
est to observe resonant transitions for heavy electrons
at Η II C2. Since in strong fields the Fermi level drops
considerably, electrons situated practically at the bot-
tom of the band will take part in such transitions. No
less interesting, and easier to realize in practice, is
the measurement of cyclotron resonance of light elec-
trons at frequencies ~(0. 5—l)xl013 Hz, when one should
observe in fields ~ 10 kOe transitions from the zeroth to
the first Landau level, whose energy can be determined
with sufficient accuracy.

As to the refining the hole spectrum, the most reliable
way in our opinion is a further increase of the accuracy
with which the Fermi surface is measured. It is possi-
ble that in magneto-optical investigations at energies
£0.6 eV and fields > 100 kOe it will become possible to
observe the fine structure of the resonance-absorption

lines. Such an experiment would undoubtedly add con-
siderably to our knowledge of the energy spectrum of
bismuth.

An extensive field is research on the bismuth spec-
trum by investigating alloys with other metals or under
pressure, and by extrapolating the obtained parameters
to zero impurity concentration. In Ch. 6 we have con-
sidered some of these experiments, but refrained from
a more detailed discussion for a number of reasons.

First, impurities and pressure lead primarily to a
decrease in the relaxation time and a sharp reduction in
the measurement accuracy, which turns out to be much
worse than in pure bismuth. Second, despite the large
number of investigations in this field, they remain frag-
mentary to a considerable degree, since what is inves-
tigated mainly is the dc conductivity, and resonance
methods have not been performed systematically hereto-
fore. Third, the results of various investigations fre- ·
quently contradict one another, as was shown in Ch. 7.

Finally, in our opinion, the most interesting of these
investigations is the study of the changes produced in
the spectrum by an impurity that leads to a change in
the carrier density (Bi+Sn), or to the appearance of a
semiconducting phase (Bi+Sb alloys or under pressure)
and the extent to which the observed phenomena can be
described sufficiently well on the basis of simple and
frequently intuitive considerations. It is obvious that
such research can be successful only if the spectrum of
pure bismuth is known beforehand. Therefore further
investigations of pure bismuth, particularly under con-
ditions previously not employed in experiment, remain
a pressing problem.
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