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The properties of levels of charmonium—the bound system consisting of the charmed quark c and
antiquark c—are considered. A brief review is given of the experimental data on the different levels of
charmonium, and the classification of the states and their decays are discussed. Of the latter, radiative
transitions between levels and the annihilation of levels of charmonium to give photons (or lepton pairs),
and also light hadrons (π, η and Κ mesons), are paid the most attention. Such decays have fundamental
significance, inasmuch as they are connected in the most direct manner with the properties of quarks and
their interactions. The theoretical foundation of the review is quantum chromodynamics—the theory of the
interaction of colored quarks and gluons. The review contains the results of calculations performed in the
framework of quantum chromodynamics and pertaining to the annihilation decays of charmonium levels
and also to other phenomena: photoproduction of charmed particles, leptonic decays of charmed particles,
and nonleptonic decays of strange particles.
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INTRODUCTION

This review is devoted to the theoretical interpreta-
tion of the properties of charmonium—a system of nar-
row hadron resonances with masses in the 3-4 GeV
range. We shall discuss the classification of the levels
of charmonium and their electromagnetic and strong de-
cays. Lying at the base of the whole treatment is the
hypothesis that charmonium consists of a charmed quark
c and a charmed antiquark c, and the strong interactions
of these quarks with each other and with other, lighter
quarks are realized through exchange of gluons. Ac-
cording to the theoretical hypothesis, gluons are elec-
trically neutral vector particles with zero mechanical
mass. Both the quarks and the gluons possess specific
charges (sources of the strong interaction), whteh have
been given the name of color charges. The quarks exist
in three color varieties and the gluons in eight.

The theory of the interaction of colored quarks and
colored gluons—quantum chromodynamics—is still not
completely worked out, and by no means all physicists
working in the field of the theory of elementary particles
regard it as a real candidate for the role of the final the-
ory of the strong interactions. However, quantum chro-
modynamics, being, like quantum electrodynamics, a
renormalizable theory, already explains at the present
time a whole series of properties, both of charmonium
and of ordinary hadrons. These properties pertain prin-
cipally to short distances, less than or of the order of

10"u cm. Today, the principal unsolved problem of
quantum chromodynamics is the problem of the confine-
ment of colored quarks and gluons from colorless had-
rons. This problem (the trapping or confinement prob-
lem) is a large-distance (of the order of 10"13 cm) prob-
lem.

Further experimental and theoretical investigation of
charmonium may lead to quantitative verification of cer-
tain predictions of quantum chromodynamics, and there-
by to progress in the creation of a theory of the strong
interaction.

The review is constructed as follows. In Chap. 1 the
principal experimental data pertaining to charmonium
are given, the concept of charm is briefly explained,
and an introduction to quantum chromodynamics is given.
In particular, it is explained how, in quantum chromody-
namics, the strong interaction becomes weaker at short
distances (in the literature, this property has been
named asymptotic freedom). Chapters 2-4 are devoted
to a description of the consequences of the nonrelativis-
tic model of charmonium that treats the c and c quarks
in charmonium as heavy nonrelativistic particles situat-
ed in a potential with infinitely high walls. In Chap. 2
the widths of the annihilation of charmonium to give pho-
tons and ordinary hadrons are calculated, and in Chap.
3 the radiative transitions between the levels of char-
monium are calculated. Whereas in Chaps. 2-3 the
charmonium levels lying below 4 GeV are considered,
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these levels being described as the levels of an atom-
like system, in Chap. 4 we consider the charmonium
levels lying above 4 GeV. The latter are interpreted as
molecular charmonium, consisting of two charmed had-
rons, e.g., a υ and a D meson, each of which consists
of a heavy and a light quark. In Chap. 5 the annihilation
of charmonium is treated outside the framework of the
nonrelativistic model, using such general properties of
the theory as asymptotic freedom, unitarity and analy-
ticity. The sum rules obtained here give a number of
clear predictions for the widths of the charmonium lev-
els and make it possible to determine the mass of the
deep-virtual e-quark, which turns out to be equal to
1.25 GeV.

In Chap. 6 we briefly discuss the results of calcula-
tions performed within the framework of quantum chro-
modynamics but pertaining to other phenomena: the pho-
toproduction of charmed particles, leptonic decays of
charmed mesons, and nonleptonic decays of strange par-
ticles.

1. CHARMONIUM AND GLUONS

a) Principal experimental facts

The discovery of charmonium was announced in No-
vember 1974 by two independent groups: MIT-BNL, led
by Samuel Ting (see Ref. la), and SLAC-LBL, led by
Burton Richter (see Ref. lb). Both groups observed the
same new particle, which was designated by letter J by
the first group, and by φ by the second. This discovery,
which brought Ting and Richter the 1976 Nobel prize in
physics, induced a chain reaction of brilliant experi-
mental discoveries and very interesting theoretical stud-
ies.»

Almost immediately after the discovery of J/φ it was
realizedC3: that this particle is just one of the levels (the
most noticeable) of the system called charmonium. Ac-
cording to the theoretical hypothesis, charmonium is a
bound system consisting of the so-called charmed c
quark and its antiquark c. Theorists had suspected the
existence of charmed quarks since 1964. The possibility
that they exist was first discussed by HaraU ] and Bjor-
ken and Glashow151·1 (cf. also Ref. 5b), who were at-
tempting to construct a symmetric picture of four quarks
(u, d, s, c) and four leptons (ve, e, v^, μ). The need for a
fourth quark became especially pressing after Glashow,
Iliopoulos and Maianice] had shown that certain serious
difficulties in the theory of the weak interactions of ka-
ons could be solved with its help·. The spin of the c-
quark, like that of the other quarks, is equal to 1/2, and
the charge is fractional: Qc=2/3 (the charges of the
other quarks are respectively ς>μ=2/3, Qd =QS = -1/3);
the c quark mass is large, of the order of 2 GeV.

The J/φ particle is the ground 3Si state of charmonium,
(We use the usual spectroscopic notation zs*1Lj, where
J is the total angular momentum of the system, com-
posed of the orbital angular momentum L and spin S.)
The parity of this state is negative (P = (-1)^*1 = - 1),

and the charge-conjugation parity is also negative (C
= (— I)·1*5 = - 1). We see that J/φ has the same quantum
numbers as the photon: Jpc = l~; however, this particle
is very massive: MJ/t =3095 ±4 MeV. It is much more
massive than all the other mesons that were known be-
fore the discovery of J/φ.

However, the most striking characteristic of the J/φ-
meson is not so much its large mass as its small width.
Its decay to hadrons is only an order of magnitude more
intense than its decay to a lepton pair e*e~ or μ*μ":

= 69 ± 7 keV, e*er) = 5.0 ± 0.4 keV.

The decay to a lepton pair occurs as a result of the elec-
tromagnetic interaction (Fig. 1). There exist no selec-
tion rules forbidding decays of the type "J/ψ—hadrons"
by way of the strong interaction. However, the normal
widths of the strong decays of heavy mesons are at least
three orders of magnitude greater than the value of the
J/φ width. Thus, in J/φ decays a very distinctive, very
weak form of the strong interaction is manifested.
There are serious theoretical reasons to suppose that
further study of this form of the strong interaction, in
combination with the other forms that manifest them-
selves in other properties of charmonium, may lead in
the final analysis of the construction of a complete the-
oretical scheme of the strong interaction.

The next level of charmonium, φ', was discovered at
SLACC7] ten days after the discovery of J/φ. Like J/φ,
this level appears as a very narrow resonance in the
e*e'-annihilation cross-section. The mass of φ' is
3684±5 MeV, its width is r t o t =228±56 keV, Γ(φ'
~ e*e~) = 2.1 ± 0.3 keV, and its quantum numbers are
jPc =\—m j n ^ e framework of the charmonium model,
φ' is the 23S t state, where the 2 signifies that this is
the first radial excitation of the s S t state. The observed
decays of φ' can be divided into four basic classes:

a) the decays φ' ~e*e~ and φ' - μ*μ", with relative
probability B~l% for each of these decays;

b) strong decays into ordinary hadrons (principally
to π- and if-mesons),CH with B~10%;

c) strong decays with the production of J/φ in the fi-
nal state:

Β (ψ' ->- //ψππ) « 49% (see191),
Β (ψ' -» -Γ/ψη) «4% (see1101);

d) electromagnetic cascade transitions with emission
of two photons, or of one photon and hadrons. (Some of
these transitions also lead to J/φ in the final state.)
These decays form a fraction B~30%.

FIG. 1. Decay of a J/^-meson to arj
electron-positron pair.

1 (For an early review of these investigations, see Ref. 2a.
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'• φ (4.1)

Z2(15S2H%)

-(α±0.Ί)·1Β~*

FIG. 2. Family of levels of charmonium and radiative transi-
tions between them. [For the decays ψ'—xy the relative prob-
abilities Β{φ' — XT') are given. For the decays x —
products Β(φ' — χγ)Β(χ — J/Yi) are given. ]

The most interesting of the decays of φ' are the elec-
tromagnetic transitions (d), which were first observed
at DESY.1113

These transitions revealed the existence of a group of
charmonium levels called χ particles. The properties of
some of the χ particles are now very reliably known, but
a whole series of experimental problems, concerning not
only the identification of all these levels but even the
question of the existence of some of them, still remain
unsolved. It was predicted theoretically that three trip-
let Ρ levels should exist between J/φ and φ ' : 3P0,

 3P1

and 3PZ> with quantum numbers JPC=(f*, 1** and 2**.
These states have positive C-parity, and, consequently,
the decays φ' - 3Pj + γ and 3Pf - J/φ + γ, which are very
similar to radiative transitions in ordinary atoms, are
possible. The most likely correspondence between the
quantum numbers and the χ levels is as follows"23:

0
t +
 — X» (3415),

Μ = 3414 ± 4 MeV,

1
+ +
 — Xi(3500),

Μ = 3508 ± 4 MeV,

2
t +
 ~ χ, (3550),

Μ = 3552 ± 6 MeV.

The experimental numbers for the relative probabilities
of the radiative transitions of the charmonium levels are
indicated in Fig. 2. Two more groups of particles are
represented in the same figure. First, represented in
the left-hand side of the scheme are the two levels
X(2830) and x(3455), which are candidates to be 1 'So
(also called 77C) and 2 'SQ (77*), respectively, of para-
charmonium, with the quantum numbers JPC =0**. Sec-
ondly, in the upper part of the scheme the two structures
ψ(4100) and #(4400), with the quantum numbers of the
photon, JPC=V, are indicated. The rise in the e*e~-
annihilation cross section at energy 4.1 GeV is not de-
scribed by a Breit-Wigner curve. It is very plausible
that the corresponding structure is a manifestiation of
three superimposed resonances. The electron widths

of each of them are about 0.5 keV.cl3] The maximum
cross-section is found at energy 4.028 GeV.

We shall first make some remarks about the candi-
dates for para-charmonium with JPC =0"*. The state
X(2830) was observed at DESY,t l4] but its existence is
not yet confirmed by the SLAC-LBL group. It was ex-
pected theoretically that the mass difference Mf/t

-Ai,c should be several times smaller than 250 MeV.
If, nevertheless, X(2830) is indeed the η,, meson, then,
from the theoretical estimates, the relative probability
of the decay J/φ -X(2830) + γ should be much greater
than the upper bound obtained at SLAC. tn As regards
χ(3455), three or four events, corresponding to the cas-
cade

ψ ' - χ (3445) +γ

I

have been observed at SLAC,C15] and, possibly, one
event at DESY. The problem with the interpretation of
χ(3455) as 77* is that the experimentally observed rela-
tive probability of the decay χ(3455)-«Τ/ψ + ν is two or-
ders of magnitude greater than the theoretical estimates.
The problem of para-charmonium is treated in more de-
tail in Chap. 3.

We turn now to the states ψ(4.1) and ψ(4.4). Although
the electron widths of these levels are of the same order
as that of φ ' :

Γ (ψ (4.1) -*• e+e-) « 2 keV, Γ (ψ (4.4) -» e+e-) = 0.44 ± 0.14 keV (see1 1 4 1),

their total widths are three orders of magnitude greater
than those of J/ψ and φ ' :

Γι.ι(Ψ(4.1)) ~ 150 MeV, Γ1ο, (ψ (4.4)) = 33 ± 10 MeV.

As already mentioned, it is highly probable that ψ(4.1)
is a superposition of several resonances. The theoreti-
cal interpretation of φ(Α. 1) and φ(4.4) is a long way
from complete certainty, but the large total widths of
these resonances are in agreement with the theoretical
expectations. The principal difference between ψ(4.1)
and ψ(4.4), on the one hand, and J/φ and φ ' , on the
other, is that new decay channels are opened for the
former, namely, channels for decays to pairs of charmed
mesons.

The existence of charmed mesons was already pre-
dicted in the first paper by Bjorken and Glashow.Cs] A
charmed meson is a bound state of the charmed quark c
with one of the light antiquarks. For the pseudoscalar
(Jp =0") and vector (Jp =1") mesons the notation in Ta-
ble I is used. D-mesons were discovered at SLAC in
1976 from their creation in e*e'-annihilation and their

TABLE I.

Quark Composition

Pseudoscalars

Vectors

cu

fl»

D*°

cd

D*

D·*

cs

F*

[•**

cu

0»

75·»

cd

D-

D*~

cs

f-

F·-
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subsequent decays to X*ir*, if*JI*JTV and JC W . The
25-meson masses were found to be equal to c i 6 > 1 7 ] MDo
= 1865 ±15 MeVandMD* = 1876±15 MeV. Thus, ip(i. 1)
and ψ(4.4) are above the threshold for production of a
DD pair. In the decays of ψ(4.1) and ψ(4.4) to DD the
c-quarks are conserved and, therefore, these decays
are not suppressed, unlike the decays of J/φ and φ ' ,
which are below the US-production threshold. In the
latter case the quark pair cc must be annihilated in the
decay process. There are also experimental proofs of
the existence of vector D* mesons. The masses of
these particles amount to about 2.01 GeV, and they de-
cay through the strong interaction to TTD and through the
electromagnetic interaction to yD.

It is possible that the structure in the e*e~ annihilation
in the 4-GeV region is due to P-wave resonances in the
DD, D*D* and D*D-DD* systems (Voloshin and
Okun'c i 8 :). We call such objects charmonium molecules
and consider them later. In particular, there are rea-
sons to suppose that the peak at 4.028 GeV is the D*D*
molecule.Cl9:

According to the theoretical scheme, charm is con-
served in the strong and electromagnetic interactions;
therefore, the decays of the D and F mesons should oc-
cur via the weak interaction. Since the weak interac-
tions do not conserve parity, parity-nonconservation ef-
fects should be manifested in the decays. A weighty
proof of parity violation in D-meson decays was obtained
at SLACC20] with the aid of a Dalitz plot for the decays

Semileptonic decays of D mesons have been observed
at DESY.C2U Thus, on this question the agreement be-
tween theory and experiments is billiant. We shall not
discuss the weak interactions further, since the princi-
pal subject of this review is the strong and electromag-
netic properties of charmonium.

To conclude this section we list the principal facts
proving the existence of the new quantum number—
"charm":

1) the narrow resonances J/φ and φ ' ;

2) the broad peaks in the 4 GeV region;

3) the intermediate χ levels;

4) D mesons, decaying with nonconservation of parity;

5) excited states—D* mesons.

The behavior of the ratio

σ (e+e~ yhadrons)
σ ( e + e ~ • μ+μ-)

is also in agreement with the idea of "charm"; near 4
GeV this ratio undergoes an appreciable "jump."

A detailed discussion of the experimental data and
also an exhaustive list of references are given in the re-
views.

[22,23]

Below we attempt to describe the positions of the lev-
els of charmonium and the widths of their electromag-
netic and hadronic decays. The basis of our discussion

is the theory of strongly interacting quarks and gluons—
so-called quantum chromodynamics (QCD).

b) Quantum chromodynamics (QCD)

The term "chromodynamics," coined by Gell-Mann,
refers to the fundamental property of quarks that we
are now about to discuss, namely, color. The concept
of "color" arose almost as long ago as the concept of
"charm." It was first introduced into the theory124-273

in order to resolve the well-known paradox of the para-
statistics of quarks: the three identical fermions (s-
quarks) forming the QT hyperon are in the same state.

According to the color hypothesis, each quark exists
in three varieties, all the properties of which are com-
pletely identical, except for one. The varieties differ
only in the value of a certain new quantum number, which
Gell-Mann later called color. It is convenient to intro-
duce the colors red, blue and green. In this terminology
all the existing hadrons can be called white—colorless.
The baryons consists of quarks of three different colors;
e.g., Ω" =c a S ) ,s 'W/v r 6, where e a 3 r is a completely
antisymmetric tensor, and α, β, γ = ί, 2, 3 are the color
indices. Thus, the Pauli principle is restored. The
mesons are white states of a quark and an antiquark;
e.g., π* = dau

a/^3 = (dxM
1 + d\M2 + J3M

3)//3.

Such a structure of the hadronic states implies the
existence of a new symmetry group SU(3)' (where the
prime distinguishes the color group from the usual SU(3)
flavor group). Unlike flavor SU(3), the group SU(3)' is
not an approximate but an exact symmetry group. The
quarks form an SU(3)' triplet, while the hadrons are
singlets. By analogy with quantum electrodynamics it is
assumed that the forces acting between the quarks are
due to the exchange of massless vector particles, called
gluons. With respect to the quark-flavor group the
gluons are singlets, and, in particular, are electrically
neutral.

In QCD the interaction is determined by the color
Si7(3)'-charge, in exactly the same way as it is deter-
mined by the electric charge in QED. The distinguish-
ing feature of QCD is that the gluons themselves possess
color charge, while the photon is electrically neutral.
This means that the gluons are directly coupled with
each other, and, thus, the equations of the gluon fields
are nonlinear. A theory of such a type was first pro-
posed by Yang and Mills in 1954.C28]

We proceed now to describe the Lagrangian of the the-
ory. It has the following form:

= 2 (1.1)

here q denotes the quark field and the sum is taken over
all flavors: q =u, d,s,c,... . As regards the color de-
grees of freedom, these are implied in this notation;
e. g., qq =qa q

a (a = 1, 2, 3). Ι?μ denotes a covariant de-
rivative:

where g is the universal quark-gluon coupling constant
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(#2/4π = as), bl is the gluon field (a = 1, 2 , . . . , 8), and
the λ" are the usual Gell-Mann SU(3) matrices:

Sp (λαλ6) = 2δα\ Ιλα, λ6] = 2if'Xc;

here the / o 4 c are the structure constants of the group
SU(3): they are completely antisymmetric in all three
indices and satisfy the relation

fabejabd __ 3gcd

The stress tensor G ^ of the gluon field is defined as
follows:

Gluon

The Lagrangian (1.1) is invariant under a gauge trans-
formation of the form

• Sg, — 5-Ί
g

where S is an arbitrary unitary (SS* =1) and unimodular
(detS = l) matrix, depending on the space-time coordi-
nates.

The gauge invariance implies that the vector field 6J
contains an unobservable part and to quantize the theory
it is necessary to eliminate the unphysical components
or else fix them. An example of this elimination is giv-
en by the Coulomb gauge. In this gauge the condition of
three-dimensional transversality is imposed on the field

dmb°m=O (m = l , 2, 3).

Thus, there remain only two spatial components (6^,)i,
corresponding to two polarization states of the gluon.
As regards the time component b%, the equation for it
does not contain any time derivatives and b% can be ex-
pressed in terms of (ό£,)±, the corresponding conjugate
canonical momenta {T^)L and the quark fields. After this
quantization is obvious.2'

The so-called axial gauge gives another example of a
description free from unphysical degrees of freedom.
This gauge is defined by the condition b\ = 0. However,
in calculations it is convenient to use an explicitly Lo-
rentz-covariant description. For this it is necessary to
introduce unphysical fields. t3o: The covariant gauge is
fixed by adding a gauge-noninvariant term (1/2ξ)(8μ6μ)2

to the Lagrangian. In the case of QED such a modifica-
tion of the Lagrangian does not spoil the theory, since
the contributions of the unphysical longitudinal and time-
like photons cancel each other. As was pointed out by
Feynman,C30] in the case of a Yang-Mills field the situa-
tion is different and the introduction of such a term into
the Lagrangian leads to violation of unitarity. There-
fore, in order to eliminate, in its turn, the unphysical
contribution violating the unitarity, the auxiliary fields

2 )It should be noted in this connection, however, that for Yang-
Mills fields of sufficiently high intensity even the Coulomb
gauge does not fix the field uniquely (Gribov081). This effect,
however, is unimportant in the framework of perturbation
theory.

FIG. 3. Feynman rules for quantum chromodynamios.

of Faddeev, Popov and de Witt131·1 are introduced. With
the aid of continuous integrals it was shown t31'32: that
addition of the term

(1.2)

to the Lagrangian does not change the physical sector
of the theory. In the quantization of the fields φ anti-
commutators should be used, so that in the calculation
of a diagram each closed loop with a φ -field gives a
factor (-1). The Feynman rules corresponding to L
+ ΔΣ (cf. (1.1) and (1.2)) are given in Fig. 3. It can be
seen from Fig. 3 that the frequently used Landau gauge
corresponds to the limit ξ = 0.

c) Asymptotic freedom in QCD

In this section we try to explain how the change from
one vector field (the case of QED) to a multiplet of vec-
tor fields (QCD) fundamentally alters the behavior of the
interaction at short distances.1 3 3·3 4 3

We first recall the situation in QED. The problem of
the interaction of two charges at short distances can be
formulated as the problem of the relation between the
bare and observable charges of a particle. In fact, the
short-distance interaction studied in processes with
large momentum transfers is determined by the bare
charge, while the observed charge determines the co-
efficient in the Coulomb law at large distances.

The formulation given makes it possible to give a qual-
itative answer to the question of the influence of vacuum
fluctuations. It is clear that the creation of a virtual
electron-positron pair leads to a decrease of the initial
charge, inasmuch as the latter attracts toward itself
that component of the pair with charge opposite to its
own. This screening effect was studied by Landau and
PomeranchukC35] and led to the formulation of the famous

800 Sov. Phys. Usp. 20(10), Oct. 1977 Vainshtein et al. 800



-rOr
Β

FIG. 4. Electromagnetic interaction of two heavy particles
(a) in lowest order in the coupling constant and (b) with allow-
ance for the screening of the initial charges by a virtual elec-
tron-positron pair. [In the figure the dashed-dotted line de-
notes a "Coulomb" photon. ]

zero-charge problem: any finite bare charge is screened
to zero (see the excellent review by Berestetskii1 3 8 3).

For what follows it is expedient to elucidate the
screening of the charge in QED in the language of Feyn-
man graphs. We shall consider the electromagnetic in-
teraction of two heavy (test) charges. In lowest order
this is described by the diagram of Fig. 4a:

U<0> _ . . 4 ΐ ΐ α ΓΊΙ1ΓΙ2Ι
•" — — — 1 μ ' μ •

where q is the momentum of the virtual photon, and
Γμ1>2) are the electromagnetic vertices. From the con-
servation of the electromagnetic current follows the re-
lation q0T0 =# 3 Γ 3 (we have chosen the ζ axis in the direc-
tion of the three-dimensional momentum of the photon),
which can be used to eliminate Γ 3 :

M<«»=ip- [r;nr«' (ι —1|-) - (r;ur;"+r, l ir;·')]

The first term is the Fourier transform of the Coulomb
interaction. It may be said of this term that it has
arisen from the exchange of a Coulomb quantum, if we
remember, however, that a real "Coulomb" particle
does not exist. This can be seen, in particular, from
the fact that the imaginary part of the propagator I/iff,
unlike that of the term ( Γ ^ ' Γ } " +Γ^1)Γ^))/ή-2, is equal
to zero. The latter term describes the exchange of a
photon with transverse polarization and, in coordinate
space, corresponds to the retarded interaction. In the
case under consideration—that of heavy charges, it is
obvious that the Coulomb part of the interaction is domi-
nant.

The diagram of Fig. 4b describes the correction to
the Coulomb interaction that arises from a virtual elec-
tron-positron pair. For the sum of the diagrams of Fig.
4 in the limit Iq I 2 » m\ we have the expression (in the
center-of-mass frame)

From what has been said it is clear that the statement
about the screening of the interaction is extremely gen-
eral. A specific property of QCD, leading to a change
in the sign, is the existence of vacuum fluctuations of a
new type, not determined by the imaginary part of the
amplitude (i. e., by real intermediate states). To eluci-
date where such contributions come from, we recall that
in QCD the interaction is determined by the color, which
plays a role analogous to that of the electric charge in
QCD. Since the gluons form a color multiplet, i. e.,
they have nonzero color charge, they interact with each
other. This means that a gluon, like a quark, is a
source of the gluon field. Therefore, polarization of the
gluon vacuum arises, described by the diagram of Fig. 5.

In these diagrams, following Khriplovich/37-1 we have
distinguished explicitly the contributions of the trans-
versely-polarized gluons and of the Coulomb quanta.
The appearance of both the "natural" vertex of the inter-
action of a Coulomb quantum with two transverse quanta,
and a vertex at which two Coulomb quanta and one trans-
verse quantum meet, is a "hallmark" of the nonabelian
character of the theory.

The fact that the contribution of the diagram of Fig.
5a leads to screening can be seen from the same argu-
ments as in QED. However, these arguments do not de-
termine the sign of the diagram of Fig. 5b, since the
imaginary part of this diagram is equal to zero. In fact,
the Coulomb field does not correspond to the propagation
of a physical particle (its propagator 1/q2 has no imag-
inary part), and, consequently, the diagram of Fig. 5b
does not have a section through physical states.

The fact that the diagrams of Figs. 5a and 5b have op-
posite signs can be seen from the following arguments.
We cut the upper line, corresponding to a transverse
gluon, in the loop in each graph of Fig. 5. The inner
parts of these graphs are conveniently drawn in the form
given in Fig. 6. The graph in Fig. 6a contains the ex-
change of a transverse gluon, while the graph in Fig. 6b
describes the exchange of a Coulomb-like gluon. The
answers for these graphs can be guessed by making use
of the analogy with electrodynamics.

Namely, the exchange of a Coulomb quantum leads to
the Coulomb law and the exchange of a transverse quan-
tum leads to the Biot-Savart law for the interaction of
currents, and two like charges repel while two parallel
currents attract each other. Thus, we arrive at the
conclusion that the diagrams of Fig. 6 give contributions
of opposite signs; consequently, the diagram of Fig. 5a
corresponds to screening while the diagram of Fig. 5b
leads to antiscreening. The explicit answer is

where a 0 is the bare constant corresponding to the cut-
off parameter Λ. The negative sign of the correction is
a consequence of unitarity and analyticity, since the
absorptive part of the logarithmic correction, associated
with the intermediate state e*e", is positive. This state-
ment about the sign corresponds precisely to the well-
known theorem from quantum mechanics that the second-
order correction always decreases the energy of the
ground state.

FIG. 5. Screening of the interaction of two color charges in
quantum chromodynamics. [In the figure the dotted lines de-
note "Coulomb" gluons and the dashed line a transverse
gluon. ]
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FIG. 6. Interaction asso-1

ciated with the exchange of

(a) a transverse gluon and

(b) a "Coulomb" gluon.

(1.3)

where al

t

m is the bare strong-interaction constant. The
second term in the right-hand side pertains to the dia-
gram of Fig. 5a, and the third to the diagram of Fig.
5b. tS71 Thus, the antiscreening contribution is twelve
times greater than the screening contribution.

A "quark-antiquark" pair of each flavor adds the usual
screening term

9 α
— y "4^- 1 η-τ" · | q | > q u a r k masses.. (1.4)

to the amplitude (1.3). The effecting coupling constant
as(qz) is defined in terms of the scattering amplitude
for two heavy objects:

(1.5)

here Γ μ

1 > 2 ) are the vertices describing the interaction of
the color with the gluon field, and q is the momentum
transfer. (N.B. In our discussion of the effective
charge in QED we used the same notation Γμ1>2) for the
electromagnetic vertices, which, of course, do not co-
incide with the vertices in QCD. In particular, the lat-
ter contain color indices, which are not written out ex-
plicitly in the expression (1. 5). It is understood that
they are incorporated in Γ " · 2 ) . )

The resulting expression for the effective coupling
constant in the logarithmic approximation has the form

where Ν is the number of "operative" quark flavors.
(The precise significance of the work "operative" will
become clear somewhat later.)

When higher orders are taken into account a series in
[α,0 > ln(A2/q2)]" arises; the standard, and simplest, way
of summing this series is given by the renormalization
group/3 8"4 0 3 It follows from the renormalizability of
QCD that the quantity d(aa(q2))/iilnq2, when expressed in
terms of a s(q2), does not contain the cutoff parameter Λ.
Then it follows simply from dimensional considerations
that das(q?)/d lnq8 is a function of only the one argument
ff5(i3)· Thus, e.g., differentiating (1.6), we obtain

<*;(qs) (1.7)

and direct integration gives

1 + [11 - (2/3) ΛΓ) [ α , (qj)/4ji) In (q»/qj)

This is the celebrated asymptotic-freedom formula.133·343

We shall say a few words about effects arising from
the quark masses. It is convenient to introduce, tem-
porarily, the following terminology. We shall call
quarks with mass w 2 » q 2 , q§ "heavy," and quarks with
mass m2 «q 2 , q§ "light." The contribution of the "heavy"
quarks in formula (1.8) is negligibly small: it is sup-
pressed by the power factor ~q2/m2. This fact seems
almost obvious; a detailed proof can be found in Ref. 41.
Thus, the parameter Ν in (1.8) "counts" only the "light"
quarks. Taking the mass of "light" quarks into account
also leads to small power corrections ~>n2/q2. Quarks
with intermediate mass m2~q2 or ~qf, give (nonlogarith-
mic) corrections of the order of a s(q2 =m2).

In conclusion we note that as q2 - «> in the standard
model with four quark flavors and three colors,

ι
(25/12Π) ID (q*/qj) ·

d) Confinement of quarks and gluons

The objects we are discussing—quarks and gluons—
have never been observed in the free form. This fact
may appear surprising, since everything suggests that
quarks, at least deep inside hadrons, are light'4 2·4 3 a 3:

m,; + md « 10 MeV, m. » 150 MeV.

(1.8)

One of the most convincing arguments in favor of small
mechanical (bare) masses for the quarks is the success
of predictions based on chiral symmetry and, in partic-
ular, of the Weinberg sum rules, t 4 3 M in the derivation of
which the quark masses are neglected in comparison
with the hadron masses. The description of deep-in-
elastic eN and vN scattering with momentum transfers
Q2 S 1 GeV2 using massless quark-partons is also in good
agreement with the experimental data. Moreover, to
realize the exact color gauge symmetry SU(3)' the gluons
must also be assumed to be massless. Thus, the rea-
sons for the absence of quarks and gluons in experiment
should be dynamical rather than kinematic, i. e., we
must seek forces that keep colored objects constantly
inside the hadrons.

In the literature there are a number of models (mainly
of a descriptive character) of such quark-confinement
mechanisms. A quantitative theory of confinement has
not yet been constructed. Evidently, the formation of
the hadrons and the confinement of quarks occurs at
large distances, if we extend the effective-charge for-
mula (1.8) describing the asymptotic freedom of quan-
tum chromodynamics at short distances into the region
of large distances, it will give an increase of the charge
with increasing distance, and, finally, the charge will
become not small but of order unity. In this region per-
turbation theory is no longer applicable (and neither is
the effective-charge formula (1.8) itself). On the other
hand, insofar as the value of the constant at short dis-
tances is known at present (α(τηφ) = 0.2), the distances
at which perturbation theory is "spoiled" correspond
exactly to the expected radius of confinement of the
quarks. Although quantitative calculations in this re-
gion are absent, the universal hope is that the same the-
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ory—quantum chromodynamics—that describes so suc-
cessfully the properties of hadrons at short distances
will at large distances furnish forces confining all col-
ored objects (quarks, gluons, diquarks, etc.).

The language most adequate to our physical intuition—
that of a potential and forces acting between the quarks,
pertains, essentially, only to the nonrelativistic poten-
tial model. Of the hadrons known at the present time it
is evidently only for the levels of charmonium that these
intuitive ideas can be tested as a dynamical model. It
is not ruled out, therefore, that precisely the study of
the properties of charmonium will enable us to lay a
path from the intuitive expectations to a quantitative
theory of quark confinement.

e) Nonrelativistic potential model of charmonium

So far as we can judge at present, the mechanism of
quark confinement is due to the interaction of quarks at
distances that are in any case greater than (1 GeV)"1 (at
least, we know that, for momentum transfers Q z ;> 1
GeV2 in, for example, inelastic eiV-scattering, the
quarks in the nucleon can be regarded as almost free).
It is highly plausible that the range of the interaction
confining the quarks amounts to (0. 5 GeV)"1, or even
(2mJ)'1. We shall consider a meson, consisting of a
quark and an antiquark. Since, roughly speaking, the
radius R of the system coincides with the confinement
radius, we can estimate the characteristic momenta of
the quark and antiquark from the uncertainty relation:
p ~ 1/R. If the masses of the quarks constituting given
hadrons are of the order of 1/R, then only in a very
crude approximation can the hadrons be treated non-
relativistically; this situation is realized in ordinary
particles. However, if the quarks are sufficiently
massive, a nonrelativistic picture becomes adequate for
a dynamical description of the properties of a hadron.
Inasmuch as the charmonium levels (J/ψ, ψ', χ) are ex-
tremely massive on the scale of the quantity R"1, it may
be thought that the latter possibility is realized in char-
monium and that charmonium can be treated as a non-
relativistic system with a certain degree of accuracy.
An additional argument in favor of the applicability of a
nonrelativistic treatment is the experimental fact of the
existence of an entire spectrum of charmonium states,
the mass differences between which (200-600 MeV) are
small compared with their masses (3-4 GeV).

One way or another, it makes direct sense to attempt
to describe the observed properties of the levels of
charmonium by means of a nonrelativistic potential ap-
proach."· 4 3 0 3 In the construction of such a nonrelativistic
model an important role is played by the choice of the
interaction potential binding the quarks. It is known that
at short distances the interaction has almost the Coulomb
form V(r) ~ l/r, while at large distances, in order to en-
sure confinement, the potential should not tend to zero
but should continue to increase. The rate of growth of
the potential is not known—it is not even known whether
this is a power-law growth and whether it continues to
infinity. Most of the calculations in the literature"4"48-1

have been performed for a potential that grows linearly

at large distances,
the form

Namely, the potential is chosen in

(1.9)

where a, g and Vo are adjustable parameters, for which
the values given by different authors are close to the
following:

α = 0,27, g = 0,25 GeV2, Va = -0,76GeV.

(Fitting the quark mass for this model gives m =1.65
GeV.) The graph of the potential (1.9) is drawn sche-
matically in Fig. 7. Since the potential profile resem-
bles a funnel, below we shall call it simply that. A
linear growth of the potential with distance at large r is
predicted by, e. g., the string model. It is easy, how-
ever, to imagine other types of potential that ensure
confinement, e. g., a potential with a steep wall at r =Ra,
or a harmonic-oscillator potential. The latter potential
differs pleasantly from the first two in that, if we ne-
glect the Coulomb interaction of the quarks at short dis-
tances, all the wavefunctions and matrix elements can
be calculated explicitly and have a simple form.

Below, therefore, we shall frequently invoke oscilla-
tor wavefunctions to estimate the order of magnitude of
matrix elements. The results agree qualitatively, and
in many cases also quantitatively, with those calculated
in the "funnel" model by numerical solution of the Schro-
dinger equation.

The principal properties of the three-dimensional
harmonic oscillator are described in the book of prob-
lems by Flugge.C4el We write the oscillator potential in
the form

where m =m/2 is the reduced mass of the system (m is
the mass of the c quark). Both m and u>0 must be treated
as adjustable parameters. For example, the energy
parameter ω0 can be chosen in order to reproduce the
mass difference between the 25 and IS states (the φ' and
J/tp mesons); then 0)0^300 MeV. Analysis of the decay
J/tp-e*e~ gives ήιω^Ο. 35 GeV2, and, consequently, rh
= 1.17 GeV, or m - 2.3 GeV. (In the case of the funnel,
w=1.65 GeV.)

In the following two sections we proceed to a system-
atic description of the nonrelativistic model of charmo-
nium. As will be seen from the following, a developed
qualitative picture of a "world of hidden charm" arises.
The principal properties of the whole spectrum of levels

FIG. 7. Hypothetical "funnel"-type po-
tential of the interaction of the c- and
7-quarks.
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FIG. 8. Processes responsible for the annihilation of charm-
onium (a) to an electron-positron pair, (b) to two photons, and
(c) to three photons. ... .

become comprehensible. It may be thought that the po-
tential approach, being the first, rather crude, but
necessary step, will play a role in the construction of
the future theory of confinement.

2. CHARMONIUM ANNIHILATION IN QUANTUM
CHROMODYNAMICS. THE NONRELATIVISTIC
APPROACH

As already mentioned above, charmonium is the most
nonrelativistic of all the quark systems known at the
present time. It is natural, therefore, that the first
calculations of the probabilities of the decays of char-
monium were performed in the framework of a potential
model. In other words, the simple nonrelativistic prob-
lem of a bound state of two objects—a quark c and an
antiquark c, with interaction characterized by some po-
tential, e. g., an oscillator or a funnel, was solved. It
is clear that any calculation of such a kind cannot pre-
tend to high accuracy and is essentially approximate.

In this section the widths of the electromagnetic and
hadronic annihilations of charmonium levels are calcu-
lated. In the potential model the widths are expressed
in terms of R(r-O), where R(r) is the radial part of the
wavefunction of c and c, and r is the relative distance.
The procedure reduces essentially to the following.
First the amplitude is found for a transition of a pair of
free quarks at rest, e.g., cc~e*e~ (Fig. 8a), and this
amplitude is then converted to a probability by multi-
plying by ΙΛ(Ο)Ι2 for S-wave decays, by ΙΛ'(Ο)Ι8 for P-
wave decays, and so on.

The electromagnetic-annihilation widths are calculated
most reliably. We shall consider, e. g., the decay J/φ
- eV, described by the diagram of Fig. 8a.

The matrix element for the transformation of a J/φ
meson to a virtual photon has the form Qee(O\jt\$t),
where Qc is the charge of the c quark. If we introduce
the spin function of the triplet state of c and c: χ - (1/
V"2)cac, where c is the nonrelativistic spinor describing
the c quark, the electromagnetic current has the form
1 =-VFx, and the vector wavefunction of the J/φ meson
has the form ψ = χΡς(Ρ)' The subscript S denotes the
fact that c and c are in an S wave in the J/φ meson, and
ρ is the relative momentum of the c and c quarks. As a
result we obtain

6lfict^a (r = 0) Ϋ2 /3,

(2.1)

where φ8(0) = Λ 5 ( 0 ) / / ϊ π and the factor -f$ a r i s e s from
taking the color into account. The corresponding ex-
pression for the probability of the decay J/φ - e*e~ has
the form

(2.2)

here Rs is the radial part of the S-wave φ function, nor-
malized by the condition SR%(r)rtdr = 1, and Μ is the
meson mass.

In the nonrelativistic approximation we neglect the
difference between the mass Μ of the level and the sum
of the masses of the c and c quarks. Therefore, in this
approximation the same mass Μ—a certain average
mass of the nonrelativistic charmonium—appears in the
expressions for the widths of different levels of charmo-
nium. This leads to uncertainty of the order of a factor
of 2 in the theoretical predictions.

Two-photon and three-photon decays of levels of
charmonium are described by the diagrams of Figs. 8b
and 8c, respectively, and are calculated in an analogous
w a y C 3 . 44, 50-54].

Γ (//ψ

The numerical estimates in the formulas (2.5), (2.7)
and (2.8) containing ratios of wavefunctions are given
for an oscillator potential, for which

(2.9)

The values of the parameters mc and co0 were given in
Chap. 1.

One should note the unexpectedly large ratio of the
probabilities of the two-photon annihilations of the Xg
and 7j. mesons (cf. (2.5)), which is of order unity de-
spite the fact that the former corresponds to annihila-
tion of c and c in a P wave and the latter to annihilation
in an S wave.

Of the decays cited above, only for two are the widths
known experimentally: these are r(jyty~e*e") = 5 keV
and Γ(ψ' — e*e~) =2 keV. In the oscillator model their
widths should be in the ratio 2 :3. The suppression of
the decay of ψ' could have several causes: a large ad-
mixture of the iD1 state of the c and c quarks in the
wavefunction of the ψ' meson, a large admixture of DD
mesons in this wavefunction, and, finally, the chief one:
the oscillator potential may be very unlike the true po-
tential between the two quarks.
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It is possible that the decay X(2.83) - ly that was ob-
served at DESY is the decay 7]c-2y. However, in this
case, only a lower bound for the relative width is known:
B(X(2.83) - 2y) > 4 x 1(T3. This quantity, as will be shown,
is substantially higher than the theory predicts. As re-
gards the remaining electromagnetic annihilation de-
cays, these have not yet been observed experimentally.

We turn to the discussion of the hadronic widths of the
charmonium levels. In the framework of QCD the anni-
hilation of charmonium to give ordinary hadrons corre-
sponds to the following picture. First, a cc pair, at
short distances of the order of the Compton wavelength
of the c quarks, is transformed into gluons (Fig. 9),
which are then transformed, at large distances of the
order of the confinement radius, into observable parti-
cles—ir mesons, Κ mesons, nucleons, etc. We do not
know the mechanism of the transformation, and we can
say practically nothing about the relative probability of
a decay along any one or other exclusive channel. Nev-
ertheless, the total probability can be found. As was
noticed by Appelquist and Politzer,C3] the total width of
the charmonium annihilation to ordinary hadrons should
be approximately equal to the probability of the transition
to gluons. This prescription will certainly not surprise
the reader who is familiar with the parton model and
has become accustomed to the fact that the probability
of the transition of a parton to hadrons is assumed to be
equal to unity. In the present case the gluons appear in
the role of the partons.

Quantum chromodynamics has inherited this property
of the parton model. Thus, e. g., in Chap. 5 we show
that the cross-section

σ (e*e~ -*• y* -*• ordinary hadrons) ( 2 . 1 0 )

at high energies £=V"s coincides with the corresponding
quark cross section

σ (e*e~ —*-uu -\- dd + ss) =4πα2

(2.11)

to within a small correction ~as(s). The Appelquist-
Politzer prescription, which states that the probability
of, say, "J/φ — hadrons" coincides with the probability
of "J/φ - 3 gluons" to within as(4m|), is the direct gen-
eralization. The difference reduces to the fact that
gluons appear in place of the quarks, and the role of the
"external source" is played by the cc pair in place of the
virtual photon.

Thus, the problem consists in. calculating the annihi-
lation of the charmonium levels to the minimum kine-
matic ally allowed number of gluons. For the η., χ,, and
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FIG. 9. Diagrams describing the annihilation of the system
cc (a) to two gluons, (b, c) to three gluons, and (d) to a pair of
light quarks qq and a gluon. [Here and below a gluon is de-
noted by the letter g and is depicted by a dashed line. ]

X2 mesons and the 1Dt level, these are two-gluon de-
cays, and for the J/φ and φ' mesons they are decays
into three gluons (see Figs. 9a and 9b). The meson &
Ξ ppx) is a special case, which we shall discuss a little
later.

It is not difficult to calculate the gluon widths, since
we already know the expressions for the widths of the
two-photon and three-photon annihilations, and the cor<-
responding diagrams are similar. To carry out the
conversion it is necessary to replace Q^e at each vertex
by g\"/2, where the λ" (a = 1, 2,. . . , 8) are the Gell-Mann
Si/(3) matrices and qz = 4?ras, just as e2 =4jra. The re-
placement "2 photons - 2 gluons" corresponds to the fac-
t o r C50,521

-££«845. (2.12)

and the replacement "3 photons — 3 gluons" to the fac-
t o r C 3 , 4 «

128a» (2.13)

The annihilation of cc to gluons occurs at distances of
the order of the Compton wavelength of the c quark, so
that the effective quark-gluon constant appearing in the
relations (2.12) and (2.13) corresponds to distances
~\/mc, or, which is the same thing, to virtual momenta
p* =* - m\. The numerical estimates in (2.12) and (2.13)
are given for the value a3 = 0.2 obtained from analysis
of the J/φ decays. In fact,13·*"

Γ (//ψ —* hadrons)
Γ (J/yt —» ftr)

5 (π' —9)
18 π (2.14)

(Here direct annihilation, not via a virtual photon, of J/
ψ to hadrons is meant.) In experiment this ratio is ap-
proximately equal to 10, whence follows the value a,
«0.2.

For the widths of the annihilations of the n,, χ,, and
χζ mesons and the 1Dt level to hadrons we obtain the
values 6 MeV, ~3 MeV, ~0.8 MeV and ~60 keV, re-
spectively.

The 1P1 level, having negative C-parity, does not de-
cay to two gluons but, like J/φ, decays to three gluons
(see Fig. 9b). The probability of the decay xP1~3g is
easily calculated in the so-called logarithmic approxi-
mation. The point is that, for the 1P1 state, as the bind-
ing energy of the nonrelativistic c and c Quarks tends
to zero, the amplitude has an infrared divergence, so
that

Γ ('Pi 3y) 10 α,
!ΓΊΓ (2.15)

here Λ is the confinement radius: R - (300 MeV)"1. For
In MR ~ 2 we obtain a value of ~ 5% for this ratio.

The probability of the decay *ΡΧ - Zg, as in the case
of J/φ, is obtained by simple conversion of the QED
formulas; namely, we use the result of AlekseevC55] for
the ^-level of positronium.

As regards the ^-level, its decay to two gluons is
impossible because of the well-known Landau-Pomeran-
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chuk-Yang exclusion. Β β · 5 7 ] The three-gluon decay, how-
ever, does not reduce to the answer known in quantum
electrodynamics, since diagrams that are specific for
QCD (see Fig. 9c) give a contribution. These diagrams
describe the transformation of the 3Pj state into two
gluons, of which one is real and the other virtual, and
the latter is already transformed to 2g at short distances
~ l/mc. Inasmuch as the real and the virtual gluon are
not identical to each other, the Landau-Pomeranchuk-
Yang exclusion cannot be extended to this transition.

If we try to calculate the decay 8 P X - 3g in the logarith-
mic approximation, it turns out that the term containing
inmR cancels in the sum of the diagrams of Fig. 9b and
9c. Such a term remains, however, in the diagram of
Fig. 9d, describing the transition of the s Pj level to a
gluon and a qq pair, where q is a light quark («, d or s).
Thus, the total hadronic width of the 3 P t state is princi-
pally given not by the three-gluon annihilation but by the
annihilation to gqq, the qq pair being created at short
distances ~ l/mc.

The ratio of the widths of fa-gqq and Xo~gg is equal
to (4α,/9ττ) In MR ~1/15, so that the hadronic width of
the Xj-meson should be smaller than that of χ,, and even
Xz (ΠΧι - hadrons) ~ 100-400 keV). The ratio of the
widths of *PX -~3g and *Ρχ -gqq is equal to 5/6.

The hadronic widths of the triplet Ρ levels have not
yet been measured (the singlet Ρ level has not been ob-
served at all), but we can judge their magnitude from
the relative probabilities of hadronic annihilation and
the radiative transitions Xj — J/4> + y. As will be shown
in the next section, these relative probabilities are in
good agreement with the theory.

The widths of the annihilation to e*e", 2γ and 2g, cal-
culated in this section in the framework of a potential
model of charmonium, will be calculated again in Chap.
5 on the basis of dispersion sum rules. We shall see
that the agreement between the results obtained by the
two different methods is extremely good.

To conclude this section we note that for the J/ψ me-
son, decays to a photon + hadrons should constitute an
appreciable fraction of the decays. This fraction can be
determined by comparing the diagram of the type in Fig.
10 with the diagram of Fig. 9b. One obtainsC M t 5 8 ' s 9 ]

TABLE II

Γ(//»(/
Γ

16 α
(//ψ -»· hadrons) 5 α, (2.16)

Consequently, the photon-hadronic width should amount
to about 5.5 keV for J/ψ and about 2.3 keV for ψ'. It
should be stressed that we are talking not of the internal
bremsstrahlung but of hard structural radiation. The
expected probability of emission of a photon increases
practically linearly with increase of the photon energy.

FIG. 10. Diagram describing the annihilation of the cc sys-
tem to a photon and two gluons and responsible for decays of
the type J/φ — γ + hadrons.

Level

Xo (3.41)
Xi (3.50)
X2 (3-55)

r w - X j + γ ) , keV

Oscil-
lator

27
22
16

Funnel

38
34
30

Γ (Xj - J/*+v),keV

Upper
bound

200
400
500

Oscil-
lator

200
430
580

Funnel

155
320
355

Lower
bound

100
320
300

3. RADIATIVE TRANSITIONS IN CHARMONIUM

Whereas the annihilation of charmonium occurs at
short distances, the radiative transitions between the
levels of charmonium depend essentially on the behavior
of the wavefunctions at large distances.

Radiative transitions in charmonium are very similar
to radiative transitions in ordinary terms. Like the
latter, they are divided into electric and magnetic tran-
sitions. The greatest widths are possessed by the elec-
tric transitions in which the P-levels of charmonium
(Xo> Xi and Xz> take part.

a) Electric dipole transitions and the Ρ levels of
ortho-charmonium

Since the photon wavelength is large compared with
the linear dimensions of charmonium, the usual dipole
formulas (cf., e. g., Ref. 62) are valid for the widths
of the radiative transitions ψ' - χ j + γ and χ , -J/ψ + γ:

Γ (2'S,

Γ (l'P,

,+v) (3.1)

(3.2)

where

= l, 2);

here J is the angular momentum of the 3Pj level, ω is
the transition frequency and R(r) are the radial wave-
functions. Estimates of the Ai2-transitions and the rel-
ativistic corrections (some of these can be calculated
at the present time) give us reason to think that the for-
mulas for the widths are valid to within a factor 2. In
the case of an oscillator potential, !(*•>! Ι8 =3/2λ, where
I<r>al

2=l/X and X=mea>0/2 = 0.35 GeV2. In the case of a
potential of the funnel type the answer can only be ob-
tained numerically. Table Π gives the values of the
widths, calculated for potentials of the oscillator and
funnel types."4-4··5*··0 3

Also given in the table are upper and lower bounds for
the widths of the transitions χ-J/tp + y, which, as was
noted by Jackson,c e l ] can be obtained from sum rules
analogous to the well-known sum rules for atoms. These
sum rules do not depend on the concrete form of the non-
relativistic potential in which the radiative transition oc-
curs. They are a consequence of the commutation rela-
tions between the coordinate and momentum ([rk,p,]
= i6kl) and of the completeness of the set of wavefunctions
describing the nonrelativistic system (see the book by
Bethe and Salpeter1·*23). The upper bounds are given by
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the Thomas-Reich-Kuhn sum rule, and the lower bounds
by the Wigner sum rule:

^ ω } >Γ(χ, -*

(3.3)

here mc is the c-quark mass in the potential model. Ac-
cording to the best fits (for potentials of the funnel type),
w*™=1.65 GeV; u)j is the energy of the photon in the
transition Xj~J/ty + y, and ω'? is that in the transition
φ' — χ j + y. Unfortunately, in these relations spin ef-
fects have been taken into account only by substituting
the observed transition energies Wj and ω'/ into the sum
rules in place of some spin-averaged energy ω 0 .

Allowance for the effect of spin on the transition ma-
trix elements can give two-figure percentage corrections
(The fact that the oscillator widths for χχ and χ2 in the
table have turned out to be above the upper bound is con-
nected with the inconsistent allowance for the spin ef-
fects. We draw attention specially to this discrepancy
in order to stress the approximate character of the
theoretical predictions cited.)

Experimentally, the widths of all the three transitions
φ ' — χ j + y are approximately 20 ± 7 keV (see Chap. 1),
which agrees qualitatively with the predictions of the
theory. We remark that for a different choice of the
quantum numbers of the χ3 levels, because of the factors
(2 J + l) and (ω'/)3, the widths of the transitions ψ' — χ f

+ γ would differ strongly from each other, and so the
fact that theory and experiment are in agreement is not
trivial.

For the transitions χ / — φν, only the relative widths
Β(χ/~φγ) have been measured experimentally; we can
calculate these by making use of the theoretical values
for the widths of the hadronic annihilations of the me-
sons. For the χο, x t and χ2 mesons the latter amount
to (3-4.5) MeV, (0.1-0.4) MeV and (1-2) MeV, re-
spectively. (For χο and χ2 the lower values are closer
to the results given by the potential calculation, and the
higher values are closer to the dispersion results.)
Comparing this with the bounds for Γίχ^-ψ?), we obtain

2% ίζ Β (χ0
» φγ)

13%

7%, 30% Β ( Χ ι -

30%.

• ψγ) < 80%,

We recall that in experiment the corresponding values
lie in the following limits: (0-5)%, (13-53)%, (3-27)%,
so that there is qualitative agreement between the theory
and experiment.

If we assume that, in the transitions φ' — χ f + γ, the
agreement is evidence that the calculations of the elec-
tric-dipole transitions are reliable, the data on the tran-
sitions χ j — φ + γ can be used to check the extent to which
the gluon calculations of the hadronic annihilation of the
Ρ levels are correct. The fact that the ratio of the
widths of the radiative transition and the hadronic anni-
hilation is greatest for precisely the x t level, for which
annihilation to two gluons is forbidden, is a serious
qualitative confirmation of the correctness of these cal-
culations.

b) Para-charmonium

The situation with the levels of para-charmonium
(1 ^oi ifc), 2 JS0( t]'c), 1 lPi and 11Dt) is much less certain.

We shall consider the difficulties that result from
identifying η0 with the particle X(2.83) that was observed
at DESY and T)'c with the level χ(3.45). The width of the
radiative Ml -transition J/ψ— ηογ is given by the formula

Γ (13S, -» 1'S0 + Y) = 4^2O>3/2; (3.4)

where

I=]li3Sl(r)RiSu(r)r*dr,

and μ is the magnetic moment of the c quark. If we
neglect the spin forces, theni? 3 s =R1$ and 7 = 1. If,
furthermore, we take the magnetic moment of the c-
quark equal to its bare value:

= μ < > = -

then

This formula is also valid for the transition φ' - η'ο + γ.
Thus, if ηο=Χ(2.№) and η£ = χ(3.45), then

Γ (//ψ -*- Χ (2.83) + ν) » 2 5 k e V> Γ (ψ' -»- χ (3.45) + ν) « 12 keV.

These widths have not been measured experimentally,
but upper bounds have been established:

Β (//φ -* Χ (2.83) + v)< 3%, Β (ψ — χ (3.45) + γ)< 5%.

The following products have also been measured (see
Fig. 2):

Β (//φ -*• Χ (2.83) + γ) β (Χ (2.83) ->- 2γ) = (1.2 ± 0.5) ΙΟ"4,
Β (ψ'-»- χ (3.45) + γ) Β (χ (3.45) ->- / / φ + γ) = (8 ± 4) 10"»,

so that BQC(2.83) - 2γ)> (4 ± 1.6)x ΙΟ"3, instead of 1.2
x ΙΟ"3 from the gluon theory, and Β(χ(3.45) - J/φ + γ)
> (16 ± 8)%. The latter number is in striking contradic-
tion with the theoretical estimates of the width of the
hadronic annihilation of the r\'c meson. In fact, if
Γ(ψ' - v'e + y) < 12 keV, and Γ( η'ο - hadrons) = (1 - 4) MeV,
then instead of 16% we ought to have a value less than
1%.

The estimates given above for the widths of the ΛΠ. -
transitions <7/ψ— Jjcy and φ' — τ\\.γ can be reduced some-
what if we take into account that, because of spin effects
I< 1 (for the decays φ-ηγ, p-ny and Κ*~Κγ, Ι~0. Τ-
0. 8), and μΦμ0; however, as is easily seen, it is not
possible to resolve all three contradictions between the-
ory and experiment in this way. (If μ< μ0, as follows,
evidently, from the upper bound for the decay ψ —X(2.83)
+ y, the contradiction in the case of the decay φ'-η',.γ
is only enhanced.) Thus, the hypothesis that X(2.83) and
χ(3.45) are respectively the r\c and r\'c mesons encoun-
ters serious difficulties.
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We turn now to the levels 1Di and 1P1 and, in particu-
lar, discuss whether the level χ(3.45) could be the 1DZ

level. (This hypothesis was put forward by Harari.C e 3 ])
Naive application of the Breit-Fermi equation does not
rule out the possibility that this level could be so light,
but the most plausible values for its mass lie 100—200
MeV higher (in this case we should expect that the mass
of *PX is about 3.15 MeV).

The probability of the transition φ' -1D2y depends
sharply on the extent of the admixture of the 3D1 state in
the wavefunction of the φ' meson; with regard to this
it is usually assumed that the meson corresponds prin-
cipally to the 2 3SX state. If this admixture is equal to
zero, the width of the transition φ' -lDzy is negligible
(~ 4 eV). The width of the transition 1DZ - J/φ + γ is not
much greater (~ 15 eV) if J/φ does not contain any ad-
mixture of the 1aDl state. But if the wavefunctions of
ψ' and φ are superpositions

23S, + e'(l !fl1) and 1351-τε(13ΰ1).

the transitions are magnetic-dipole transitions and their
widths amount to

Γ (ψ' -* 'i»2 + v)«20(keV)(e')2,
Γ (Ό2 ->- ψ + ν) « 40(keV) (ε)2.

In order that the 1Dg level can play the role of χ(3.45)
it is necessary that (ε 'f <,0.7 and ε2 =* 0. 5. Such admix-
tures seem too large.

If the mass difference between 1DZ and \Pi levels is
sufficiently great, then, in the radiative transitions of
the 1Di level, the £1 transition 1Di - 1P1 + γ, whose width
in the oscillator model is equal to 12(ω/100 MeV)s keV,
should dominate. (We recall that the expected width of
the hadronic annihilation of the 1Di level is approximate-
ly 60-100 keV.)

As regards the subsequent fate of the 1Pl level, this
depends strongly on its mass: the expected width of its
hadronic annihilation is 100-400 keV, while the width
of the £1 transition to the nc meson is 6(ω/100 MeV)3

keV.

Summarizing the content of this chapter, it may be
said that at the present time we have a qualitative, and
at many points quantitative, understanding of the spec-
troscopy of the levels of the ortho-charmonium and of
the radiative transitions between them. As regards the
levels of para-charmonium, here there are a whole se-
ries of experimental and theoretical unsolved questions,
the elucidation of which should give, in the very near
future, important information for our understanding of
the interaction properties of charmed quarks and the
structure of charmonium as a whole.

4. MOLECULAR CHARMONIUM

a) Experimental data and interpretation

In this chapter we discuss the possible nature of the
resonance structure in e*e~ annihilation at energies 4.1
and 4.4 GeV. As already mentioned in the Introduction,
the resonance φ(4.4) is described by a Breit-Wigner

curve with parameters Γ ^ = 33 ± 10 MeV, Γ(ψ(4.4)
-e*e~) =440 ± 140 eV. The structure near 4.1 GeV looks
like a superposition of two and three resonance peaks,
the sharpest of which is located at energy VT = 4028 MeV.
Of great interest are the decay properties of this latter
resonance. We have in mind the decays to pairs of
charmed mesons. It has been found that the magnitudes
of thejcross-sections σ(·Ο°ϊ?°), σ(Ζ>05*0+.Ο*0ΐ>δ) and
σ(£>*0£*°) at the 4.028 GeV peak are in the ratios
1: ~ 8: ~ n ^ 1 6 · 1 " while the energy released for each of
these channels amounts to ~ 300 MeV, ~ 160 MeV and
~18 MeV respectively (ili(X>°)«1865 MeV and M(D*°)
<* 2005 MeV), which corresponds to the following values
of the momentum ρ in the center-of-mass frame
(c. m. s.): 750 MeV, 550 MeV and 190 MeV. Since each
of the pairs of charmed mesons is created in a P-wave
(because of conservation of the spatial parity), the quan-
ti ty/ 2 = a/p% serves as a true "measure of the interac-
tion." From the numbers given above we find

f (O°Z>°): f (Z>°ZF0) + p (Z>«D°): f- (D*°O") = 1: ~ 20: ~ 680. (4.1)

The relations (4.1) become even more surprising if
we take into account that, in the simple nonrelativistic
model, one obtainsCe4:i in place of the ratios (4.1)

1:4:7. (4.2)

In fact, the process of production of charmed mesons is
described by the diagram of Fig. 11.3> Corresponding to
this diagram is an amplitude A whose spin structure (in
the nonrelativistic approximation both with respect to the
c quarks and also, which is important, with respect to
the q quarks) is as follows:

A ~ (pkq*akq). (4.3)

Here jt is the electromagnetic electron current, c and q
are nonrelativistic spinors, σ, are the Pauli matrices,
pk is the momentum of either of the quarks in the c.m.s.,
and we have written out only the P-wave part of the am-
plitude, since it is precisely this which is responsible
for the creation of pairs of charmed mesons. In the re-
lation (4.3) it has been taken into account that in the non-
relativistic limit the quarks c and c are created by a
photon in a state with zero orbital angular momentum
and total spin equal to unity, and that the spins of the c
quarks are not flipped in the process of formation of the
D meson.

Regrouping now the spinors in formula (4.3) by means
of a Fierz transformation in such a way that combina-
tions corresponding directly to the charmed mesons
((c*q)~D, (c*amq)~D*,) are formed, we obtain

A ~ (jp)T>D + ielkm]lPh(DDi,-

+ j,ph [ ) - 1 (jp) (D*mITm). ( 4 . 4 )

3)An alternative mechanism, in which the photon creates a
light-quark pair qq and a cc-pair is picked up from the "vac-
uum, " gives a negligibly small contribution because of the
large mass of the c-quark.
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FIG. 11. Creation of DD-molecule in
e*e" annihilation.

The first term describes the creation of DD pairs, the
second the creation of D*D~ and DD*, the third the for-
mation of D*D* in the 5 P t state, i. e., with total spin S
= 2, and, finally, the fourth the creation of D*D* in the
1P1 state, i. e., with total spin S = 0. The result (4.2)
is now almost obvious. It is only necessary to square
each of the matrix elements in (4.4) and sum over the
spins of D*. It is convenient to give the answer in the
form in which it is obtained before summation of the
S =2 and S =0 contributions in the D*D* channel:

p(DD): ): f{D'D',
. . 20= 1:4: — : (4.5)

Summarizing, we can state that the creation of DD*
and ~DD* pairs at Vs =4.028 GeV is enhanced approxi-
mately five times, and the creation of D*D*jA least a
hundred times, relative to the creation of DD pairs. A
natural explanation of this fact is that the peak at -fs
= 4.028 GeV is a P wave resonance in the D*D* system,
i .e . , that it is constructed from a l l * and a l l * me-
son/1 9 3 The isotopic spin of this resonance is equal to
zero, since it is produced by the c^uc component of the
electromagnetic current (see Fig. 11). The existence
of such states, which it is natural to call hadronic mole-
cules inasmuch as they consist of hadronic "atoms"—
mesons, was predicted earlier' 1 8 3 on the basis of the_
arguments expounded below for the example of the DD
system.

b) Dynamics of the DD system

A distinguishing feature of the charmed mesons is the
fact that, besides the heavy c -quark, they also contain
a light quark (M, d or s) and can therefore emit and ab-
sorb ordinary mesons, e.g., ρ, ω, φ , etc. (Fig. 12).
Exchange of these mesons leads to strong interaction be-
tween D and D, with a range r0 <* m'J — mj1 that is large
compared with the Compton wavelength l/mD. The
answer to the question as to whether or not levels can
arise in the D~D system depends on how strong this in-
teraction is. We shall try to estimate it by confining
ourselves to the ρ and ω exchanges.4'

We write the potential acting between D and D in the
form

= Ua = Uo
[2Γ (T + 1) - 3] £/„ (4.6)

where Γ is the total isospin of the DD system (T =0,1).
If Uo (Uj is due to ω (ρ) exchange, then, in the static
limit,

4>Such an approach is analogous to treating the NN system by
means of a one-meson exchange potential. ^65:I

where α ω =gi

uDo and af=g\DD are the coupling constants
of ω and ρ with DB, normalized in the standard way.
The resulting expression for the interaction potential in
a channel with a particular isospin is:

f / T = 0 ( l ) = _ao<l)_L e-r/r.
Γ (4.7)

The constants α ω and ap are not known experimentally,
but certain information can be obtained about them by
invoking one or other of the models. Thus, e.g., we
may expect that a ( 1 > « a ( 0 ) . In fact, αω = af in both the
vector-dominance model and the dual model. In the
framework of the quark model, using the (not entirely
unambiguous) data on the ρ(ω)ΝΝ constants, one ob-
tains CIS]

2.8 4.4, 0 »£ α111 < 1.7. (4.8)

The criterion for the existence of a bound level with a
given angular momentum Jo in a given potential can be
formulated in the language of Regge trajectories. The
mass Mo of the level is determined by the value M=M0

at which the Regge trajectory J(M) intersects the
straight line J=J0. The Regge trajectory for the Yukawa
potential is characterized by the parameter G = amDrQ.
As shown by Lovelace and Masson/8*3 a IS level appears
when G>1.7, while I P has a resonance character (it
lies above threshold) when 7.3^G^9.0 and is stable
when G £ 9.0. Starting from the estimate (4.8) and tak-
ing into account that mDr0^2.5, we can postulate that
one-meson exchange leads to the formation of at least
isosinglet S and Ρ levels of the molecular type. We re-
call that the 4.028 GeV peak is, apparently, precisely
an isosinglet state.

In the positions and widths of the predicted levels
there is considerable uncertainty. As regards the P -
level, its mass should not be more than ~ 30 MeV above
threshold, since is is just the height of the centrifugal
barrier for G~8.

For resonances of the molecular type, besides the
"elastic" decays to D3, transitions to the "atomic" lev-
els of charmonium with emission of ordinary mesons
are possible, e.g., decays to ψ + 2ιτ, ηο+2π, φ + η, r\e

+ η, etc.

We note that the interaction between a charmed baryon
C and antibaryon U should be even stronger than in the
DD system, since in the baryons there are more light
quarks. Therefore, if molecules of the type Dl) exist,
molecules of the type CU should certainly exist. It is
also possible to imagine multihadronic molecules, e. g.,

FIG. 12. Exchange of light quarks between a D and a D meson.
[The quark and antiquark that are exchanged form the mesons
ρ and ω. This exchange leads to a potential of the Yukawa type
between D and 25. ]
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DDDD or CUCU. In any case, the existence of a rich
molecular spectroscopy of charmonium seems highly
probable.

The estimates given above do not answer the question
as to why the experimentally observed charmonium
molecule arose in the system D*B* and not in 2)25. The
answer to this question depends on the spin forces,
which we have not considered in view of our complete
lack of knowledge concerning them. Further theoretical
and experimental investigation of molecular charmonium
will make it possible to establish their properties. Mea-
surements of the angular correlations in the decays of
molecular charmonium would be especially interesting
in this respect.

c) Angular correlations of the decay products at the
4.028-GeV peak

Investigation of the angular correlations would give
a wealth of information about the internal structure of
the 4.028-GeV charmonium molecule. Thus, the dis-
tribution of D*T)* in the 1P1 state is proportional to
(1 - cosz0), where Θ is the angle between the direction of
emission of D* and the direction of the initial e*e"
beams, whereas the distribution in the 5 P t state is pro-
portional to 1 - (1/7) cos20. Furthermore, for a 5P,
D**D*~ pair at rest (the velocity of the D** mesons at
the 4.028 GeV peak can be neglected, since it is <0. le),
the angular distribution of the ττ-mesons resulting from
the decays Ό**~Ι?ιτ has the form 1 - (21/47) cosz0,
while for the xPj state the n mesons are distributed iso-
tropically.

The difference between the 5P1 and 1P1 states is mani-
fested most clearly in the distribution with respect to
the angle φ between the planes of the decays D* -Dir
and D* - Ζ)π. For the pure 1Pl state this distribution is
proportional to cosV, while for 5 P t it is proportional to
l + ( l/3)cosV

If it turns out that the 4.028 GeV molecule is, princi-
pally, the xPt state of the D*Z7* pair, the enhancement
of the D*D* channel relative to ύϋ will amount not to
~ 100, as estimated above, but to approximately 2000,
inasmuch as the "natural" ratio fz(D*D*, ιΡχ) :/*(Z)2J)
= 1:3; but if, on the other hand, it turns out that the
angular correlations correspond to a SPX structure for
the 4.028 GeV molecule, then we should expect that,
with high probability, there exists a lP^ D*D* molecule
at a lower mass, most probably below the threshold
2MD*. The width of the decay of such a molecule to
e*e~ should be approximately twenty times smaller than
that for the 4.028 GeV molecule ( / * № ) :/ 2( 5Ρ 1)=1:20).
Its total width should also be smaller, since, being be-
low the D*D* threshold, it cannot decay along this chan-
nel.

d) Some conclusions

The idea of molecular charmonium, which was pro-
posed before the actual discovery of the 4.028-GeV
molecule, has turned out to be correct, at least in one
case. We may expect that other molecules besides the
one at 4.028 GeV will also exist. Unfortunately, the

theoretical analysis of the spectroscopy and properties
of the molecular states is on an almost purely qualitative
level at the present time. Thus, e. g., it is rather ob-
vious that S-wave isoscalar molecules should exist (in-
asmuch as a P-wave molecule—the 4.028-GeV peak—
exists). However, estimates for the binding energy of
S-wave molecules give a quantity of the order of 2 GeV,
and so, of course, we must regard them not as dime-
son structures but as truly four-quark structures. C6T~70J

There are no methods for analyzing four-quark systems;
we do not even know a criterion to distinguish the molec-
ular state DU from the "atomic" state cc, since, in the
case of an isoscalar molecule, their quantum numbers
coincide. We can make a unique judgment about the
molecular character of a state only if its quantum num-
bers cannot be realized in the system cc, e. g., in the
case of an isovector state. (We can judge c quarks to
be present from the small total width, the existence and
width of transitions to atomic levels of charmonium,
etc.) However, the existence of such states is highly
problematical, since we have seen above that in an iso-
vector state of a DB pair the interaction potential is
small. (Even if it did exist, it would be manifested
hardly at all in e*e" annihilation.)

Another obvious question to which, apparently, an
unambiguous answer cannot be given at present is the
following: if a molecule D*S* exists, then do molecules
Dl)* and DD exist, and at what mass ? In addition, in
e*e~ annihilation there can be two D*D*-resonances:
5 P t and *Ρ1} or two orthogonal combinations of them.
If other molecular states besides that at 4.028 GeV are
not discovered, this could mean that an important role
in the formation of the 4.028 GeV molecule is played by
the spin-spin forces acting between D* and D*. In this
case it is almost obvious that the 4.028 GeV state should
be the lPt state. On the other hand, this statement could
be checked using the angular correlations discussed
above.

In any case, it may be stated that the study of such
distinctive objects as hadronic molecules can yield much
that is new. For example, the study of molecular char-
monium is scarcely the only way of investigating the
strong interaction between charmed hadrons.

5. DISPERSION THEORY OF CHARMONIUM

In this section we describe a new approachC71f72] to
the problem of charmonium, based only on the asymp-
totic freedom of QCD and on dispersion relations. It
will be seen from the following account that this ap-
proach works beautifully in precisely the case of hadrons
consisting of heavy quarks, and makes it possible to ob-
tain a whole spectrum of predictions for the decay con-
stants of the charmonium levels.

a) Sum rules

We shall consider the process of formation of a pair
of charmed particles in the collision of an electron and
a positron with a space-like total 4-momentum q: qz

<0. It is obvious that, because of energy-momentum
conservation, such a process cannot be real but can only
occur virtually. Here, by virtue of the uncertainty
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FIG. 13. Contribution of charmed quarks to the e*e~ elastic-
scattering amplitude.

principle, the particles appear for a time less than or
of the order of r~ (4m2, -tf 2)" 1 / 2, where mD is the mass
of the D meson (the lightest of the charmed particles),
and become separated by a distance not greater than er.
Even for qz = 0 this distance is considerably smaller
than the confinement radius. If quantum chromodynam-
ics is valid, at such short distances asymptotic freedom
should obtain and we can assume the interaction of the
quarks with the gluons to be rather weak. In zeroth or-
der in this interaction the contribution of the "charm"
to the e*e~ elastic-scattering amplitude is described by
the bare e-quark loop (Fig. 13), which we can express
purely formally in terms of the dispersion integral of
the cross section for production of bare quarks. On the
other hand, this same amplitude can be expressed in
terms of the dispersion integral of the cross-section for
creation of real charmed particles—both those with hid-
den charm (J/φ, ψ', ) and the pairs DD, FF, etc.

As a result, to within terms ~ as, we obtain the relation

s* f a(s')ds' _ s' Γ ao(s')ds'
π J s'—s π J $'—s ' (5.1)

which is the basis of the dispersion method of investiga-
tion of charmonium. The integral in the left-hand side
of this relation contains the contributions of the J/φ and
φ ' poles and of the continuum of physical states starting
at (2mB)2 (Fig. 14). The integral in the right-hand side
is calculated trivially, since the diagram of Fig. 13
corresponds to

4 π α 2 < ? | 3 —1>«
. ' 2 (5.2)

where 1 -v 2 =4ra 2/s. It follows immediately from the
relation (5.1), if we consider it for s — -«=, that a(s')
-»CTO(S') a s s ' - + « . In fact, suppose that ff(s')-c/s' and
ao(s')-co/s' a s s ' - « and that the constants c and c 0 do
not coincide. Then the difference between the left- and
right-hand sides of (5.1) would tend asymptotically to
(c - CO)(S/TT) ln(- s) as s — - °°. This contradicts the fact
that the relation (5.1) for s « i s fulfilled to within

Thus, asymptotically, the physical cross-section for
creation of charm tends to its bare quark value 4πα2<?2/
s. This fact was first noted by Appelquist and Georgi
(see Refs. 73, 74), who also calculated the correction
proportional to as.

The experiments in a limited energy range, which
have limited accuracy and cannot be interpreted com-
pletely unambiguously because of the contribution of the
heavy lepton and, possibly, of new kinds of quark, do
not contradict the possibility that σ=* σ0 for s ;> (4 GeV)2,
and we shall rely on this equality in the following.

1*' 2

2 2.5 Ί \5

FIG. 14. Energy dependence of the quantity Sca(s), where
σ(ε) is the cross-section for e*e~ annihilation to hadrons with
hidden and manifest charm. The contribution of the J/ψ- and
ψ'-mesons is depicted conventionally by rectangles. The
widths of the rectangles are 1000 times greater than the total
widths of the corresponding mesons, and the height is reduced
so that the areas of the rectangles correspond to the experi-
mental values of the integrals / ac(s)sd^fs. The curve 1 cor-
responds to the cross-section for annihilation of e*e~ to a cc
quark pair (cf. formula (5. 2)); the curve 2 depicts schemati-
cally the cross-section for e*e~ annihilation to charmed hadrons
in accordance with the existing data and theoretical expecta-
tions.

From the region Is I — °° we turn now to s =0. In this
case too, arguments based on asymptotic freedom re-
main valid. The contribution of "charm" to the ampli-
tude induced by the virtual photon (see Fig. 13) can be
calculated even for small "virtuality" of the photon by
series expansion in the small quark-gluon interaction
constant a i (4m|) . This simple fact, to which attention
was first drawn by Shifman, Vainshtein and Zakharov,C753

leads, as we show below, to far-reaching consequences.

Thus, we shall consider the relation (5.1) for s — 0.
Differentiating (5.1) η -1 times with respect to s at s
= 0, we obtain

I σ (s') A ' f σ0 (»') ds'

4mJ
(5.3)

It is clear that the integrals will be determined by small-
er values of s' the greater is n. But is is precisely at
small values of s' that the cross sections σ and σ0 differ
most strongly (see Fig. 14), so that for sufficiently
large η the relation (5.3) should be strongly violated.
Numerical calculations show that for, say, «=3,4, the
relation (5.3) is still fulfilled to within a few percent,
but, on the other hand, the contribution of the region s
> 4 m | is already small (<8%), so that the left-hand side
of the relation (5.3) is essentially saturated by the con-
tribution of the J/φ meson5):

5)In principle, such a situation cannot be realized for ordinary
hadrons. Indeed, if we were interested in the contribution of
the light quarks u, d and s to the elastic e*e"-scattering am-
plitude, we would find that asymptotic freedom gives reliable
predictions only for large negative values of s, say, s = — 3
GeV2. In this case the dispersion integral of the physical
cross section in (5.1) is built up outside the resonance region
at s '^3 GeV2, and, essentially, we obtain only information
about the cross-section in the continuum region.
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a(e*e- -+ //ψ) = 1211*6 (s—M1) % - , (5.4) (Ο, 16, 40 and 16, Ο, 40) χ π 2 - Z L 6 (S-Μ*). (5.7)

where Μ is the J/ψ mass and I\» . is the width of the de-
cay J/ip~e*e~. Substituting (5.4) into (5.3) we can cal-
culate the width Te, by expressing it in terms of the
mass of the J/ψ meson and the quark charge Q c

t 7 1 ] :

(5.5)

This relation is in excellent agreement with experiment.
The theoretical predictions in the right-hand side of the
formula (5.3) contain one unknown parameter, which we
call, by convention, the e-quark mass. Of course,
since the quarks are confined, the mass must be r e -
garded only as a parameter appearing in the quark
propagator. The value of the mass, determined from
(5.3), is found to be equal to

mc = 1,25 GeV. (5.6)

Inasmuch as the integral in the loop of Fig. 13 for s
= 0 converges at values p\— -m\, where pe is the 4-
momentum of the c quark, the above value of 1.25 GeV
is the mass term of the propagator of a deeply virtual
c quark with p\ =* - m\. For time-like c quarks with p%
>0 the mass should be larger. It is clear that the con-
cept of mass for a quark is to a certain degree arbi-
trary. Nevertheless, the value of mc found above is a
key parameter for the physics of charmonium, deter-
mining the properties not only of J/ψ but also of other
levels of charmonium. Thus, the physical cross sec-
tion for the creation of charm should be equal to the
bare quark cross-section not only for s - » but also, in
a certain averaged integral sense, for small values of
s. This correspondence is sometimes called duality;
one says that the corresponding cross sections are dual
to each other. The integral of the bare quark cross-
section in the range from Ami to 4m% is dual (equal) to
the integral of the J/ψ and ψ' resonances.

We turn now to another process, namely, the crea-
tion of charm in the collision of two photons. In this
case too the integral relations (5.3) should hold, with
the same value mc = 1.25 GeV. Again it turns out that
the integral of the cross-section for formation of a pair
of bare quarks c +c from two photons (see Fig. 15),
taken between the limits 4 m* and 4 m%, is dual to the
contribution of the resonances (with positive C-parity,
this time) Tfc, v'c (Jp =0"), & (Jp =0*) and X a (Jp =2*),
which can decay into two photons. Considering the
cross sections σΜ and σ± for collisions of photons with
parallel and perpendicular polarizations separately, it
is not difficult to show that the contributions of the 0",
0* and 2* mesons to ση and aL are, respectively,

FIG. 15. Contribution of charmed quarks to
photo-photon scattering.

If, in addition, we further assume that the ratio of the
photon widths for χ0 and χ 2 is equal to 15/4, as given by
the nonrelativistic theoryC50>52] (cf. formula (2.6)), we
can find from the sum rules (5.3) for σΜ that Γ ^ - 2γ)
= 5±0.5 keV. By assigning masses to η,, and 77* we can
then find the photon widths of these mesons from the
sum rules for σχ. If we take η0 =X(2.83), then r(7fc - 2γ)
- 3 . 5 keV; r(7j£- 2y) is approximately the same if Mn>
= 3. 45 GeV and somewhat larger if the mass of rfc is
larger. This is very unlike the ratio of the electromag-
netic decays of J/ψ and ψ': Γ(ψ'~ e V ) / T ( J / ^ e*e~)
<* 0.4. At the same time, naive application of the non-
relativistic potential model of charmonium gives

- e*e~) •2v)

\ .

Γ (//ψ— Λ,-) ~ :

since Ιψ(0)Ι2 should be the same in S-wave ortho- and
para-charmonium. This contradiction indicates that
either η,, is substantially heavier than X{2. 83), e. g.,
M, c ^3 GeV (then r(n.-2y)<*6 keV and T{r)'c~2y)
«r( j7 c -2y)), or the hyperfine interaction and the 'Sj
— 3D 1 mixing are very strong in charmonium, in con-
trast to what is usually assumed in the nonrelativistic
model. In the latter case it is possible, e. g., that the
3.45 GeV level is the 1Di level and 77* lies higher.

Knowing the photon widths, by multiplying them by
(9/8) <£/αζ <* 850 we can find the widths of the decays to
two gluons, which, by assumption (see Chap. 2), are
equal to the total hadronic widths. As a result we ob-
tain

Γ (χ0 -*• hadrons) « 3.9 — 4.6 MeV,

Γ (χ, -* hadrons) « 1 . 0 - 1 . 2 MeV,

Γ (T)c ->- hadrons) «s 3 MeV, if M% = 2.83 GeV,

w 5 MeV, if M^ = 3 GeV.

These are fairly close to the numbers given by the po-
tential model: 3 MeV, 0.8 MeV and 6 MeV, respective-
ly.

Thus, we see that a dispersion analysis of charmoni-
um, based on such general properties of quantum chro-
modynamics as the asymptotic freedom, analyticity and
unitarity, confirms, in its general features, the cor-
rectness of the nonrelativistic model of charmonium
based on potentials of the oscillator or funnel type that
ensure the confinement of the quarks. The asymptotic
freedom at short distances, the trapping of quarks at
large distances, the existence of narrow levels of char-
monium and the parton-like cross section for formation
of charm above 2mD—all these are in good agreement
with each other.

Above we applied the dispersion relation to the cre-
ation of charm by the electromagnetic current. In order
to distinguish the contribution of mesons with given
quantum numbers, and, particular, that of mesons cor-
responding to high orbital states such as lDz, it is con-
venient to make use of an artificial device172·1: we intro-
duce fictitious currents with the quantum numbers that
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,οο FIG. 16. Polarization of the vacuum
JM by the external current .

FIG. 17. Triangular diagram describing
the transformation of the external current
</ω to two photons.

we need, e.g., (cc) for the XQ meson, (cy5c) for 7)c,
(cy^Vsc) for x t, ~δ(ρνγμ + γνρμ - (2/3) %vp)c for χ 2, and
ciPvP,, - (1/3) ημν/)2) y5c for the lDz level. Here ημ>,
= 6MW-(«V ?„/?*), ?=fec+fejand/>=fee-fez. We consider
first the so-called biangular diagrams, describing the
polarization of the cc vacuum by these fictitious cur-
rents (Fig. 16) and use again the duality of the integral
of the fields in the quark loop between the limits 4 m\
and 4m% and the contribution of the corresponding reso-
nances. In principle, by considering the integral mo-
ments with η = 1, 2,3,4 in (5.3), we can now find the
masses of the resonances and the effective coupling con-
stants g of their interaction with the fictitious currents.
These coupling constants are uniquely related to the
quantity ψ(0) for the S-wave states, to φ'(0) for the P-
wave states, to ψ"(0) for the D-wave states, etc. The
results of the calculations are collected in Table III.

The predictions for IJ?S(O)12, liii,(0)l2 and li2^(O)l2

obtained from the dispersion sum rules depend on the
mass of the state and in this sense take into account the
"hyperfine" splitting of the charmonium levels. By
comparing these results with calculations in the poten-
tial models we can see clearly that the dispersion sum
rules are in qualitative agreement with the potentials
that correspond to confinement of the quarks (the "os-
cillator" and "funnel") and are in sharp disagreement
with potentials of the Coulomb type.

We now consider the more complicated triangular
diagrams (Fig. 17), which depict the creation of two
photons by a fictitious current. Resonance contributions
proportional to g-V r r r are dual to these diagrams. Sub-
stituting the values of g determined from the biangular
diagrams, we can find Γ^, in this way. It is found that
for r\c and χ0 they are very close to the values that were
obtained above by treating the collision of two photons.
Thus, we see that the method of fictitious currents work
well. We shall apply it now to the decays of mesons
with J = 2. For lP2 we obtain Γ(χ2 - 2γ) - 2 ± 0.3 keV,
which is somewhat higher than the value obtained from
the nonrelativistic calculation (~1.3 keV). The width
of the 1D2 level, whose position is not yet known, de-

pends on its mass: F(1DZ- 2γ) = 115±25 eV if MD =3.45
GeV. The corresponding hadronic width r^Dg — had-
rons) should then amount to approximately 100 keV.

b) Gluon corrections to the sum rules

Lying at the basis of the dispersion sum rules (5.3) is
the assumption that the coupling constant as of the
strong interaction of gluons with quarks is sufficiently
small at short distances. It follows from a comparison
of the hadronic width of J/φ with the gluon calculations
that a$ in this case is approximately equal to 0.2. Be-
low we give the results of a calculation of the correc-
tions of first order in as to the dispersion sum rules
and discuss the corrections of higher orders.

The correction of first order in as corresponds to
diagrams with exchange of one virtual gluon (Fig. 18).
Allowance for one-gluon exchange leads to the result
that the quantity ao(s), defined by the relation (5.2), ap-
pearing in the sum rule (5.3) and obtained in zeroth or-
der in as, should be replaced by the quantity

σ,(s)= .±α Γ_5 3+ /̂JL L m /= ο)
3 * L 2IF 4 V ζ 4π Ι jf- \°·ν>

The formula (5.9), obtained by Schwinger/7" is an in-
terpolation formula. It coincides with the exact formula
when ν = 0 and ν -1 and deviates from it by not more than
1% over the whole range of variation of v. In addition,
we must take into account the correction of order a, to
the c-quark mass. The point is that the mass appearing
in the definition of the velocity in the expression (5.9)
(vz = 1 - (4w*2/s)) is connected with the deep-virtual
mass mc by the relation

mj
2a.1n2 (5.10)

if we use the Landau gauge for the gluon field. The fact
that mc depends on the gauge should cause no surprise.
In fact, only in the observable quantities does the de-
pendence on the gauge drop out. The deep-virtual mass
mc is defined in terms of the quark propagator off the
mass shell, which is gauge-noninvariant. Nevertheless,

T A B L E Ι Π .

Ι Λ 3 { 0 ) | 2

1 RW) | 2

1 R'£(0) 12

V(

0.

0.

0.

mwr2

>]~ 2

5 GeV3

12 GeV5

066 GeV7

V(r) — +gr

0. 5 GeV3

0.09 GeV5

0.07 GeV7

VI

0.

1·

1.

r)= 5

1 GeV3

10"4 GeV5

5 · 10-6 GeV7

Dispersion sum rules

0.5 GeV3 for J/φ

0.2 GeV3:A/^ = 2. 85 GeVl

0.45GeV3:Ai,c=3GeV j f ° r " ·

0.14-0.21 GeV5

0.03 GeV7:Af = 3.45 GeV

0.08 GeV7:AZ = 3.7-3.8 GeV
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FIG. 18. Example of a diagram leading to corrections of or-
der Q, to the polarization of the charmed vacuum.

it is reasonable to express the answer in terms of mc,
since then the gluon corrections are minimal and the fi-
nal formulas do not in any case depend on the gauge. We
introduce the dimensionless coefficients Al

n

um and An:

T^i.o (°0. (5.11)

here the superscripts onA$,um indicate the order of
perturbation theory in as. It is then easy to calculate
the theoretical values of A™ for the first five moments

n:

= -Γ<1 + °· 73α>)'

(5.12)

Inasmuch as all integrals over virtual loops converge
for p*** -m\, the constant a, appearing in (5.12) cor-
responds to distances "m'1. We shall use for it the
value found from the width for J/φ - hadrons (see Chap.
1):

ce,(jD*=—m£)=0.2. (5.13)

As regards the e-quark mass determined with allowance
for terms ~ as, its value is practically unchanged from
the estimate (5.6). (We recall that the parameter mc

depends on the gauge. Our statement refers to the Lan-
dau gauge.)

In Table IV the theoretical values of A™ and A<0) cal-
culated for a4 = 0.2 and wc = 1.25 GeV are compared with
the corresponding experimental numbers An. The con-
tribution of the mesons J/φ and φ' and of the continuum
to An are shown separately; with a certain degree of
arbitrariness, the latter is taken in the form (4ira2Qc/s)
χ e(s -16 GeV8). Because of the small contribution of
the continuum, the uncertainty associated with the fact
that it is poorly known in the transitional region does
not have a strong effect on the quantities An for η & 2.

As can be seen from Table IV, the correction asso-
ciated with a, improves slightly the agreement between
the theoretical and experimental results, which differ
by 1% for η = 2 and by 10% for η =4. (For η = 7 the dis-
crepancy amounts to ~ 50%.) It should be emphasized
that it is precisely this agreement of the first four mo-
ments with experiment in the case of the polarization
of the charmed vacuum which is the basis of all our
calculations and makes it possible to have confidence in
their reliability in other cases too (when we turn to the
C-even levels of charmonium). The second important
argument in favor of the correctness of the approach to
the annihilation of C-even levels described here is the
agreement between the estimates obtained for the widths
using the sum rules for scattering of light by light, on

the one hand, and the estimates obtained by considering
the biangular diagrams, on the other. This agreement
is possible only when the masses of the resonances are
close to the experimental values and is, therefore, not
trivial.

The growing discrepancy between theory and experi-
ment with increasing η points to the fact that other cor-
rections, both of higher order in as and of the power
type (1/Rme) * (R is the confinement radius), which we
do not yet know how to calculate, begin to play an im-
portant role for large n.

If we try to estimate only the leading terms of order
a | and aj, we must iterate the contribution of the princi-
pal (for small ν and large n) Coulomb-like correction
2iras/3v in the expression (5.8). The discrepancy be-
tween theory and experiment is then somewhat reduced
but still remains considerable, and so it is apparent that
the answer does not lie in the higher orders in as. The
question of the "Coulomb" corrections is intimately re-
lated to the question of how the large-distance behavior
of the attractive potential between a quark and an anti-
quark affects the sum rules. It is clear that the be-
havior of the potential at large distances has a decisive
effect on the properties of the high levels. For example,
if we "cut off the tail" of the Coulomb potential at a value
of r such that m"1 «r« (ma)'1, all the levels disappear.
However, modification of the potential at such values of
r affects the values of Aj""' only exponentially weakly,
like e"mcr, since the quantity A*1"01 is determined princi-
pally by the contribution from short distances: the deep-
virtual quark is exponentially rarely at distances r »1/
mc. It is precisely in the weak dependence of the values
of Ajheor on the behavior of the interaction between the
quarks at large distances that the strength of the disper-
sion approach lies.

In the discussion of corrections of higher orders in
as, those diagrams which have infrared divergences at
small s (Fig. 19) are usually considered to be the most
dangerous. These diagrams, unlike the simple quark
loop, contain intermediate states that are massless (or
almost massless) in s, consisting of gluons g or light
quarks q, or both together. For these light particles
at s = 0 asymptotic freedom does not operate, since, un-
like the heavy c quarks, they are not deeply virtual in
these conditions and their strong interaction at s =0 is
truly strong. Such diagrams appear to be especially
dangerous in the higher moments, with large values of
n, in which their contribution to the dispersion integral
is divided by s". The infrared divergences that arise
here might outweigh a small factor of the type a\.

TABLE IV

Theory

η

1
2
3
4
5

A ( 0 ,

0.800
0.343
0.203
0.139
0.102

0.917
0.391
0.224
0.144
0 099

Experiment

0.420
0,274
0,178
0.116
0.076

0.103
0.048
0.023
0.011
0.004

Continuum

0.391
0.077
0.021
O.O05
0.002

An (sum);)

0.914
0.398
0,222
0.132
0.082
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γ-jwf Ύ ^ Γ Γ V"l j ν °* ~< (6.1)

c) d)
FIG. 19. Examples of diagrams leading to mixing of heavy and
light quarks in high order in the coupling constant as.

In fact, as we show now, these diagrams are not at
all dangerous. We recall that φ and φ ' are very bad at
undergoing transitions to ordinary hadrons. Their ha-
dronic decays are suppressed by 3-4 orders of magnitude

' compared with the decays of ordinary resonances. The
same applies to the cross sections for their creation in
collisions of ordinary hadrons. At the same time, their
creation in colliding e*e" beams is not suppressed at all:
the electron widths of J/φ and φ' are of the same order
as those of ρ, ω and φ . Therefore, in discussing the
electron widths of J/φ and φ ' we can disregard diagrams
of the type in Figs. 19b and 19c, in which the photon in-
teracts with a q quark and not directly with a c quark.
The contribution of these diagrams in the physical re-
gion does not exceed a few percent of the contribution
of the diagram of Fig. 13, and it is perfectly legitimate
to neglect them in the physical region (i. e., for s & mf).
But this implies that we can treat the electromagnetic
widths of charmonium consistently by simply "switching
off" the electric charges of the light quarks.

However, not all the dangerous diagrams are elim-
inated from consideration in this way; some of them (of
the type in Figs. 19a and 19d) remain. But these dia-
grams too do not present a serious threat. The point
is that all the infrared divergences are connected not
with the formation of charmed particles but with the
formation of ordinary hadronic states, not containing
even hidden charm: the physical cut in the dispersion
integral starts at (3mT)2. Thus, these infrared parts of
the diagram describe the contribution of virtual c-
quarks in the creation of ordinary hadrons, in which we
are not interested. The contribution of virtual light par-
ticles to the creation of charmed particles starts at s
=m\ and does not contain infrared divergences. There-
fore, its order is determined by the order of perturba-
tion theory in as and is not greater than a\.

6. OTHER PROCESSES WITH CHARMED PARTICLES

A heavy quark appears not only in charmonium but
also in the composition of mesons (D, F, ) with mani-
fest charm. Therefore, using quantum chromodynamics
we can obtain definite predictions for the cross-sections
for creation of these particles in various beams. An
important point is that the same mass mc determines the
scale of these cross sections, and, if the theory is cor-
rect, interesting relations between various quantities
arise.

As an example we give the sum rule for the cross
section αζ for photoproduction of charmed particles
(Shifman et al.""):

where ν is the photon energy in the laboratory frame and
p(QE =ml) is the fraction of the nucleon momentum asso-
ciated with the gluons. This fraction can be determined
independently from the deep-inelastic electro-produc-
tion of ordinary particles at Q8 = m\ and is approximately
equal to \. The derivation of the sum rule (6.1) involves
analyzing the diagram of Fig. 20 in the limit when the
photon 4-momentum tends to zero.

Numerically, the right-hand side of the relation (6.1)
amounts to approximately 20 nb/GeV, if for mc and
as(mc) we take the values determined in the theory of
charmonium. The experimentally measured cross-sec-
tion for photoproduction of J/φ gives an integral con-
tribution of the order of 1 nb/GeV to the left-hand side
of the equality. Thus, the cross-section for photopro-
duction of Z>*D"-meson pairs and other charmed parti-
cles should be more than an order of magnitude greater
than the cross-section for photoproduction of the J/φ
meson.

Analogous sum rules arise for the electro- and neu-
trino-production of charm.

Dispersion sum rules analgous to the charmonium
rules can be obtained for the weak decays of the pseudo-
scalar charmed mesons ( D - μν and i*- μν) and for the
cross-sections for the diffractional production of vector
mesons D* and F* in the collision of a neutrino with
nucleons (Novikov et al}in). In particular, from these
sum rules follow the inequalities

4 π
•>3.6,

(6.2)

where gF* are the constants of the transformation of
the current "cy^s to F*, normalized in the standard
way. It should be emphasized, however, that in this
case the expected power corrections to the bare quark
loops should be large, since one of the quarks is light
(see Fig. 21).

Virtual transitions to intermediate states with
charmed quarks play an important role in the weak in-
teractions of ordinary particles. In particular, in the
standard four-quark scheme of Glashow, Iliopoulos and
Maiani,Ce3 the mass difference of the KL and Ks mesons
is fairly well described by the quark diagram of Fig. 22.
Allowance for gluon exchanges leaves the result practi-

FIG. 20. Contribution of charmed quarks to the photon-nu-
cleon Compton-scattering amplitude. [In the limit of zero pho-
ton frequency the corrections to this diagram are small and it
determines the right-hand side of the relation (6.1).]
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FIG. 21. Contribution of e-quarks to the polarization operator
of the W-boson in zeroth order in the coupling constant of the
strong interactions.

cally unchanged (cf. Vainshtein et eZ.l77]). The answer
here is proportional to m\.

Quantum chromodynamics give the possibility of a
theoretical explanation of the rule Δ Τ =\ for the non-
leptonic decays of strange particles. The dominant dia-
gram is found to be that of Fig. 23, which gives the glu-
on monopole moment and anopole moment of the transi-
tion of a d quark to an s quark (Vainshtein, Zakharov
and Shifman1783). Since the isospin of the gluons is equal
to zero, this diagram obviously obeys the selection rule
Δ Γ = \. The dominant role of the diagram is connected
with the fact that it leads to an effective four-fermion
interaction with participation not only of left-handed
quarks at the parity-nonconserving lower vertex in the
diagram of Fig. 24a, but also of right-handed quarks
(at the parity-conserving upper (strong) vertex). The
corresponding term in the effective Hamiltonian of the
weak nonleptonic interactions has the structure

Β'" (Δί = 1) = Υΐ GF sin 8C cos 6CC [(sLuR) (uRdL) +

+ (SL^R) (dR<lL) + (ί£,ίΗ) {sRdL)] + . . . ψΐ,, R = —

(6.3)

where GF is the Fermi four-fermion constant and 0C is
the Cabibbo angle. The coefficient C takes into account
the effects of the strong interaction at short distances.
It is practically independent of the choice of model for
the weak interaction and is close to unity.t78] As a re-
sult the effective four-fermion interaction with ΔΓ = |
converts left-handed quarks to right-handed quarks and
gives matrix elements for the weak emission of π me-
sons that are greater than the usual matrix elements
arising from the left-handed currents by the factor mt /
(mu + md), where m, is the physical mass of the pion and
mu and mt are the mechanical masses of the «- and d-
quarks (an estimate of these was given in Sec. 4 of Chap.
1). Thus, a highly nontrivial connection arises between
the exact character of the rule Δ Τ = \ and the small
mass of the light quarks. An investigation of the con-
tribution of the Hamiltonian (6.3) to the amplitudes of
the decays if-2ir, 3π, A-i\?r, Ω-Ξπ, etc., gives num-
bers coinciding with the experimental values in sign
and close to them in magnitude/783

We shall discuss briefly the possibility of applying the
dispersion approach and asymptotic freedom to process-

w

w

[The
it

FIG. 23. Monopole and anopole transitions s—<i+gluon.
subscriptL denotes a left-handed spinor, e.g., </£ =

es with «, d and s quarks and to hypothetical states of
the charmonium type constructed from new, still heavier
quarks.

For the light quarks we can use asymptotic freedom
only at large space-like external momenta. Therefore,
simple dispersion sum rules exist only for the biangu-
lar diagrams and not for the triangular or quadrangular
diagrams. The well-known Weinberg sum rules1431-1 (see
also Ref. 79) follow from consideration of the bihagular
diagrams in the framework of quantum chromodynamics.
However, because of the necessity of eliminating the
continuum, the threshold for which is low in this case,
the Weinberg sum rules impose considerably weaker
restrictions on the properties of ordinary mesons than
the c quark sum rules do on the properties of the levels
of charmonium.

Dispersion sum rules can turn out to be fruitful in the
analysis of the levels of an "onium" (the term is due to
Bjorken) consisting of quarks much heavier than the c
quarks, say, with mass of the order of 10 GeV. In this
case the threshold for pair creation of new particles can
also be appreciably greater than the energies of the
"onium" levels and the sum rules can be saturated by
the resonances. Without going into details, we note that
the system of levels of the "onium" may be considerably
richer than that of charmonium, if the potential between
the heavy quarks is of the same type as in charmonium.

CONCLUSION

The discovery and subsequent study of the properties
of charmonium confirms the basic ideas of the quark
model of the hadrons and the concepts concerning the
properties of the interaction of quarks at short distances,
built up in recent years. Charmonium is a unique sys-
tem, both because of the richness of its levels and be-
cause of the large mass of the quark. The charmonium

q-u,i,s

•'Χ*

FIG. 22. Simplest quark diagram for the mass difference of
the KL and Ks mesons.

FIG. 24. Contribution, associated with the transition depicted
in Fig. 23, to the effective Hamiltonian of weak nonleptonic in-
teractions with change of strangeness. [Inasmuch as the lower
vertex in the diagram (a) vanishes for real gluons, the diagram
(a) reduces to the effective four-fermion point interaction rep-
resented in Fig. (b); qR denotes the right-handed component of
the quark field: qR= (1 + V5)?/2. ]
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levels with mass less than 4 GeV are the most intuitive

and convincing example of the quark spectroscopy of the

hadrons. The study of the radiative transitions confirms

the simple estimates of the atomic model of charmonium.

Owing to its large mass, the c quark is an excellent

test object for investigating the properties of strong in- •

teractions at short distances. In the framework of the

dispersion sum rules, the properties of the wavefunction

of the c and c quarks for the lowest level of charmonium

are practically uniquely determined by bare.quark loops

with zero external momenta. The success of the sum

rules for the creation of charm in e*e~ collisions per-

mits us to have confidence in the correctness of the pre-

dictions of quantum chromodynamics for a broad class

of charm-production processes in the collisions of pho-

tons and leptons with hadrons.

Clearly, the picture discussed is still not a final pic-
ture, and further experimental data may turn out to be
decisive. There can be little doubt that further study
of the properties of charmonium will not only bring con-
firmation of the ideas that have accumulated but will
also pose new questions. An excellent example of this
kind is the discovery of the charmonium molecule with
mass 4.028 GeV. Certain difficulties now arise in the
interpretation of the properties of para-charmonium
(the η 0 and 17' mesons). It is not ruled out that these
difficulties are connected with fundamental problems of
some kind.
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