- ³⁵R. N. Choudhuri and R. Dutt, Phys. Rev. D1, 2945 (1970).
- ⁹⁴P. Castoldi, Lett. Nuovo Cimento 3, 281 (1972),
- ³⁵L. F. Landovitz and W. Schreiner, Phys. Rev. D7, 3014 (1973).
- ⁹⁶B. A. Arbuzov, IHEP preprint STR 74-98, 1974.
- ⁹⁷P. Musset, CERN report TC-L/Int. 74-9, 1974.
- ⁹⁸E. V. Eremenko et al., in: Paris, p. 331.
- ⁹⁹A. Benvenuti *et al.*, *ibid.*, p. 397.
- ¹⁰⁰P. Limon *et al.*, Nucl. Instr. and Meth. **116**, 317 (1974).
- ¹⁰¹F. T. Avignone, Phys. Rev. D2, 2609 (1970).
- ¹⁰²A. Benvenuti et al., Preprint HPWF-76/4, 1976.
- ¹⁰³D. Cline et al., Preprint PRE 19906, 1976.
- ¹⁰⁴W. Y. Lee et al., Columbia preprint, 1976.
- ¹⁰⁵C. H. Albright *et al.*, Preprint FERMILAB-Pub-76/45-THY, 1976.
- ¹⁰⁶A. Benvenuti et al., Preprint HPWF-76/2, 1976.

Translated by N. M. Queen

Installations for the investigation of free neutrinos

B. M. Pontecorvo

Joint Institue for Nuclear Research, Dubna Usp. Fiz. Nauk 119, 633-639 (August 1976)

PACS numbers: 29.90.+r, 92.80.+r

Neutrino physics and its applications to astrophysics constitute an independent branch of a blossoming science. In the course of preparing a review lecture on neutrino physics and astrophysics, I searched for a compact exposition form capable of giving the listeners an idea of the scales and the progress of the branch of physics in question. For this purpose I prepared several tables of existing installations for free-neutrino research. The tables, in the opinion of the editors of this journal, can be of interest to its readers and are presented below.

The table includes most installations for which means have been allocated, i.e., installations either already in operation or actually under construction (an exception is the DUMAND installation, the actual construction of which is still in doubt, but is reported here because of its exotic character).

Four tables are presented in accordance with the fol-

lowing arbitrary subdivision:

I. Installations for manmade neutrinos of "low" energies.

II. Installations for the investigation of manmade neutrinos of high energies.

III. Installations for the investigation of "low"-energy cosmic neutrinos.

IV. Installations for the investigation of high-energy cosmic neutrinos.

The information contained in the tables is frequently tentative for objective reasons, for subjective reasons (insufficient information available to the author of the tables), and for reasons connected with limiting volume of the tables themselves. The bibliography, of course, is far from complete and is chosen mainly to include the latest data on the given group.

TABLE I. Installations for the investigation of "low" energy manmade neutrinos.

Research group or laboratory	Neutrino energy	Source of neutrinos	Flux of neutrinos near detector; number of events	Distance be- tween detector and source, m	Investigations	Type of detector
Los Alamos ^[1]	Several MeV (F _c)	Fission products in "Savannah River" reactor	$\sim 10^{13} \text{ cm}^{-2} \text{ sec}^{-1}$	~ 13 m	Observation of free neutrinos in inverse β-decay reactions	Scintillation counters
University of California ^[2]	Several MeV (ř _e)	Fission products in "Savannah River" reactor	$\sim 2 \cdot 10^{13} \text{ cm}^{-2}$ sec ⁻¹ ; ≤ 1 events/day	~13 m	Search for the processes $\bar{v}_e + e \rightarrow \bar{v}_e + e$	Scintillation counters
LAMPF (projected, but many parts al- ready completed) ¹³¹	$\begin{cases} 10-50 \text{ MeV} \\ (r_e, r_{\mu}, \tilde{r}_{\mu}) \end{cases}$	Stopped pions and muons in meson factories	~ 1 event of $v_e - c$ scattering per day	~ 7	$ \nu_e - e \text{ scattering;} \nu_{\mu} - e \text{ scattering;} conservation of lepton charge, etc. $	Electronic and radio- chemical methods
Nuclear Physics In- stitute, USSR Aca- demy of Sciences (projected) ^[4]	$\begin{array}{c} 10-300 \text{ MeV} \\ (\nu_e, \bar{\nu}_e, \nu_\mu, \bar{\nu}_\mu) \end{array}$	Muons accumulated in a superconduct- ing trap and decay- ing in flight	~ 10 events of r _e - e scattering per day with accel- erator of the LAMPF type	~ 7	$\mu_{e}-e$ scattering; neutral currents (excitation of nuclei)	Electronic registra- tion methods; de- tector weighing several tons

Copyright © 1977 American Institute of Physics

TABLE II. Installations for the investigation of high-energy manmade neutrinos.

					· · · · · · · · · · · · · · · · · · ·	t
Research group or laboratory	Neutrino energy	Source of neutrinos	Flux of neutrinos near detector; number of events	Distance be- tween detector and source, m	Investigations	Type of detector
Argonne ^[5]	$\begin{array}{c} 0.5-2 \text{ GeV} \\ (\nu_{\mu}, \tilde{\nu}_{\mu}) \end{array}$	Pions decaying in flight	$\sim 2 \cdot 10^4 \text{ cm}^{-2} \text{ sec}^{-1}$	~ 30	Comparison of charged neutral currents, par- ticularly reactions of the type $\nu + N \rightarrow \begin{cases} \mu + N + \pi \\ \nu + N + \pi \end{cases}$	Hydrogen-deuteri- um bubble cham- ber (26 m ³)
CERN ⁽⁶⁾	1–10 GeV (ν _μ , ν _μ , ν _e)	Pions, kaons, and muons decaying in flight	$\sim 2 \cdot 10^5 \text{ cm}^{-2} \text{ sec}^{-1}$; one event per ~ 20 counts	~ 40	Neutral currents; nu- cleon structure; lep- ton charge; $\nu_{\mu}-e$ scattering; $\mu - e$ sym- metry; search for charmed particles	"Gargamelle" pro- pane-freon bubble chamber (~ 10 m ³)
Brookhaven ^[7]	$\begin{array}{c} 1-10 \mathrm{GeV} \\ (\nu_{\mu}, \tilde{\nu}_{\mu}) \end{array}$	Pions and kaons decaying in flight	$\sim 2 \cdot 10^5 \text{ cm}^{-2} \text{ sec}^{-1}$	~ 40		Electronic methods, large-volume hy- drogen chamber (6 m ³)
Institute of High Energy Physics (IHEP)-Insti- tute of Theoretical and Experimental Physics (ITEP), USSR ^[3]	$\begin{array}{c} 4-20 \mathrm{GeV} \\ (\nu_{\mu},\tilde{\nu}_{\mu}) \end{array}$	Pions and kaons decaying in flight	~ 10 ⁵ cm ⁻² sec ⁻¹ ; one event per ~ 3 counts in 100-ton detector	~ 200	Search for dimuon events; neutral cur- rents; $\nu_{\mu} - e$ scatter- ing; direct neutrino production	Electronic detectors
IHEP	$\begin{array}{l} 4-20 \mathrm{GeV} \\ (\nu_{\mu}, \tilde{\nu}_{\mu}) \end{array}$	Pions and kaons decaying in flight	~ 10 ⁵ cm ⁻² sec ⁻¹ ; one event per 20 counts	~ 250	Neutral currents; structure of nucleon; $\nu_{\mu}-e$ scattering; search for new quan- tum numbers	SKAT propane- freon bubble chamber (9 m ³)
Harvard, Pennsylvania, Wisconsin, Fermilab ⁽⁹⁾	20–200 GeV (ν _μ , ν̃ _μ , ν _e)	Pions, kaons, and muons decaying in flight	~ 10 ⁵ cm ⁻² sec ⁻¹	~ 1100	Dimuon events and charm; neutral cur- rents; nucleon struc- ture; direct predic- tions of neutrons; $\mu - e$ symmetry	Calorimeter target $3 \times 3 \text{ m}^2$ (60 tons of scintillator) and magnet with iron core (60 tons). It is planned to in-crease the magnet diameter from 4 to 8 m.
California Institute of Technology, Fermilab ^[10]	Beam with the maxima at 50 and 150 GeV $(\nu_{\mu}, \bar{\nu}_{\mu})$	Monochromatic pions and kaons decaying in flight	$\sim 2 \cdot 10^3 \text{ cm}^{-2} \text{ sec}^{-1}$	~ 700	Neutral currents; dimuon events; searches for heavy leptons and W boson	Calorimeter 1.5 \times 1.5 m ² with iron liners (150 tons); it is planned to in- crease the area to 3×3 m ²
Fermilab ⁽¹¹⁾	20–200 GeV $(v_{\mu}, \tilde{v}_{\mu}, v_{e})$	Pions, kaons, and muons decaying in flight	~ 10^5 cm ⁻² sec ⁻¹ ; one event in ~ 10 counts in ν_{μ} beam (20% Ne)	. ~ 1100	Neutral currents; charm; strange par- ticle; direct neutrino production	Large hydrogen (+20% Ne) bubble chamber (30 m ²)
CERN (planned) ^[12]	20–200 GeV $(\nu_{\mu}, \bar{\nu}_{\mu}, \nu_{\theta})$	Pions, kaons, and muons decaying in flight	$\sim 10^5$ cm ⁻² sec ⁻¹	~ 500		"Gargamelle" and BEBC (30 m ³ H and D) bubble chambers; 150-ton electron detector

TABLE III. Installations for the investigation of "low" energy cosmic neutrinos.

· · · · · · · · · · · · · · · · · · ·			1	• · · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·	· · · · · · · · · · · · · · · · · · ·
Research group or laboratory	Neutrino energy	Source of neutrinos	Flux of neutrinos near detector; number of events	Distance be- tween detector and source, m	Investigations	Type of detector
Brookhaven ^{t 13)}	Several MeV (v _e)	Thermonuclear re- actions in the sun, especially B^8 decay	$\leq 10^6 \text{ cm}^{-2} \text{ sec}^{-1};$ $\leq 0.2 \text{ events/day}$	~ 150 • 10 ⁶	Astrophysics of the sun; neutrino physics	Cl-Ar method, C_2Cl_4 (800 tons) at a depth of 4500 m w.e.
Nuclear Research Institute, USSR Academy of Sciences (planned) ^[14]	Several MeV (_{Ve})	Thermonuclear re- actions in the sun, especially B^8 decay	≤ 10 ⁶ cm ⁻² sec ⁻¹	$\sim 150 \cdot 10^{6}$	Astrophysics of the sun; neutrino physics	C ₂ Cl ₄ (300 tons at a depth of 4500 m w.e.) (Baksan Station)
Nuclear Research Institute, USSR Academy of Sciences (planned) ^[15]	More than several hundred keV (r _e)	Thermonuclear re- actions in the sun, especially $p + p$ $\rightarrow d + e^* + v_e$	$\sim 10^{11} \text{ cm}^{-2} \text{ sec}^{-1}$	~ 150 • 106	Physics of the sun; neutrino physics; neutrino oscilla- tions	Radiochemical Ga- Ge method (≥ 20 tons Ga) (Baksan Station)
University of Pennsyl- vania (planned)	More than several hundred keV (r _e)	Thermonuclear re- actions in the sun, especially $p + p$ $\rightarrow d + e^* + v_c$	$\sim 10^{11} \text{ cm}^{-2} \text{ sec}^{-1}$	~ 150 • 10 ⁶	Physics of the sun; neutrino physics; neutrino oscilla- tions	Radiochemical Ga- Ge method (≥ 20 tons Ga) (Baksan Station)
University of Pennsyl- vania ⁽¹⁶⁾	Several dozen MeV (ř _e)	Collapsing star	Flash from ~ 10 events per ton of detector matter	~ 10 ⁴⁷	Fundamental astrophysics	Cerenkov detectors, weight 1.828 tons of water (reaction $\bar{v}_e + p - n + e^+$); de- tectors weighing 400 and 2000 tons are planned
Nuclear Physics Institute, USSR Academy of Sciences (planned) ^[17]	Several dozen MeV (ř _e)	Collapsing star	Flash from ~ 10 events per ton of detector matter	~ 10 ¹⁷	Fundamental astrophysics	Two scintillation in- stallations weigh- ing 100 and 600 tons, located at the Artem and Baksan Stations

TABLE IV. Installations for the investigation of high-energy cosmic neutrinos.

Research group or laboratory	Neutrino energy	Source of neutrinos	Flux of neutrinos near detector; number of events	Distance be- tween detector and source, m	Investigations	Type of detector
University of California ⁽¹⁸⁾	10-1000 GeV (v_{μ}, \bar{v}_{μ})	Pions and kaons produced in the atmosphere by cosmic rays	~ 10 events/year	Several dozen kilometers	Horizontal neutrinos	Scintillation count- ers of area ~ 100 m ² at a depth 7500 m w.e. in South Africa
Bombay–Osaka ^[19]	10–100 GeV $(\nu_{\mu}, \bar{\nu}_{\mu})$	Pions and kaons produced in the atmosphere by cosmic rays	~ 20 events/several years	Several dozen kilometers	Horizontal neutrinos; searches for heavy leptons	Hodoscopic counters of area $\sim 50 \text{ m}^2$ at a depth 7100 m w.e. in India
Nuclear Physics Institute, USSR Academy of Sciences (planned, but much is finished)	10-100 GeV (r _μ , r _μ)	Pions and kaons produced in the atmosphere by cosmic rays	~ 50 events/year	~ 10 000	Neutrinos passing through the earth; unexpected events; measurement accuracy 2°	Scintillation count- ers of 300 m ² area, weight 300 tons at a depth 800 m w.e.
Proposed international ex- periment (project DUMAND) ⁽²⁰⁾	1000 GeV $(i_{\mu}, \tilde{r}_{\mu});$ dozens of MeV (\tilde{r}_{c})	Pions and kaons produced in the atmosphere by cosmic rays; collapsing star	~ 1000 events/year	~ 10 000 ≥10 ¹⁷	Neutrino physics at very high energies; fundamental astro- physics	Cerenkov water de- tector of volume $\sim 10^8 \text{ m}^3$ in the Pacific (5 km deep)

In conclusion, I wish to point out that an investigation of free neutrinos has already led to a number of major discoveries in the field of elementary-particle physics. There is no doubt that this will continue. The role of neutrinos in astrophysics is already theoretically well founded. There is no doubt also that the construction of the large installations listed in the tables will also yield its own fruit.

It is my pleasure to thank V. S. Kaftanov for help in the discussions.

¹F. Reines, C. L. Cowan *et al.*, Phys. Rev. **117**, 159 (1960). ²F. Reines, H. W. Sobel, and H. S. Gurr, in: Neutrino-75, Vol. 1, Budapest, 1975, p. 174.

- ³LAMPF Neutrino Facility Proposal, LA-4842-MS; H. H. Chen and J. F. Lathroop, see^[2], Vol. 2, p. 92.
- ⁴V. M. Lobashov, in: Trudy seminara po μe -probleme (Proc. Seminar on $\mu - e$ Problem), Nauka, 1974, p. 323.
- S. J. Barish, M. Derrik *et al.*, and V. Barnes *et al.*, in: Neutrino-75 Budapest, 1975 (post deadline papers).
- Neutrino-75, Budapest, 1975 (post deadline papers). ⁶G. Bertrand-Coremans, see^[2], Vol. 1, pp. 6, 156; Vol. 2, p. 80; H. Faissner, *ibid.*, Vol. 1, p. 116.
- ¹G. Danby et al., Phys. Rev. Lett. 9, 36 (1962); E. Cazzoli et al., in: Proc. Conf. on High Energy Neutrino Physics, Paris, ed. CNRS, 1975, p. 155.
- ⁸M. Kubantsev, *ibid.*, p. 151 (Survey of Work by V. Kavtanov, M. Kubantsev, V. Shevchenko, V. Khovanskii *et al.*, and S. Gershtein, A. Mukhin, and A. Samoilov *et al.*); A. Mukhin

et al., ibid, p. 331; A. Vovenko et al, see^[2], Vol. 1, p. 113. ⁹C. Rubbia, see^[7], p. 91; D. Cline, *ibid.*, p. 107; A. Mann,

- *ibid.*, p. 273; D. Reeder, see^[2], Vol. 1, p. 91. ¹⁰S. J. Barish *et al.*, see^[7], p. 131; F. Sciuli, see^[2], Vol. 1, p. 13.
- ¹¹F. Nezrick *et al.*, *ibid.*, p. 32; F. Harris, *ibid.*, p. 60. ¹²J. Steinberger, *ibid.*, Vol. 2, p. 134.
- ¹³R. Davis *et al.*, in: Neutrino-72, Budapest, Vol. 1, p. 5.
- ¹⁴I. Barabanov and A. Pomansky, *ibid.*, p. 85; I. Barabanov *et al.*, see^[2], Vol. 2, p. 387.
 ¹⁵A. Pomansky and A. Sevastjanov, *ibid.*, p. 383; G. Zatsepin
- et al., ibid., p. 385.
- ¹⁶K. Lande *et al.*, *ibid.*, p. 396.
- ¹⁷G. Zatsepin et al., in: Proc. Thirteenth Internat. Conf. on ¹⁸F. Reines *et al.*, see^[13], Vol. 2, p. 199. ¹⁹J. Osborne *et al.*, *ibid.*, p. 223; M. Menon *et al.*, Phys.
- Lett. **B**57, 105 (1975).
- ²⁰Proc. of 1975 Summer Workshop on Deep Underseas Muon and Neutrino Detector, ed. P. Kotzer et al., August 1976.

Translated by J. G. Adashko