A. A. Komar. ψ -Particles: The Experimental and Theoretical Situation. The general term " ψ particles" pertains to a group of recently discovered unstable bosons with masses ranging from 3 to 4 GeV and lifetimes 2-3 orders longer than the usual lifetimes of heavy hadrons.¹⁾ The first two terms of this set $\psi(3095)$ and $\psi(3684)$ were discovered at the end of 1974.²⁾ During the past year, several more particles belonging to this group have been discovered^[3-6]: $\psi(2750)$, $\psi(3410)$, and $\psi(3510)$; there are also references to the existence of $\psi(3550)$. Unstable boson formations $\psi(4100)$ and $\psi(4450)$ with widths that are now typical for massive hadrons, although they may be genetically related to ψ particles with smaller masses, have also been registered.

The interest in ψ particles is due primarily to their relative stability, which is unusual for such heavy

elementary particles. The properties of $\psi(3095)$ and $\psi(3684)$ have now been studied in detail. The aggregate of the data indicates that these particles are hadrons: the conservation laws characteristic for strong interactions are observed in their interaction with other hadrons. The interaction cross sections of the ψ particles that have been studied have been found to be about an order smaller than the cross sections of known hadrons. Thus, the total cross section of interaction of $\psi(3095)$ with nucleons at energies ~100 GeV is estimated at 1 mb.

There is every reason to believe that the other ψ particles are also hadrons, since they form from $\psi(3095)$ and $\psi(3684)$ when the latter emit a γ quantum (Fig. 1), i.e., as a result of minor restructuring.

The concept in which the ψ particle is a bound system consisting of a heavy quark and an antiquark and assigned the new quantum number "charm" is currently dominant in treatment of the nature of ψ particles. In this treatment, the smallness of the decay widths of ψ particles is explained by the small annihilation probability of heavy quarks, which may be due dynamically

638

¹⁾That is, we are concerned with lifetimes of $10^{-20}-10^{-21}$ sec and, accordingly, decay widths of 0.1-1 meV.

²⁾For a detailed description of the situation early in the study of ψ particles, see^{L1,2]}.

to an asymptotic-freedom effect (for details see [1,2]).

The recent discovery of new ψ particles [$\psi(2750)$, $\psi(3410)$, and $\psi(3510)$] was an important confirmation of the concept of the ψ particle as a bound system of heavy quarks, since it was *predicted* ^[7-8] on the basis of theoretical analysis of the energy spectrum of these systems that ψ particles will exist with masses intermediate between the masses of $\psi(3095)$ and $\psi(3684)$ and with a mass smaller than the mass of $\psi(3095)$ (Fig. 2). The theory also indicated an important role of radiative transitions between ψ particles because of the suppression of hadron decays.

Validation of the above treatment of the nature of the ψ particle will mean recognition of the existence of the new "charm" quantum number in the physics of strong interactions and the prediction of a new class of elementary particles that are explicit charm carriers: "charmed" particles. Their masses are estimated at 2-3 GeV on the basis on data on the ψ particles. We do not yet have reliable direct evidence of the existence of "charmed" particles (except for isolated cases), but

there are various interesting indirect indications of their existence, for example in two-muon neutrino processes.^[9-10]

The discovery of the ψ particles was clear evidence of the complex structure of the world of elementary particles, indicated the possible existence of a whole sequence of new quarks, and once again underscored the importance of studying processes that unfold at high and ultrahigh energies.

- ¹M. K. Gaillard, B. W. Lee, and J. L. Rosner, Rev. Mod. Phys. 47, 277 (1975).
- ²V. I. Zakharov, B. L. Ioffe and L. B. Okun', Usp. Fiz.
- Nauk 117, 227 (1975) [Sov. Fiz. Usp. 18, 757 (1976)].
- ³W. Braunschweig et al., Phys. Lett. **B**57, 407 (1975).
- ⁴W. Tanenbaum *et al.*, Phys. Rev. Lett. 35, 1323 (1975).
- ⁵J. Heintze, DESY Preprint 75/34, September 1975.
- ⁶B. H. Wilk, DESY Preprint 75/37, October 1975.
- ⁷T. Appelquist et al., Phys. Rev. Lett. 34, 365 (1975).
- ⁸E. Eichten et al., ibid., p. 369.
- ⁹A. Benvenuti et al., ibid. 35, 1199.
- ¹⁰A. Benvenuti *et al.*, *ibid.*, p. 1203.

Translated by R. W. Bowers