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1. The application of Gauss's theorem to a nonsta-
tionary spherically symmetric charge distribution leads
to an unexpected result. Suppose that the charge is
bounded by a sphere of radius R, and the charge density
inside the sphere is determined by the function p(r, t).
If we seek the field outside the charged sphere, by
Gauss's theorem we obtain

4nr*eE (r, t) =4nQ(t), (1)

where Q(t) is the total charge of the sphere at time t.
From (1) it follows immediately that

(2)

and for the potential φ(Ε = - V<p)
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φ (Γ, ί ) = — Q(t) (3)

The results (2) and (3) are, of course, surprising.
Gauss's theorem is, in essence, the Maxwell equation
div D =4irp, and in the Maxwell theory the speed of
propagation of interactions (the speed of propagation of
the field) is finite and equal to the speed of light 1/
νεμ". From (2) and (3) it is possible to conclude that the
field propagates instantaneously. Instantaneous prop-
agation of the field manifestly contradicts the special
theory of relativity.

The fact that the expression (3) corresponds to in-
finitely fast propagation of the interaction can also be
seen, in particular, from the fact that D'Alembert's
equation (for the vacuum)
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goes over into Poisson's equation

Λφ = —4πρ (τ, t)

(4)

(5)

when c— ». The expression (3) is just a particular so-
lution of Poisson's equation. The analogous solution of
Eq. (4) has the form

{ r > R h
(6)

which corresponds to propagation of the interaction with
speed c. Perhaps Gauss's theorem is not always valid?
But the answer is much simpler. Any change in the
charge density should obey the charge conservation law

(7)

where j is the current density.

From the conditions of the problem there are no
charges, i .e . , p = 0, outside the sphere of radius R.
Therefore, for any spherical surface drawn outside the
sphere of radius R, we obtain that j = pv = 0. Consequent-
ly, the total charge inside such a sphere remains con-
stant:

Q = f ρ (t) dV = const. (8)

But in this case there i s no difference between (4) and
(6). The answer has turned out to be rather unexpected:
the charge conservation law does not allow us to obtain
a varying total charge inside a certain spherical region
if ρ =0 outside it. The spherical symmetry is, of
course, not essential for this conclusion.

2. The result (2) follows, of course, not only from
Gauss ' s theorem but also from the exact solution of the
field equations. If we s tar t from the system of D'Alem-
ber t equations for the potentials:

it is s implest to expand the fields, charges and cur-
rents Ε,Η, Α, φ, ρ and j in Four ier integrals, i. e . ,

A (r, t) = J Α*ι(ίί"»-*°><

etc. As i s well known, the differential relations be-
tween the quantities of interest to us in this case go
over into algebraic relations between the Four ier com-
ponents. For example, (7) becomes

= 0.

Hence,

(10)

(ID

The latter equality is written with allowance for the

538 Sov. Phys. Usp., Vol. 19, No. 6, June 1976

spherical symmetry of the problem: j f c u can point only
along k. Obviously, we can also write

jk, a=-jS-pk, ω- (12)

Eqs. (9) are written in terms of Fourier components
as follows:

( , , ω2 \ 4π
(13)

whence it follows immediately that

. in ik. ω (14)

The expressions (14) for φ^ω and AfcM have poles at kz

= coVc2. Usually the presence of a pole leads to the
emission of electromagnetic waves but in the case under
consideration there is no radiation at all. This can be
seen immediately after going over from the potentials
to the fields. Making use of the relations Ε = - v<p - (1/
c)A, Η = curl A, we obtain

E t ,< 0 =-tk<p k , ( 0 (15)

From (14) it can be seen that Α^ω points in the direc-
tion of j h u , and ] ^ ω , as can be seen from (12), points
in the direction of the vector k. Therefore, it follows
from (15) that Ή^ω =0. The spherical symmetry of the
problem has led to the disappearance of the magnetic
field. From this the absence of radiation is obvious.

We now find the electric field. From (15),

Ek, „ = -4πί· ^ - , " / ' · C16)

We shall transform the numerator of (16) with the aid
of (11) and (12):

Substituting (17) into (16), we see that the pole that
exists in the expression for the potentials disappears in
the expression for the electr ic field. As a result, we
have from (16)

4ni.
] (18)

If we substitute this value of the Fourier component into
the expression

E(r, i)= f Et.^e^'-^

and perform the integration, we obtain formula (2). In
conclusion, we note only that the absence of radiation
in the case of a spherically symmetric charge distribu-
tion also follows from the fact that in this case al l the
multipole moments a re constant.
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3. One can point to yet another case in which, at
first glance, an infinitely fast signal a p p e a r s . t u We
shall consider a sphere, the material of which has con-
ductivity σ and dielectric premittivity ε. From the
Maxwell equations there follows the dependence for the
variation of the volume charge density at any point:

(19)

It can be seen from (19) that at any point where p(0) = 0
charge density cannot appear. We shall suppose now
that at time i = 0, inside a very small sphere concentric
with the original sphere, a volume (or even a surface)
charge density is created. This charge immediately
begins to decay in accordance with (19); again in ac-
cordance with (19), it cannot appear anywhere inside
the sphere, and, consequently, by the charge conserva-
tion law, it must appear immediately on the surface of
the sphere in the form of surface charge, irrespective
of the radius of the sphere. The appearance of the
charge on the surface of the sphere could serve as a
signal, and, as we see, an infinitely fast one.

But it is simply impossible to send such a signal.
First, as we have seen in considering the previous case,
it is impossible to create the charge instantaneously in
the interior region: the charge conservation law would
be violated by this. However, we can postulate one
further assumption. Suppose that a charge was intro-
duced into the very small sphere concentric with the
original sphere at some much earlier time. To prevent
it from flowing away we confine it in a thin shell of an

ideal dielectric. This situation is stationary; then, at
a certain time, we take away the insulating shell. Then,
on the basis of our discussions, it would seem that the
charge should appear without delay on the surface of
the large sphere. It is not difficult to find the error in
this argument. The charge situated inside the original
sphere and separated from it by the insulating shell
gives rise to an electrostatic displacement in the ma-
terial of the sphere. Free charges appear at the bound-
ary with the insulating shell in the dielectric. There
will also be such charges on the outer boundary of the
dielectric sphere. The removal of the insulating shell
inside the sphere only gives rise to compensation of the
"added" charge and the free charge on the interior
boundary of the original sphere (these charges are equal
in absolute magnitude). As regards the charge on the
exterior boundary of the sphere, it simply remains un-
changed.

Note added in proof. As is frequently the case, some-
thing which appeared to be a "paradox" for some raises
no question for others. Having become acquainted with
this note, Ya. B. Zel'dovich and I. A. Yakovlev re-
marked that the charge conservation law forbids the
very formulation of the problem. But it is precisely
this which forms the content of the explanation given in
the note.
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