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The electrodynamic aspects of the concept of the light ray, of the principal concepts and laws of
photometry, polarimetry, and ray optics as a unified approximation of actual optics are explained. The
apparatus-related origin of these concepts is demonstrated and the structure of the general theory of the
light field is explained, including algebraic optics and the theory of radiative transfer. The principal
premise of the "photometric" or "ray" approximation is the concept of the wavelet or the wave packet,
the energy and the dynamic parameters of which are defined essentially in frequency-momentum rather
than coordinate-time representation. The ray (photometric) approximation operates exclusively with
observable quantities that are connected with the finite character of the dimensions and characteristic
times of the square-law receivers used in optics. The generalization of photometric, polarimetric, and ray
concepts to include a radiation field of arbitrary structure follows from the fact that the action of such a
field on an optical receiver is equivalent to the action on this receiver of a beam of incoherent wavelets,
the region of coherence of which is determined by the parameters of the receiver. This makes it possible
to regard the field as an aggregate of light rays, each of which is described in a photometric
approximation generalized with allowance for the polarization effects (Stokes parameters), which leads to
formulation of the principal laws of photometry and polarimetry, and also to the photometric formulation
of the conservation laws, and makes it possible to establish a direct relation between photopolarimetry and
general theory of coherence. The limited nature of the region of coherence of the wavelet train leads to
the problem of its transformation in time and in space, the description of which is effected by methods of
algebraic optics by introducing the operators of differential and local transformations of the ray, and this
leads directly to formulation of the radiative-transfer equation and to a delineation of the limits of its
applicability. It is shown that the Stokes parameters are insufficient for a complete physical and
mathematical description of the light ray, and it is necessary to introduce the three-dimensional
distribution function of the wavelet trains over the polarization states; the problem of spin spectroscopy,
i.e., of spatial selection of incoherent trains in accordance with the state of their polarization, is
discussed.
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What is the light ray and what is the scope of ray op-
tics? Whatisthe meaning of "measurement of light"?
Whenceforth stem the concepts and laws of photometry?
What does polarimetry deal with? What is the electro-
dynamic significance and what are the limits of applica-
bility of ray and photopolarimetric concepts?

These long-standing problems of optics, which have
troubled even its founders, and have at times received
answers nowhere close to reality, have entirely new
light cast on them by modern statistical optics. The
exposition and discussion of the corresponding already
sufficiently well formulated and verified concepts is the
subject of the present review, which is based on an ear-
lier publication,C1J but has now been substantially re -
viewed and expanded. It is in a certain sense also a
continuation of the review:2] and, just as the latter, con-
sists to a large degree of hitherto unpublished results by
the author, with no cited literature. As to the published
references, they do not claim to be complete and are
aimed only to guide a reader with further interest in the
subject.

1. SCOPE OF RAYS OPTICS

A. Photometry, ray optics, and Fourier transforms of the
radiation field

Although system of concepts, quantities, and rela-
tions, which are used in optics to describe the energet-
ics of the light field (brightness, intensity of illumina-
tion, spherical illumination, Stokes parameters, etc.)
and which can be unified under the headings "photome-
try, " "polarimetry, " and "ray optics, " is related to the
system employed for the same purposes in electrody-
namics (energy density, Poynting vector, coherence
functions, etc.) there is at the same time a great differ-
ence between them. This difference, the elucidation of
which is equivalent to the establishment of the position
that photometry occupies in the system of electrodynam-
ics, is on very firm ground, having taken root, as it
turns out, in the means of realizing the measurement
process. To explain this circumstance, let us turn
first to certain general considerations.

Photometry in the broad sense of this word is cus-
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tomarily defined as the branch of optics devoted to the
energetics of the radiation.t 3 ] The photometry concepts,
which are basically intuitive, are definitely of empirical
origin. Formulated during the early Renaissance (see,
e. g., Dantet41), they were fused in the middle of the
eighteenth century into an orderly system of views,
which have made the names BouguerC51 and Lambert161

immortal. Since that time, the concepts have remained
practically unchanged to this very day and can be found
in all physics textbooks as an independent branch of op-
tics, not connected in any way with its principal con-
tent, and having therefore an applied significance.

A clear example of this fact is the theory of radiative
transfer, [ 7~1 4 ] which is a direct development of the pho-
tometric ideas and which has long turned into an inde-
pendent well developed section of mathematical and ap-
plied (but not at all theoretical!) physics, perfectly in-
dependent of the theory of radiation, and existing to the
very latest time without any electrodynamic foundation.

This raises inevitably the following questions: What is
the reason for isolating this branch of optics? How did
the rather primitive concepts of which it is made up
withstand the surge of modern science? Why have they
not been swept away either by the century of develop-
ment of classical electrodynamics, or by such "explo-
sions" as the appearance of quantum electrodynamics
and statistical optics? It should be remembered that
we are not dealing here with some details, but with fun-
damental "truths" that every schoolboy must know.

The source of this isolation and confinement of pho-
tometry was precisely the failure of all the rather nu-
merous attempts to fit it within the framework of the
electrodynamic theory of light. An exception is the
trivial case of a plane monochromatic wave, for which
it became possible to set in correspondence the illu-
mination intensity produced by it with the Poynting vec-
tor, which then led to the quadratic dependence of the
photometric quantities on the intensity of the light wave
electric field. For a long time, the more general case
of an arbitrary radiation field has not been subjected to
a photometric treatment at all.

It is important to note here that actually, as we shall
show, photometric (andpolarimetric) concepts apply not at
all to a plane monochromatic wave but, and furthermore
exclusively, to the light ray, which is a stochastic mix-
ture of wave packets or wavelets that are not coherent
with one another. Without additional treatment these
concepts can certainly not be extended to include a field
of arbitrary structure. This is evident, say, from the
fact that the concepts of brightness and polarization
have no physical meaning whatever if we are dealing
with a superposition of at least partially coherent light
beams that differ in direction, for example in the case
of standing waves in thin-layer systems,C l 4·1 5 1 or in the
case of a light field inside small scattering parti-
c les . " 6 · 1 7 1

Actually, a generalization of photometry to include a
light field of complex structure is possible only in an
approach in which the field is treated as an aggregate
of incoherent light rays. The understanding of this

circumstance, although as yet not explicit, turned out
to be the cornerstone for the development of photomet-
ric theory of the light field. This theory is the main
accomplishment of the photometry of the twentieth cen-
tury, including both its earlier forms (see, e. g.,C l 8 1)
and the general theory of radiative transfer in all its
modifications, C7~14>21i and especially its electrodynamic
foundation (see, e.g., "·*-»«).

The same circumstance was the reason for the phe-
nomenological character of this theory, since it was im-
possible to discern its connection with electrodynamics
without a more profound analysis of the concepts of co-
herence, i. e., before the modern development of sta-
tistical optics. C37~421 This is also why most physicists
invariably prefer to this day to use the undefined con-
cept "intensity" of light rather than the standardized
photometric quantities (see, e. g., «•••"•«•"-«si). For
the same reason, in the analysis of polarization phe-
nomena physicists usually choose (see, e. g.,C4e>47]) to
discuss the behavior of the field vector, instead of using
the Stokes parameters, which are photometric in nature.
Yet without a special analysis of the coherence problems
such a treatment is frequently incorrect and, at any
rate, inadequately represents the gist of the phenomena,
since the very concept of polarization of light is insepa-
rately linked to the concept of the ray and has an essen-
tially photometric character (see below).

Attention should also be called to the fact that photom-
etry came into being and developed until recently in par-
allel with geometrical optics, but independently of it.
The point is that these sciences deal with two essential-
ly different aspects of one mid the same concept, name-
ly the concept of the light ray as a stream of photons.
Whereas geometrical optics deals with the influence of
the medium on the trajectory of the photon jet, the sub-
ject of photometry is the dynamics of the photons, and
consequently the entire assembly of the pertinent con-
servation laws. On the one hand, this calls for extend-
ing the scope of photometry to include polarimetry, and
on the other hand it becomes necessary to consider ray
optics as a synthesis of geometrical optics and photom-
etry in its extended meaning. «.«.*ι-Μ.«β-5β]

The unity of the photopolarimetric and geometrical
aspects becomes most clearly manifest if we turn di-
rectly to Maxwell's equations and use the so called geo-
metrical-optics approximation in its vector form. It
is known that this procedure leads in the best manner
to the notion of a monochromatic plane electromagnetic
wave and its transformation in a quasi-inhomogeneous
medium, which properly speaking is usually in fact the
basis for introducing concepts that pertain to light wave-
lets and are subsequently transferred, with the neces-
sary emendations, to the treatment of the light ray.
The eikonal equation serves in this case as the condition
that the system of zeroth-order linear vector equations
have a solution, and these equations themselves, in con-
junction with the condition that the first-order approxi-
mation equations have a solution, describe the behavior
of the field vectors.C 5 5 > S 6 1

This leads to a conclusion of fundamental character.
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To the extent that the prototype of the train of light
wavelet is the plane electromagnetic wave, and it is pre-
cisely its characteristics that serve as the basis for in-
troducing photometric and polarimetric concepts, these
concepts are by the same token meaningless in the space -
time representation, but pertain to individual compo-
nents of the Fourier transform of the radiation field,
i .e., they are defined in its momentum-frequency rep-
resentation. The latter is a direct consequence of the
treatment of the light ray as a stream of photons, and,
on the other hand, of the known impossibility of deter-
mining the wave function of a photon in the coordinate-
time representation.

As we shall see, it is precisely this circumstance,
when added to the inevitable temporal, spatial, frequen-
cy, and angular filtration of the Fourier components of
the radiation field by the optical measuring devices,
which is the reason for the aforementioned difference
between the optical and electrodynamic descriptions of
the radiation field in terms of energy. In other words,
it turns out that the space-time representation, which
is so convenient, for example, in radiophysics, is or-
ganically foreign to the optical manner of thinking.

In this lies, in particular, the internal contradiction
of the suggestion made by Soleillet,C483 used, for exam-
ple, in"·441 and subsequently developed in detail by
Fedorov,C 2 1·5 3·5 4 1 that the light field be covariantly de-
scribed with the aid of a tensor ^£?(i, k = x,y, z), defined
in three-dimensional coordinate space, if it is applied
to a plane wave or a wavelet train (as is done

in[Ei,44,53,54] i n c o n t r a s t to" 8 3 , where such a description
is consistently applied to a radiation field of arbitrary
structure).

In the case of a wavelet train it seems logically con-
sistent to use a system of coordinates that takes into
account ab initio the transversality of the radiation field,
and is rigidly connected with the direction of propagation
of the light. This leads inevitably to the quantum-me-
chanical density matrix Jik = (οη/4η·)£,£»(ϊ, k=l, 2), where
the quantities Et are specified in a plane perpendicular
to the direction of the ray, or to the four-dimensional
Stokes vector parameter made up of its components,
S, = (cn/4ir)Ea'E*(i= 1, 2, 3, 4; σ' is the i-th Pauli ma-
trix, see below), since the latter are explicitly defined
precisely in the frequency-momentum representation
(see, e.g., C 2 l 2 2 ' 3 7 l 5 7 " 5 9 ] ) . This question will be dis-
cussed in detail in Sees. C and Ε of Ch. 2.

On the other hand, the description of wavelets with
the aid of an aggregate of parameters S{ (or J{/,), that
are functions of the frequency and of the direction 1 of
the propagation of the wavelets, i .e . , specified at a
point (more accurately, as we shall show, in a certain
small vicinity of a point) in frequency-momentum space,
makes it possible to formulate the subject of ray optics
as an investigation of transformation operators for the
parameters S{ (or Jik) that characterize the ray when
the point (ω, 1) corresponding to this ray is displaced or
mapped through the action of the medium on the light
ray (see, incidentally, Sec. C of Ch. 1).

This statement of the problem, first succinctly formu-

lated in"· 2 2 · 2 3 1 , leads directly to the formation of specif-
ic concepts and premises of algebraic optics, which in
final analysis are also of photometric nature and occupy
an important place among the concepts and interests of
modern ray optics1 2 ' 1 2 · 1 3 · 2 2 ' 2 3 · 4 0 · 4 8-5 2 · 5 6 · 6 0 8 ' 1 1 ' · 1; for de-
tails, see Ch. 3. "

This reveals one more important circumstance. The
described approach makes it possible to separate dis-
tinctly the characteristics of the radiation field (before
and after it is acted upon by the medium) from the char-
acteristics of the medium itself, the optical properties
of which are exhaustively described by the operator of
its action on the ray, independent of the state of the lat-
ter>C2,22,48J

An example of such an operator description may be
the Fresnel coefficients, which make up in their totality
the operators of reflection and refraction of light by an ·.
interface, whereas an example of the alternative tradi-
tional description is the aggregate of the formulas that
are derived from them, which characterize the result of
the action of these operators, i. e., say, the state of
polarization of the reflected or refracted light at some
state of the wavelets that illuminate the surface.1·16'46·47'613

Other examples may be the matrices of light scattering
by small particles'·2·1 7·1 8 '2 2 '2 3·4 8·4 9 1 or dispersion ma-
trices1·2'12'62-64·1 (see also below), which also character-
ize the properties of the medium itself, and not the light
field transformed by the medium as, for example, the
degree of polarization or the degree of coherence of the
scattered radiation; see, e. g. , C 4 4 ' 4 7 : | .

The introduction of the operator of the action of the
medium on the light ray explains immediately also the
formulation of the so called inverse problems, intended
for optical investigation of the properties of matter . [ $ 5 ι β 6 ]

Their task is to interpret the experimentally determined
operator of the action of matter on the light ray.

Thus, the geometrical-optics approximation leads,
on the one hand, to the laws by which the medium
(course of refraction, reflection, scattering, etc.)
transforms the position of the point representing a plane
monochromatic wave in frequency-momentum space and,
simultaneously, to the laws governing the transforma-
tion of the vectors of the electric and magnetic field in-
tensities of this wave, accompanying the displacement
of the point representing the wave. The next step should
consist of a transition to a train of light wavelets (i. e.,
to a certain finite vicinity of the point in the frequency-
momentum space) and to the photometric parameters
that describe this train.

B. Photometry and observability

This, however, raises a number of problems. First,
how can we change from the relations connecting the
field vectors of a plane wave to the photometric parame-
ters and the laws of their transformations for a wavelet?
Second, what set of these parameters is needed for an
exhaustive description of the light wavelet? Third, how
can one introduce photometric concepts in the case of an
arbitrary space-time structure of the radiation field
when it is necessary to regard the field as a superposi-
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tion, generally speaking, of partial coherent plane waves
having all possible directions and frequencies? Fourth,
how can these concepts and quantities be generalized to
include the light ray? Finally, what are the conditions
and limits of applicability of these concepts, which are
essentially foreign to the spirit of electrodynamics?

To answer these questions we must return to the em-
pirical origin of photometry and to call attention to the
fact that it deals exclusively with observable quantities.
In other words, the origins of photometry cannot be re -
vealed by considering only the electromagnetic field it-
self, as can be easily verified, say, fromC37~423 ort53'543,
and also from the treatment of photometric problems
inC25·33·363 and especially inC67'683. The nature of the pho-
tometric quantities and concepts is in principle insepa-
rable from the specifics of the process of optical mea-
surements"'22'23'523 and is brought about by the quadratic
character of the radiation receivers, and by the finite
character of their dimensions and of their time con-
stant, l30: and also by the fact that the receiver filters
out the Fourier components of the radiation field (see
below).

From the point of view of quantum electrodynamics,
this means that the entire system of photometric con-
cepts and quantities is generated by the operator of the
action of the radiation field on the measuring device
(see, e. g.,C571). Moreover, the inseparable link be -
tween photometry and the concept of the light ray, and
the treatment of the latter as a jet of photons, is a di-
rect consequence of the properties of this operator.C30]

At first glance, the finite character of the dimensions
and of the time constant of the measuring instrument,
which brings about averaging of the values of the mea-
sured quantity both in space (over scales greatly ex-
ceeding the wavelength) and in time (the duration of which
is much longer than the period of the optical oscilla-
tions), and also the associated cutoff of the high-fre-
quency part and of the temporal and spatial spectra of
the variability of the radiation field, are due exclusively to
technical causes. Actually, however, it is dictated by
considerations of fundamental nature. To illustrate the
importance of this operation of space-time spreading,
it suffices to recall the impossibility, in accordance
with the uncertainty principle, of constructing an in-
stantaneous operator for the flux density of the photons
at a point (see, e. g.,C57·693). Such a possibility appears
only after sufficient averaging in space and in time or,
equivalently, over a certain vicinity in the space of the
frequencies and wave vectors, i. e., in other words,
only for a train of wavelets or a ray.

This circumstance, which is fundamental for the de-
scription of the light field, was first indicated by Max
Planck,C70] who noted that when optical quantities are
used the" time differential must be much larger than the
period of the oscillations, and the space differential
must greatly exceed the wavelength of the light.

Thus, the description of the light field with the aid of
the electric and magnetic field intensity vectors as func-
tions of the time and of the coordinates is certainly in-
compatible with the photometric conception. The latter

calls for formulation of all of optics in terms of observ-
able quantities defined in frequency-momentum space
as applied to the specifics of the light ray as an aggre-
gate of incoherent wavelets, and of the operators of the
transformation of these quantities in the course of the
transformation of the ray under the influence of the me-
dium.C2l22l23>303 A planned or, more frequently, fortu-
itous realization of such a program comprises an appre-
ciable part of the subject of modern statistical optics;

see, e.g.,
[2,12-14,17-19,21-42,48-56,65,71]

Norbert Wiener was apparently the first to call atten-
tion to the possibility of representing the polarization
characteristics of a light wave in the form of observable
quantities. Using correlation functions for different
components of the electric vector of a plane wave,
Wienercs2'593 arrived at a spectral matrix that accounts
for the entire aggregate of the quantities observable in
this case, and then used it to make up a system of four
parameters identical with those introduced by Stokes1783

back in 1852 on a radically different basis, and almost
forgotten for lack of any connection with the views of
that time.

The same parameters were subsequently introduced
independently by myselfC2'22'233 and later by FanoCs23 in
a different manner—directly from an analysis of the ac-
tion of a light ray on a measuring instrument equipped
with a variable polarization device. The analysis was
based on considerations identical with the ideas of Max
Born (see, e. g.,C73]) that constancy of the measured pa-
rameters when the measurement method is varied is the
criterion for the objectivity of the measurement result.

In such a treatment, the Stokes parameters, which
pertain in explicit form (as an exhaustive aggregate of
observables) not to a plane wave and not to the radiation
field at all, but concretely to the light ray, i. e., to a
small vicinity of a point in the frequency-momentum
representation, have acquired a clearly pronounced pho-
tometric meaning not only by unifying photometry with
polarimetry, but also by connecting them rigidly with
the ray concept.1·2'22'233

A direct consequence of this fact was the already men-
tioned possibility of a consistent algebraic interpreta-
tion of the action of a medium on a light beam as an op-
eration of a linear transformation of the Stokes parame-
ters, which made it possible, in turn, to introduce the
transformation of the state of the polarization of the light
under the influence of the medium (in particular, to in-
troduce the law of conservation of the angular momen-
tum) into the theory of radiative transfer in scattering
media—see Ch. 3 for details. It is important to note
once more that the latter turns out to be possible not
only because the transfer equation is formulated in prin-
ciple within the framework of photometric concepts and
is essentially based on the assumption that the light field
is split up in the scattering medium into light wavelets
that are not coherent with one another—see Ch. 2.

C. Coherence and light wavelet

The transition to observable quantities has inevitably
brought to the forefront the problem of coherence. In
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general outline, the connection between coherence and
observability was clear already to Michelson.C74: On the
other hand, a quantitative investigation of this connection
has become in recent years the subject of a persistent
study in statistical optics; see, e. g., ""'-«•«-"J.

The usual treatment of this question, however, is
somewhat one-sided—attention is focused on investiga-
tions of the statistical properties of the radiation field
itself. The coherence phenomena are dealt with here
as a manifestation of the correlation between the fluctua-
tions of the field at different space-time points, while
the concept of coherence is directly connected with the
measure of the compatibility of the phases of the com-
ponents of the Fourier expansion of the space-time vari-
ation of the radiation field in plane monochromatic

waves; see, e. g.,
C75]

There is, however, another no less important aspect,
which has remained so far in the shadow. The point is
that the very concept of coherence stems from the qua-
dratic character of the light receivers and from the fact
that both their dimensions and their time constant are
finite. Without resorting to the measurement process,
i .e. , without going over to observable quantities, there
is no need whatever for the coherence concept. This
photometric character of the coherence concept is em-
phasized by the fact that its measure—the degree of co-
herence—is introduced via the same correlation func-
tionsC37~42] as the photometric quantities1·30·1 (see below).

Inasmuch as we shall henceforth deal with the splitting
up of the radiation field into an aggregate of incoherent
(i.e., statistically independent) wavelets, it is neces-
sary to bear in mind also the following considerations.

The concept of a wavelet, being a modification of the
concept of a plane wave, can pertain only to radiation
that propagates in a quasi-homogeneous medium—this
concept becomes meaningless in substantially inhomo-
geneous media. Subject to this limitation, the wavelet
can be regarded as a formation whose Fourier-expan-
sion components fill tightly a narrow spectral interval
of frequencies ω= ω - Ω (ω is the average radiation fre-
quency; Ι ΩI « Ω ο « ω), of inseparably connected wave
numbers k = (ω/ο)ηι (c is the speed of light, m =n - i κ is the
complex refractive index of the medium), and, generally
speaking, complex wave normals 1 = 1 +ρ (I is the wave
normal in the direction of the beam axis, 12 = T2 = 1,
Ip = 0, I pi /111 = I pi « po « 1) with a smoothly varying
spectral density Eo §(Ω, ρ), which vanishes outside the
interval ΙΩΙ « Ω ο , I pi «p 0 . In other words, the electric
and magnetic field intensities in the light beam, regarded
as functions of the coordinate and the time t, with allow-
ance for the connection between Ε and Η for a plane

C № β f o r m
e,55,56,75,135]

i-mi!-)]£(i, r),
(1)

(i, r) = *, r),

where Eo is generally speaking a complex phasor, and
the function

which describes the space-time structure of the beam,
depends relatively little on t and r.

In rough outline, the statistical structure of such a
formation is characterized by a coherence time X and
by a coherence area s, which are defined by

(3)

where λ = XQ/W is the wavelength in the medium and S « p0

is apex angle of the light beam. t 4 1 i 7 5 ]

It is appropriate to recall here that, as first shown by
Gabor (see, e. g.,C 3 7·3 9 3) Maxwell's equations operate
not with real field-intensity vectors, but with their com-
plex-conjugates, for which the Fourier-transform com-
ponents exist only at cos 0 and take the form (1), where
g(t, r)= 1. As explained inC163, the complex character of
the vector phasor E0 = E0(t+ig), where the real vectors
f and g are connected by the relation f » g = 0 and f2 + g2

= 1, means that the vector Eo describes an ellipse with
semiaxes Eoi and £og, while the complexity of the wave
normal Τ corresponds to inhomogeneity of the plane
wave.

The expansion of a monochromatic field into a spatial
spectrum is compatible with Maxwell's equations only
when it is limited by plane waves of only the given fre-
quency (or, equivalently, with a given wave vector sat-
isfying the dispersion relation). Therefore, generally
speaking, such an expansion is possible only if one re-
sorts only to the spectrum of inhomogeneous plane waves
having the same wave number k = ηιω/ο™1 (the Weyl ex-
pansion). This means1 1 8 3 that the aggregate of the wave
normals spans generally speaking the entire domain of
complex vectors satisfying the unitarity condition qua-
dratically f*= 1, which can be rewritten in the form

b2 = 1, ab = 0, a = Re 1, b = Im [. (4)

It can be verified, however, that the concept of the
light ray presupposes essentially that the Fourier com-
ponents of the functions S (t, r) and 3$ (t, r) do not include
plane waves with strongly pronounced inhomogeneity.
More accurately speaking, quasi-homogeneity of the sys-
tem is not sufficientfor the existence of a light wave. It is
necessary also that the damping of each of the electromag-
netic-field Fourier components makingupthe ray remain
unobservable at least within the limits of the coherence
area during the coherence time T; this can be regarded
as a refinement of the concept of the space-time quasi-
stationarity of the field (see, e. g.,C 7 9 ]).

In the case of an inhomogeneous plane monochromatic
wave of frequency cor propagating in the T, direction, the
radiation-power flux density, i. e., the real part of the
complex Poynting vector

= Re-£-[EXH*l,

takes the form" 6 ' 5 3 · 5 6 1

(2)

(5)

(6)
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where the wave normal is S(a,,, p0). (13)

Ν = Re -f- = na + xb,

the damping vector is

Κ = — Im -r- = xa — nb

and k = ki = kom I is the wave vector.

(7)

(8)

Accordingly, from the estimate of the damping along
the wavelet axis (1) and across this axis, the require-
ment that all the Fourier components of the wavelet
plane be quasi-homogeneous can be written in the
formt 5 e l

2χωΓ<ΐ(θΓ x < ^ ) ,

|1|«1.±-.ψ!., ρ « ρ · , 7 =

N«nl, K«xl — rej.

lj = 0, (9)

In other words, one can refer to the wavelet train
(i. e., also to the beam) only in sufficiently weakly ab-
sorbing media, and the restrictions on the allowed in-
homogeneity of the Fourier components of the field are
more stringent the smaller the angle aperture of the
wavelet train, i .e. , the larger its coherence area.

This requirement, to which no due attention has been
paid so far, imposes most important restrictions on the
structure of the electromagnetic fields in which light
wavelet trains can be separated, and by the same token,
for which a photometric description of the field can be
introduced. In fields that do not satisfy this require-
ment (say in the case of total internal reflection in a re-
gion behind a reflecting interface or in the case of dif-
fraction inside small bodies), the results of the energy
and correlation measurements cannot be expressed in
photometric terms. In particular, it is impossible to
use for them the radiative-transfer equation.

Under the restrictions (9), as can be easily verified,
we have

[EXE*] = -1i (EE*)tfXg]• * i(EE*) q\, (10)

where

i = 2 | f | | g | , (11)

and from (6) with allowance for (7) and (8)C 5 6'1 0 7 ] we have

L = - ^ e-2*oKr ( E E (12)

We now write down equations for the densities, aver-
aged over space and time, of the principal dynamic
quantities that characterize the field of the wavelet train
under the natural (owing to the smallness of Ω and p0)
assumption that there is no frequency or spatial disper-
sion.

1) The average density of the electric energy of the
radiation

2) The average density of the magnetic energy of the
radiation

mm*
ο, Ρο).

3) The average density of the radiation power
£^[16,56,107]

(14)

L= R e ^ [8 xje*] = g (Εαβί) e " * o & ( l + q [lxj]) g (Ofc P o ) .

(15)
4) The average density of the radiation momentum

after AbrahamC8°-82]

^ j ] ) g (Ωρ, ρ0).

(16)
5) The average density of the spin angular momentum

of the r a d i a t i o n 1 2 ' 5 6 ' 5 7 ' 8 " with allowance for (10) and (11)

(17)

(18)

where according to (2) we have

S(O0, p o ) = (g(t, r)g*(t, 3))ΤΛ

and ( ) r > s denotes averaging over the time and over the
coherence area.

We note alsoC 5 e l that the momentum ρ and the angular
momentum Μ are transported in the direction of the
power flux, i .e. , in the direction of 1+q[lxj], with a
group velocity

u-. (19)

the direction of ρ coinciding with the direction L of the
power transport, and differ in general from either the
direction of the wave normal Ν or the direction of M.

Relations (13)-(19) constitute the aggregate of the dy-
namic characteristics of the wavelet train as a unit, and
by the same token constitute the energy basis for our
representations of the light ray.

The concept of the wavelet train is fundamental in the
system of ray optics. To estimate the extent to which
it connects the modern concepts with the opinions of the
past centuries and ensures continuity of the photometric
and geometrical-optics concepts, we shall review cur-
sorily the history of this concept.

In the antiquity, the concept of light-bearing rays
emitted by the eye, stemming from the inevitable radi-
ance required to see the celestial bodies, has enabled
Euclid and Ptolemy to construct a working theory of the
reflection and the refraction of light.CM3 The subse-
quent development of geometrical optics (for example,
by Al-Hazen) reversed the ray path and filled the rays
with a certain material substance, but did not touch
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upon their external appearance, to which Descartes,
Newton, and Huygens added the property of independence
of one another, i. e., noncoherence. The next step was
made by Leonard Euler,C 8 5 : l who transformed the ray
into a wave channel. In essence, this concept was pre-
served, at any rate in computational optics, to our very
day, and underwent only slight refinements.

Principal among them was the idea of motion of ener-
gy along the wave channel, i. e., the replacement of the
disembodied ray by a light tube, thus providing a con^
nection between geometrical-optics constructions with
photometry, albeit only from the viewpoint of the physics
of the middle of the last century. In particular, this has
led to a photometric formulation of the law of energy
conservation in the form of the so called Straubel invari-
ant (see, e .g ./ 2 0 ' 8 6 1 ) .

It is easily seen that the train considered above is
none other than the wave model of a light pulse"5'135-1

moving along an elementary light tube. An aggregate
of the incoherent wavelet trains with a common propaga-
tion direction, i. e., an aggregate of pulses moving
along one and the same light tube, makes up the "light
ray." In turn, an aggregate of rays of nearly equal di-
rection, i. e., a sheaf of rays or light tubes, makes up
a "light beam. "

However, the concept of the light ray, i. e., of a light
tube along which energy flows, is rigidly connected with
the space-time representation, whereas the parameters
characterizing the state of the wavelet train are defined,
as we have seen, in the frequency-momentum represen-
tation. Therefore the possibility of combining these con-
cepts, of "transfering" the parameters of the wavelet
train from one representation to the other, is not a
trivial one. It is ensured exclusively by the finite char-
acter of the coherence region of the wavelet train and is
restricted by the requirements of the uncertainty prin-
ciple. Within the framework of these restrictions, the
parameters of the wavelet train (including the photomet-
ric parameters, say the Stokes parameters) referred
in frequency-momentum space no longer to the point
(ω, 1) but to a finite vicinity around it, can be regarded
as parametric functions of the coordinates and of the
time.

It is precisely this duality of the concept of the wave-
let train and its parameters, with an obvious physical
basis, which makes it possible also to identify the wave-
let train with the light tube and to include photometry in
the system of ray optics.

At the same time, this raises the question of tracing
and studying the processes of the space-time transfor-
mation of the wavelet train, as a unit, by the medium.
In other words, the scope of ray optics can be treated
as the biography of the train (with the entire aggregate
of the structure and dynamic parameters that character-
ize it) as an object of various physical actions exerted
by the medium or by bodies immersed in the medium
(including optical devices).

We shall return to this group of questions in Ch. 3.

2. OPTICAL MEASUREMENTS AND
PHOTOPOLARIMETRY OF THE LIGHT FIELD

We turn now to a photometric description of a light
field with arbitrary space-time structure, or equiva-
lently, to the question of the electrodynamic interpreta-
tion of the photometric concepts and the limits of their
applicability.

The idea of constructing a consistent and closed theory
of the light field was first advanced by Gershun.: 8 7 : The
concept developed by him, which played an important
role in illumination engineering, was arrived at phe-
nomenologically, without any connection with electrody-
namics, as a classical theory of a vector field of energy
parameters of the radiation. It turned out that the lat-
ter are the optical equivalents of the volume energy den-
sity and the Poynting vector, and a method was indicated
of deriving them from photometric quantities.

Radical progress in this direction is connected with
the advent of statistical optics, C37~42:l one of the main
objects of which is precisely the theory of the field of
the energy parameters (correlation functions) of the ra-
diation, the latter being constructed directly on the basis
of Maxwell's equations.

Such an approach to the light-field theory, however,
as well as Gershun's approach, is connected in essence
with renouncing the universally accepted and well veri-
fied photometric concepts, and calls for the develop-
ment of special methods to surmount this barrier. It
is easy to note that an appreciable part of the efforts
aimed at an electrodynamic justification of the radia-
tion-transport equationC23~3e] is aimed precisely at de-
veloping procedures that connect the formalism of the
correlation functions with the formalism of ray optics
(primarily the choice of the averaging region).

At the same time it turns out that there is another pos-
sible purely photometric approach to the construction of
a consistent general theory of the light field within the
framework of statistical electrodynamics.

A. Photometric role of the light receiver

In spite of the great variety of the existing or possible
light receivers, they can be divided into two fundamen-
tally different classes, which give rise respectively to
different photometric concepts and quantities. The first
includes instruments that can be called flux meters,
i.e., instruments that accumulate and convert the flux
of some dynamic quantity (power, momentum, angular
momentum) delivered to the receiver by electromagnetic
radiation. If the reference is to energy flux meters,
then they imitate to one degree or another a black body
in which the energy of trapped radiation is transformed
into another directly discernible form of energy (heat,
electricity, etc). Frequently the role of such a black
or "grey" body is played by the coating or volume of the
working body of the receiver. On the other hand, if we
are dealing with momentum flux (e. g., l № y) or angular
momentum flux (e. g., C 8 9 i 9 0 : l ) ; then the receiving ele-
ment is an absorbing or reflecting surface of a vane of
one form or another.
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In either case, a flux meter is characterized by the
existence of a receiving window or a receiving surface
(which we shall assume, without loss of generality, to
be flat) with area Σ » λ8, with simultaneous angular fil-
tration of the radiation-field Fourier components that
reach the receiver. The measured quantity in this case
is the flux of the power (momentum, angular momentum)
of the radiation passing through the entrance opening (or
the receiving surface) and subjected to averaging over
the area Σ and over the time constant τ » Ι/ω of the re-
ceiver, with subsequent normalization to a unit surface
and a unit time.

In the case of radiation-power flux, this quantity is,
generally speaking, by no means the Poynting vector,
but the energy illumination F of the receiving surface,
defined by the relation

(20)

where f is the inward normal to the receiving surface
and L is the Poynting vector for the field filtered by the
radiation receiver:

E = _£_ e-2«,,KrRe j j j j ') [ Ε ( ω , ])Η·(ω', Ι')]

' dO dO',

(21)
where dO is the solid-angle element corresponding to
the direction of the vector N, while/(I) is the filtering
factor and depends on the construction of the instrument.

Thus, if we have two identical light sources, then we
can see that half-way between them we have L = 0. A
similar situation occurs inside a non-absorbing layer of
a cloud or in the interior of a snow cover, where the
brightness of the light field is identical in all directions
(see, e. g., «2.14,91-93]) A t t h e s a m e t i m e > f o r ^ i n _

strument with an angle filter

if
(22)

under the aforementioned situations we certainly have
L#0. Thus, for a flux meter with a filter (22), ori-
ented towards one of two receivers, the second, so to
speak, ceases to exist. In exactly the same way, in a
field of diffuse radiation inside a scattering medium,
filtration of the type (22) excludes, for a vertically ori-
ented receiver, the action of all, say, rising or de-
scending Fourier components.

It is precisely this circumstance which prevents.us
in the general case from comparing the energy illumina-
tion F with the power flux density of the light field. In
the example with the two sources, the latter is equal to
the difference between the illuminations of the area on the
opposite sides, and under the conditions of a diffuse
light field the establishment of a corresponding con-
nection calls for a more detailed analysis. t 2 0 ]

We encounter a similar situation in all types of calo-
rimeters, thermocouples, bolometers, and receivers
based on the use of thermostriction, pyroelectric, and
pyromagnetic phenomena, effects of light pressure, etc.

The action of recivers of the other radically different

type, namely photoelectric receivers, is based on the
principle of counting (in one way or another) the elec-
trons that change their state under the influence of light,
via some type of photoeffect, within a certain time
τ» l/ω and in a certain volume v» Xs. These include
all the receivers in which one uses photoemission, pho-
toconductivity, photo luminescence, photochemical re-
actions, etc.

In contrast to flux meters, where a phenomenological
analysis is sufficient, the understanding of the proper-
ties of photoelectric receivers calls already for a de-
tailed quantum-mechanical analysis of the photoelectric
process. Such an analysis, however, leads" 9 ' 4 1 ' 7 1 3 to
the conclusion that, regardless of the individual char-
acteristics of the process, the probability of registering
photoelectric action of the radiation in a volume ν with
coordinations r within a time r is equal to

00

Ρ (Γ) ντ=ντ \ α (ω) g (ω, Γ) Ι · (ω, Γ) άω, (23)

where t (ω, r) is the spectral density of the temporal
Fourier expansion of the complex intensity vector e(r, t)
of the electric field of the radiation at the point r. What
is essentially assumed here is a weak spectral depen-
dence, on a scale of τ"1, of both the field itself and of
the volume quantum efficiency α(ω) of the receiver, i. e.,

1 d In g (01, r)
τ dm

1 ding (a)

to
(24)

Inasmuch as to be able to count photoelectrons any
photoelectric receiver must have a finite volume ν » λ3,
the object of the measurement is the value of P(r, i)
averaged over the volume ν and over the time:

(P)xo = i.e-2I«K'j |β(ω)|ι^/(Ι)/(1')Ε(ω,1)Ε·(ω11')

X exp (— ik,, (N — N') r) dO dO1 da, di,

(25)
where account is taken of the already stipulated require-
ment that the change of the factor exp(- 2kJS. · r) be not
discernible within the limits of the measurement vol-
ume v.

B. Splitting of the radiation field by a receiver, and the
principles of photometry

We consider first the simplest case of a wavelet train
(1) incident on a flux meter. The receiver, as already
mentioned, averages the quantities L. f both over the
area of the input window, and over a time period equal
to its time constant τ » Ι/ω. Taking into account the
smallness of Ωο/ω and p0, the practical constancy of
exp(- 2feoK · r) within the limits of the entrance window
of the receiver, as well as the quasi-homogeneity of all
the Fourier components, we obtain in accordance with
(7), (11), and (15)

·£-e-2*»1" (EH?) (lj) (̂Ωο, p0),•Tn
(26)

where S{Q,, p) is defined by (18), except that the averag-
ing regions Τ and s are replaced by τ and Σ.

The weighting factor §(Ω0, p0) is determined essential-
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ly by the relation between the parameters of the instru-
ment (τ, Σ) and the coherence region of the wavelet train
(T, s). If 1/ω « r £ Τ and λ 2 « Σ S s, then we have on the
beam axis $(Ω 0 , po) = 1. This means that the beam is re-
ceived by the instrument as an integral fully coherent
formation (i. e., a plane monochromatic wave) with an
effective amplitude

E e f f = ΤΤ
- O n IQISPO

, p)dQdp. (27)

To the contrary, if τ » Γ and Σ »s, then the instru-
ment, so to speak, splits the wavelet train into an ag-
gregate of partial trains that are not coherent with one
another, for each of which the coherence area and time
are equal to Σ and τ respectively, and each of which
acts on the instrument independently in accordance with
(27), but with changed integration regions.

We now place our receiver in an arbitrary radiation
field, which we assume to be quasi-stationary in time
and in space. The averaging over the time again leads .
to a splitting of the field (in the sense of its action on the
receiver) into an aggregate of incoherent components
with coherence time r each. Turning further to expan-
sion of the monochromatic component into a spatial
spectrum of plane waves, we must take into account that
the entrance window of the receiver acts here not only
as a spatial but also as an angle filter of the type (22),
and eliminates all the Fourier components for which
1 · f < 0. This circumstance, as we have seen, no longer
enables us to identify the energy illumination intensity
with the Poynting vector, and makes it necessary to re-
sort to its truncated analog L (21). The original tech-
nique of Fourier transformation, filtration of Fourier
components, and subsequent averaging of the projection
(20) of the analog L (21) of the Poynting vector for the
residual formation over the area Σ of the receiver and
over the time interval τ, again lead to a splitting of the
field into aggreate incoherent wavelet trains with dif-
ferent directions, so that the coherence time and coher-
ence area of each of them are equal to

Τ = τ, s = Σ -cos θ (cos θ = l j), (28)

each of the wavelet trains separated in this manner act-
ing on the receivers independently.

We have in fact assumed here that the field does not
contain any Fourier components with strongly pro-
nounced inhomogeneity, i .e., in other words, we have
assumed a statistical spatial quasi-homogeneity and a
statistical temporal quasi-stationarity of the radiation
field, which limit the region of the photometric treat-
ment of the results of optical measurements.

Thus, as a consequence of the finite dimensions of
the entrance window and of the time constant of the in-
struments of the flux-meter type, the average energy
illumination intensity measured by them in the direction
1= Τ can be expressed in the form

where its spectral density is

F (ω, 1) = f / (o), 1) cos ddO (30)

dO is the element of the solid angle in the direction of 1
and, in accordance with (26),

/ (ω, 1) =^-e-2*t iKr Ε (ω, 1) Ε* (ω, 1) (31)

has the obvious photometric meaning of the spectral den-
sity of the brightness of the wavelet train propagating in
the direction 1.

These arguments are valid if the angular dimensions
of the luminous object exceed the angular dimensions
ΔΟ of the wavelet train, as determined by the parame-
ters of the receiver. This situation obtains, say, in
the interior of a scattering medium. In the opposite
case, when the angular dimensions of the source Δ08

(say a distant star) is smaller than ΔΟ, the illumination
intensity F does not depend on ΔΘ, and we have in place
of (30)

F (ω, 1) = /(ω, 1) cos9-AOs,

i . e . ,

/(»,!,„ «.«-

(32)

(33)

F (1) = \ F (ω, Ι) da. (29)

and for a small source ΔΟ 5 « 1 we have (Ε · Ε*) ~ Δ05,
from which follows invariance of the brightness of a
light beam propagating from a small source in a non-
absorbing medium. Obviously, (31) coincides with (33)
if we assume for an extended source Δ05= 1.

Thus, as already noted above on the basis of general
considerations, the principal photometric characteris-
tic of the light field—the spectral density of its bright-
ness—is determined exclusively for a train with a given
direction 1, i. e., for the vicinity of a certain point
(ω, 1) in frequency-momentum space. The specifics of
receivers of the flux-meter type leads in this case to
the definition of one more photometric quantity, namely
the energy illumination intensity in the direction of 1,
and establishes their connection with the spectral den-
sities of the brightness in different directions.

By way of example, let us consider the classical ex-
periment with Young's two-slit interferometer, the
slits of which are seen by the receiver as shifted by a
small angle θ relative to each other. If the linear di-
mensions of the entrance window of the receiver are
much smaller than the scale of the measured interfer-
ence pattern, then θ is smaller than the angle ΔΟ sub-
tended by the wavelet-train receiver. In other words,
for such a receiver, the two slits are indistinguishable
and are perceived by the receiver as a single small
combined source, for which we have in accordance with
(32) and (33), with allowance for the fact that K = 0,

/•=-g-(E,^E2, Er+Es»)cose, (34)

where Et and E2 are the phasors of the field produced in
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the vicinity of the receiver by the radiation from the
slits 1 and 2 of the interferometer. Therefore, as it
moves along the interference pattern, the receiver re-
produces its structure.

On the other hand, if the linear dimensions of the re-
ceiver exceed the scale of the interference pattern, then
the angular dimensions of the incoherent trains, into
which the receiver splits the light field, is smaller than
θ, although it is much larger than the angular dimen-
sions of each of the slits taken individually. Therefore
the receiver will see the radiation of the two slits as
incoherent, i .e., according to (30)-(33)

f = -£ (35)

which can be treated in another language as a result of
averaging of the interference pattern over the receiver
area: F' = (F).

We return now to the photoelectric receiver and place
it in an arbitrary light field, without resorting to an
angle filter, (i. e., /(I) = 1). If we assume that the mea-
surement volume is a parallelepiped with sides X, Y,
and Z, then we get from (25)

(Ρ),,:, = i-»*oKr j j j α (ω) Ε (ω, 1) Ε* (ω, 1') sine (kANxX)

χ sine (k^NyY) χ sine (Λ,,ΔΛ^Ζ) dadOdO',

(36)
where sincz = sinz/z, in accordance with (7) with allow-
ance for the smallness of κ and Im 1

ANx = n(Yx-lx) (37)

and analogously for &Ny and ΔΝΒ whence, as a result
of the condition Χ, Υ, Ζ » 1/fe,

(P>,_ „ = e-2ftoKr f f α (ω) Ε (ω, 1) Ε · (ω, 1) da dO, (38)

or, introducing a quantity that has the obvious photomet-
ric meaning of the spectral density of spherical illumina-
tion intensity1201

Φ (ω) = & Ι (ω, 1) dO;
ύ

we obtain

(P)x,u= \ 4 (ω) Φ (ω) *o,
ω

where

(39)

(40)

(41)

For a nonselective receiver (8α/8ω = 0) we have

</>},,„ = Λ Φ , (42)

where

φ = Γ φ (a) do) = f / (1) dO (43)

is the total spherical illumination of the volume ν and
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/ (1) = j / (ω, 1) da

is the total brightness of the light beam.

The quantity

<& = •£<«(». r) I* (i,r)>x,.

(44)

(45)

differs in accordance with (13) and (14) from the aver-
age spatial energy density of the light field (W) = (WB

+ WM) = 2(WE) by a factor c/n:

(46)

or in analogy with (21) and (25) for an arbitrary light
field

(47)

The need for introducing such a scalar characteristic of
the light field as Φ in order to complete its photometric
description was first pointed out by Gershun,t M 1 who
indicated also a method for its direct measurement,
based on relation (43).

Thus, in the case of receivers of the photoelectric
type, the fact that their time constants and their geo-
metric dimensions are finite leads likewise to a split-
ting of the radiation field into an aggregate of indepen-
dent (in the sense of their action on the receiver) wave-
let trains of different frequency and different directions,
with a coherence time τ and with a coherence area Σ
determined by the dimensions of the receiver. In other
words, the possibility of splitting up a light field into
an aggregate of incoherent wavelet trains is ensured by
the very method of the field measurement with the aid
of a quadratic receiver with finite τ and finite dimen-
sions, and the structure parameters of the trains are
determined entirely by the parameters of the receiver.
This is a fact that must be borne in mind when many
problems of instrumental optics are solved, including
the action of an ordinary lens.

It is obvious without further argument that the forego-
ing reasoning pertains to the entire assembly of the dy-
namic parameters of the radiation (13)-(17), which after
averaging over τ and Σ are formed additively from the
corresponding parameters of the individual wavelet
trains.

It should be added that when light is scattered by a
medium we are interested again in forms quadratic in
the intensity of the electric field of the scattered radia-
tion, averaged over a certain "effective" volume ele-
ment, t 2 3 · ' 0 · ' 1 · 3 " as can be easily verified by a suitable
analysis of the corresponding arguments, as given for
example m

t 3 8 · 4 4 · 4 5 1 . it is precisely this circumstance
which enables us to treat the light field in a scattering
medium likewise as an aggregate of incoherent wavelet
trains, and consequently to use the phenomenological
ideas of the radiation-transport theory—see below.

A remark of fundamental character is in order here.
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The splitting of the light field by the receiver into an
aggregate of discrete wavelet trains that act on the re -
ceiver can be regarded as a realization of the sampling
theorem, or more accurately of a rephrasing of this
theorem as applied to space-time filtration of the radia-
tion field by the receiver. We have already seen that
the finite character of the space-time intervals sepa-
rated by the receiver, a character which determines its
frequency-contrast characteristics, leads to a high-fre-
quency limit on the radiation-power spectrum sensed by
the receiver. With the aid of the sampling theorem
(see, e. g . , c r n ) it follows directly that the action of the
entire radiation field on the receiver is equivalent to the
aggregate of the actions of the radiation in certain se-
lected points at selected instants of time.

It can be shown, however, on the basis of the same
theorem, that the space-time restriction on the sensi-
tivity of the receiver produces, in addition, equivalence
of the field acting on the receiver to an aggregate of dis-
crete incoherent (i. e., independently-acting) wavelet-
train components, each of which has a frequency-angle
structure in the form

sine (ωηί — 2itn) sine (kxX — 2jip) -sine (ktY — 2nq)

and enters with a weight equal to the spectral density of
the brightness at ωη = 2πη/τ, kx(p)=2irp/X, ky(q) = 2wq/Y.

The parameters n, p, and q are integers here, and it
is assumed that a rectangular receiver window with sides
X and Υ is located in the vicinity of χ and y (at a differ-
ent window configuration, the actual expressions are dif-
ferent, but not the gist of the expansion; in particular,
if the window of the receiver is circular, then the func-
tions sine is replaced by an equivalent expression made
up of Bessel functions; see, e. g.,C 7 7 ]).

It is easily seen that the components of the expansion
produced in this manner are none other than the light
beams considered in photometry, the coherence time
and coherence area of which are determined by the pa-
rameters of the instrument.

Thus, when speaking of a light field (including also an
optical image), the concept of the light rays that make
up the field is connected not with the field itself or with
hypothetical diaphragms introduced into the field, but
with the receiver of the light. In some respects such a
representation comes close to the perspicacious but
naive ideas of Euclid and Ptolemy, and this explains
the viability of their theoretical constructions.

Obviously, equipping a receiver of any type with spec-
tral or angular filters, as is the case in real measuring
instruments, does not change anything in our reasoning,
except for introducing weighting factors for Ι (ω, 1).

We have seen that receivers of different types give
rise in principle to different photometric quantities
(F and Φ), i. e., they characterize the field from differ-
ent points of view. GershunC20] has shown long ago that
only the aggregate of these characteristics ensures a
complete energy-dependent description of the light field.
However, on going to real instruments, it must be borne
in mind that everything said above concerning flux me-

ters pertains, generally speaking, only to an absolutely
black body, and everything said concerning photoelectric
receivers pertains to that element of the light-sensitive
volume within which the brightness of the light beams
can be regarded as invariant, and the averaging is car-
ried out over the cross section of this volume perpen-
dicular to the light beam.

A real light receiver is an aggregate of similar light-
sensitive volume elements, interconnected by a certain
system for gathering the information registered by them
and for averaging this information over the entire vol-
ume of the receiver. This is the situation with a photo -
cathode, a photographic plate, luminophors, as well as
absorbing coatings such as in bolometers. Therefore
the theory of the combined response of the receiver as
a whole breaks up inevitably into two parts—optical,
pertaining to the theory of light propagation in the light-
sensitive body of the receiver, and informational— cov-
ering the physics of the processes that ensure the gath-
ering and averaging of the information concerning the
reaction (say, the heat rise or the photochemical yields)
of each of the volume elements to this radiation. The
singularities of both processes introduce significant
changes in the photometric properties of real instru-
ments, and in many respects blur the boundaries be-
tween instruments of different types. At the same time,
they determine the individuality of each instrument and
serve as a physical basis for the "corrections" peculiar
to it, i. e., the deviations of the measured quantities
from /, F, or Φ.

Thus, the purpose of the optical theory of a photoelec-
tric receiver of light is obviously the establishment of a
connection between the spherical illumination of each of
the light-sensitive elements of the volume of the work-
ing body with the conditions of the illumination of the
receiver as a whole. Assume that an analysis from the
point of view of radiation transport theory shows that
the spherical illumination Φ inside weakly absorbing
scattering bodies illuminated from the outside, such as
photographic emulsions, luminescent powders, mag-
nesium oxide, opal glasses, leaves of vegetation, etc.,
can exceed significantly (by as much as a factor of four)
the illumination F on their surface.C 1 2·1 3·9 1·9 2! Even if
the optical thickness of the layer is large enough, the
absorption of the radiation in the layer is determined
as a whole by a quantity that certainly differs (albeit not
very strongly) from the illumination F of the
layer. '" .«.».·«

The optical regime in the layer of metallic black
enamel covering the receiving surface of a bolometer
can be considered from the same points of view.CW3

The photometric properties of the layer as a whole de-
pend significantly on its microstructure and resemble
the characteristics of a black body only very roughly,
even at very large thickness. In particular, the black
coatings, just as coatings of weakly absorbing scatter-
ing media (for example, emulsions or luminophors) or
dull-finished metallic surfaces, are by far not ortho-
tropic, and one of the results of this fact is that the mea-
sured quantity differs from the illumination; the differ-
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ence, incidentally, can be compensated for by an angle
filter.

As to photocathodes having a thin-layer structure or
placed in a layer-type interferometer,Cle:l as well as
semitransparent metallic photocathodes, "e·94·*5^ the op-
tical field in them does not admit of photometric treat-
ment. However, such a treatment is possible for the
layer as a whole, and its absorbing ability (and conse-
quently also the response of the instrument) differs
significantly from the absorbing ability of the aggreate
of identical but separated elements.

The foregoing analysis, which culminates in the der-
ivation of the main photometric relations, reveals
clearly the electrodynamic meaning of the photometric
concepts and quantities, and also the conditions of their
applicability, and by the same token introduces photom-
etry into the domain of electrodynamics or, more ac-
curately speaking, statistical optics, eliminating its
century-old isolation from electromagnetic theory of
light.

C. Polarimetric generalization

Further generalization of photometric concepts is ob-
tained from an analysis of the observability of the light
field when the receiver is illuminated with polarization
or interference apparatus of one type or another. The
first step in this direction was the already mentioned
introduction of the Stokes parameter into the system of
photometry (i.e., ray optics)

S, (ω, 1) = ~6-2^·Ε (ω, 1) σΈ* (ω, Ι), (48)

where i=l, 2, 3,4;

«MS?)· "=C -!)• ° 3 = Ο · --(? "ο) («)
are Pauli spinor matrices.

As shown in"·8 2·»-5 8·5 8·5" from different points of
• view, the aggregate of all these parameters, which
make up in functional space the four-dimensional Stokes
vector parameter S, contains the complete photometric
information on the wavelet train. The quantity S ĉo, 1)
= Ι(ω, 1) has the meaning of its brightness, while the
quantity S4(o>, 1) = ^ ( ω , 1) (where q is the degree of el-
lipticity of the polarization of the radiation, defined by
(11)), is connected by means of a relation that follows
from (15) and (17), namely

(50)

with the average density Μ of the spin angular momentum
of the radiation in the light beam and the average density
• 11= MU of its flux, where U is the group velocity defined
by (19). We recall that the quantity -it, generally speak-
ing, is measured by instruments of the flux-meter

C 9 9 0 1

type.
C 8 9 l 9 0 : 1 The dynamic meaning of the remaining

Stokes parameters calls for further investigation.

A generalization of the expressions for the components

of the Stokes vector parameter to the case of an arbi-
trary representation, i. e., a representation of the field
of the wavelet train as a superposition of two arbitrary,
generally, speaking alternately elliptically polarized
components

(51)

where the complex basis vectors satisfy the condi-
tions"·23·561

e,l = 0, , f,g, (52)

has been introduced in t 2 ' a i ; see alsoc e e i.

As is evident from the foregoing analysis, all the dy-
namic characteristics of the radiation, including the
Stokes parameters, are additive for incoherent wavelet
trains of sufficiently close directions and close frequen-
cies; i. e., for the components of the light ray that joins
them. To describe the latter, i. e., the result of the
stochastic superposition of wavelet trains that differ
significantly only in their polarization states, it is nec-
essary to introduce an additional statistical parameter
that characterizes the degree of homogeneity of the mix-
ture.lZl2Z1 Such a parameter is the degree of polariza-
tion coherence of the wavelet trains,C8·22·37'381 defined
in terms of the corresponding correlation functions for
E((t), and expressed in terms of the components of the
Stokes vector parameter with the aid of the relation

(53)

Using this quantity, we can write down the Stokes
vector parameter in the form

S=I(l, rP), (54)

where Ρ is a unit three-dimensional "polarization vec-
tor" in the corresponding functional space. This nota-
tion leads directly to the brilliant formalism developed
by PoincareC97] for the description of polarization effects
(the "Poincare sphere"); which is convenient for the so-
lution of certain problems, but which has dropped out of
the modern concepts.C83

Any polarization device can also be characterized by
a certain Stokes vector parameter ? = J4(1, Py), where Py

is the polarization vector of the fully polarized (r= 1)
component separated by the device, and A is the energy
"transparency" of the device to this component. Then
(see, e. g.,C i l), the brightness IH of the light beam with
a vector parameter S, observed through such a device,
is equal to

±1(1,

where

cos θ = PP..

(55)

(56)

It is important to note that at r* 1, i. e., when we are
dealing with a stochastic mixture of incoherent wavelet
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trains that are in different polarization states, the clas-
sic description of polarization phenomena with the aid
of the polarization ellipse (see, e. g., [ 4 6 · 6 0 · 1 2 ° Ϊ ) loses all
physical meaning. It remains valid only within the
framework of the notion of the light wavelet train, and
essentially has no direct bearing on the ideas of ray
optics.

It is obvious that for all four Stokes parameters S, it
is possible to set up the photometric quantities Ft and
Φ, which are analogous to the spectral density of the
illumination F = F t and the spherical illumination Φ = Φ^
These quantities must be set up in order to consider the
conservation laws for the radiation in the scattering
medium, and in particular, when deriving the matrix
equation of radiation transport. C 2 l l 2 l 2 2 > 3 e ] The method
and the physical meaning of such a generalization for
S4 are obvious, inasmuch as F 4 and Φ4 are vectors cor-
responding (apart from a multiplier) to the flux density
of the spin angular momentum of the radiation through
the surface (F4) and the total spin angular momentum of
the radiation in the volume element (Φ4). The situation
is more complicated with the behavior of the quantities
Fz, F3, and Φ2, Φ3, the physical meaning of which is not
quite as clear. Caution must be exercised in their defi-
nition, in view of the preliminary transformation of the
reference plane, i. e., the representation (51), to which
pertain the Stokes parameters for wavelet trains with
different directions. [ 2 · 2 2 · 9 8 : ι The photometric utilization
of these quantities still awaits its investigation.

D. Photometric aspect of the convervation laws

The foregoing leads us to the problem of the conser-
vation laws for the dynamic characteristics of a light
field with arbitrary space-time structure. Referring
the reader to an analysis of the contemporary status of
this problem, for example "̂0-82,99-1011^ w e s h a l l d w e l l

here only on certain aspects that have a direct bearing
on our topic, and confine ourselves accordingly to the
case of quasi-homogeneous and quasi-stationary fields.

Turning to Maxwell's equations under the simplest as-
sumptions of a medium that is isotropic, nonmagnetic,
immobile, and having no space charge, and following
with slight modification the universally known procedure
(see, e. g., t 1 0 1 1 ), we obtain the conservation laws in the
form

(57)

Resorting again to Fourier expansion into a temporal
spectrum and assuming, just as inC l 0 1 ] the existence of
frequency dispersion, i. e., assuming for the electric
induction 3> and for the current j

Re ( g ^ l ) = 1 j j [ωε(ω)-ω'ε· (ω')] Ι (ω) g*(ω') β«ω--ω)
ο

>

3> (r, t) = \ ε (ω, r) % (ω, Γ) e<«'d<o,

j ( r , t)= • j σ (ω, r) g(o>, r) e"">< da,
(58)

(59)

2 I m ( g - ? | - P - ) = - 2 R e \ j cog (ω) SS* (ω') <Λ«»·-ω)ΐ <fo, άω'.
*o

(60)

where σ(ω, r) is the e lectr ic conductivity at the frequen-
cy ω, we obtain

Expanding further ΐ(ω, r) Άηά36{ω, r) in plane waves
and averaging in t ime and in space, we obtain

/ — div Re-^-[#X 5?\ = \ $ [σ (ω) + aim ε (ω)] Ε(ω, Ι) Ε*(ω, \)άωάθ,

(61)

<-jdiv[#X#*]>r s = - |R e ^ & ωΕ (ω, 1) Η* (ω, 1) άω άΟ, (62)
ο

or, taking into account the relation that is valid for a
plane waveCle·581

Η (ω, 1) = ηι(ω)[1ΧΕ(ω, 1)1 = [Ν (ω, 1) —;Κ(ω, 1), Ε (ω, 1)), (63)

and also (10)—(17) and (31), (39), we obtain after simple
transformations the conservation laws for the photomet-
ric quantities:

( — divL)r,s= — f 'i>divL((u, \)άωάθ
ο

+oo
4t Γ C

= —— \ Λ) [σ (ω) -\- ω Im ε (ω)] / (ω, 1) άω άΟ

ο

= -^- \ [σ(ω) + ωΐΓαε(ω))Φ(ω)ί/ω
D

+ ΟΟ

= — \ [σ (ω) -{-ω Im ε (ω)] IV (ω)άϋ). (64)
raj

Ο

(— div p)T, a = -^- (— div L ) r , , = — f Λ div ρ (ω, 1) άω άΟ, (65)

+οο +οο

<divM) r , s = — Ι ί£ div Μ (ω, \)άωάθ = 2 ^ ί ωΚ (ω, 1) Μ (ω, 1) άω άΟ
ο ό

« 2 f ωκ (ω) [ & Μ (ω, 1) άΟ 1 άω = 2 f ωκ (ω) Φ 4 (ω) άω. ( 6 6 )
ο ο

In other words, when averaging over sufficiently large
spatial and temporal regions, the dynamic characteris-
tics of a quasi-homogeneous quasi-stationary radiation
field are additive superpositions of analogous character-
istics of the individual wavelet trains into which the
field is split, and the conservation laws, considered
"in the mean" for the corresponding region, do not con-
tain "exchange" crossing terms—each of the trains ex-
periences an independent action on the part of the medi-
um. We emphasize that we are dealing here with an-
other characteristic of the radiation field itself, and
when the conservation laws are formulated one must
bear in mind also the effects due to the action of the
field on the medium (say, the action of the Abraham
force)—see"1'8 2 1.

We note also that a relation of the type (64) (albeit in
a somewhat more simplified form) was formulated first
for the light field as self evident, from intuitive consid-
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erations, by Gershun,[ a > 3 and was obtained later in 1957
in t l 0 l l E > 9 8 1 from the radiation-transfer equation (based,
as already mentioned, likewise only on intuitive photo-
metric considerations). Since that time it became the
basis of the most widely used methods of measuring the
absorptivity of scattering media (including natural wa-
ters) inasmuch as both (divL>riS and W(a>) can be mea-
sured directly in a layer of a scattering medium.

It seems that introduction into the system of ray op-
tics of the entire assembly of conservation laws for the
dynamic parameters remains one of the most important
problems of its further development, especially in con-
nection with the study of the specifics of the matrices
describing the action of a medium on a light ray (see
below) at different types of action.

E. Photometry and general theory of coherence

It now becomes necessary to ascertain the connection
between the photometric characteristics of the radiation
field and its statistical structure, which is the subject
of the general theory of coherence. The latter, as is
well known (see, e. g., lsi~iii) operates, generally speak-
ing, with cross-relaxation functions (mutual-coherence
functions) of the type

Γ,β (θ, ρ) = £ <«„ (t, r) %1 (ί + θ, r + ρ)), (67)

where Sa is the α-th component of the field intensity
(α, β= χ, y, z) and the averaging is over the time t and the
coordinates r within the limits of quasi-stationarity and
quasi-homogeneity of the radiation field.

Changing over to the Fourier expansion '6a(t, r) in
space and in time and averaging with respect to the pa-
rameters of the radiation receiver, we obtain

+00

αΡ (θ, ρ) = j § m« (I) Jlh (ω, 1) e-i»>e+ik0 dla d0,
6

(68)

where

cajQ)= (.Bj)a are generally speaking the complex direc-
tion cosines of the j-th basis vector ê  for the direction
l(j, k=l, 2), defined in accordance with (51) and (52),
while the functions

(69)

are the components of the quantum-mechanical density
matrix for a wavelet train with frequency ω in the prop-
agation direction 1 (see" ' 2 8 ' 2 3 · 5 7 3 ) .

The density matrix J is connected with the Stokes pa-
rameters St by the relat ions" 7 3

t (ω, σ'), J (ω, I) = , (ω, (70)

in which σ* are Pauli matrices (see (49)). Accordingly,
we obtain from (69)

, (ω, (71)

(72)

(73)

Thus, the main photometric quantities Ι (ω, 1), Jlk(u>, 1),
S{(w, 1) turn out to be the coefficients of the space-time
Fourier expansions of the corresponding correlation
functions of the electric field strength of the radiation.

If we put in (72) ρ = 0 and integrate in the right-hand
side over the directions, then, taking (39) into account,
we have

and, in particular,

Γ(θ, ρ)= ( §/(ω,
ο

where

Γ(θ,ρ)

Γ (θ, ρ=0) = (74)

i .e., the spectral density of the spherical illumination
has themeaning of the spectral density of the expansion
of Γ(θ = 0, ρ) into a temporal spectrum. In exactly the
same way, after integrating the right-hand side of (72)
with respect to ω at θ = 0 we obtain, taking (44) into
account,

Γ (θ = 0, ρ) = § / (1) eik»£/0, (75)

i. e., the brightness of the ray has the meaning of the
spectral density of the expansion of Γ(θ = 0, ρ) into a
spatial spectrum.

As applied to the wavelet train, the last relation was
first obtained and analyzed by DolinC253 and has led it to
the first electrodynamic formulation of the brightness
concept, which coincides with (31) at K=0. The general
case of a diffuse light field was not considered by L. S.
Dolin.

A later attempt to obtain the photometric quantities
and relations from the general theory of radiation-field
coherence was undertaken int 6 7 ' a e : i, again not for the
general case but as applied to the radiation field of a
certain object of finite area. In essence the authors
have shown that to construct the photometric quantities
it is necessary to carry out spatial averaging (they do
not consider temporal averaging) of correlation func-
tions that are quadratic in the electric field intensity.
However, by disengaging this point of view from the
measurement process and from the receiver properties,
and by connecting it entirely with the properties of the
luminous object, they have deprived it of generality (by
eliminating, in particular, the possibility of analyzing
a diffuse optical field) and encountered a number of dif-
ficulties which could not be consistently resolved.

At the same time, they have hit upon ways of intro-
ducing, within the framework of electrodynamics, such
properties as luminosity or brightness of the object, al-
though their analysis calls for some review in light of

68 Sov. Phys. Usp., Vol. 20, No. 1, January 1977 G. V. Rozenberg 68



the conception developed here—cf. (31)-(33).

It appears also that through a misunderstanding the
authors of"" regard as a branch of photometry Lam-
bert's law, i .e. , the orthotropy of diffuse radiation or
of diffusely reflecting objects. Actually, the problem
of the angular distribution of the intrinsic or reflected
radiation belongs entirely to the field of radiative-trans-
fer theory; see, e. g., ΪΤ-Μ,Μ-Μ,ΙΜ]^ a n d i t h a s b e e n

established both theoretically and experimentally that,
generally speaking, Lambert's law cannot hold, and is
only a rough albeit convenient approximation.

Returning to the connection between the quantities
Γ(θ, ρ) and / (ω, 1) let us consider by way of example an
interferometer of the Michelson type, which produces
a path difference c6 between two components of one and
the same light beam with /(ω, 1) = /0(ω) 5(1 -1Q). The
brightness of the interference picture at the exit of the
interferometer is determined in this case by a relation
similar to (55) (see, e.g. ,C 3 7 ])

, ρ = (76)

where A and Β are the effective transparencies of the
corresponding channels of the interferometer, and ac-
count is taken of relation (44). Substituting here the
value of Γ from (72), we obtain the results in photomet-
ric form

Is= (77)

In the general case, the treatment of the interference
experiments leads to the need for using cross-correla-
tion functions of the type (67), and cannot always be re-
duced to photometric form. We encounter a situation
of this type, for example, when considering interference
of waves scattered by individual elements (say by par-
ticles) of a stochastically inhomogeneous medium, when
allowance for the multiple interference phenomena
creates the basis for holographic study of similar media,
and in the electrodynamic derivation and explanation of
the limits of applicability of the radiative-transfer equa-
tion (see, e.g., C 3 6 : ) .

There are also many phenomena that can be under-
stood only by invoking statistical moments of higher or-
der; see"7'*1'7*1. We shall discuss one of them in the
next section.

Most generalizations of this type, however, pertain
already to statistical optics itself and have no connec-
tion with the principles of photometry as a dynamic ray -
optics aspect operating with the laws of conversion and
methods of measurement of the Stokes parameters of
light rays in those cases when the concept of light rays
is admissible. Once these parameters are introduced
into the photometry system and the electrodynamic origin
of the concepts and relations of the system are explained,
the formulation of photometry as an independent branch
of statistical optics should be regarded as completed.

In the general structure of statistical electrodynam-
ics, photometry stands out clearly as some limiting

case. The region of its applicability is distinctly out-
lined by the possibility of using ray concepts, and the
subsequent analysis is necessary here only from the
point of view of introducing into photometric practice
the entire assortment of the dynamic characteristics of
the wavelet train, including the conservation laws, and
also to spell out concretely individual details concern-
ing the connection between the photometric quantities and
the more general correlation characteristics of the radi-
ation field.

Perhaps the most important problem of this type re-
mains the comprehensive analysis of the conditions for
reconciling the time constant and the area of the re-
ceiver (i.e., the averaging scale) with the statistical
structure of the radiation field (i.e., the space-time
scales of the interference picture), and the refinement
of the limits of applicability of the photometric approach
as a function of the character of this reconciliation.

Problems of this kind arise, for example, in the ob-
servation of light scattered by a colloidal system. It
has already been mentioned that in the case of scattered
light at Σ » s and τ» Τ the receiver destroys, as it
were, the interference pattern by splitting the field into
an aggregate of incoherent wavelet trains and receiving
them separately, corresponding to incoherence of the
individual scattering acts. At small scattering angles,
however, the characteristic scales s and Τ for the scat-
tered light increase to such an extent, that the situation
changes and leads to the formation of a so-called "grainy
structure" of the scattered-light field and of the holo-
grams of the scattering medium, and also to fluctua-
tions in their form and brightness, t l 2 : such as were ob-
served, for example, inc l 0 3 : l under the conditions Σ = «
and τ ~Τ. Similar phenomena are observed also at
larger scattering angles under conditions when τ and Σ
are suitably decreased, and this has become an effec-
tive method of investigating Brownian motion of small
particles suspended in a medium—see, e. g., t l 0 4 ~ 1 0 7 ^

This leads directly to the need of studying fluctuations
of photometric quantities, i .e., phenomena of "interfer-
ence of brightnesses"1·37·1 or in other words to incorpora-
tion of the fourth statistical moments relative to the
radiation-field intensities into the system of ray optics.

In this connection we emphasize once more that in the
case of scattering medium the very applicability of the
ray treatment, and consequently also of the radiative-
transfer equation, is ensured (to the extent that they are
attainable) by a suitable choice of the parameters of the
volume element to which the operation of quadratic av-
eraging pertains, and of the time of this averaging."0·3 6 1

It is important to bear in mind that this averaging should
take into account the entire aggregate of the cooperative
dispersion phenomena. These phenomena can greatly
influence the effective three-dimensional phenomenogical
parameters of the scattering medium, with which the
photometric theory, and in particular, radiative-trans-
fer theory, operates.C 2·1 2-1 8·3 0·3 8 1

All other problems concerning the correlation prop-
erties of the radiation field, including their transmis-
sion through the medium, as well as the treatment of
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results of measurements made outside the framework
of the applicability of the photometry, are already the
subject of statistical optics proper, just as diffraction
phenomena are beyond the scope of geometrical optics
and pertain entirely to the domain of wave theory.

Thus, in the act of measurement with the aid of an
optical receiver, the radiation field serves as an ag-
gregate of incoherent light rays, and this leads to the
main concepts and laws of photometry, and subsequently
also to their polarimetric generalization. The conser-
vation laws also acquire in this case a "ray" formula-
tion that reflects the independence of the action of the
medium on each of the wavelet trains.

The resultant system of concepts and representations
of ray optics (brightness, illumination, spherical illu-
mination, Stokes parameters, etc.) are related in a
definite manner with the concepts of energy density and
Poynting vector, which are used in electrodynamics,
and also with the traditional formalism of general co-
herence theory. The fundamental difference between
the corresponding quantities and concepts lies in the
fact that they are defined in different representations,
namely the electrodynamic quantities are defined in a
space-time representation and the optical quantities in
a frequency-momentum representation.

We must now consider the processes of transforma-
tion of light rays under the action of the medium, and
the methods of describing these processes within the
framework of the ray-optics approximation.

3. LIGHT RAY AND ITS TRANSFORMATION

A. Light ray and selection of incoherent wavelet trains

We have established that the main photometric quan-
tities, namely the aggregate of the four Stokes parame-
ters. (48), including the brightness (31), pertain by defi-
nition to a certain wavelet train of form (1). The mea-
surement apparatus required to determine these quan-
tities must therefore be provided with an angle filter
/(I) and a frequency filter /(ω), which ensure separation
of sufficiently small intervals of direction (Δ1) and fre-
quency (Δω), accessible to the Fourier components of
the radiation field reaching the receiver and acting on it.
In other words, it is necessary to limit in frequency-
momentum space the region of the radiation sensed by
the receiver to a small vicinity of a certain point (ω, 1).
According to (3), the time Τ and the area s of the coher-
ence of the formation separated by the filters are equal
to T= Ι/Δω and s = λ2/(Δ1)2.

Assume now that the time constant of the investigated
receiver is τ» Τ and its geometric area is Σ » s . Then,
as we have seen, the radiation incident on the receiver
will be split into an aggregate of incoherent wavelet
trains, independently acting on the receiver, Τ' = τ and
s' = Σ, which the receiver will sense as a stochastic
formation for which, owing to the assumed smallness
of Δ1 and Δω, the Stokes parameters of individual wave-
let trains are additive. t 2 ' 2 2 ' 2 3 · 3 7 · 3 8 · 4 0 3

This allows us to extend the photometric concepts and
quantities to include the light ray, if the latter is taken

to mean a stochastic mixture of wavelet trains that
hardly differ in frequency and in propagation direction,
and is received by the measuring devices as a single
formation

•S"y(ca, 1) = Σ $ ( ω , 1), (78)

where j is the number of the train.

However, the trains that form the light ray can be in
different polarization states that depend on their origin
or prior history. C 2 2 ' 2 3 ' 1 0 7 ] Therefore a complete statis-
tical description of the light ray cannot be confined to
indication of the degree r of its polarization coherence
[see (53)], which characterizes, as shown in1223, only
the degree of homogeneity of the polarization of the dif-
ferent wavelet trains, or, in other words"7'3 8'4 1'4 3·1, the
fractional contribution to the brightness of the light and
to its fully polarized (i. e., coherent) component, if the
latter is separated from the fully incoherent component,
as is evident from (54).

A similar description with the aid of the quantity S(

(which includes r) reduces, as can readily be seen, to
allowance for only the second statistical moment with
respect to the intensity Ε of the radiation field—see137·1.
On the other hand, a complete description of the state of
the ray should contain also moments of higher order
(say of the fourth), describing the fluctuations of the
quantities St (i.e., the so-called "intensity interference"
phenomena), and in the ideal case—the three-dimension-
al distribution function W(p) of the wavelet trains in
terms of the polarization states ." 0 7 3

By way of example let us consider single scattering
of light by a colloidal system. On the one hand, the
smearing of the frequency of the scattered light as a re-
sult of the Doppler broadening due to the Brownian mo-
tion or to the turbulent mixing produces brightness
fluctuations (see, e. g., c l 0 3 - 1 0 e J) ( a n d consequently also
fluctuations of the polarization of the scattered light,
which make it possible, in particular, to determine the
distribution of the scattering particles by size.

On the other hand, a colloid can be regarded as an
aggregate of particles distributed over states p with a
probability density n(p)—this may be, say, the distribu-
tion of the molecules with respect to the orientations or
the distribution of spherical particles in dimensions,
etc. For each particle, the Stokes parameter of the
radiation scattered by the particle in the direction 1 is
written in the form123

(79)

where Dik(l,p) is the matrix of the scattering of the light
by a particle in the state p, and Ŝ  are the Stokes param-
eters of the light incident on the colloid (see also below).

Owing to the incoherence of the scattering of the light
by the stochastically distributed particles, i. e., owing
to the additivity of Dik(p),C2-22·231 we have for a scat-
tered-light ray produced by the entire aggregate of par-
ticles
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Si j Oi f t (1, p)« (ρ) <?ί>

= \ S\ (Ι, ρ) η (ρ) dp = / f c\ (p) w (p) (dp),

(80)
where according to (54) c = (1, rPit rP3, rPt), Sj and c\
pertain to the coherent act of scattering of the light by
one particle in the state p, and Iw(p)dp = I1(p)n(p)dp
is the brightness of the light scattered by the entire ag-
gregate of particles in states from ρ to p + dp, from
which it follows, in particular, that cj° = {c\{p)).

Any polarimetric device based on the use of dichro-
ism, birefringence, Fresnel reflections, and other phe-
nomena that constitute splitting of each train into an ag-
gregate of two alternately polarized components and
their independent transformation (selective attenuation,
removal, refraction, etc.) operates as a filter that
separates a component with parameters cf = st (see
Chap. 2), and in accordance with (55) the brightness of
the light transmitted by this device is

(81)

Thus, under arbitrary variation of the polarization de-
vice (i.e., of the parameters s(), the information on
the measured light ray is restricted to the quantities
I=(I1(p)) and Cj = <cJ(/»)>, i .e . , to the first moment with
respect to the quantities of the form (E{ Ek), The higher
moments remain certainly inaccessible to measure-
ments by similar methods and call for the use of either
fluctuation phenomena or fundamentally different means.
This is quite evidently the reason why the question of
determining the distribution function W(p) of the wavelet
trains with respect to the polarization state has not been
raised in the literature until recently.

One of the possible means of measuring W(p), as
shown inC1071, is to use the dependence of the direction
of the Poynting vector of a propagating inhomogeneous
plane wave on the state of its polarization. Indeed, ac-
cording to (15), in an isotropic medium (including also
vacuum) the radiation power is in general transported
by a wavelet train of inhomogeneous waves with prac-
tically identical imaginary part j of the complex waves
normal—see (9)—not in the direction of the real axis 1
of the train, but in the direction"6 1

(82)

where q = Si/S1 is the degree of ellipticity of the polar-
ization of the wavelet train, defined by relation (11).C2]

In other words, the direction of motion of the wavelet
train deviates from the direction of the phase vector to-
wards the perpendicular to the (1, j) plane, by an angle

Ill, (83)

as was qualitatively pointed out back in 1912 by Bogu-
slavskii.C1O8]

Owing to the mutual incoherence of the wavelet trains
making up the light ray, their Poynting vectors are ad-
ditive and each of them undergoes an independent devia-
tion from the phase -normal direction that is common to

all the wavelet trains. Thus, if the light ray is made
up of an aggregate of trains of inhomogeneous waves,
then the individual wavelet trains will move in different
directions that depend on q (i. e., on their spin angular
momentum^561 and should fan out and form a spatial
sweep of the wavelet-train distribution function W(q),
i. e., the spin-spectrum of the light ray.C l 0 7 ]

Practical realization of spin-spectroscopy apparatus
calls for conversion of the homogeneous light ray with
j =0 into an inhomogeneous beam, and this can be ef-
fected in various ways.1 1 0 7'1 0 9 3 One of them can be re-
fraction in an absorbing medium,C5e] another is passage
of the light beam through a prism of absorbing material
or else through any medium (or body, say a photometric
wedge) with a constant transverse optical-density gradi-
ent. After passing through such a prism, medium, or
body, a homogeneous plane wave is transformed into a
weakly-inhomogeneous wave with

(84)

where e is the base of the natural logarithms.

The expansion of the light ray into an angular spectrum
with respect to the quantity q takes place accordingly in
such a way that the angular illumination distribution
produced by the aggregate of the diverging wavelet trains
reproduces directly the distribution function W(q), while
the expansion into a spin spectrum occurs in a direction
perpendicular to VD. In particular, when a prism of
absorbing material is used, a simultaneous double ex-
pansion takes place—perpendicular to the edge of the
prism in the ordinary frequency spectrum and parallel
to the edge of the prism in the spin spectrum.

A third possibility of converting a homogeneous wave
into an inhomogeneous one and accordingly of spatial
selection of wavelet trains by the values of their spin
angular momentum q is connected with the use of total
internal reflection. The very effect of the transverse
displacement of the wavelet train in total internal re-
flection as a function of q, first predicted by Fedorov,
was investigated theoretically quite some time ago (see,
e. g., C 6 1 ' m · 1 1 2 ! ) and W as recently confirmed experimen-
tally. E 1 1 3 ] Its use for the selection of trains and for the
determination of W(q), however, was first proposed

cnoj

mC107,109]

If a rotating compensator is placed in front of the de-
vice that makes the wave inhomogeneous, then the regis-
tration of W(q) at three different positions of the com-
pensator that transforms in a known manner the state
of polarization of each wavelet train will be equivalent
to a determination of the total three-dimensional distri-
bution function W(p) of the wavelet trains with respect
to all the possible polarization states. ίιοη<1οη

From (83) and (84), under reasonable assumptions con-
cerning IVDI and the geometrical dimensions of the
wedge or the prism (i. e., the beam cross section), it
can be easily seen that at q = ± 1 the angle is 8= 10"-30",
i. e., the effect of the polarization selection of the trains
is relatively small. Spatial selection of the trains with
q = ± 1, and in the case of total internal reflection, it is
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also small and reaches only (10-30) λ, i .e. , about 5-15
μ for visible light. U 1 3 ]

Therefore the real resolution of the spin spectroscopy
is determined primarily by diffraction noise in the case
of transverse displacements of the Poynting vector.
The corresponding estimates, carried out on the basis
of a generalization, specially developed for this pur-
pose, C 1 U 1 of classical diffraction theory to include in-
homogeneous waves, have shown that at reasonable pa-
rameters of the apparatus this noise is negligible and
does not stand in the way of attaining an acceptable res-
olution.

Returning to the distribution function of the wavelet
trains over the polarization states for light scattering
by a colloidal system—see (80)—we note that the quanti-
ties ο{, which characterize the state of the scattered
ray, are connected with the quantities c\ by the relation

c,= \c}(p)W(c\)dc\, (85)

where W(c)) is the probability density for the realization
of the quantity c\ in the scattering act (or emission act,
if we are dealing with an aggregate of incoherent radia-
tors). The use of spin-spectroscopy makes it possible
to determine W(c\) directly, i. e., to obtain information
on the distribution function tv(p) of the scatters (or radi-
ators), and consequently also on n(p) (see (80)). For
example, if the scattering is by spherical particles of
radius a < 2/k0, then c\ = (^ depends monotonically on a
and

, . a (a) _ W (g') dqt
n \a> — /l („) n (a) da (86)

where Il(a) and #l(a) are known from the Mie theory of
the scattering of light by a sphere.Ζ1ΊΊ

Β. Differential transformation of a ray

Within the framework of the validity of the light-ray
concept, the propagation of a wavelet train in an inho-
mogeneous medium represents a consecutive sequence
of acts of local transformation of the wavelet train (re-
flection, refraction, scattering, etc. by the interfaces
or by local inhomogeneities of the medium), interspersed
by acts of propagation of the wavelet train from one local
transformation to another.C22J Each local transformation
constitutes a direct change of the wavelet train parame-
ters, whereas the transformation occuring during the
propagation is characterized by a gradual differential
transformation of the parameters.C 2 ' 2 3 3

Since, furthermore, the very concept of the wavelet
train is valid only in a quasi-homogeneous medium, the
group of possible differential transformations is limited
to the phenomena of refraction, absorption, dichroism,
birefringence, and the radiation of the medium proper
(including induced emission). Each train is transformed
here independently, and it is this which determines the
result of the transformation of the ray as a whole.

The notion of a quasi-homogeneous medium as applied
to the conditions of the propagation of a plane monochro-

matic wave in it can be generalized also to include a
medium containing local inhomogeneities, provided that
the dimensions of these inhomogeneities are small in
comparison with the photon mean free path, t^·'»-"·3»]
and the presence of the scattering particles makes its
own contribution to the refractive index of the medium,
i. e., a change in the wave propagation velocity and the
phenomena of absorption, dichroism, and birefrin-
gence. ».«.is,se.44] κ i S necessary, in addition, that the
averaging extend over a volume element with a suffi-
ciently large cross section. t l 2 l S 3 ' 3 1 : l

In the opposite case of close packing of the inhomo,-
geneities (for example, powders, precipitates), as shown
by Ivanov's experimental investigations, i U 5 i the concept
of a light ray, and with it also the fundamentals of pho-
tometry (including radiation-transport theory) no longer
correspond to reality, since an important role is as-
sumed by essentially inhomogeneous components of the
Fourier expansion of the radiation field in the medium.

If we consider a quasi-homogeneous medium in spatial
scales that correspond to the realization of continuous
differential transformations of the train, then we can

assume
[56,116]

whence, in particular,

(87)

(88)

and we can also use the approximate relations (9), in
view of the assumed slight inhomogeneity of the train
( j « 1). The general theory of refraction of inhomo-
geneous waves'563 leads then to approximate equations for
the real and imaginary parts of the complex wave nor-
mal 1 = 1+ ij of the axial wave of the wavelet train:

(89)
rotl=[lXVM],

div[lxj]=-2[lxj]VM, ( ΐν)1=νμ-( ΐνμ)1,

and of the direction of the phase normal N/N = 1 + v\«1.
The wavelet-motion direction is described by (82), the
operator of differentiation along the wavelet train tra-
jectory being

(XV) = (1) + «vj +9[lXj]}V) « (1V)+?([1XJ]IV). (90)

Since the light-ray concept is based on the assump-
tion that j and ν are extremely small, the curvature
radius it and the torsion & of the real trajectory of the
wavelet train do not differ in practice from those de-
fined by the relations

(91)

On the other hand, the principal normal ρ and the binor-
mal s hardly differ from the real vectors

- (ΐνμ) 1], s , ρ2 = s2 = 1, (92)

with
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i (93)

When considering the transformation of the field in-
tensity of the train by refraction in a quasi-homogeneous
isotropic medium, it is convenient tojihoose as the ref-
erence plane the refraction plane (ρ, Ζ) itself, and to
choose as the basis vectors

e1 = cos γρ — i sin ys, e2 = i sin γρ + cos 7s, (94)

whence

| . . (95)

Assuming, in particular,
i .e., assuming

Ε = J?ip + £2s,

= 0 and returning to (51),

(96)

we obtain from the conditions of the solvability of the
system of first-approximation equations of geometrical
optic sC55'se:l relations that govern the variation of Ε along
the ray trajectory

div{n(EE')!} = EE*
(97)

from which we have omitted small trajectories due to the
fact that m and 1 are complex, and also due to the differ-
ence between 1 and X. Solving (92) with respect to
(1. v)Ei we find after simple transformations

dE = —vEdl,

where

(98)

(99)

with the first term, which depends on the torsion radius,
due explicitly to the rotation of the basis vectors ρ and
s themselves in the space, C 5 5-5 6 ] while the term ikam
takes into account the advance of the complex phase
along the wave normal.C 2 ]

In addition to the smooth inhomogeneity of the medium,
which produces the refraction and expresses itself in
the coordinate dependence of the refractive index, the
wavelet train may encounter in its path also local in-
homogeneities (for example, light-scattering particles),
which either remove quanta from the wavelet train, or
else transform them coherently. The ensuring changes
in the wavelet-train can be regarded as the result of in-
terference between the incident wave and the wave scat-
tered by the particles (see, e. g., [ 3 3 · 4 4 : ι ) . This, as is
well known, is the basis of dispersion theory. i i i z Gen-
eralization of these ideas to non-molecular scatteringCZ3:l

(see alsoC2l l2 : l) has shown that the presence of inhomo-
geneities along the path of the wavelet train is equivalent
to the appearance of an additional term in the matrix v,
namely

-•!• 2

where μ·*(1,1) is the component of the amplitude scatter-
ing matrix of the light by the s-th particle in the forward
direction, and Ν is the concentration of the particles.

If we confine ourselves to the case when there is no
torsion of the ray {3~~ »), then we get from (96) and (97)
for the matrix of the coherent differential transformation

v = [ 4 ( - i ^ . + diyl)+rtbm]ett-|-i^-^(l,l), (101)

(torsion complicates predominantly the forms of the ex-
pressions, but not the gist of the phenomena); this cor-
responds in the case of isotropic particles ( μΙΛ = μη 6ik)
to an effective change of the refractive index

(102)

Examples of an actual calculation of the form of the
matrix for a magnetoactive plasma can be found, for
example, i n 1 6 2 " 6 4 1 . We note incidentally that the remark
made on page 405 ofC63:1, concerning the determination
of the components of the tensor J{k, i s based simply on
a misunderstanding. This choice is not arbi t rary and
is dictated by other considerations than those discussed
in C 6 3 ] . As seen from the foregoing, the photometric ap-
proximation operates essentially with the Stokes p a r a m -
eter s defined by relation (48), while the variation of
these p a r a m e t e r s in the direction of the group velocity
can be traced in accordance with (90) and (85).C 5 e : l

Owing to the linearity and homogeneity of Maxwell's
equations, the transformation of the correlation func -
tions that characterize the state of the wavelet train (and
consequently also of the Stokes parameters) along its
trajectory will also be continuous and can be written in
the form C 2 l 2 3 ]

dS = Q (ω, I) 5dl,

where, taking (101) into account,

<?n = <?22 = <?33 = <?« = % + div 1 + 2fcox + ̂  Re (μ,, + μ»),

(103)

(μι,-μ,,).

< ? 4 2 = — < ? 2 4 = <?34 = — <?43

(100)

(104)
Since each of the wavelets making up the ray is trans-
formed independently, the transformation matrix Q(u>, 1)
pertains not only to an individual wavelet, but to the en-
tire ray as a unit.

If the local inhomogeneities are isotropic we have
Mi» = M115f)i and the matrix Q(u>, 1) degenerates into a
scalar <?is = ε(ω) 5ik, where the extinction coefficient is

(105)

We note that, generally speaking, κ (ω) can be negative,
as is the case under certain limitations as a result of
optical pumping.

From relations (100) ana (104), in particular, it is

ε (ω) = S ^ + div 1 + 240x (ω) + ^ Re Mll (ω).
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obvious"83 that the fluctuations of Ν or Mu(co) can cause
fluctuations of the amplitude and phase of the light wave-
let train, of the same degree as the fluctuations of the
refractive index μ considered in the monograph"1 8 3. A
successful attempt to take this phenomenon into account
was undertaken recently inC1111.

C. Local transformation of a ray and the radiation
transport equation

We have already mentioned that in each act of local
transformation of the radiation by a medium, resulting
in a jumplike change of the state, direction, or frequen-
cy of the light wavelet train (for example, upon ref lee -
tion, refraction, scattering, etc), but preserving the
linearity and homogeneity of the electrodynamics equa-
tions, each wavelet train is transformed independently
and the results of the transformation depend on the
initial state of the wavelet t ra in. C 2 t 2 2 i 2 3 ] Accordingly,
the act of local transformation can be represented within
the framework of ray optics in the form"' 2 8 ' 2 3 ' 5 0 1

matrix μ,Λ with the aid of the relation11193:

Ε' (ω', 1') = μ (ω, Γ ; ω, 1) Ε (ω, 1), (106)

where the local-transformation operator μ, defined in
the frequency-momentum representation, describes the
properties of the medium. (If we dispense with the pho-
tometric-ray concepts and turn to the general theory of
coherence, this operator is replaced by a certain space-
time operator of the action of the medium on the radia-
tion-see, e.g.,1 3 3 · 3 6 3 .)

It is shown inC 2 3 ] (see also"·1) that it is always possi-
ble to find representations elt e2 prior to the act and
e[, e'z after the act such that the matrix μ is diagonal-
ized. This means that each wavelet breaks up so to
speak into two alternative spin components that are in-
dependently transformed by this action of the medium.
It is precisely for this reason, in particular, that no
polarization devices of the traditional type, based on sub-
jecting the ray to a sequence of operations of splitting,
filtration, and transformation of each wavelet train
making up the ray, is capable of providing information
on the distribution function of the wavelet trains with re-
spect to the states of the polarization, other than the
first moments of this distribution, namely the Stokes
parameters. As shown above, there are only two ways
out of this dilemma, namely by changing over to wave-
let selection based on a radically different principle, or
else by resorting to an analysis of the fluctuations of the
Stokes parameters, i. e., of the behavior of parameters
of the type

<S,((o, 1)5»(ω+Ω, 1 + ρ) >„,!.

Turning to the Stokes parameters, i. e., to the pho-
tometric characteristics of the wavelet train (or the ray)
as a whole, we obtain from (106) for a single act of local
transformation (for example, scattering)"·2 2 · 2 3 · 4 8 · 4 9 ·" ' 1 1 8 3

dS'(m', Γ) = Ο'(ω', Γ; ω, >, i)d<udO, (107)

(108)

in which σι

3, is the i-th Pauli matrix—see (49), and
S'(u)', l') are the Stokes parameters of the transformed
ray, averaged over the visible area s of the inhomo-
geneity, located at a distance 1 from the observer.

We note that in the American literature (including also
its Russian translations and expositions—see,
e. g., Ε β 0·1 2 0 : ι), the matrices D of the local transforma-
tion of radiation by matter are frequently credited to
H. Mueller, for which there are no grounds whatever.
Actually, the idea of introducing matrices of this type,
which describe the transformation of the Stokes param-
eters of radiation by the medium, was advanced in 1929
by Soleillet1·483 and was first realized in 1942 by Per-
rinC 4 9 ] as applied to the act of scattering of light. Inde-
pendently and in a more expanded form (including the
introduction of the local-transformation operators μ and
Q, the investigation of their form for different types of
scattering, and formulation of the matrix equation for
radiation transport), the concept of algebraic optics of
light rays was developed in 1946 by the author ο ί 8 2 3 (see
also[83), to whom the work of F. Perrin was unknown as
a result of wartime conditions, as was also a publica-
tion by G. Jones,C 5 0 ] who has a developed a coherent
algebraic optics as applied to plane monochromatic
waves. This was soon followed by a publication by H.
Mueller"1 8 3 (1948) andN. Parke" 1 3 (1949), who devel-
oped independently some of the ideas and methods con-
tained in1 2 8 3. A generalization of these ideas to arbi-
trary representations for the Stokes parameters and
continuous transformations of the ray was realized in[ 2 3 3

(see alsoC83).

The light-scattering matrices were first measured
for atmospheric air in 1957.t 1 2 1'1 8 8 1 Subsequently, many
authors have performed these measurements for vari-
ous media—in the atomsphere, sea water, suspensions,
latex, etc. (see, e .g. ," 8 3 " 1 8 6 3 ) .

Relation (107) pertains to a single inhomogeneity (par-
ticle) visible to the observer in scattered light at a solid
angle AOs = s/l2. If now many local inhomogeneities are
located in the observers field of view ΔΟ»ΔΟ$, and are
located at a distance 1 in a layer of thickness dl with
volume concentration N, then the Stokes parameters
averaged over the field of view ΔΟ, in accordance with
(30)-(33), are

dS (ω', 1') = ΝdVdS (ω', 1') ^ , (109)

and since the volume is dV=lzdl&O, we get

Λ? (ω', Γ) = D (ω\ Γ; ω, 1) S (ω, Γ) dadOdl, (110)

where the volume matrix D of the local transformation
(scattering) of the light by the medium is connected with
.D1 by the relation

where the dimensionless matrix £ήΛ, which has the
meaning of the brightness coefficient, is made up of the D (ω\ Γ ; ω, 1) = ND1 (ω', 1'; ω, 1). (HI)
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From the reciprocity relations for the components of
the amplitude matrix μ pertaining to a single act, name -
1/

111»]

Mid (ω', !'; ω, 1) = μ,,,· (ω, —1; ω', — Γ ) (112)

follow reciprocity relations for the matrix Dik

iim in the
form

', 1'; ω, 1);-^ = ( - 1 - Ι ; ω', - Γ ) - £ , (113)

where s and s' are the visible areas of the transforming
radiation of the object (inhomogeneity) for the radiator
(in the direction of 1) and observer (in the direction of
l'), while η and η are the refractive indices of the medi-
um at the locations of the radiator and observer, re-
spectively.

Owing to the independence of the transformation of the
incoherent trains and the additivity of the Stokes parame-
ters for the transformed wavelets, the matrix D re-
mains valid also in the case of an optical ray considered
as a unit.

On the other hand, if the wavelet train experiences
parallel uncorrelated transformations by various objects
(for example, scattering particles or stochastic inter-
faces), and if the wavelet trains generated by these
transformations are again unified in a single trans-
formed light ray, then, owing to the additivity of the
Stokes parameters, the matrix of their aggregate trans-
formation D, is made up additively of the matrices D\
of the individual transformations, i. e., D = 1{D\. In this
case, even though the parallel transformations !>} are
statistically independent, each of them taken separately
is strictly coherent in accordance with (106) and (108).
Therefore, as can be easily shown, the components of
the matrix of the joint transformation should satisfy the
following inequality:

( Σ ^ ) 2 > Σ ( 1 > Λ » ) 2 (114)
ft i - l k

for arbitrary cs(ci = 1, c\+ c\+c\^ 1), whence, in particu-

lar,

(Du±Dihy->^(Dll±DikT-. (114a)

For the series of successive transformations, as is
obvious from (107) or (110), the matrix of the resultant
transformation is formed by multiplying the matrices of
the partial transformations and preserving the order in
which they are experienced by the ray. [2,22,91,118]

Thus, regardless of the final fate of the ray, it goes
through a series of alternating differential and local
transformations, which are experienced in parallel by
all the wavelets making up the ray. Each of them is de-
scribed by the operators Q and D corresponding to one
or the other type of action of the medium on the radia-
tion. t 2 - 2 2 · 2 3 1 The operators Q and D acquire a distinct
meaning of the probability of one or another transforma-
tion of the wavelet train, and with it of the entire ray as
a unit.

At the same time, the trajectory of the wavelet train
between the acts of its local transformation is described
by the refraction equations (89)-(90), and the form of
the operator Q is directly connected with the behavior
of the unit vectors ρ and s and with the conservation
laws (97). It should be noted here that a connection ex-
ists between the conservation laws (97) and (64)-(66) and
leads therefore to a connection between the matrices
Q and D.

The most important of them is the so-called "optical
theorem" (see, e. g.,C l 7 l 3 8 ]), which can be generalized
with practically no changes to include nonmolecular
scattering1·36·1 and which establishes a direct connection
between the matrices μί4(ΐ', 1) and Dik(l'', 1). Its particu-
lar case is the well known relation1·2·12'23'361

Ι'; ω, (115)

the physical meaning of which reduces to the statement
that each quantum taken out of the ray by the particle
must be either scattered in some direction or absorbed
by this particle—the probability of the latter is de-
scribed then by the quantity α{ω) in (115).

However, the real meaning of the optical theorem is
much fuller than this statement (seeC36:l), since it is not
confined to the connection between the conservation laws
(64)-(66) and the form of the matrix Dit, which is obli-
gated to take into account the entire aggregate of the
phenomena involving exchange of energy, momentum,
and angular momentum between the radiation and the
inhomogeneity during the scattering act.

In other words, ray optics confronts us with a unified
indivisible concept, that combines geometrical optics,
photometry, polarimetry, refraction theory, and, as we
shall show, the theory of radiative transfer; it is an in-
dependent branch of physical optics dealing with the laws
of formation of the light field, as well as with the theory
of the.measurement of this field. Extending over a wide
range of practical applications to both purely scientific
and applied problems, it has now attained a certain de-
gree of internal completeness.

However, the real possibilities of its application are
substantially limited by our insufficient knowledge of the
structure and behavior of the operators Q and D for va-
rious types of action of a medium on radiation, as func-
tions of different physical factors, such as the structure
or the state of the medium. Their investigation remains
the destiny of the related branches of optics and be-
comes, in view of the foregoing, one of the primary
problems, including also the translation of many of the
traditional results into the specific operator language
of ray representations.

One of the examples of such an approach is the theo-
retical and experimental study of light-scattering ma-
trices, initiated by F. P e r r i n , i m U. Fano,C521 and the
author.C22·231 Even during the early stages it led to ex-
perimental observation of the ellipticity of the scattering
of light upon scattering, [ 1 2 1 - 1 2 2 ] optical anisotropy of the
water in the ocean, i l z e i ana the finely dispersed charac-
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ter of optically active atmospheric aerosol, c*5·1 2 4 · 1 8"
has by now developed into an extensive and varied pro-
gram, occupying a more and more prominent place in op-
tical journals (see, e. g., C 1 7 i l 8 ] ) ( particularly in connec-
tion with the development of new methods of optical in-
vestigations of the states of sols and the study of pro-
cesses that occur in the dispersed phase of matter.

Another branch of modern ray optics is the develop-
ment of operator methods of calculating optical systems
and devices, reported in the initial publications of
JonesC 5 0 ] and Parke,C S 1 3 which have developed into an in-
dependent technical discipline."0 ' 1 2 0 1

Finally, as already mentioned several times, the con-
cept of ray optics is the basis of a most extensive and
thoroughly developed branch of modern mathematical
physics, namely the theory of radiative transfer in scat-
tering media. Since the light field can be treated as an
aggregate of incoherent optical wavelet trains of all pos-
sible directions, the theory of its structure can be based
on the elementary idea of tracing the fate of each wave-
let in all its experiences.

This idea, advanced by Soretc i 2 8 ' 1 2 9 ] about ninety years
ago, can be written in modern language in the formc i 3 f 1 1 3 1

Sj(o', 1'; Β, = Ρ?,,Β·θ(ω\ 1'; ω, l)Sft(<o, 1; A, t), (116)

where Sft(co, 1; A, t) pertains to the initial light wavelet
at an arbitrary point A at the instant of time t, while
SI((J}', 1', B, t+ Θ) pertains to the family of wavelet trains
generated by it at some other point Β after the lapse of
a time Θ.

The transfer matrix -Pf/'e, which relates a pair of
arbitrary points A and B, is the probability that a quan-
tum emerging from a point A in the direction 1 reaches
via arbitrary paths the point Β during the time Θ, by
changing in suitable manner its polarization state, f re -
quency, and direction of motion.

The task of the theory thus becomes the determination
of already possible paths open to the quantum, and ac-
cordingly the probabilities of their realization. It is the
procedure for realizing such an analysis which distin-
guishes between the variants of radiative-transfer theory
proposed by various authors. C 7 " 1 4 l 9 1 l l 3 0 " 1 3 4 ]

In particular, the basis for the investigation of the
transfer matrices Pfk

B'e can be the analysis of the pro-
cess of the change of the light-ray parameters over a
length element dl of its trajectory. This change consists
of two processes—removal or transformation of the pho-
tons making up the ray, i. e., differential transforma-
tion of the type (133), or the incorporation by the ray of
photons previously belonging to other rays, as a result
of local scattering occurring on the same path segment
dl. This process is described by relation (110). By
combining the two processes we arrive at a relation first
obtained back in the forties independently by Chandrasek-
harC 8 ] and by the author C 2 2 l 2 3 ] (see alsoC2>12]) and known
as the radiative-transfer matrix equation

(IV)Si (ω, 1) = -Qih(<», l)Sk{(o, 1)

τ f J f l № ( a , 1; ω', V)Sh{a>', V)du>' dO" + Si"1 (fa, 1),

(117)

where S f pertains to the intrinsic incoherent (say, ther-
mal) radiation of the medium.

It is precisely this integro-differential equation which
constitutes a photometric (ray) approximation of the
more general and much later formulated Bethe-Salpeter
equation,[ 3 e : which usually serves as the theoretical
basis for the investigation of the behavior of the transfer
matrix Ρ**'τ. By the same token this determines the
position of radiative transfer theory, which is photomet-
ric in character, within the framework of the general
statistical optics and within the concept of ray optics—
in the latter case it serves precisely as the photometric
theory of the diffuse light field.

We note incidentally that until recently extensive use
was made of an initial scalar variant of the transfer
equation, which is physically known to be incorrect;
this variant was developed in the beginning of the cen-
tury independently by Schwarzschild and Shuster. The
incorrectness of this equation, which deals only with the
brightness of the ray 1= Si, is mathematically connected
with the omission from (117) of terms of the same order
of magnitude as those retained. Physically it follows
from neglecting the influence of the polarization state of
the wavelet train on the result of its transformation and,
at the same time, the requirements imposed by the ex-
istence of conservation laws other than the energy con-
servation law.C 2 i M ] On the other hand, the only argu-
ments favoring the scalar equation are its relative sim-
plicity, the extremely limited available data on the ma-
trices Dik of the local transformation of the ray, and
perhaps the tendency to confine oneself to a qualitative
analysis of the results, despite the highly laborious
mathematical procedures.

We note in conclusion also that the central problem
of the transition from the Bethe-Salpeter equation to the
radiative-transfer equation (117), i .e . , that of introduc-
ing the photometric approximation, is the definition of
the material volume element over which the averaging
of the correlation functions of the field are aver-
aged. [ 3 0 - 3 1 · 3 " it is in the course of this averaging that
the field of the mutual irradiation of inhomogeneities
splits up effectively into coherent and incoherent
parts. i Z 3 1 The first of them gives rise to a change in
the effective field in which the inhomogeneities are lo-
cated, and in final analysis manifests itself in the com-
ponents of the dispersion matrix ν (or Q)—see (101),
(104). In addition, the coherent part of the field of the
mutual irradiation of the particles violates to a greater
or lesser degree the additivity of the matrices v, Q, and
D in the volume element, and also changes the form of
the matrix D (for example, the angular dependence of
its coefficients).

The incoherent part of the field of the mutual irradia-
tion of the particles, to the contrary, splits when the
correlation functions over the volume element are aver-
aged into an aggregate of independent rays, which pro-
duce precisely those multiple-scattering effects dealt
with in the theory of radiative transfer.

This is precisely why the so-called cooperative ef-
fects caused by the coherent part of the mutual irradia-
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tion of particles are beyond the scope of the transfer
theory and manifest themselves only in the behavior of
those characteristics of the medium with which it oper-

[30,31,36,

terest in this theory and at the same time helps put to
rest the still remaining notion that photometry and radi-
ative transfer theory are independent of electrodynam-

From the foregoing point of view, the most important
task at present is the investigation of these character-
istics (i. e., the matrices v, Q, and D), including the
role played by the coherent cooperative effects in their
formation, as functions of the properties and state of
the medium, but this is already outside the scope of
ray optics.

If we turn to the structure of modern statistical optics,
then we are immediately struck by the inseparable con-
nection between its two aspects—measurement theory
and the theory of the structure of the radiation :
field. C37~42:l One aspect of this connection has been the
subject of our attention.

We have observed that the use of an optical receiver
inevitably leads to the ray -optics approximation, i .e. ,
to a closed system of representations, concepts, and
relations that constitute the real content of the modern
theory of the light field. The latter, as we have seen,
encompasses from unified positions such branches of
optics as geometrical optics, photometry, polarimetry,
transformation of the ray by matter, the theory of radia-
tive transfer, etc.

The picture wherein a ray that seemingly is connected
with the light source but is actually generated by the act
of measurement with the aid of an optical receiver (such
as the eye) takes us from the customary coordinate-
time representation into the frequency-momentum rep-
resentation of Fourier transforms, for which in fact the
principal concepts and quantities of ray optics are de-
fined, including also the specific formulations of the
conservation laws and transformation laws. These in
fact are the distinguishing feature of the optical treat-
ment and the optical method of describing phenomena.

This pertains first of all to algebraic optics, which is
an autonomous division of the theory of the optical field,
and the task of which is to describe the processes of
transformation of a light ray by a medium, be it the
processes of propagation (refraction, birefringence,
etc.) or local acts of reflection, refraction, scattering,
etc. By resorting to the formalism of linear operators,
which receive a physically lucid probabilistic treatment,
we arrive immediately at the theory of radiative trans-
fer (which previously had no electrodynamic foundation)
with all its technical, geophysical, and astrophysical
subdivisions. At the same time, the conditions under
which optical receivers can be used become definite,
and with them also the limits of the validity of the as-
sociated ray-optics approximation.

Although the individual branches of ray optics already
have a long history and an extensive literature, the uni-
fied conception of the theory of the light field described
above requires further dvelopment in various directions.
This article will have done its duty if it stimulates in-
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