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INTRODUCTION

The foundations of the general theory of second-order
phase transitions were laid in the well-known papers of
Landau (cf. l l f Z }). It is now generally acknowledged that
a second-order transition is none other than the sponta-
neous breaking of the symmetry of the system. L. D.
Landau introduced a quantitative characteristic of the
symmetry breaking—the order parameter φ . A simple
and universal theory (the self-consistent field theory),
in which fluctuations were assumed to be negligibly
small, made it possible to describe a number of phe-
nomena in superconductors and ferroelectrics with ex-
treme elegance and good agreement with experiment.

At the same time, a number of facts did not fit the
self-consistent field theory. The exact solution of the
two-dimensional Ising model, propounded by Onsager in
1944, displayed a logarithmic singularity in the specific
heat instead of the finite jump predicted by self-consis-
tent field theory. Experiments to measure the specific
heat Cp of helium near the λ-point3 and the specific
heat Cy near the critical liquid-vapor point of argon [ 4 ]

revealed a growth of the specific heat approximately de-
scribable by the logarithmic law: C ~ A lnl Τ - Tc\ + C r e g .
These effects, and many other deviations from the
Landau theory, must obviously be ascribed to strongly
developed fluctuations of the order parameter. Near
the transition point the size rc of these fluctuations (the
correlation length) becomes very large. In each region
with linear dimensions ~ rc the resultant order parame-
ter * c (the analog of the magnetic moment of a f erro-
magnet) increases with increase of the size of the re-
gion, although not in proportion to the volume. A sub-
stance near a transition point can be visualized as an
aggregate of macroscopic regions (cells) interacting
with each other. Change of temperature reduces to a
change in the sizes of the cells. If all lengths are mea-
sured in units of rc, and the resultant order parameter
in units of Φ ,̂ a change of temperature does not lead to
any change in the thermodynamic quantities or correla-
tion functions.

In this way, a scaling hypothesis was formulated in
papers by the authors of this review15·1 and by Kada-
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noff.w In the framework of this hypothesis, which is
universal for all second-order phase transitions, the
behavior of the thermodynamic quantities and r c as
functions of Τ - To, p-pc and external fields, and also
of the correlators as functions of the distances and ther-
modynamic variables, is expressed by power laws. The
power exponents are called critical exponents. The
scaling hypothesis made it possible to express a large
number of critical exponents in terms of any two. The
state of the theory in 1967 was described in a review by
one of the authors.C 7 1 There is now a multiplicity of ex-
perimental confirmations of the scaling hypothesis
(cf. t 2 · 8 3 ) . However, the calculation of the critical ex-
ponents remained an impenetrable problem up to 1972.
New ideas were proposed in papers by WilsonC9] (the re-
normalization-group method) and by Wilson and Fisher t l 0 ]

(the e-expansion). These ideas bring little that is new,
perhaps, to our physical understanding of phase transi-
tions, but they have turned out to be a powerful tool of
mathematical analysis and have found application not
only in the theory of phase transitions but also in a se-
ries of related problems, such as the Kondo effect, per-
colation theory, the theory of long-chain molecules, and,
finally, quantum field theory.

In the present review an account is given of the re-
normalization-group method and its application to the
theory of phase transitions. The static critical indices
are calculated in the ε-approximation. The question of
the dynamical exponents is examined in detail. Here we
are concerned, first and foremost, with the dependence
of the kinetic coefficients on Τ — Tc and with the wave-
vector dependence of the relaxation time tr of the fluc-
tuations: tr~q~". The quantity ζ is called the dynami-
cal critical exponent. Is this exponent independent, or
is it determined by the static indices ? The answer to
this question is not unique; it depends on the set of con-
served quantities that characterize the system. In this
part of the review we have followed the papers of Hal-
perin, Hohenberg and M a . a i 1

Another physical group of questions considered in the
review is that concerned with instabilities and first-
order phase transitions induced by fluctuations. It is
found that, even in extremely simple many-component
systems, sufficiently strong anisotropy or interaction
with a weakly fluctuating quantity can lead to instability
and a first-order phase transition. Here the fluctua-
tions play a role similar to that of phonons in supercon-
ductors: the exchange of "fluctuons" leads to an effec-
tive attraction between other quasi-particles and, in a
number of cases, to instability. The theory predicts,
with certain provisos, the character of the phase dia-
gram and of the order parameter that arises as a result
of the transition.

To a greater degree than the previous review"3 or
the book by the authors, t 2 ] the present review is devoted
to an account of the mathematical apparatus. Apart
from the reasons indicated above, this is connected with
the fact that we want to show the theory in action and
make it possible for those wishing to study independent-
ly to use the theory. We have examined the question of
the limits of applicability of the theory in detail, since

papers in which authors attempt to apply the Ge 11-Mann-
Low renormalization-group technique in situations in
which it is in principle inapplicable have recently begun
to proliferate.

Another feature of our review is the small amount of
experimental data. This is due, principally, to the fact
that in all cases the real indices are close to those of
the Landau theory. The difference between the expo-
nents for one-, two- and three-component order param-
eters is not great. This similarity of the exponents has
the consequence that the experiments become dispropor-
tionately difficult, and their results are not too convinc-
ing. The theory also leads to close values of the expo-
nents, but, unfortunately, in a number of cases the the-
oretical difference between the indices lies beyond the
bounds of experimental capabilities (e. g., the change in
the exponents as a result of the magnetic-dipole inter-
action of the spins in a ferromagnetn 2 ]). As regards
the instabilities and first-order phase transitions, there
are still very few experiments on these.

There are already rather many reviews of the renor-
malization group, amongst which we mention those by
Wilson and Koguttl3] and Fisher . t l 4 ] In the former the
fundamental problems of the theory and methods of cal-
culating the dimensions are examined in detail. In the
latter the exponents are found for a number of more
complicated models, which describe the properties of
different magnets. The review offered below differs
from these both in method of exposition and in choice of
material, particularly as regards applications. In par-
ticular, the theory of instabilities in many-component
systems, and the problems of the kinetics, are de-
scribed in a connected form for, apparently, the first
time.

1. THE PROBABILITY AND HAMILTON IAN OF
FLUCTUATIONS. A LITTLE MORE HISTORY

In the Landau theory an order parameter φ , which
can be a many-component quantity, is introduced. Its
meaning and the number of its components are deter-
mined by the physics of the phase transition being stud-
ied. For example, in the case of a ferromagnetic Curie
point the order parameter is the magnetic moment, cal-
culated per site or per unit volume, in an antiferromag-
netic transition it is the difference in the moments of
the two sublattices, in the transition to the superfluid
state it is the complex wavefunction of the condensate,
and at a liquid-vapor critical point φ is equal to the dif-
ference between the mean density and the critical densi-
ty. The order parameter φ is a classical quantity, de-
fined as an average over a volume containing a large
number of particles. It is legitimate, however, to con-
sider its fluctuations, i. e., to regard it as dependent
on the coordinates χ of a point in the system under con-
sideration. If we fix φ(χ) at each point of the system,
then, by carrying out the summation over the remaining
degrees of freedom in the partition function Z, we can
find the free energy F (for fixed volume) or the thermo-
dynamic potential Φ (for fixed pressure) as a functional
of φ (χ). In the following we shall not specify under
which conditions the system is being considered, and
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instead of F/T and Φ/Γ (Τ is the temperature) we shall
use the symbol St and the conventional term "Hamilto-
nian." Landau postulated that the Hamiltonian can be
expanded in an integro-power series in powers of φ{χ)
and its derivatives. Confining ourselves to the lowest
powers of φ and νφ, we arrive at the Landau Hamilto-
nian Si τ:

' - ^ φ ] dx, (1.1)

where the parameters r0, g0 and h are functions of the
temperature, pressure and external fields. The well-
known argument of Landau shows (cf.C13) that the quan-
tity T0 should change sign, going to zero at the transi-
tion point (or, for small g0, almost at the transition
point). It is natural to call τ~(Τ- Tc)/Tc the dimen-
sionless temperature. The quantity g0 does not vary so
strongly—in the following it will be assumed to be con-
stant and will be called the interaction constant. We
shall call the quantity h the external field. The prob-
ability W[<p] of a given realization φ(χ) of the ordering
field is equal to

W [φΐ = Ζ'1 exp (-Si [φ]), (1.2)

where Ζ is the statistical integral.

In the self-consistent field approximation (Landau
theory) the fluctuations of φ are assumed to be negligi-
bly small, and the equilibrium properties of the system
are determined by the condition that 3£L is an extremum
with respect to φ. The condition for applicability of the
self-consistent field approximation was found by Levan-
yukce4aJ and Ginzburg[e4b3 and has the form (cf., e. g. ,C2])

&L<1. (1.3)

We shall call the quantity Gi =£oT'2 the Ginzburg number.
It is a characteristic of the substance and does not de-
pend on the temperature. At the phase-transition point
the Ginzburg criterion is not fulfilled and the self-con-
sistent field approximation becomes inapplicable. When
Gi!£ 1 the Landau theory has no domain of applicability.
It is necessary to consider the statistical mechanics of
the wave field φ(χ) with Hamiltonian 3£L. The field has
a macroscopic meaning—it is smoothed (in its Fourier
expansion the short-wavelength harmonics are absent).
This approach to the problem of a phase transition in
the region in which strongly interacting long-wavelength
fluctuations of the ordering arise was suggested by L.
D. Landau at the end of the 1950's.

In a paper by the authors'153 it was shown that the
problem of the fluctuations at a phase transition can be
reduced systematically to the problem of a wave field
φ(χ) in three-dimensional space. It was found to be
possible to represent correlation functions in the form
of series in which each term is expressed entirely in
terms of the same correlation functions. If one as-
sumes that the correlation functions are homogeneous
functions of their arguments (i. e., of the coordinates
and correlation length), one can choose the power ex-
ponents in such a way that all terms of the series have

the same dimension. It then remains to ensure that
certain algebraic equations for the constants of the the-
ory are fulfilled. Thus, the assumption that the corre-
lators have a power-law form and that there are rela-
tions between the scaling powers in the correlators (the
scaling hypothesis) was formulated for the first time
int 1 5 3. However, specific values for the powers (scaling
dimensions) were obtained inc l 5 3 at the cost of additional
assumptions. As we now understand, such a solution of
the field-theory equations does in fact exist. However,
the equations themselves are nonlinear and have an in-
finite set of power-law solutions, and the solution found
in'1 5 3 does not satisfy certain additional physical re-
quirements (locality, conformal invariance). These
conditions, formulated in papers by A. A. Migdal and
A. M. Polyakov (cf. α β ' 1 7 ] ) , give the possibility in prin-
ciple of finding the scaling dimensions. However, the
calculational difficulties have prevented us from going
beyond statements of principle and the calculation of
certain general properties.

In the interval between the papersc l 5 ] and1 1 6·1 7 3, papers
by Widom'18·1 and Domb and Hunter,C193 in which homo-
geneity properties of thermodynamic quantities were
postulated, and papers by the authors151 and Kadanoff,ce]

in which the homogeneity of the thermodynamic quanti-
ties was proved on the basis of the hypothesis of scaling
of fluctuations, appeared almost simultaneously. The
subsequent development of the scaling hypothesis made
it possible to describe a wide range of experimental re-
sults (cf.C2]).

A new push was given to the theory of phase transi-
tions by Wilson,[9] who applied the Gell-Mann-Low re-
normalization-group methodt20] familiar in quantum
field theory. From a fundamental point of view this
method is yet another formulation of the scaling hypoth-
esis. However, this new formulation turned out to be
extremely fruitful. Using the method it turned out to be
possible to calculate the critical exponents approximate-
ly as functions of the number of components of the or-
der parameter, the dimensionality of space, and the
form of the interaction, to calculate the equation of
state, and to analyze the stability conditions for differ-
ent systems. As a rule, the supplementary idea of
proximity to four-dimensional space—the so-called ε-
expansion:l03—was used in these investigations. Meth-
ods of direct computer calculation of critical indices by
the renormalization-group method without the use of the
e -expansion have recently been found. K 1 3 The direct
methods are good in that they permit us, in principle,
to improve the accuracy of the calculations without lim-
it.

In the following we shall need certain general infor-
mation and definitions from the fluctuation theory of
phase transitions. Below we give an account of these
without justifications, which can be found in the book.t2]

2. DIMENSIONS, THE ALGEBRA OF
FLUCTUATING QUANTITIES, CORRELATORS

At the transition point the characteristic size of a
fluctuation—the correlation length—becomes infinite.
When the length scale is changed by a factor λ the physi-
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cal quantities such as the order parameter, energy den-
sity t(x), temperature τ, field fe, etc., are multiplied
by a certain power of λ. By definition, a quantity A(x)
has scaling dimension ΔΛ if the scale transformation

IZ'^U-iAA χ (2Λ)

does not change the statist ical propert ies of this quan-
tity. The assumption that fluctuating fields A{x) have
this property is the scaling hypothesis for the quantities
A, and the different formulations of the hypothesis a r e
associated with the possibility of writing the require-
ment of invariance of the statistical propert ies in differ-
ent ways. Physical considerations determine certain
relations for the scaling dimensions Δ Α . For example,
the dimension of the length χ is \ = - 1, and the dimen-
sion of a part icular extensive quantity—the singular
par t Φβ 1 1 ι ί of the density of the thermodynamic potential
(Hamiltonian)—is Δ φ =d, where d is the number of spa-
tial dimensions of the system. The sum of the dimen-
sions of thermodynamically conjugate quantities is equal
torf, e .g . ,

= ά. (2.2)

An important role is played by the quantity ε(χ) conju-
gate to the temperature τ. It may be called the entropy
density or (more commonly) the energy density. Ac-
cording to the general rules,

Δ8 + Δτ = d. (2.3)

The character of the singularities of different quanti-
ties near the transition point (r = 0, h = 0) is determined
from scaling-dimension considerations. For example,
for T-0, ft-0 the thermodynamic potential Φ (τ, h) has
the formC5]

Φ (τ, h) = O r e g +• Vi'-'f №)· (2.4)

In formula (2.4) ΦΓ β β is the par t of Φ that is regular at
the transition point and f(k) is a certain function of the
scale-invariant k:

4 = Λτ-Δ"Μ,. (2.5)

The power exponent 2 - a in formula (2.4) is expressed
in t e r m s of the dimension ΔΤ:

2_α = -£. (2.6)

We also write an important formula for the irreducible
correlation functions K(xx · · · xn) = (φ(χι) · · ·φ(χη)) at a
phase-transition point122':

. . . Xxn)= *K(Xl...xK). (2.7)

Homogeneity relations of the type (2.7) specify in the
language of correlators the requirement that the statis-
tical properties of the system be unchanged under the
transformation (2.1), and are one of the formulations
of the scaling hypothesis.

Physical quantities, generally speaking, do not pos-
sess a definite scaling dimension but can be represented
as a superposition of quantities At(x) possessing a defi-
nite dimension, or of the "fields" ht thermodynamically
conjugate to them. This important postulate (the hy-
pothesis of an algebra of fluctuating quantities) was for-
mulated by Polyakov and KadanoffB3]:

(2.8)

The coefficients a{ and a, and similar coefficients are
not universal. The lowest dimension Δ, for which a, # 0
in the series (2.8) will be called the dimension of the
physical quantity (e. g., φ). It is this dimension that is
manifested in correlations at large distances. There
are, however, situations in which subsequent terms of
the series (2.8) are also important. A number of physi-
cal applications of the algebra of fluctuating quantities
can be found in the book.C23

An important model, which permits an exact calcula-
tion, is the free-field model. The field of the optical
phonons in a solid in the complete absence of anharmon-
ic terms provides a simple physical picture of this mod-
el. The free-field Hamiltonian is a particular case of
the Landau Hamiltonian &HL, withg-0 = 0:

(2.9)

For a free field, averages of the form

Κ (ΧιΧ% . . . x n ) = ( φ (*ι) φ ( χ , ) . . . φ (xn) >

are calculated by Wick's theorem

Κ (Xlxt ... xn) = Σ π # (χ, - χ3). (2.10)

In formula (2.10) the summation runs over all possible
partitions of the arguments xu xz, , xn into pairs.
The quantity K(xt —Xj) is the pair correlator

K(x-y)= <φ (χ) φ (y)).

Calculations give for K(x)

(2.11)

(2.12)

where r- 1*1, r c = T"1/2, and Kv{x) is a Macdonald func-
tion of order v. For

Κ (χ) (2.13)

and for r » rc we have K(x) ~ exp(- r/rc). In the two-di-
mensional case (d = 2) K(x)~lar. Of importance in char-
acterizing the interaction in the system are the irreduc-
ible correlators Gtx^j · · · xn) =((<p(xi)<p(x2) · · · <P(xn)))>
which are obtained from Κ{χχ ··· xn) by subtracting all
possible products of averages of groups of factors φ(χ{),
e.g.,
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Κ (χ, y)=G (χ, y) + <φ (χ)> ( φ (y)),

Κ(χ. y, ζ) =G (χ, y, ζ) + G (χ, y) (φ (ζ) >

+ G (ίί, ζ) <φ (χ) > + G (2, χ) (φ (y)).

(2.14)

For a free field with Hamiltonian (2.9) all the irreduc-
ible correlators except the pair correlator G(x, y)
=K(x,y) are equal to zero; in particular, (φ(χ)) =0. The
replacement of two factors φ(χ) and <p(y) by their aver-
age K{x, y) is called pairing. Wick's theorem (2.10)
states that the average of a product of free fields is
a sum over all possible pairings. In the following
we shall need the concept of the normal product:
ψ(χι)ψ(χζ) · · ·ψ(χη)'· of free fields. The normal product
is obtained from an ordinary product by subtracting all
possible pairings; e. g.,

: φ (χ) φ (y): = φ (χ) φ (y) — Κ (χ, y),

: φ (χ) φ (y) φ (ζ): = φ (ζ) φ (ι/) φ (ζ) — Κ (χ, y) φ (ζ)

- Κ (y, ζ) ψ (χ)-Κ (ζ, χ) φ (y).

(2.15)
The normal product : φ(χ1) — φ(χηΥ· with xx =xz = · · •
-χη=χ is the quantity :φ"(χ):, which has the properties
of a power of a fluctuating field. The quantities

An(x) = :< (2.16)

form a complete set in terms of which any function of
the field φ(χ) can be expanded. For τ = 0 the quantities
An(x) satisfy the scaling properties (1.1) with scaling
dimensions Δ°:

turned out to be the more constructive and the more
convenient for calculations. True, by invoking the idea
of the ε-expansion, Tsuneto and Abrahams1263 have cal-
culated indices in the framework of the field-theoretical
approach. But we cannot yet see any possibility of im-
proving the accuracy of calculations that use field-theory
series.

We proceed to our account of the renormalization-
group method.

3. THE SEMIGROUP OF RENORMALIZATIONS

This fieldWe shall consider a fluctuating field φ(χ).
is smoothed. In the Fourier expansion

(3.1)

the quantity cpt is equal to zero for q s q0. We write the
probability W of the realization φ(χ) of this field in the
form

ΙΓ = Ao exp [- (3.2)

where the functional 3i(cp,q0) plays the role of the Ham-
iltonian of the fluctuating field. The Hamiltonian Si(<p,q0)
depends on the cutoff parameter q0. In order to study
this dependence we shall sum the probability (3.2) over
all possible values of <pQ for q lying in the interval λ#
<q<q0 (0< λ< 1). We represent the result in the form

Δ° Φ = i—2 (2.17)

A more detailed account of the properties of free fields
is given in the book. t i ] For an interacting field the ir-
reducible correlators Gix^ ·· · xn) do not vanish for w>2,
and formulas (2.10)-(2.17) are not fulfilled. The mag-
nitude of the anomalous dimension

= 2(Δφ-Δ$,) (2.18)

has been found to be small for three-dimensional sys-
tems (if = 3): η 51/20. As was known from investiga-
tions in quantum field theory (Landau, Abrikosov, and
Khalatnikov, and Sudakov^4·1), for <i = 4 there is a solu-
tion with an interaction that vanishes logarithmically at
large distances. For an arbitrary w-component field φ
with interaction £·0(<ρ2)Ε the same result was obtained by
Larkin and Khmel'nitskii.: 2 5 ] Wilson and Fisher [ l o : con-
sidered the problem in a space of 4 -ε dimensions. In
this case the difference from the free-field theory is
small for ε « 1 and a calculation by perturbation theory
(the ε-expansion) is possible. For small ε the interac-
tion at large distances is small, and, therefore, the in-
dex η is small. The fact that the experimental value of
η is small gives us grounds to expect that the expansion
in powers of ε is still sufficiently good when ε = 1. To a
certain degree, the results of the calculations have jus-
tified these hopes.

Undoubtedly, each of the methods—the field-theoreti-
cal and the renormalization-group—has its merits and
its deficiencies. The renormalization-group method has

If £Ί(φ, q0) is known, the definition (3. 3) enables us to
ivcid3i(<p, λ<70) for all λ. We shall call the transforma-
tion from SiXq) to 3t(\q) a smoothing transformation,
and denote it by S{k):

38 (<p, \q) = S (φ, q). (3.4)

The smoothing operation is nonlinear. Obviously, suc-
cessive application of smoothing operations gives

s (λ2) s (λ,) = s (KK)-

The set of operations S(X) forms what in mathematics is
called a semigroup.

We also carry out a scale transformation of the quan-
tities q:

q _ q' = λ-iq

and, simultaneously, a transformation that changes the
normalization of the fields:

tt Tq = z (λ) Τλ,· (3.5)

We denote the combination of these two transformations
by D(\). The transformation D also changes the Hamil-
tonian St. This change reduces to the replacement of
the wave numbers q — q', and to a change of all lengths
by a factor λ and of all fields by a factor Z:
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D (λ) № ( φ , , ' (<jy λ"'Λ). (3.6)

We shall call the successive application of the opera-
tions S(X) and£>(\) a renormalization operation:

R (λ) = ΰ (λ) 5 (λ). (3.7)

The smoothing operation S(X) decreases the region in
which the field cpt is defined, from the interval 0<q<q0

to 0<q<^q0. The scale transformation!)(λ) expands the
reduced interval to its previous size. Thus, the trans-
formed Hamiltonian

P< ('•) Si (<fq, ίο) = Si' (<fq> ίο) (3.8)

describes the fluctuations of a new field φ'^ in an un-
changed range of scales. The set of operations R(X)
also forms a semigroup (R). For our purposes the dif-
ference between a semigroup and a group is unimpor-
tant. Therefore, following established tradition, we
shall call R the renormalization group.

Starting from a certain initial Hamiltonian H((p,q0)
and applying the operations Λ(λι), Λ(λ2), . . . repeatedly
to it, we obtain a sequence of Hamiltonians Hi, H%, . . . .
The question of the limit properties of this sequence
naturally arises.

If the system is not at a critical point, then, by suc-
cessively applying the renormalization operation, we
reach the fairly large length-scales (small Xq0) that lie
in the domain of the thermodynamic theory of fluctua-
tions. In this domain the distribution of the thermody-
namic quantities is Gaussian. The Hamiltonian Sik has
the form (cf.I 1 ( 2 ])

(2π)Ί
(3.9)

The quantity χ is the susceptibility of the system:
X = a(<p)/8ft, where h is the field conjugate to φ. We
first carry out the smoothing operation S(\) on the Ham-
iltonian (3.9). Since <p, with different values of q do
not interact, the smoothing operation in this case re-
duces to discarding terms with q in the interval from
λ/stofe in (3.9):

(2π)ί'
(3.10)

We now carry out the scale transformation D (λ) on
(3.10):

;. (3.11)

We draw attention to the fact that the renormalization
transformation does not affect the thermodynamic vari-
ables (e. g., τ and Λ or χ and c). It differs, therefore,
from the scale transformations (2.1). In the case of
the scale transformation, the thermodynamic quantities
change in such a way that the Hamiltonian Si remains
invariant:

x' =

We return to formula (3.11). As λ—Ο the transformed
Hamiltonian tends to a finite limit

art * f —t ι i2 **9 / θ Λ θ \

i t ' = Y ] χ ' Ι φ,ι p ;^b · \3.12)

if Z=\ilz. For a degenerate system below the transi-
tion point, the quantity χ"1 goes to zero for Λ = 0 . a i In
this case the finite limit of Sik is reached with the con-
dition Ζ = \ < 4 + 2 ) / a .

At the critical point the domain of thermodynamic
fluctuations is absent. Therefore, the question of the
limiting behavior cannot be solved so simply. The hy-
pothesis that there exists a limiting Hamiltonian S£*,
describing a nongaussian probability distribution, is the
scaling hypothesis.

It is convenient to seek the limit 36* by considering
an infinitesimal renormalization transformation Λ (Ι — ζ)
(ξ is an infinitesimal quantity):

R (1 - E) SS (φ, λ?0) = SB + ζ/ {SB}.

Equation (3.13) can be written in the form

(3.13)

(3.14)

The renormalization procedure R{\ — ζ) depends only on
the size of ζ. In Eq. (3.13) the quantity λ enters only
through the dependence of the Hamiltonian Se(\). There-
fore, the functional f{SS} that has appeared in the differ-
ential equation (3.14) does not depend on λ. It is conve-
nient to change to the variable ζ = - Ιηλ, in view of which
we introduce the new notation

(φ, ξ).

In the new notation Eq. (3.14) takes the form

(3.15)

The simplicity of Eq. (3.15) is only apparent. In reality
it is a system of nonlinear equations for the coefficients
determining the Hamiltonian Si. We shall confine our-
selves to the class of Hamiltonians Si which can be rep-

i resented in the form of series in powers of the quantity
φ and of its derivatives. The coefficients in these se-
ries obey Eqs. (3.15). The simplest form of limiting
behavior of the solutions of Eq. (3.15) is associated with
the possible vanishing of the functional /{<#>}. A "root"
of the equation

/ {Se*} = 0 (3.16)

is a fixed point of the renormalization transformation
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For nonlinear systems other types of limiting behav-
ior, e. g., limit cycles (cf.£27]), are also known. We
do not see any reason to investigate such limiting be-
haviors at the present time; we shall concentrate on
the study of fixed points.

The general technique for applying renormalization
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transformations in the theory of phase transitions is as
follows. The starting point is the Landau Hamiltonian

(3.17)

The parameters τ0 and g0 are assumed to be regular
functions of the thermodynamic variables—temperature,
pressure, etc. For a certain special choice τ%, g* of
these parameters, successive application of the renor-
malization transformations leads to a nongaussian lim-
iting Hamiltonian Si*. It is physically obvious that this
point is unstable. For small deviations of r0 and g0

from their critical values, £?(ξ) will be found to be rath-
er close to Si* for a certain value of ξ but will tend to
the Gaussian fixed point on further increase of ξ. Re-
normalization-group equations were found by Gell-Mann
and Low[20: for the case of quantum electrodynamics.
The renormalization group in quantum field theory was
investigated in detail by Bogolyubov and Shirkov.IZS:

The application of renormalization-group ideas to the
theory of phase transitions is due to Wilson,ι9Ί who de-
veloped approximate methods of calculation, The idea
that a nongaussian fixed point is possible was expressed
by Gell-Mann and Low. ί 2 η A general analysis of the
renormalization-group equations is given in papers by
WegnerC29] and Wilson and Kogut.c l 3 :

4. PROPERTIES OF SOLUTIONS NEAR A FIXED
POINT

It was shown in the preceding section that the prob-
ability distribution at a phase-transition point is de-
scribed by a limiting Hamiltonian &•*, which is a fixed
point of the nonlinear transformation R. We shall ex-
amine the properties of the solutions of Eqs. (3.15)
near the point Si *.

As before, we consider a set of Hamiltonians ΐ-'(ο)
that can be represented in the form of series in powers
of the quantity φ and of its derivatives:

π

_ . , Έ - ι Γ Γ - j / v s / V \

~*t (q) = 2J 1 * ' * \ C(J* ' * · "In-n (Ql> · • · ' QTI) " I 2- ^ ' J ^ 1 * ' * ^^n'

(4.1)

The Hamiltonian Si- is completely defined by the set of
quantities gn and is a vector (a point) g in the infinite-
dimensional space of the coefficients gn. On change of
the normalization of the fields (Φ~Φ'=ΖΟ) the Hamilto-
nian (4.1) changes—a transformation of the quantities
gn occurs: gn~gn=Z~"gn. Therefore, Hamiltonians
corresponding to the vectors gn(Z) =Z~ngn must be re-
garded as coinciding. In order to remove this arbitrari-
ness it is sufficient to require that ga = l for some value
of n. We shall assume that the coefficient of ilkzot(?_tdk
in (4.1) is equal to unity. With this normalization the
quantities #•„(£) are called the invariant charges.

The equations (3.15) are equations of motion in the
space of the gn. The quantity £ plays the role of the
time. The functional that appears in (3.15) is, in fact,
a vector function of the point g. We shall denote this
function by the same letter f(g). In this notation Eqs.
(3.15) take the form

£ = »(«)· (4.2)

Let c~ be close to Si*. This means1' that the corre-
sponding point is close to the point g*:

g = g*-y. (4.3)

The small vector y obeys the system of linear equations

•£-A"v, (4,4)

where the linear operator Κ is related to f(g) by

(4.5)

We shall denote the eigenvalues of the operator Κ by
Δ. and the corresponding eigenvectors by yf:

The general solution of Eq. (4.4) has the form

(4.6)

(4.7)

where the h{0 are arbitrary constants.2' We ignore the
exotic possibility, which arises for complex values of
A(, of an oscillatory dependence of the coefficients of
the Hamiltonian on the degree of closeness to the criti-
cal point—we shall assume that all the A, are real.

We note that, in place of Eq. (4.4) for the eigenvec-
tors, we can write analogous equations for the conjugate
fields:

4 L = Ai/i,. (4.8)

Equations (4.8), like Eqs. (4.4), are exact to within
terms quadratic in h.

We have arrived at the scale transformation of the
fields ht (cf. Sec. 2). Again we emphasize the close
connection and the difference between the renormaliza-
tion-group transformations and scale transformations
of the fields h{. The former change the Hamiltonian and
the latter compensate these changes in such a way that
the Hamiltonian remains unchanged. We can assume
that under the renormalizations the fields ft, transform
according to the law ftf =//i OeA' i .

Those vectors y, whose eigenvalues are positive are
of special importance. As £ increases, deviations as-
sociated with these vectors grow and, in the end, lead
the vector g away from the fixed point. Thus, the quan-
tities /;, play the role of external fields. The eigenval-
ues Aj are the scaling dimensions of these fields. The
corresponding vectors yf define the fluctuating quanti-
ties .-lf. We draw attention to the direct correspondence

The renormalization-group equations near if* were considered
in'-" by Wegner.

- We have assumed that the operator Κ can be brought to di-
agonal form. In the general case it can be represented in a
Jordan form. In this case, in addition to the exponentials
ιΔ'{. terms of the form i*?-1"' appear in the solutions.

37 Sov. Phys. Usp., Vol. 20, No. 1, January 1977 A. 2. Patashinskii and V. L. Pokrovskii 37



between the theory described here and the hypothesis of
an algebra of fluctuating quantities (cf. the Introduc-
tion). Namely, according to the algebra hypothesis, the
quantity y{ in the coordinate representation can be rep-
resented as the integral of At(x):

Yi = (x) dx.

If Δ, > 0, switching on the field h{ takes the system
away from the critical point. This property is pos-
sessed by the magnetic field (in a ferromagnet) and by
the temperature. The thermodynamic quantities conju-
gate to these are called strongly fluctuating quantities.
The dimensions ΔΑ< of these quantities are smaller than
the spatial dimensionality d.

Fields ht with dimensions Δ, < 0 are conjugate to weak-
ly fluctuating quantities. If the initial values hi0 are
such that all the hi0 pertaining to strongly fluctuating
quantities are equal to zero, the solution y tends to zero
as ξ — + °°.

It is obvious that the positive eigenvalues Δ, have an
upper bound. Otherwise, the solution (4. 7) becomes
meaningless. This implies that, amongst the strongly
fluctuating quantities, one fluctuates more strongly than
the others. Usually, this quantity is associated with the
order parameter.

We shall examine Eqs. (4.8) with inclusion of terms
quadratic in h(:

We introduce the refined quantity h\u,
and the other fields by

related to h{

Then, in the equation for ft]1', the quadratic terms
disappear. It is obvious that further refinement of the
quantities h( will give the possibility of getting rid of
the cubic terms, and so on. Elimination of the nonlin-
ear terms in the renormalization-group equations is
impossible only in the case of a "resonance," when
Δ, =Δί + Δ1. The simplest resonance situation arises in
the case when one of the fields h0 has eigenvalue zero.
In this case, of course, of the quadratic terms only the
resonance terms need (of necessity) be kept. Taking
this fact into account, we write out the renormalization-
group equations for this case:

^.= -bh';, (4.9)

(4.10)

The solution of this system of equations has the form

, , Λ.|/ h0 \ai/b
 (Λ -\n\

fiis^niae ' I-T—1 · V*· Lei)

Thus, if b * 0 the dependence of the fields h{ and h0 on
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the scale becomes more complicated; logarithmic cor-
rections appear. If, however, we ignore these slowly
varying corrections, the fundamental dimensions Δ, re-
main unchanged. For 6>0 the solution (4.11), (4.12) is
valid in the entire region and describes the approach to
the fixed point. In the case b < 0 the fixed point is un-
stable: it can be seen from Eq. (4.9) that in this case
small deviations grow. However, Eqs. (4.9) and (4.10)
and their solutions (4.11) and (4.12), which were de-
rived only under the assumption that h0 is small, remain
correct right up to values of ξ close to the pole ξ0

= - (δ^οο)"1 of the function /ίο(ξ). Namely, i t is required
that (ξ - ξο)"1»"1 be a large quantity. For 6 =0 it follows
from Eqs. (4.9) and (4.10) that

const, (4.13)

(4.14)

In this approximation the scaling dimensions Δ{ depend
continuously on the quantity h^.

We can now make precise the condition for the in-
dices to vary continuously. For such a dependence it
is necessary and sufficient that h0 not depend on ξ in
any (power) order.

5. RENORMALIZABLE AND ALMOST
RENORMALIZABLE HAMILTONIANS

We imagine that the point g is moving along one of
the paths that lead to the fixed point g*. This means
that it is possible to determine corrections to the vec-
tors y, with negative dimensions Δ, such that, under the
renormalization, in the equations for ht terms with posi-
tive dimensions do not appear in any order in the small
deviations. In the case when one of the eigenvalues is
equal to zero, as can be seen from (4.12), all the h{

(i*0) become small if the condition ξ »1ηΛ<0/Δ, is ful-
filled. On the other hand, as follows from (4.11), h0

changes substantially over the range of values ξ~/?5ο.
For sufficiently small hw there exists a range of varia-
tion of ξ:

(5.1)

in which we can neglect all the fields except h0 and as-
sume that the change of h0 is quite small. Here Δχ is
the greatest negative dimension. In this case, in the
equations for h0 and h{ it is legitimate to keep terms of
any power order in h0. Therefore, in the case under
consideration the system of equations of motion (3.15)
takes the form3'

• $ - = / < * > .
(5.2)

(5.3)

These equations have already been written out, up to the
quadratic terms, in Sec. 4 ((4.9), (4.10)). In deriving
(5.2) and (5.3) we neglected terms of order ht~eA'x for
t,~hf. In other words, Eqs. (5.2) and (5.3) are valid

"Equations of this form were obtained by Gell-Mann and Low
in quantum electrodynamics.[201
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with relative accuracy e"Al/*°.
from (5.1) on the value of h^:

The restriction arising

does not mean, generally speaking, that we can confine
ourselves to the first term in Eqs. (5.2) and (5.3). The
function fix) could, for example, have an additional zero
at a small value χ = x0. Then an additional fixed point
appears, withfto=#o, and Δ, =Δ{(χ0). Equations (5.3)
are also true for fields with positive dimensions. In
this case we need take into account only the resonance
terms in any order in h0, since the others are small or
are eliminated in the refinement of the quantity ht.

Hamiltonians for which one or several eigenvalues
vanish are customarily called renormalizable.4' In the
case when m vectors correspond to eigenvalue zero,
the behavior of the corresponding fields is described by
a system of coupled equations, of the form

- = /(fc,, ...,hm) « = 1, 2 m). (5.4)

For the remaining fields hk ik =m +1, m + 2, ) the
renormalization-group equations take the form

dlnhi hm). (5.5)

In the simplest case, when in the expansion of the func-
tions /, we can confine ourselves to terms quadratic in
the quantities hi, ..., hm, Eqs. (5.4) become homoge-
neous. Therefore, they can be reduced to a system of
m - 1 equations for the ratios hjh^. An investigation of
systems of this kind is given in Chap. 9.

The ideas used in the study of renormalizable Hamil-
tonians also turn out to be useful in the case when one
or several eigenvalues Δ, are small compared with unity
(the case of an almost renormalizable Hamiltonian). In
this case, just as in renormalizable theories, the re-
normalization-group equations near the fixed point are
divided into the two groups (5.4) and (5. 5). The fields
hu . . . , hm with small dimensions appear in the first
group, and all the other fields in the second. The char-
acteristic length ξ0 over which the fields hu ..., hm

vary is equal to Δ"1 in order of magnitude, where Δ is
the smallest of the eigenvalues. In deriving Eqs. (5.4)
and (5.5) (or (5.2) and (5.3)) we neglected terms of or-
der e Δ*{, where the Δ^ are the eigenvalues that are not
small. This means that the equations (5.4) and (5.5)
for a renormalizable Hamiltonian are valid with expo-
nential relative accuracy β - | Δ * / Δ | in the case under con-
sideration.

We shall consider in more detail an almost renormal-
izable Hamiltonian with one small eigenvalue Δο. In
this case, in Eq. (5. 2) it is necessary to keep not only
the terms linear in h0 but also terms of higher order.
In the simplest case we confine ourselves to the linear

4)Sometimes, Hamiltonians for which the number of nonpositive
eigenvalues is finite are called renormalizable. Inasmuch as
we consider only such Hamiltonians in the following, for us
the definition adopted above is more convenient.

FIG. 1.

and quadratic terms:

(5.6)

Graphs of the right-hand side of Eq. (5.6) in different
possible situations are shown in Fig. 1. In all cases a
new fixed point fef =Δ0/& arises. In cases c) and d), as
can be seen from the figure, it is this fixed point which
is the stable one. In the other cases the stable fixed
point is the point h* =0. In the cases c) and d) the di-
mensions Δ, are slightly changed relative to their values
at the original fixed point. By means of Eqs. (4.10) it
is not difficult to relate the new values to the old values
and h*:

^ L t Δο=-Δ0. (5.7)

Where necessary it is possible to refine the values of
h* and Δ, by using the subsequent terms of the expan-
sions of Eqs. (5.6) and (4.10) in powers of h.

6. VICINITY OF THE GAUSSIAN FIXED POINT

The free-field Hamiltonian

is a fixed point of the renormalization-group transfor-
mations for any spatial dimensionality d. We shall study
now how almost free Hamiltonians behave under renor-
malization transformations. An extra term of the form

2 d x = -^T (6.2)

leaves the Hamiltonian Gaussian, but, as already pointed
out, takes it away from the fixed point (6.1). We shall
find the dimension of τ in this case. The smoothing
does not change the Gaussian Hamiltonian 3£ϋ+$er. In
order to preserve the form of (6.1) under a scale trans-
formation q = Xq' it is necessary to perform also a
transformation of the field: φ^ = Ζ-χφ'^. with Ζ =\(i*Z)n.
The quantity τ then transforms according to the law

= κ—τ = ez'T. (6.3)

Thus, the positive eigenvalue Δ° = 2 corresponds to the
field r. We shall calculate the dimension of the field h
associated with a perturbation of the Hamiltonian (6.1)
of the form
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—h \ φ (χ) dx. (6.4)

Analogous calculations give Δ; = id + 2)/2 for the dimen-
sion of h. The role of the eigenvectors yk is played by
the quantities / : <p*(x): dxr, here : cpkix): signifies the
normal product : φ(χ1)φ(χζ) · · · <p(xk): for Xj =x2 = · · · =xk

=x. The normal product was defined in Sec. 2 (cf. for-
mulas (2.15), (2.16)). (For more detail, cf., e. g., B 1 . )
The fields hk corresponding to these have dimensions

k(d — 2 (6.5)

In particular, for fe = l we obtain the dimension Δ{| = Δ°
The condition for the existence of an operator hh with
dimension equal to zero has the form

2k 4
A — 2

(6.6)

where k is any integer greater than 2.

Integer values of d are obtained only for k = 3, 4, 6.
The corresponding values of d are d = 6, 4, 3. In three-
dimensional space the quantity he has dimension zero.
In this case the quantities ftt, hit h3, ft4 and hs have pos-
itive dimensions. Even if, by virtue of the symmetry
of the system, h3 and h5 vanish automatically together
with hi = h, the condition ftt = hz = ft4 = 0 can be fulfilled
only when the number of thermodynamic variables is not
less than three. In particular, this condition cannot be
fulfilled for a one-component system. In a two-compo-
nent system such a point is called a tricritical point.

For d =4 the quantity ft4 has dimension zero and in this
case the quantities hi, hz and h$ possess positive dimen-
sions. In the general case, by a simple transformation
φ-φ + const we can make either ftt or h3 go to zero.
Therefore, the fixed point is specified by two equations,
e. g., hi =0, hz = 0. For a one-component system this
corresponds to a critical point.

Formally we can consider a space with dimensionality
d = 4 -ε close to 4 (ε « 1). In this case the dimension Δ4

of the quantity fe4 is no longer equal to zero, but is
small: Δ4

( |)>=ε. Therefore, to within quantities of or-
der e - 0 0 M * / e , we can use the equations (5.2), (5. 3) of
the renormalizable theory.

Thus, we shall consider a Landau Hamiltonian $8L in
a four-dimensional or almost four-dimensional space.
When hi = h = 0, ft2 = τ = 0 and ft4 = g=0 this Hamiltonian is
transformed into a Gaussian Hamiltonian, which is a
fixed point of the •renormalization transformations. In
order to find the behavior of £tL for small g*0 we cal-
culate the coefficients of the renormalization-group
equations (5.2), (5.3). This calculation is elementary
but fairly cumbersome; therefore, we shall explain the
routine of the calculations. To apply Eqs. (5.2) and
(5.3) it is necessary to consider a finite renormaliza-
tion-group transformation, with δξ » 1 in order to satis-
fy the requirement (5.1). Here we make use of pertur-
bation theory in the quantity go = hoo« 1. We represent
the expression for gii,go) in the form of a series in
powers of g0. We then differentiate this series with re-
spect to ξ. We thereby find the function fig) in the form

of a series in the quantity g0. In lowest order we retain
in g only terms linear and quadratic in g0. We obtain

/(g) = eg0— bgs

t. (6 .7)

For #0—0, for any ξ, the quantities g and gQ coincide;
therefore, in the same approximation we can replace g0

by g in fig), so that

/ (g) = eg — bg2. (6.8)

This replacement is legitimate because, as we have
proved, the function/(g) depends only ong. Then, in
the next approximation, it is necessary to iindgi£,g0)
to terms of order g%. This makes it possible to find the
function fig) to third order in g by first eliminating the
terms of third order in g0 in fig) = eg0 - bg\ + cg\, and so
on. The nontrivial fact that the dependence on ξ and g0

disappears as a result of successive application of this
procedure is guaranteed by the general theory.

The postulate of the existence of a nongaussian fixed
point close to the Gaussian one was first enunciated by
A. A. Migdal."0 3

7. PERTURBATION THEORY AND GRAPHS

We proceed to concrete calculations. We subject the
Landau Hamiltonian &£L to the smoothing operation Six)
with λ « 1. According to the definition of the smoothing
operation Six) we must calculate the quantity

exp(—S (λ) « ι ) = const- ]J Ap,. (7.1)

We introduce notation for the operation of smoothing
of an arbitrary functional A with the free-field Hamilto-
nian <$?„:

Π

In this notation we obtain

exp ( - S (λ) SSL) = exp ( - 5 (λ) c^o

where S£iat is the interaction Hamiltonian:

(7.2)

(7.3)

(7.4)

We expand the exponential e'm t n t in a series in powers
of g0. The general term of the series has the form

(7.5)

To calculate the expression (7.5) we represent <p(x) in
the form of a sum:

<t = <Po W + φι (χ). (7.6)

where <po(x) is the slow part of the function <p(x), con-
taining Fourier harmonics <pq with wave vectors q « Xq0;
the rapidly varying part < î(q) contains harmonics with
wave vectors q lying in the interval (λ^0, ^ 0 ) . The
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smoothing operation does not affect φ0, which plays the
role of a fixed external field. In respect to ψχ the
smoothing is equivalent to ordinary Gibbsian averaging
with the free-field Hamiltonian. Therefore, terms con-
taining different pairings of the field cpt appear in (5. 5).
It is convenient to carry out concrete calculations in the
Fourier representation, in which the pairings have a
very simple appearance:

(7.7)

We shall denote a pairing by a line linking the quantities
φ being paired (cf. Sec. 2). For example, in first or-
der in q0 we obtain

— go \ (<Pqi<Pqj<Pq.<Pq«> δ fai + 1ΐ + 1l + q

"" (2π)Ί

J

(2n)i

<Piq'9l-q'

rig rfq'

(7.8)
The calculation is conveniently represented in diagram-
matic form. With each g0 we associate a point (vertex),
from which four lines representing the quantities <p,
emerge. The pairing of the quantities φΛ and <piz is
depicted by a line linking together the φ^ and φ^ lines.
The integration is performed over all wave vectors q.
The sum of the wave vectors of the lines entering each
vertex is equal to zero. We recall that the integration
over the momenta of the pairing lines is performed in
the limits *.qo<q<qo. The lines that remain unpaired
correspond to φ0 and, consequently, have wave vectors
q « Xq0. The graphs corresponding to the three terms
of the expression (7.8) are

(7.9)

Each graph occurs with a factor equal to the number

of combinatoric ways of realizing it.

Thus, according to (7.3), in first order in g0 we find

S (λ) ML = SeL + &$S, (7.10)

where 6o№ is represented by the sum of graphs

(7.11)

We have made use of the fact that ln(l + x)~x if χ « 1.
The first term in (7.11) corresponds to the change of τ:

δτ = 6g„
(2n)d

(7.12)

We shall choose T0 in such a way that the renormal-
ized rR vanishes. The subsequent terms of the expan-
sion in go introduce changes of higher order of small-
ness in τR. Putting TR =0 we find the value TJ corre-
sponding to the fixed point. One can convince oneself

that, for any spatial dimensionality d > 2, the integrals
over q that determine the corrections to τ0 formally di-
verge as qo~x' This means that the principal contri-
bution to them is made by values q~qo> and so TJ is in-
deed a constant quantity, independent of I. We now as-
sume that το = τ$ and forget, for a while, about the per-
turbations associated with nonzero rR.

The second term in (7,11) does not depend on φ0 and
changes the Hamiltonian by an unimportant constant. In
the following we shall not take graphs of this kind into
account,

All that remains is to keep track of graphs with four
external lines. In second order of perturbation theory
in g0 the only graph that it is necessary to take into ac-
count has the form

The corresponding contribution to g is of the form

(7.13)

We are interested in the case when the wave vectors
of the external lines are much smaller than those of the
internal lines (λ« 1). Therefore, we have put the ex-
ternal q values equal to zero. The integral in (7.13) is
easily calculated:

f A'A Sd Τ , - , , „ ? o ^ - * - l ) „ _ Sd

(2n)"

(7.14)

where Sd is the surface area of a sphere of unit radius
in rf-dimensional space:

sd=
2π"'2

Γ (i,2) (7.15)

Assuming ε to be a small quantity, in the lowest ap-
proximation we put ε =0 (d=4) in (7.14) and (7.15). In
this approximation,

2π2

Differentiating with respect to ξ, we find

dg_

4

(7.16)

(7.17)

We now replace g0 by g in (7.17). We thereby obtain,
according to the general ideology (cf. Sec. 6), the re-
normalization-group equation in four-dimensional space,
exact to small g2:

* (7.18)

In a space of 4 -ε dimensions, as was shown in the pre-
ceding section, this equation must be replaced by Eq.
(6. 7) with a known coefficient b-

-£ = β*-36Λ'4Λ (7.19)
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Equation (7.19) has a stable fixed point

(7.20)

close to the Gaussian fixed point. At this point, accord-

ing to (5.7), the dimension of g in first order in ε is

equal to -ε . The quantity g* at the nongaussian fixed

point has turned out to be a small quantity of order ε.

Therefore, the expansion in powers of g is at the same

time an expansion in powers of ε.

We shall find the dimension of the quantity ht = τ near
the stable fixed point. For this it is necessary to write
out the quantity τ to first order in ε. Graphically, the
field τ can be represented by a point from which two
lines, corresponding to the quantities <p, and φ.ν

emerge. The first-order correction to τ is depicted by
the graph

This correction corresponds to the second term in Eq.
(4.10).

A simple calculation using the rules formulated above
gives

Differentiating Ιητ with respect to ξ, we find

d l n T a I n TQ , ~ κ ιπ nn\

The dimension Δ°=ά1ηΤοΛίξ of the quantity τ0 at the

Gaussian fixed point is known: Δ? = 2 (cf. (6.3)). In the

renormalization-group equations exact to quantities of

first order in g it is necessary to replace g0 by g:

dlnT (7.23)

Finally, putting g =g* we find the dimension of the
quantity τ at the stable fixed point:

- 1 . (7.24)

A systematic ε-expansion procedure was proposed by
Wilson."13

8. THE SECOND ε-APPROXIMATION

In the first approximation ing (or ε) the coefficient of
q2(Pq<P-t is not changed after the smoothing S(X). In the
second approximation, however, changes already arise.
In second order in g0 the change in the coefficients of

is described by a graph of the form

When ?o~°° the integral diverges in the region of large
q. For finite qQ and for q «q0 the quantity T,z(q) is es-

sentially the constant Σ2(0) that renormalizes the quan-

tity r0. Therefore, we need to calculate not Σ8(?) itself,

but the difference

Σ, (q) - Σ 2 (0),

which is proportional to q2 for small q. The calculation

looks simplest in the x-representation:

Σ2(?)_Σ2 (0)= - 4

where

f 1 (2π)<<

(8.1)

(8.2)

The coefficient 48 =4 · 4 · 6/2 in front of the integral is

half the number of combinatoric ways of realizing the

necessary pairings.

For small q we can expand the exponential e'*"* in

(8.1) in a series and keep only the quadratic terms:

__ ^dxG3{x)x*. (8.3)

In the lowest ε-approximation it is sufficient to put

ε =0 (<i = 4) in the integrals (8.2) and (8.3). Then

(8.4)

The changed coefficient of iV«<P.4 is equal to

The integral (8.3) diverges logarithmically. Therefore,

(8.5)

(8.6)

In order that the coefficient of qicpi<p.q remain un-
changed, we must carry out a dilatation operation and
renormalize the field [ZX = Z(\)·1 (cf. (3.5) transl. note)]:

9-*· λ"1?, φ ,

where

(8.7)

(8.8)

The quantity Zx is associated with the scale change of
the field h conjugate to φ. Namely, the renormalization
transformation R (λ) as applied to h has the form

Λ (λ) h = (8.9)

According to the general theory, we can write the re-
normalization-group equation as

dlnft
•Mi). (8.10)

We see that there is no linear term in the expansion of

fh(g) in powers of g. According to (8. 8),
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d\ah (8.11) din τ (8.20)

where &jJ = (rf + 2)/2. The change in the dimension of h is
given by the second term in (8.11) with Kig=Kig* = t/36:

108 "

The dimension Δ¥ is equal to

(8.12)

(8.13)

In this approximation the anomalous-dimension index
η=2(Αν -Δ°) = ε2/54. We shall calculate the dimension
of τ in the second approximation in e. For this, in the
smoothing it is sufficient to take into account the graphs5'

The numbers under the graphs indicate the numbers of
combinatorial ways of doing the pairings. Carrying out
next the dilatation operation, we obtain finally

(8.15)

where Zx is determined by formula (8.8), and

, f d'q , ι" dip dig 1

J ( 2 J I ) < V ' J (2π)<< (2π)<< Ρ 4 ? 2 ( Ρ + < 1 ) 2

(8.16)

From (6.15) we find

l i | l = 2-12-|-(g0-36g!

0/) + g? [288 -|- (•/]—i- 72) -24tfj] .

(8.17)

The combination g0 — 36goi is none other than the vertex
g in the second approximation. Thus, to order g2 the
renormalization-group equation for lnr has the following
appearance:

din τ (8.18)

The calculation of the integrals in J- i/ 2 is elementary.
The principal contributions, proportional to ξ2, cancel
in the combination J — | / 2 :

/ /2 -^ A'2t

Substituting (8.19) into (8.18), we find

(8.19)

5'Here and in the following we do not consider graphs of the
form

since they are cancelled by graphs of the form

where the cross denotes the corresponding correction to T0
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It is necessary to find the quantity Ktg* to order e2 and
substitute it into (8.20). For this it is necessary to
write out the renormalization-group equation for g to
order g3. In the smoothing it is necessary to add the
third-order graphs

mi

and take into account the change of Zx in second order in
go· The calculations, which are similar to those given
above, then give

(8.21)

To second order in ε we find

„•__! LU£l
8 ~ 36 ι U72 ' (8.22)

Finally, substitutingg-g* into (8.20), we obtain

(8.23)

With the same accuracy we find the exponent v:

We leave it to the reader as an exercise to obtain the
exponents for a degenerate n-component system in the
second ε-approximation.

The renormalization-group method makes it possible
to find not only the exponents but also the equation of
state near the phase-transition point. The calculations
performed by Avdeeva and MigdalC32: and BrSzin, Wal-
lace and WilsonC33J have confirmed, to second order in
ε, the correctness of the phenomenological equation of
state proposed by Migdal.t34] The equation of state of a
many-component system has a number of distinctive
features, considered int 3 5 > 3 6 ] .

9. ASYMPTOTIC SYMMETRY

According to the Landau theory, a phase transition
can be described as a spontaneous breaking of symme-
try. A system which above the transition point pos-
sessed a symmetry group G has, below this point, a
lower symmetry whose corresponding group Gj is a
subgroup of G. If the Ginzburg number Gi is small and
there is a region in which the Landau theory is applica-
ble, the conclusions of the theory concerning the possi-
ble symmetry selection rules in a second-order phase
transition'1·1 remain valid. Indeed, all that is required
for the derivation of these rules is that thp thermody-
namic potential in the form proposed by Landau have
the same form above and below the phase-transition
point. Moreover, it is obvious that the Landau selec-
tion rules also remain valid up to a certain critical val-
ue, of order unity, of the number Gi. The question of
whether the Landau selection rules are replaced by
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others at a certain finite Gi remains open.

Fluctuations lead to an interesting phenomenon: the
symmetry at the phase-transition point can turn out to
be higher than the symmetry G of the initial phase. We
call this phenomenon asymptotic symmetry. We em-
phasize that we are not talking about the groups of scale
and conformal transformations, which also characterize
additional symmetry appearing at the transition point.
We are talking about additional rotational symmetry
elements that do not appear in the group G. Moreover,
the asymptotic-symmetry group can turn out to be con-
tinuous even in the case when the initial symmetry is
discrete. The phenomenon of asymptotic symmetry
arises only in the case when there are several fields
(charges) of the same dimension in the system.

We shall consider the simplest example, first investi-
gated by Wilson and Fisher"·103—two coupled scalar fields
<Pi and φ ζ , describable by the Hamiltonian

\ ώ χ [ τ
(9.1)

The model of two coupled scalar fields with the Hamil-
tonian (9.1) is not purely academic. We can point to at
least two applications of it to structural transitions in
crystals. Let one of the elements of the initial group G
be a fourth-order axis C4 (tetragonal symmetry). In the
transition, atoms situated on the C4 axis are displaced
to nonsymmetric positions. Such phase transitions of
the displacement type have been well studied in ferro-
electrics. It is obvious that there exist four equivalent
displacements of the position of an atom. They differ
from one another by a rotation C4 (Fig. 2). Then ψχ de-
scribes the displacement along axis 1 and φ ζ describes
that along axis 2.

The Hamiltonian (9.1) describes the behavior of the
two-component field of the displacements in the case
when, in addition to the C4 axis, a plane containing the
C4 axis appears in the group (the group C 4 B ) . Another
example that leads to the Hamiltonian (9.1) is the or-
dering of a two-component alloy that has a body-centered
cubic lattice in the disordered state (Sec. 139 oft l ]). If
a superstructure with Tt symmetry with reciprocal-lat-
tice vectors ({, {, i ) and (?, \, i ) is formed, the change
in the density of the components is described by the
functions φ χ = COSJT* · cosiry · COSTTZ 'and φ ζ = sinirx · siniry
• βΐηττζ. From these we can construct two independent
fourth-order invariants, φ\ + φ\ and φ \ φ \ .

The Hamiltonian (6.1) is invariant under the transfor-
mation

φ . ± < ^ n _ l L _ L ^ . ,_ 3 < r i _ f t (9.2)

We shall denote the ratio g%/g\ by y. The transforma-
tion (9.2) leads to a change of y:

(9.3)

The fixed point of the transformation (7.3) is y =2. In
this case the fourth-order terms in the Hamiltonian (9.1)
can be written in the form (φ\ + <p|)2 and, consequently,
the Hamiltonian (9.1) becomes invariant under rotations
in the (<pu <pz) plane. For other values of y this symme-
try is absent. It appears, however, in the region of
strongly developed fluctuations. We shall preface our
investigation of this question by a brief analysis of the
phase diagram of the system under consideration, from
the point of view of the Landau theory. A simple analy-
sis shows that in the (τ,y) plane the region τ>0, y > - 2
corresponds to the symmetric phase (phase I), in the
region τ<0, - 2 < y < 2 a phase φι=±φζ*0 is realized
(phase II), and in the region τ<0, y>2 a phase φ\*0,
Ψζ = 0 or φ ί = 0, φζ*0 is realized (phase ΙΠ). The trans-
formation (9.2), (9.3) carries phase II into phase ΙΠ. In
particular, this transformation carries the interval
- 2 < y < 2 into 2<y<». The line y =2 is aline of first-
order phase transitions between phases II and ΙΠ. The
region in which the Hamiltonian (9.1) is positive-defi-
nite, corresponding to the limits of thermodynamic sta-
bility, is determined by the inequalities

g1>0, y> -2. (9.4)

We turn now to the region of strongly developed fluctua-
tions. As before, we shall use the e-expansion method
of Wilson and Fisher, with the intention of applying it to
ordinary three-dimensional systems. However, the
asymptotic-symmetry effect of interest to us already
appears in the zeroth approximation in e. Therefore,
we start from an analysis of the situation in four-dimen-
sional space.

The renormalization-group equations for the model
under consideration have, up to quadratic terms, the
form

We change to the variables y =gz/g\ and t = - Vagi. Since
the derivative dgi/di, is everywhere negative, t is a
monotonically increasing function of ξ. The renormal-
ization-group equation in these variables has the form

1/2+36 (9.6)

Equation (9.6) has three fixed points: y = 0, y = 2 and
y = 6. We sketch the "phase line" of this equation (Fig.
3). The signs of the derivative, i .e . , the directions of
motion along the straight line in the different regions,
are shown by arrows. The points 0 and 6 are repulsive
centers and the point 2 an attractive center. This means

-z
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that if, by virtue of the initial conditions, 0<y<6, y
tends to 2 in the asymptotic region of large distances.
The asymptotic rotation group O2, in the (φ1, φζ) plane,
arises. We note that, if the initial value of y lies in the
region - 2 < y < 0 o r y > 6 , then, by virtue of Eqs. (9.6),
the thermodynamic-stability conditions (9.4) are vio-
lated in the asymptotic region. Therefore, we should
expect that, before this, a first-order phase transition
will occur. The next section is devoted to this effect.

The point y = 0 corresponds to two noninteracting sca-
lar fields ψχ and φζ, and the point y = 6 corresponds to
the noninteracting fields (φχ ± cpz)/J~2.

We shall show that the asymptotic symmetry does not
disappear in any order in e. The renormalization-group
equations for small e have the form

- = f i ( g , , g t ) , J l - = / 2 ( (9.7)

Amongst the fixed points of Eqs. (9.7) there should un-
doubtedly be a point, corresponding to O2 symmetry, at
whichgz =2gx. Indeed, if the initial Hamiltonian is in-
variant under O2, the symmetry at the transition point
cannot be lower. The only question that can arise is
whether the symmetric point is stable. But for small ε
the equation for y that arises from (9.7) must have the
form

y —2)(y —6
i/2+36

(9.8)

Therefore, the sign of the derivative near the symmet-
ric point y = 2 does not change for small ε.

The points y =2 and y =6 remain fixed points of Eqs.
(9.8) in any approximation in ε, since they correspond
to the absence of interaction between the scalar fields.
Therefore, the· arrangement of the arrows on the "phase
diagram" remains the same as in Fig. 3 in any approxi-
mation in e. Of course, this in no way implies that
everything should remain unchanged when e =1. How-
ever, the "phase line" can only change discontinuously,
at a finite value of ε. The successful calculation of the
indices by means of the ε-approximation gives rise to
the hope that this will happen when ε > 1.

In the above we followed the paperC 3 7 ] by Lyuksyutov
and Pokrovskii.

We shall consider the somewhat more complicated ex-
ample of fields describable by the Hamiltonian

= j dx [-1 (τ, φ? -f τ2φ>) + ± (V<p,)2

+ 4 - ( V < P 5 ) + e t (Φ?)2+e* (Φ') 2 +Ι (9.9)

in which we shall assume that φχ is an m-component field
and φζ is an «-component field. Such a situation arises
in the case when two phase transitions of a different na-
ture can occur in the system, e. g., ferromagnetic and
antiferromagnetic, magnetic and structural, or a tran-
sition to the superconducting state and a magnetic tran-
sition. If the phase-transition lines r t =0 and x2 = 0 in-
tersect, in principle the asymptotic symmetry Ontm

C?i2 = 2£i =2gz) can arise at the point of intersection. As
in the preceding case, such a point is always a fixed
point of the renormalization-group equations. But it is
far from always the case that it is stable. One can con-
vince oneself of this by studying the renormalization-
group equations in four-dimensional space:

n + 2) g,] -8gf2.j£ = -4gii [(m +

We shall linearize the equations for the two ratios χ =gz/
gi and y =g\Z/g\ near the symmetric point. An elemen-
tary analysis shows that this point is stable only if
m + n < 4 . The case m + n = 4 is special; one of the eigen-
values vanishes. Therefore, a more careful analysis in
the second ε-approximation is necessary. This shows
that the point with Omtn symmetry is already unstable
when m+n =4. The highest possible asymptotic symme-
try is O3.

In what physical effects is asymptotic symmetry man-
ifested? The simplest effect is that the critical indices
are determined not by the symmetry of the original sys-
tem but by the asymptotic symmetry. The critical in-
dices a of the specific heat differ the most sharply. Un-
fortunately, the accuracy of the determination of the in-
dex a, especially in solids, is not great.

More interesting is the behavior of correlators of the
type ({φα(χ)φβ(χ'))) near the transition point; in a num-
ber of cases this behavior can be established from criti-
cal-scattering data. For example, in the case of inter-
section of curves of second-order phase transitions the
correlators «^(xj^fa')» and ((φζ(χ)φζ(?ι'))) turn out to
be equal. The example considered here has been ana-
lyzed jn papers by Lyuksyutov, Pokrovskii and Khmel'-
nitskii. : 3 β ] A less general situation (w =1) was consid-
ered earlier by Nelson, Kosterlitz and Fisher. t 3 9 ] Dif-
ferent aspects of the phenomenon of asymptotic symme-
try are treated in papers by Fisher and Aharony (see
the review1143) and in the papert 8 5 : by Br6zin, leGuillou
and Zinn-Justin.

Of course, phase transitions without an increase of
symmetry are possible. An example of such a transi-
tion that is interesting from a physical point of view is
given by Mukamel"03; this is a structural transition in
crystals with tetragonal symmetry (e. g., NbO2). It is
described by a four-component order parameter, the
role of which is played by_the density components^ with_
wave vectors (T, i , £), (i, {, £), (i, i , 1) and (\, {, 1).
In this case the fourth-order invariants are

/• = Φ!+<pj+*;+?;, ·Τ2 = .ΣΨ?Φ?. h = <(№,+<fl<tl

The critical indices differ from those in the symmetric
case {ν = ϊ + ε/8 + 7ε2/96, 77=ρ2/48).

10. INSTABILITY AND FIRST-ORDER PHASE
TRANSITIONS

What happens in a system of two coupled scalar fields
if the initial value y=yo lies in the interval (- 2, 0) or
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(6, Ο)?1 3" The invariance under the transformation (9.3)
enables us to confine ourselves to one of the intervals,
e. g., (- 2, 0). We again start from the case of four-
dimensional space. The renormalization- group equa-
tions (9. 5), (9.6) also remain valid for finite τ>0, but
ξ in this case must be understood to be the smaller of
the two quantities - Ιηλ and - i Ιητ. It has been shown
that for -2<y0<0 the function ν(ξ) decreases monotoni-
cally and reaches the stability boundary y = - 2 at a cer-
tain finite value of ξ. In the weak-coupling case under
consideration the stability boundary 2j(y0) differs little
from the phase-equilibrium curve. At y = - 2 the Hamil-
tonian (9.1) becomes unstable and in the Hamiltonian it
is necessary to take into account anharmonic terms of
higher than fourth order in the condensate.UI Corre-
sponding to the w-th order anharmonicity is a vertex
part Tn that cannot be cut in two through a single line.
We are interested only in those graphs in which all the
external momenta are equal to zero. The graphs con-
taining the smallest number of integrations for a given
number of vertices give the largest contribution. This
property is possessed by the ring diagrams

- !

Summation of these graphs is made easier by the con-
sideration that for y 0

< 0 the symmetric phase I and the
phase Π {φ^ =±φ2Φ0) can be in equilibrium. Changing
to the variables ψ1>Ε = (<pt ± φζ)/4ΐ, we find that all the
external lines correspond to one of the fields φ, say φΐ9

and the internal lines to the other (ψ2). The summation
reduces in essence to calculating a sum of terms of a
geometric progression and then integrating.e) Discard-
ing the gradient terms and substituting the renormalized
values τ, gu we find the thermodynamic potential of the
condensate:

i < F 4 l n (10.1)

where φ =φι=±φζ. In deriving (10.1) we assumed that
the inequality 4gxqP » τ is fulfilled. The equilibrium
value of φ is found from the condition that Φ is a mini-
mum. On the equilibrium curve, Φ=0. The equations
Φ = 0 and 8Φ/θ<ρ =0 determine the equilibrium values
φ(ξ) and yo(|) and, consequently, the curve in the (y0, τ)
plane. The equation of this curve for small y0 has the
form

τ~βχρ(- * ). (10.2)

The equilibrium curve has an essential singularity at the
point y0 = 0 at which it merges with the line of second-
order phase transitions. We also write out the formula
for the quantity (p2 on the equilibrium curve:

^-Tlfcr '- l ihrV 8 "*" 1 . (10.3)

The results obtained are easily extended to a space of

6 )For the analogous summation for the case of scalar electro-
dynamics, see ' 4 " .

FIG. 4.

4-ε dimensions. For this, to first order in ε it is suf-
ficient to replace the logarithmic integrals by power in-
tegrals, i. e., to assume that

| = m i n I— (10.4)

The equation of the equilibrium curve takes the form

Γ 2 ; \ (10.5)

and the value of the order parameter on the equilibrium

curve is given by

τ(1/2)+(ε/4) | (10.6)

The diagram of state in the (y0, τ) plane is shown sche-
matically in Fig. 4. On it there are three points at
which curves of first-order and second-order phase
transitions meet. We emphasize that the appearance of
two of the three lines of first-order phase transitions is
associated entirely with fluctuations. In the Landau the-
ory these lines are absent. For example, the Landau
Hamiltonian is completely stable in the region - 2 < y < 0,
and only the developed fluctuations lead to the instability
of the symmetric state.

The physical reason for the instability can be best un-
derstood using the example of two interacting fields with
different transition points (the Hamiltonian (9.9)).C 3 8 l 4 2 ]

Suppose that the system is close to one of the transition
points. This means that, e.g., the field φχ is already
strongly fluctuating. If we eliminate the field φί a new
Hamiltonian Mz for the field φ^ arises. We shall show
that in this Hamiltonian the coefficient of ψ\, which de-
scribes the self-interaction of the field φζ, is negative
and of large modulus. In fact, by definition,

(10.7)

To second order in gxz, we find

= \ [4-(
- g'n f Ϊ W fl ! W

(10.8)

The averaging symbol here refers only to the field ψχ.
We now neglect fluctuations of the field cpit i. e., we as-
sume it to be independent of the coordinates. Then the
interaction is described by two terms:

g&i-gi,<ti Ι «ε,(χ)ε,(0)>) dx, (10.9)
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FIG. 5.

where et(x) =<p?(x). The second term is proportional to
the specific heat of the field cpt and is negative. If the
specific heat diverges (a > 0), it will play the principal
role. The graph corresponding to the second term of
(10.8) has the form

Exchange of fluctuations in second order of perturbation
theory leads to attraction. The lines 1 can pertain to an
arbitrary fluctuating field, e. g., to acoustic phonons.C43]

It is necessary also to take into account anharmonici-
ties of higher orders in φ ζ , since the coefficients of
these increase as the transition curve r t = 0 is ap-
proached. This is easily done, if the fluctuations of the
field φ ζ can be neglected. In this case the interaction
of the fields φ χ and φ ζ leads to the simple replacement
ΤΊ— Ti+g\z<P\' The singular part of the thermodynamic
potential in this case is proportional to the quantity
(Ti +gi2<f%f~a· Elimination of the field φ χ in this case
gives the following thermodynamic potential in the vari-
ables φ ζ :

Φ = — .4 (τ, ^ £,..<p (10.10)

The constant A is positive and equal in order of magni-
tude to giUZa. The order of magnitude of A is deter-
mined by matching the thermodynamic potential calcu-
lated by the Landau theory to the singular part Φ8ΐ11ί

=Ατζ~" at the boundary of the region of applicability of
the Landau theory (rocGi'ccgf). In particular, the pre-
vious result (10.9) is easily obtained from (10.10) by
expanding the singular part in powers of φ \ . The value
of φ ζ can be found from the condition

- ^ - = 2 < Γ 2 [ - ( 2 - α ) ^ , . (10.11)

Equation (10.11) has a nonzero solution φ2*0 (τχ=0)
provided that gfi" >gz/A <^gl'Zagz. Neglecting the small
quantity a, we obtain g\z>g\gz. Thus, near the curve
of the second-order phase transition with respect to φ 1

there can appear a region in which φ ζ condenses out.

At the intersection point τχ = τ2 = 0 of the phase-transi-
tion lines both fields fluctuate strongly. An analysis of
the real three-dimensional situation is possible only in

the ε-approximation. We introduce the ratios x = (gx
-gz)/(gi+gz> and y=g\.z/{g\+gz). The topological struc-
ture of the phase plane of the renormalization-group
equations in the four-dimensional case is shown in Fig.
5. For all values of m and η there are five fixed points.
One of them (1) is an attractive center and the others
are repulsive centers or saddle points. In the region
bounded by the separatrices (2-4), (2-5) and (4-5)
points move toward the attractive center. Outside this
region, points move away to infinity as the length-scale
increases (ξ — * ) . The stability boundary (xz + yz = l,
χ = ± 1) is denoted by a dashed line. The attractive cen-
ter corresponds either to the asymptotic symmetry
Ontm (w + w<4) or to the initial symmetry On~<Om. De-
pending on which part of the phase plane the initial val-
ues of gu gz and glz lie in, different diagrams of state
are possible. Some of them are given in Fig. 6. For a
detailed analysis, see the paper by Lyuksyutov, Po-
krovskii and Khmel'nitskii.[ 3 8 ] Evidently, the general
tendency is that an increase in the number of indepen-
dent fields with dimension zero leads to the disappear-
ance of stability. For example, in the physically inter-
esting case when the number of fields is equal to four,
we can construct three fourth-order cubic invariants:

= <Ρΐφ2<Ρ3Φ4- (10.12)

In this case, as can be illustrated without difficulty by
analyzing the renormalization-group equations, none of
the fixed points is stable (Brazovskii and Dzyaloshin-
skiiC 4 4 3). Therefore, we should expect that in this case
all transitions are first-order transitions (with, of
course, the caveat that the ε-expansion may possibly be
inapplicable for e = l). Physically, a model with a four-
component order parameter corresponds to a magnetic
phase transition in a crystal with a face-centered cubic
lattice. The role of the parameters </Ί and φ ζ is played
by the projections along the diagonals of the cube of the
spins situated at the vertices of the cube and at the cen-
ters of its faces. As an example of a substance in which
a first-order magnetic phase transition is observed we
cite MnO.£45J

Apparently, an analysis of instability in superconduc-
tors and liquid crystals was first given in the paper1 4 6 3

by Halperin, Lubensky and Ma. Applications in the the-
ory of liquid crystals and in field theory have been ana-
lyzed in papers by Vigman, Larkin and Filev. C47«48]

More-complicated magnetic systems have been ana-

ο
FIG. 6.
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lyzed in papers by Mukamel, Bak and Krinsky"83 and
Brazovskii, Dzyaloshinskii and Kukharenko.t503

11. DYNAMICS NEAR A PHASE-TRANSITION
POINT

Together with the correlation length the characteristic
time of the relaxation of fluctuations also grows. This
leads to a number of distinctive features in dynamical
phenomena: anomalous behavior of the kinetic coeffi-
cients associated with the strongly fluctuating quantities
(cf.C513), narrowing of the Rayleigh line in light scatter-
ing near a critical mixing point,C K 3 and anomalies in the
absorption of sound and other oscillations. The most
important question for the theory is the dependence of
the relaxation time (frequency) of the fluctuations on the
dimensionless temperature.

Two theoretical approaches to the dynamics near a
phase transition have been developed. One of these con-
siders the interaction of the different hydrodynamic mo-
tions (sounds, thermal conduction, diffusion) with the
fluctuational degrees of freedom and with each other
(Kawasaki,tS3] Kadanoff and Swift,C543 PolyakovC5s:). The
other (Halperin and Hohenberg"63) is based on simple
phenomenological arguments. It is assumed that the
fluctuational motions become hydrodynamic at a length
of the order of the correlation length. Since the spec-
trum of the oscillatory motions (sounds, spin waves) is
associated only with the thermodynamic quantities, with
such assumptions the relaxation frequency of the fluc-
tuations is determined entirely by the static indices.
For example, in the case of superfluid helium it is rea-
sonable to identify the relaxation frequency u>r with the
second-sound frequency u>=uzq for q-r'f (uz is the ve-
locity of second sound). This gives

-1 / P. \ " 2 -1Ci)r ~ Ujrc cr ("^-J rc ο

Above the transition point the hydrodynamic motion as-
sociated with the fluctuations of the superfluid compo-
nent is thermal conduction. The dispersion law ω=ί(λ/
C)q2, where λ is the thermal-conductivity coefficient, is
characteristic for this. From dimensionality arguments
we find \<^r\n^fil3, which is in good agreement with
experiment.

On the other hand, an exact microscopic analysis
(Polyakov1553) shows that there are no reasons, a priori,
for fluctuational motions to become hydrodynamic when
q~r%1. Therefore, the question of whether the depen-
dence of ωΓ on τ is determined entirely by the static in-
dices is important for the theory. Usually, the dynami-
cal index ζ is introduced: ω , » ^ 1 . To calculate the in-
dex ζ it would be necessary to start from the exact dy-
namical equations for the system. But such a program
is not realistic. It is clear that the interaction of the
fluctuational degree of freedom with the others deprives
us of the possibility of treating the fluctuations as a
closed dynamical system. For the statics this was un-
important, since by eliminating superfluous degrees of
freedom we could always reduce the original problem to
the universal problem of a fluctuating field. In the case
of the dynamics there is no such universality. It is pos-

sible to consider the purely relaxational motions of the
order parameter, but, in principle, vibrational motions
(second-sound, soft optical modes in crystals) are also
possible. In order to exclude this possibility we stipu-
late that we are considering a system above the transi-
tion point. It is natural to start from the simplest ki-
netic equation of the type

βφ · (11.1)

Near the equilibrium value <p0 the derivative b$s/bq> is
small. In the linear approximation we can represent
Eq. (11.1) in the form

1 3 φ

Γ ο dt
6
δί2

 Φ
(11.2)

where χ is the static susceptibility. If we assume that
Γ ο is regular at the transition point, the scaling dimen-
sion ωΓ coincides with the dimension of χ'1:

= —Δχ = 2 — η. (11.3)

Let the energy relaxation be described by an analogous
equation:

1 de
λ 0 at :

see (11.4)

To this process we must ascribe another frequency
ωε ~ \0(tf$e/bzz)~ \0/C, with the dimension of C"1, i. e.,
Δω = α/ν.

If the order parameter is a conserved quantity, such
as, e. g., the magnetic moment of a ferromagnet, then,
in a uniform departure from equilibrium, relaxation
does not occur. The simplest isotropic generalization
of the kinetic equation (11.1) that possesses this prop-
erty has the form

1 δφ (11.5)

here Δ is the Laplacian. Arguments completely analo-
gous to the preceding ones show that in this case Δ ω =4
-η. If the energy of the fluctuations can be regarded
as a conserved quantity, then Δω =2 + (α/ν). Naturally,
the relaxation in the system is determined by the slow-
est process. For example, if the order parameter is
not conserved while the energy is conserved and ct > 0,
then Δ* >φ"ω. In this case the slowest process is the
energy (temperature) relaxation.

But how legitimate is it to assume that the kinetic co-
efficients Γ ο and λ,, are nonsingular quantities ? The
answer to this question is given in the following sections.

12. CRITICAL DYNAMICS FROM THE VIEWPOINT OF
THE RENORMALIZATION GROUP

The renormalization-group transformations can also
be applied to the equations of the dynamics of critical
fluctuations. In the simplest case these equations have
the form (cf. Sec. 11)

Γ ο dt ~ δφ ~l~ ·
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Here, to keep the notation the same, we have denoted the
thermodynamic potential by the symbol &£. In the gen-
eral case this equation has the form

(x, <)} = A. (12.2)

The field φ(χ, t) is already smoothed—it contains only

Fourier harmonics <p,(i) with wave vectors q smaller

than q0. We represent φ(χ, t) in the form of a sum

φ = ψο + (12.3)

where the "slowly" varying field φ0 contains harmonics
with wave vectors q « \q0

 a n d ' n e "rapidly" varying field
φι contains harmonics φα in the range \qo<q<qo. In
principle, it is possible to solve the equations for the
field φι while assuming <pQ to be a fixed quantity. The
result depends on the initial conditions for the field φ1.
We shall assume that at the initial moment of time the
field φχ was a random, Gibbs-distributed quantity. We
substitute the solution φι into the equation for φ0. Then
the equation for φ0 depends parametrically on the initial
conditions for φι. We average over these initial condi-
tions. The equation obtained can be written in the form

U {φ0 (χ, 0} = S (λ) L {<j (x, «)} = S(}.)h. (12.4)

Thus, we have defined a smoothing operation on the non-
linear operator L. We now carry out the scale trans-
formation χ— λχ (q — X^q), φΛ— Ζ(λ)φΛ.

At the same time, the Hamiltonian<^ is also smoothed,
by the method indicated in Sec. 3. We now carry out the
dilatation D(\) (cf. Sec. 3) in such away that, as before,
the coefficient of qz<pllcp.t remains equal to i . The choice
of the renormalization factor Z(\) is thereby uniquely
fixed. There remains only the possibility of multiply-
ing both sides of the dynamical equation by an arbitrary fac-
tor. We choose Z' in such a way that the renormalized field
h' =R(\)/h appears in the right-hand side of the renormal-
ized Eq. (12. 2). Thus, Z' = Z(\). Now all the trans-
formations have become unique, and the kinetic coeffi-
cients Γ, have acquired the properties of invariant
charges. At the same time, the Hamiltonian $t has been
changed in the way indicated in Sec. 3. We recall that,
in the next renormalization step, the Hamiltonian R{\)$Z
determines the initial conditions, or the way of averag-
ing over φ1.

We turn to the differential formulation. Under an in-
finitesimal change of \ = e~* the renormalized operator
L differs from the initial operator by a quantity propor-
tional to δξ. This time, however, the derivative 9L/8£
depends not only on L but also on Si, which determines
the initial conditions. Therefore, in place of one equa-
tion there arises a system of renormalization-group
equations:

tion group. It is obvious that the fixed point L*, &* (the

dynamical fixed point) of the system (12. 5) is automati-

cally a fixed point for the static case. Generally speak-

ing, the converse statement is not true. We shall as-

sume that the 3£* corresponding to the critical point is

simultaneously a component of the dynamical fixed point

L*, $(•*. This is the dynamic-scaling hypothesis.

Let L and &£ be close to the fixed point L*, <№*:

L = L* + 6L, Si' = Si* + 6^-'. (12.6)

The deviations tL and 6 Si obey the linear equations

(12.7)

where Μ, Ν and Κ are derivatives of the functionals F
and/. As in the static case, the system of equations
(12. 7) determines the dimensions of the various quanti-
ties near the critical point. We put δ<£5?= 0 (Si=Si*). The
remaining equation

d&L
= MbL (12.8)

determines the dynamical dimensions.

13. DYNAMICS IN THE VICINITY OF THE
GAUSSIAN FIXED POINT

If one of the eigenvalues of the matrix Κ is small,
then, repeating almost word-for-word the arguments
that led to Eqs. (5.2) and (5.3), we obtain equations of
the same form in the case of the dynamics, too. In the
dynamical case it is necessary to include in the fields
hi the coefficient r f of the different time derivatives of
the quantity φ. The equations for these have the form

-^^WiM. (13.1)

where h0 is a quantity with small dimension.

In a space of 4 - ε dimensions a quantity having small
dimension is the invariant charge g·—the coefficient of
f<pidx in the Hamiltonian. The problem then consists in
ascertaining the form of the functions F{. As in the
static case, we obtain these functions by the method of
perturbation theory. Here it is necessary to proceed to
a specific problem. We shall consider three different
cases.

A. The order parameter and energy are not conserved

In this case (cf. also Chap. 6 oft2]), the dynamical
equation has the form

(13.2)

(12.5)

The second equation of the system (12. 5) is purely static.

Its "roots" Si* define the fixed points of the renormaliza-

We shall solve Eq. (13.2) by the method of iteration in
the small quantity g0. In the lowest approximation in ga,
ψι does not depend on φ0 and obeys the linear equation

* ^Εί = _ ( τ ο φ 1 _Δφ 1 ) + Λ,; (13.3)
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here hi are the extraneous random forces, normalized
by the condition (cf. H ] )

Ai (χ, ί) /»! (χ ' , ί')> = 2ΓΟ6 (χ — χ') δ (t — f). (13.4)

We transform to the Fourier representation <ρ1ϊω with
respect to the coordinates and time. The fluctuation-
dissipation theorem (cf.c l ]) establishes a relation be-
tween the average values (<p,u<p-,-a) and the linear-re-
sponse function G0(q, ω):

G(q, ω)=<ιρι,ω

where

G0(g, ω)=(-^-

= ^ - Im Go (?, ω). (13.5)

(13.6)

The normalization coefficient in (13. 5) and (13.6) is
chosen in such a way that the equal-time correlator
(<Pt«<Pi-«) be equal to T/qz for τ = 0. The equation for the
"slow" function φ 0 (cf. Sec. 12) has the form

(13.7)

(13.8)

(13.9)

Iterating (13.7) to second order ing-0, we find

Averaging over φ ι , we obtain

<Po = Gho,

where

G = Go - (13.10)

Changing to the q,a>-representation, we transform
(13.10) to the form

G-' (?, ω) = G;1 (?, ω) + 12g0<φ?> - 144g0' (13.11)

The second term in the right-hand side of (13.11) leads
to the already-known static renormalization of τ0. The
last term leads not only to a static renormalization of
τ0 and of the coefficient of tfV«m> D U t a l s o t o a change of
the coefficient of ωφιω:

(J-) = - fGoq>;)o. B - « P ; G 0 < P ; > 0 . O (13.12)

For the concrete calculation of (13.12) it is necessary to
find the quantity

= 144^-2 j G(p,,co,)G(Ps, ω2)G(p, + p2 + q, ω,

Λ (2π)* (2π)* 2π 2π

for q = 0 and subtract S2(0, 0) from it. After the subtrac-
tion, keeping the term linear in ω we find

(13.14)

Next, in accordance with the general prescription, we
carry out the dilatation φ^Ζ&Υ^φ'^, where Z(L)

i# W e find, torg=g*,

(13.15)

where c = 6 ln(4/3) - 1. In this case there appears a new
dynamical exponent, unrelated to the static exponents.

B. The order parameter is conserved and the energy
is not conserved

In this case the dynamical equation has the form
(11.5). The corresponding response function Go for τ
= 0 has the form

It is necessary to study the quantity

where Σ2 is determined by Eq. (13.13). Investigation
shows that when ω and q tend to zero this quantity tends
to a well-defined limit. Therefore, δ(1/Γ0) = 0. The
kinetic coefficient Γ ο is not renormalized and remains
finite at the transition point. In this case, as shown in
the preceding section, Δω = 4 - η,

The same result is obtained in the case when both the
order parameter and the energy are conserved.

C. The order parameter is not conserved and the
energy is conserved

Here a convenient model is one with two independent
field φ and ε, obeying the equations

(13.16)

where h and τ are extraneous random fields and

In the static case the integration over the field ε can
be carried out exactly and leads to a Landau Hamiltonian
with a slightly changed constant g-o-#o- (C0y|/2).
Therefore, it is obvious immediately that the quantity
ε has the same dimension as : φ 2 : . Why, then, was it
necessary to introduce two independent quantities into
the theory? In the real system, describable by the true
Hamiltonian, hydrodynamic modes arise; one of these is
thermal conduction. Whatever the bare interaction con-
stant g0, the coupling between the hydrodynamic mode
and the fluctuational degrees of freedom turns out to be
not small, and, moreover, possesses singularities at
k = 0. Therefore, a direct calculation in the framework
of the formalism of statistical mechanics comes up
against difficulties that have not yet been overcome. At
the same time, there exists the hope, supported by the
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experimental facts, that the coupling will turn out to be
weak at the phase-transition point. The introduction of
the variable ε enables us to start from a small region
about the Gaussian fixed point and gives a phenomenolog-
ical way of describing the singular part (corresponding
to the hydrodynamic mode) of the interaction.

We proceed to the calculations. We shall assume φ
to be an η-component field. As in the static case, the
calculations become easier if we use a diagrammatic
method. We shall represent a pairing {ψιψι) by a solid
ordinary line, a pairing (εε> by a solid wavy line, the
response function Go of the field φ (in the linear approxi-
mation) by a dashed ordinary line, and the response
function Do by a dashed wavy line.

The response of the field ε in the linear approximation
has the form

O0(k, «) = (i^-+Q 1 )" 1 · (13.18)

The response of the field φ in the same approximation is

')= ί,.,πχ,.χΒ· (13.19)

With the quantity g0 we associate a point at which two
pairs of ordinary lines, corresponding to φ α and φ Β ,
meet:

The quantity y0 is represented by a point at which one
wavy line (ε) and two ordinary lines (φ) meet. The
change in the coefficient λ after the smoothing is deter-
mined by the graph of the form

to which corresponds the integral

-p)2· ( 1 3 · 2 0 )

The integral (13.20) for fe-0 does not contain terms of
the form «ω/fe2. Therefore, the coefficient λ0 is not
changed in the smoothing. In the scale dilatation it is
multiplied by ΐΛ

We turn to the smoothing of the quantity Γ . In lowest
order it is determined by the two graphs

which, in the sum, represent the integral

=^ 2JI -f- 2jn ^= — VX* ι —^-rr —z " —• . , I lj. uil

J ^2JI) p* iu)-{- [Γ -(- (/./c)J pz y

We have already seen that the quantity -fC has the same
order (i.e., t ) a s ^ . Therefore, the graph

which made the principal contribution in case a), can be
disregarded. We have everywhere written γ, C, Γ and
λ in place of y0, Co, Γ ο and λ0, since they coincide in
lowest order of perturbation theory.

After the subtraction Σ(ω)-Σ(0), the subsequent cal-
culation of the integral, and the scale transformation
(as in the free-field case), we find

d In Γ
-2,

where

(13.22)

(13.23)

It is necessary to calculate the values of the quantities
CyzKt and μ at the fixed point. The first problem is a
purely static one. The smoothing of C in the first ε-ap-
proximation is determined by the graph

(13.24)

The subsequent scale transformation and differentiation
with respect to ξ give

d In C (13.25)

According to the general theory, C is none other than the
specific heat, the dimension of which is equal to Δο = a/
v. Hence,

Next, from (13.23) and (13.22) we find

ιίΐημ _ ίΠηΓ dluC , din λ _ Cy2Ki

it 1 + μ

(13.26)

(13.27)

Equation (13.27) has three fixed points: μ* = 0, μ* = °°
and μ* = (2/n) - 1. The last one is stable when 0< η« 2,
and the first when 2 « n< 4. For ri> 4 the exponent a be-
comes negative and only the point μ* =°° is stable. From
(13.22) we find

{ 2 + (
2 + (
2,

2 + (2a/nv),

(13.28)

The second result corresponds to the situation in which
it is the energy which relaxes the most slowly. In this
case, the order parameter relaxes with the same fre-
quency. The third result, if we write it with the neces-
sary accuracy (to ε2) is transformed to 2 + cV. In this
case the order parameter relaxes more slowly than the
energy, since a<0 for n>4. Of interest is the second
case, when a new relaxation time, intermediate between
the first and third, arises. Unfortunately, it is not
clear whether this result has any relation to real sys-
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(14.1)

FIG. 7.

tems. Apart from the general problem of the applicabil-
ity of the ε-expansion, the question of the adequacy of the
model arises.

The investigation of the problem in a space of 4 - ε
dimensions is due to Halperin, Hohenberg and Ma. C l l :

We regard this investigation as useful, since it raises
important questions about the role of the conservation
laws in dynamics and shows how dynamical indices that
are not determined by the static indices can arise. This
possibility was first pointed out by Polyakov.[55] Un-
fortunately, the model character of the theory prevents
us from relating its variants unambiguously to definite
experimental situations.

Recently, Abrahams and Tsunetoc57] and Abrahams,
Grest and ZawadowskyC58] have proposed a theory of the
dynamical phenomena in helium, based on an applica-
tion of the ideas of Polyakovc551 in combination with the
ε-expansion. Their results can be formulated as fol-
lows: in the hydrodynamic regime the dynamic-scaling
theory of Halperin and Hohenberg is correct, but the
dynamical exponent of the fluctuations is not determined
by the static indices.

14. NUMERICAL METHODS OF CALCULATION
USING THE RENORMALIZATION GROUP

In principle, a direct method of calculation should
consist in the following. We write the most general
Hamiltonian, e.g., in the form of an expansion in an
integro-power series. We carry out an infinitesimal
renormalization-group transformation and seek the fixed
points g* of this transformation (cf. Sec. 3). We then
find the eigenvalues of the equations linearized about g*,
and the "fields" corresponding to these eigenvalues. Of
course, all this is in real three-dimensional space. Un-
fortunately, such a program is easier to formulate than
to carry out. Approximate methods are necessary.
First of all, it is necessary to restrict the number of
components of the vector g that are considered, assum-
ing that all but the first few are unimportant. Further-
more, it is more convenient to effect the renormalization
in finite steps.

All the numerical calculations that have been carried
out up to now1 2 1'5"1 8 0'8 1 1 have used a renormalization
operation not in momentum space but in coordinate
space, or, more precisely, on lattice systems.

Suppose that we are given a lattice system defined by
the values of the variables φ { = <ρ(#4) at the sites xi in a
<2-dimensional space. The Hamiltonian SB is a function

' of all the φ , that is invariant under the group G of all
transformations that do not change the form of the lat-
tice. Therefore, it can be represented in the form of
a series

where the Ik(<pt) are all possible invariants of the group G.

We integrate over a fraction of the variables (<pu) and
change to new variables :/>y, taking the same values as
the φ { , in a new lattice that differs from the old only in
size:

Si1
= - In (14.2)

This transformation is equivalent to a nonlinear trans-
formation of the vector g:

g' (g). (14.3)

The form of the fixed point depends essentially on the
choice of the variables φ } and <pu, but the eigenvalues
Ak are invariant. The arbitrariness that remains can be
used to improve the convergence.

We shall give some very simple examples. In a sim-
ple "cubic" lattice we introduce two sublattices (Fig. Ί).
We integrate over the "spins" of one sublattice. We
then obtain a Hamiltonian SS1 that depends only on the
"spins" of the second sublattice. Another way of choos-
ing the variables is shown in Fig. 8. Here the summa-
tion is performed for fixed values of the sums of the
"spins" surrounding the cells marked by the crosses.
Such a calculation was performed by Kadanoff and
Houghton,t21] who tested their method on the exactly
soluble planar Ising model. Of all the invariants of the
planar Ising model they kept a small number, corre-
sponding to not-too-distant and not-too-numerous spin
couplings (12 in the first variant), and the majority of
these were taken into account only as a perturbation. It
is remarkable that even such a crude method of calcula-
tion gave, with a suitable choice of initial conditions,
agreement with the known values of the exponents (u and
(3) up to the fourth significant figure.

We cannot go into the details of the calculation here.
But we mention, in addition, the variational method
formulated by Kadanoff. W 2 : An approximate Hamiltonian
is proposed (in place of the exact one), such that, on the
one hand, it gives the possibility of carrying out the re-
normalization procedure explicitly, and, on the other
hand, it gives a free energy that is either always larger
or always smaller than the exact free energy. It is well
known that it is fairly simple to obtain a free energy
greater than the exact value. It is much more compli-
cated to obtain a lower bound. It turns out to be suffi-
cient that the difference between the exact and the ap-
proximate Hamiltonian be represented by a sum of terms

FIG. 8.
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each of which changes sign under at least one transfor-
mation of the group. All approximations that give an
overestimate for the free energy are extremely crude,
while those that give a lower bound for the free energy
lead to strikingly accurate values for the indices, at
least in the two-dimensional Ising model. Apparently,
the reason is that the Kramers-Wannier symmetry is
respected at each stage of the calculation. Kadanoff,
Houghton and Yalabik:613 have also found the indices of
the three-dimensional Ising model, but it is not yet
clear whether the values obtained by them are better than
the results of the calculation by means of high-tempera-
ture series.

An extremely crude but effective method of calcula-
tion for many-component systems has been proposed by
A. A. Migdal,t 6 3 ] who confirmed the existence of a phase
transition in a planar system of two-component classi-
cal spins.

In principle, one can increase the accuracy of the nu-
merical methods; this is impossible in the framework
of the ε-expansion. Unfortunately, the error in the re-
sults obtained is not known beforehand.

Note added in proof: The idea of the fluctuational na-
ture of first-order phase transitions in complex anti-
ferromagnets has received experimental confirmation
in the work of Bloch et al.,:β6] who have measured the
antiferromagnetic order in MnO samples subjected to
strong uniaxial compression along the [ i l l ] axis. In
the ordinary state MnO has cubic symmetry. The star
of the vectors along which the density modulation occurs
consists of the four diagonals of the cube. The twelve
components of the corresponding four spin-density vec-
tors decompose into two irreducible representations.
A previous neutron scattering analysisU 5 ] had shown that
an 8-component representation composed of the com-
ponents of the spin-density vectors perpendicular to the
corresponding diagonals of the cube is realized in MnO.
In this case the theory predicts a first-order phase
transition.t 4 8 ] The application of stress along the [ i l l ]
axis lowers the symmetry sharply. The largest possible
dimensionality of a representation becomes equal to 3.
In this situation, for not-too-strong anisotropy, the
theory gives a second-order phase transition, W 7 ] and
this has been observed experimentally.
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