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1. INTRODUCTION

In most texts on macroscopic electrodynamics the
answer given to the question at the head of this article
is an unqualified yes. However, the actual state of af-
fairs turns out to be much more complicated. The cor-
rect answer to the question posed depends on precisely
what quantity (the dielectric permittivity itself (DP, for
short) or its inverse) and what range of wavelengths the
Kramers-Kronig relations are written for (cf.c l~3 1).

The importance of the question under discussion lies
in the fact that the DP, being a concentrated source of
information about the internal properties of a system
and about the results of the action of different kinds of
external probe on the system (cf.c l > 4 > 5 ]), is one of the
fundamental characteristics of systems with Coulomb
interaction. The microscopic calculation of the DP is
a problem of exceptional difficulty, yielding to solution
only in the simplest cases. Therefore, an important
role in the theory of condensed matter and plasmas is
played by general restrictions on the value of the DP,
which pertain to its analytic properties, its permissible
limits of variation, etc., and are derived directly from
general principles (causality, stability, positivity of the
probability). The Kramers-Kronig relations, together
with the consequences stemming from them, serve as
the most important example of such restrictions.

Special attention is devoted in this article to one of
these consequences, pertaining to the question of the
allowed sign of the static DP (and, at the same time, to
the question of the allowed sign of the static interaction
between the electrons). The applications considered
below, to the problem of radically raising the critical
temperature of the superconducting transition, show
that the question of the validity of the Kramers-Kronig

relations goes far beyond the framework of the purely
academic and has practical interest of considerable im-
portance.

At the same time, the study of this question has def-
finite methodological value, clearly demonstrating that
for the proof of the validity of any relation between phys-
ical quantities an analysis of the actual realizability of
the thought experiments lying at the basis of the defini-
tion of such quantities is necessary.

2. THE KRAMERS-KRONIG RELATIONS

We shall start from the definition of the DP ε(ω, k),
meaning by this quantity the longitudinal DP of a uniform
and isotropic system.1 } We shall subject the latter to
the action of an external source having the charge-den-
sity Fourier component δρβ(ω, k). As a result, there
appears in the system the induced charge δρ(ω, k),
forming, together with 5pe, the total change 5pt = 6pe

+ 5p in the charge. The corresponding values of the dis-
placement and field intensity are determined by the Max-
well equations

div D = 4πδρ,, div Ε = 4ji6p(.

In the language of the quantities introduced, the DP is
defined by either of the relations

6pe (ω, k) = ε (ω, k) δρ, (ω, k).

D (ω, k) = ε (ω, k) Ε (ω, k).

We shall make precise the concept of the external

(1)

"incidentally, a number of remarks pertaining to the trans-
verse DP and also to crystalline media will be made below.
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FIG. 1.

spondingly, for all 2 ' values of k the Kramers-Kronig
relation for the inverse DP will be valid"3:

m e-' (ω1, k) (3)

source, to which belong, by definition, the charges that
do not appear in the composition of the system under
consideration. These charges are, primarily, those
positioned outside the system (e.g., the charges on the
capacitor plates between which the system itself is situ-
ated; see Fig. 1). By such means we can produce a
δρβ or D only with k~L~l~ 0, where L is the macro-
scopically large size of the system. Therefore, exter-
nal sources of this type are associated only with the
long-wavelength limit ε(ω, 0) of the DP.

To realize the case k * 0 it is necessary to place the
external sources inside the system itself (5pe ~ exp(ik · x));
these are often also called extraneous sources. In this
case it is necessary to fix the state of these sources,
by assigning to them, e.g., a large mass and thereby
eliminating the back-action of the system itself on them.
Otherwise, we would lose the possibility of distinguish-
ing the internal and external charges and the situation
would reduce, in essence, to treating a new, more
complicated system.

The dielectric permittivity describes the reaction
(response) of the system to an external perturbation.
The quantity establishing the relation between the action
on the system and its result is called the response func-
tion:

(result of perturbation) = (response function) X (perturbation). (2)

This relationship has a causal character ("cause always
precedes effect in time"), the role of the effect being
played by the left-hand side of (2) and that of the cause
by the second factor of the right-hand side. It follows
from this (cf., e.g.,C 1 ]) that the response function
necessarily satisfies a relation of the Kramers-Kronig
type. Therefore, the purpose of the following discus-
sions will be to elucidate the question of which of the
quantities (ε or l/ε), and under what conditions, can be
regarded as the response function.

The meaning of the concept of the external perturba-
tion appearing in Eq. (2) also needs to be made precise.
By definition, this is what we call a perturbation which
does not depend on the state of the acted-upon system
and which can be varied, switched on and switched off
at will; an event-cause (for more detail, cf. c e l) neces-
sarily possesses just such properties. It is of impor-
tance that by far not every perturbation realizable by an
external source satisfies this definition.

A perturbation arising from an external source of the
second of the types considered above (a source located
inside the system and free from the back-influence of
the system) always falls under this definition. In this
case, the perturbation is related to the quantities δρβ

and D and its result to δρ( and E. Comparing (1) with
(2), we see that the quantity 1/ε(ω, k) can be regarded
as the response function, under all conditions. Corre-

It is essential that, in these discussions, we cannot
interchange Ε and D and, correspondingly, regard the
DP itself as the response function. The point is that we
cannot regard the intensity as the action (it depends on
the state of the system) and the displacement as a char-
acteristic of the result of the action (on the contrary,
it does not depend on the state of the system).

As regards an external source situated outside the
system, it gives rise to an external perturbation only
under the condition that the plates of the capacitor are
disconnected and we can control the magnitude of the
charge on them (see Fig. la). In this case, as before,
we can regard the response function to be the quantity
l/ε, but with k~0. But if the plates are connected
through a battery and we control the magnitude of the
potential difference across the capacitor (see Fig. lb),
the corresponding external perturbation is not related
to the external source (the charge on the plates). In
the conditions under consideration, the latter itself de-
pends on the state of the system, flowing toward the
plates or away from them as this state changes. The
external perturbation is now determined by the magni-
tude of the total potential difference across the plates,
i .e . , by the field intensity E, and the result of this per-
turbation by the magnitude of the external charge or of
the displacement D. Accordingly, besides 1/β(ω, k) we
can regard the quantity ε(ω,0) as a response function
and the Kramers-Kronig relations for the DP itself
are found to be valid, but only in the long-wavelength
limit:

ε(ω, ) = 1 + - <ίω'2Ιΐ ω', 0)
(4)

The examples considered exhaust the possible types
of action on a system that can be realized by means of
a longitudinal field. As regards the response to a
transverse field, for k = 0 for the transverse DP ε,(ω, k),
which coincides in this limit with the longitudinal DP,
both relations (3) and (4) are valid. For k^O the Kram-
ers-Kronig relation for the quantity [ε,(ω, k) - (iPcP/u?)]'1

holds.3 '

We note that to derive (3) we can use instead of the
principle of causality the so-called "spectrality" condi-
tion, relating the quantity l/ε to the correlation of the
fluctuations (E{Ej),C5] introducing a complete interme-
diate set of functions, and taking into account that the

2>Contrary to widespread opinion, the DP, like the first rela-
tion of (1), has an exact microscopic meaning and can also be
used for large values of ft, when the concept of the intensity
as an average field becomes meaningless (cf. t 4 ]).

3)We point out that stronger statements pertaining to the trans-
verse DP, which, however, are insufficiently substantiated,
are contained inC I ].
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frequencies corresponding to them are real. It is in
precisely this way that the Kallen-Lehmann relations
for the vacuum photon Green function in quantum field
theory, which serve as a direct analog of the relation
(3), are derived. We emphasize that by virtue of the
relativistic invariance the Green function depends on
the single combination ω2 -<?&. For this reason the
Kallen-Lehmann relations are also valid for the inverse
Green function (the analog of the quantity ε) for all val-
ues of its argument.C73

3. CONSEQUENCES OF THE KRAMERS-KRONIG
RELATIONS

The most important consequence, with which we shall
be solely concerned below, pertains to the permissible
limits of variation of the static DP ε(0, k). We shall
start from the relation

Ime-«(a>,k)=—ί5£/>, k), (5)

where F > 0 is the form factor for inelastic scattering
of electrons by the system considered and determines
the probability that the electron loses energy ω and mo-
mentum k. c l ] Hence, Im8"1<0, Ime>0, and the rela-
tions (3) and (4) for ω = 0 give the following restrictions:
the relation (3) leads to the inequality 1/ε(0, k)< 1 or,
which is the same thing, to one of the inequalities

e(0, k ) > l , ε(0, k) < 0 , (6)

while the relation (4) leads to the inequality

(7)

As can be seen from the results, the absence of
Kramers-Kronig relations for the DP itself for k*0
opens up the possibility of negative values for the static
DP. This possibility was discussed i n m , but was re-
jected by unconvincing qualitative arguments. Below
we shall consider these and other arguments in favor
of the necessity of a positive sign of ε(0, k) and show
them to be incorrect.

A negative sign of the static DP implies "over-screen-
ing" of the external charge, as a result of which its
field acquires a sign opposite to that of the field in the
vacuum. Of more importance is another consequence:
the effective interaction between the particles also has
a sign opposite to that in the vacuum. In fact, we shall
consider the energy of the interaction of a static ex-
ternal charge δρ,(0, k), producing a field 4ir5pt(0, k)/*2

inside the system, with itself (cf. (1)):

From this it can be seen that the Fourier transform of
the static interaction of two particles with charge e has
the. form4'

(8)

This relation serves as the obvious generalization of
the well-known elementary formula for Coulomb's law
in a medium. Below we shall return again to the dis-
cussion of formula (8) and its consequences.

To conclude this section we shall consider the ques-
tion of the behavior of the quantity ε(0, k) with variation
of k (cf. (6), (7)), For k = 0 (and also, from continuity
considerations, in a region of relatively small k that is
wider the smaller is the role of spatial dispersion in the
system), this quantity is positive and greater than unity.
With increase of k, either these conditions continue to
be fulfilled or e(0, k) becomes infinite, changing its sign.
More adequate is the language based on the quantity 1/ε:
in the first case it always lies between zero and unity
(Fig. 2, curve 1) and in the second it passes through
zero (Fig. 2, curve 2).

We note in this connection that the derivation of the in-
equality ε > 1 given inC8] (Sec. 14) actually permits nega-
tive values of ε, as can be seen after going over to the
1/ε language. This derivation is based on the necessity
of a positive sign of the change of ε (or, which is the
same thing, a negative sign of the change of 1/ε) when
the initial value is ε= 1. But this in no way excludes
the possibility that, as it decreases, the function 1/ε
will pass through zero, becoming negative. In the lan-
guage of ε this possibility is masked by the inevitable
divergence of ε to infinity.

4. CRITERIA FOR THE STABILITY OF A SYSTEM

In this section it will be shown that the inequalities (6)
and (7) obtained above are none other than criteria for
the stability of the system. Simultaneously, those ar-
guments against the second inequality (6) based on con-
siderations of stability will be overthrown.

We shall formulate the stability problem in a general
form, confining ourselves for simplicity to the case of
zero temperature.5 ' Suppose that we are interested in
the stability of the system with respect to variations of
a certain physical quantity—a "field" φ(χ); we shall as-

4>Referring to the bookC3:l for the details, we stress that (8) de-
scribes the interaction of just the external charges, the state
of which is fixed. The law of interaction of internal charges
of the system, which experience the back-action of the sytem,
differs, generally speaking, from (8). However, in many
important cases, this difference is insignificant.

S)With regard to this formulation of the problem, cf.C9tlfl]. A
modern formulation of the stability problem (the effective-
potential method), developed in recent years in connection with
the study of spontaneous symmetry breaking in quantum field
theory and statistics, is contained in, e.g., the papers c l l : .
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sume a "current" j(x) to be conjugate with respect to
the field. We shall formulate the problem of seeking
a functional £{ςο} which would depend on the arbitrary
(nonequilibrium) function φ and which would have a mini-
mum with respect to φ in the equilibrium state. The
function φ that realizes the minimum defines the equi-
librium field, and the actual conditions for the minimum
play the role of criteria of the stability of the system.

In order to make a state of the system with arbitrary
φ an equilibrium state, it is necessary to introduce a
specially chosen external current j by adding a term
Sg1 = idxjip to the Hamiltonian S£ of the system. Denot-
ing E{j} = (S6 + ά№'), where the brackets denote averag-
ing over the state with the current, we have

(9)

The functional E{j} has an intermediate character and
has no minimization properties with respect to j (this
is already clear from (9) for φ Φ 0). In order to go over
to the required functional Ε{φ} it is necessary to sub-
tract from E{j} the "superfluous" work associated with
the external current and change from j to the argument
ψ, using (9). This reduces to a Legnedre transforma-
tion

Ε {φ} = Ε {)} - jdx/φ =

in which the current appearing in the averaging must be
expressed in terms of ψ. The conditions for the mini-
mum of the expression obtained, which has the meaning
of the energy of the system for arbitrary φ, take the
form

ers-Kronig relation for the DP itself for k*0 would
mean the appearance of poles of ε(ω, k) with ω8 < 0,
which do not have a direct physical meaning. On the
other hand, the instability of the system leads to direct
violation of the causality principle because of the im-
possibility of distinguishing a density wave arising as a
response of the system in advance of the external per-
turbation and one arising as a result of the instability
of the system. We note that the method formulated
above coincides in the problem under consideration with
the well-known variational principle of quantum many-
body theory (in recent years it is most often called the
density-functional method; cf., e.g.,1-121).

The analysis carried out corresponds to the case k
* 0 (density waves whose appearance does not violate
the normalization to a fixed volume). The case k = 0
is special and corresponds to study of the stability with
respect to a spontaneous change in the average density
of the system (collapse of the system). Stability re-
quires that the value of the bulk modulus or of the
square of the sound velocity s be positive. The rela-
tion1" s z = o)|/fe2(e0- 1), where ωρ is the plasma fre-
quency of the electrons, leads to the inequality (7).

5. STABILITY IN THE LANGUAGE OF MACROSCOPIC
ELECTRODYNAMICS

It remains for us to consider critically the arguments,
based on stability considerations,[ l l lS] against the pos-
sibility of a negative sign of the static DP. These ar-
guments are based on expressions for the field energy
of the system,

(ii)

6£{φ)
6φ(ΐ) όφ (χ) δφ (*') "

6/ (*').
βφ(χ) '

(10)

We shall show now that the conditions (6) coincide
with the criteria for stability of the system against the
spontaneous appearance of density waves in it (see the
next section); this corresponds to the choice φ = ρ, j
= Ue, where Ue is the potential of the external field.
Then the first condition (10) gives Ue = Q and the second
leads to the inequality

«MO, k) _
" «P(0, k)δρ(Ο, k)6p(0, - k ) "

(equilibrium static density waves are considered).
Here we have introduced the susceptibility

It is obvious that the criterion obtained coincides ex-
actly with the condition (6).

This is not surprising, since the spontaneous appear-
ance of density waves should necessarily accompany an
unstable state in the excitation spectrum of a spatially
uniform system (a zero of the function ε(ω, k) with ω2

< 0), and this is forbidden by the Kramers -Kronig rela-
tion (3). At the same time, the violation of the Kram-

which indeed have no minimum for ε(0, k)< 0.

The left-hand side of the expression (11), having the
meaning of the energy of infinitely heavy ions producing
an external (with respect to the electrons) field D, is
considered inc i ]. The appearance of a wave of D, i.e.,
the rearrangement of the ionic subsystem, is regarded
as a manifestation of instability. Inc l 3 ] the right-hand
side of the expression (11) is taken as fundamental and
the appearance of a field-intensity wave is regarded as
manifesting instability when the sign of the static DP is
negative.

In fact, both these conclusions are incorrect, since
the functionals (11) need not have a minimum at all in
the equilibrium state. Below we shall give the correct
solution of the problem of the stability of the system,
in the language of the electrodynamic parameters D
and E, basing the discussion on the general method of
Sec. 4. As the result of the treatment we again arrive
at the inequalities (6) and (7).

We begin by studying the stability with respect to the
appearance of a field E; accordingly, φ = Ε. In this
case we are concerned with a connected system, corre-
sponding to Fig. la. The change in the energy of the
system as a result of the action of the external current
(the role of which is played by the charges on the plates)
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is determined by the well known expression E{j}
= (1/8π)Σ» ID12/e, whence j = O/4ir and Ε = D/ε. Per-
forming a Legendre transformation and changing to the
variable E, we obtain Β{φ} = - (1/8ιτ)Σ*β ΙΕ12. In this
expression it is necessary to retain only that part of it
which pertains to the actual system under consideration.
Taking into account that the external charges (i.e., the
displacement D) are fixed in our thought experiment and
separating out the corresponding constant term, we ar-
rive at the final expression for that functional of the in-
tensity Ε which should indeed have a minimum with re-
spect to E, and which differs radically from the right-
hand side of the expression (11):

(12)

The stability condition stemming from this coincides
exactly with (6).

The study of the stability with respect to the sponta-
neous appearance of a displacement D, corresponding to
the scheme of Fig. lb (disconnected system.),e) is car-
ried out analogously. In this case, φ = Ό, E{j}
= -(1.8π)Σ*εΙΕΙ2 (cf.C8J), j=-E/4n and D= eE. Per-
forming the same operations as above, we find Ε{φ}
= (1/8JT)Z* IDI z /e. This expression formally coincides
with the left-hand side of (11). However, it has a com-
pletely different meaning, as it corresponds to a phys-
ically different formulation of the problem; in particular,
this invalidates the words about the rearrangement of
the ionic subsystem (see above), which is already im-
possible by virtue of the infinitely large mass of the
ions. Of more importance is another point—we can use
only the long-wavelength part of the expression ob-
tained. This follows from the large size of the system
(cf. Sec. 2), and also from the argument that, by vir-
tue of the equation div D = 4jrpe, iri the absence of exter-
nal sources only a spatially uniform displacement can
arise spontaneously inside the system. Taking this cir-
cumstance into account and subtracting, as above, the
part pertaining to the external sources themselves (the
potential difference across the plates (i.e., the intensity
E) is now fixed), we obtain the final expressions:

(13)

The inequality (7) is a direct consequence of this.

To conclude this section we note that the functionals
obtained ((12 and 13)) have a direct physical meaning,
inasmuch as each of the states competing in the calcu-
lation of the minimum can be realized in practice by a
suitable choice of the external current. In this they
differ from the functionals introduced in the bookU8]

(Sec. 18), which have a formal meaning and do not al-
ways possess a minimum at the equilibrium state.

6. COHERENT CRYSTALLIZATION

The outcome of the treatment carried through; in the
last two sections is that the conditions (6) and (7) play
the role of conditions for the stability of the system.
When they are violated the system should inevitably re-
arrange because of the instability of its previous state.
If the condition (7) is violated, then, as already pointed
out, collapse of the system will occur: it begins to con-
tract irresistibly, increasing its density without limit.
A more complicated and interesting pattern arises when
the condition (6) is violated. We have already mentioned
above the appearance in this case of density waves, im-
plying the violation of the translational invariance of the
system under consideration. In this section we shall
consider in more detail the character of the state which
arises in such a rearrangement; this state has previous-
ly been called a "coherent crystal".[1417)

Such an analysis in the context of this article is all
the more justified by the fact that the following question
can arise: does the above investigation of the stability
of an idealized uniform system against its transition to
a nonuniform state have any meaning at all if we know
for certain that such a system is unstable (at low tem-
peratures) with respect to the formation of an ordinary
crystalline lattice? In fact, the answer to this question
turns out to be positive, since the properties of an ordi-
nary and a coherent crystal are radically different in
many respects and the spontaneous appearance of such
structures corresponds to two independent modes of
instability of the uniform state of the system.

Referring toC143 for the details, we shall list briefly
the principal features common to and distinguishing the
structures of ordinary and coherent crystals:

a) Both types of structure are characterized by viola-
tion of translational symmetry—the appearance of a
spatially periodic distribution of the particle density.

b) Both types of structure possess shear rigidity and
belong to the category of solids.

c) The period of an ordinary crystal is determined
by the concentration of the particles and that of a co-
herent crystal by the law of interaction of the particles.
In the latter case the reciprocal-lattice vector belongs
to the range of k in which the conditions (6) are violated,
i. e., the quantity 1/ε (0, k) is greater than unity.

d) The particles of an ordinary crystal are localized
near the sites of the crystal lattice and the particles of
a coherent crystal move relatively freely over its whole
volume.

e) An ordinary crystal is a structure arising as a
result of many-particle correlations in the system. A
coherent crystal, on the other hand, can also be con-
sidered in the framework of a single-particle picture:
the periodic distributions of the density and of the self-
consistent field support each other. This corresponds

6)In general, a quantity which, in the language of response func-
tions, corresponds not to the "perturbation" but to its "re-
sult" (cf. Sec. 2) can arise spontaneously.

7)The pioneering papers in this field are due to A. A. Vlasov
and also to A. Overhauser (for a detailed bibliography, see
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FIG. 3.

to a coherent density wave due to the Bose condensation
of "particle-hole" pairs (for Fermi systems) or of the
bosons themselves (for Bose systems) in a state with
definite wave vector k*0 and definite phase.

We shall not touch upon other differences between or-
dinary and coherent crystals (seec i 4 ]), which are, in a
certain sense, opposite types of periodic solid-state
structures. The widely studied "quantum crystals"1 1 5 5

should be assigned to an intermediate type, for which
properties of both of the crystal types compared are
characteristic.

7. THE SIMPLEST MODELS

In this section we given an illustration of the material
described, using the example of the simplest theoreti-
cal models. The general expression for the DP can be
written in the form

ε (ω, k) = 1 + 4π 2 α, (ω, k), (14)

where the summation runs over the different subsys-
tems of the substance (the conduction electrons, ions,
etc.), and af is the polarizability of a subsystem, con-
nected by the relation Π = - t?a with its most important
microscopic characteristic—the polarization operator
Π.

The polarizability of the conduction electrons (i= 1)
has the following well-known limiting expressions:

(15)

where κ is the inverse Debye screening length. The
polarizability of the ion subsystem (t = 2) in the sim-
plest" jellium" model in which the ions are regarded as a
continuum of free particles has the form

(16)

where ωρ{ is the plasma frequency of the ions. We note
that, even in the framework of this very simple model
(which, incidentally, is not suitable in the region of low
frequencies), the static DP is negative (it tends to - °°).
In the more complicated model in which the ions are as-
sumed to be bound and to have the spectrum of the "bare"
frequencies uo(k),

The latter model is already able, in principle, to de-
scribe a system in which ε(0, k)< 0. Starting from the
expression

e(0,

we see that for this it is necessary in any case that the
condition w§(k)< 0 be fulfilled. In other words, insta-
bility of the "bare" ionic subsystem existing before its
interaction with the conduction electrons is switched on
is necessary. However, the final physical phonon spec-
trum will be stable when the conditions (6) and (7) are
fulfilled. We shall give the simplest mathematical
model for wf̂ k), satisfying all the necessary require-
ments:

Figure 3 corresponds to this. However, the question
of the physical realization of such a model remains open
as yet.8 '

If systems with ε(0, k)< 0 really exist, they can be
transformed to the coherent-crystal state (cf. Sec. 6)
by adding oscillators of frequency Ω » ωρΙ, uniformly
distributed over the volume, which would have produced
a DP ~ε > 1 in vacua (a generalized "jellium" model).
The corresponding polarizability (t = 3) has the form

It increases the original DP of the system by the amount
I - 1. It is clear for ε(0, k)< 0 a suitable choice of ε
makes it possible to carry the system over into the in-
terval 0< ε(0, k)< 1 forbidden by conditions (6), and this
leads to the formation of a coherent crystal.

To conclude this section we shall discuss a question
that often arises when we compare the Kramers-Kronig
relations for e and l/ε, which express the fact that
these response functions are retarded. At first sight it
seems that these properties are incompatible (simul-
taneously, Ε is retarded with respect to D and, con-
versely, D is retarded with respect to E). In fact, in
the nonrelativistic theory that we are considering the
structures of the time-dependence of Ε and D are en-
tirely similar, irrespective of which of these quantities
describes the "perturbation" and which its "result":
both these quantities are nonzero only at times after
the "perturbation" is switched on.

It is easy to convince oneself of this using the simple
model (17), omitting the electronic polarizability (16)
for simplicity:

α2(ω, k ) = - (17)

8 ' in this connection we point out the stability condition t (0,k) P-
-(^ft2/47re2)]>0 (cf. Chap. 3 of1", and"61),where #, is the
"bare" electron-phonon coupling constant; ίθΓ£$»2>4πβ2,
negative values of e(0,k) are possible. We note that allowance
for Umklapp processes in the crystal lattice can also lead to
the expression (17) with ω?<0 (cf. t 1 3 · 1 7 3).
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ε (ω, k) e-'(fi), k) = l — , Mpj

ioji —0)2 — ι δ '
(18)

These two quantities have the same rules for going
round the singularities9' and, therefore, in the i-repre-
sentation, both have the "retardation" factor 9(t)
= l(i>0) or 0 (*<<)):

ε(ί,

The same properties are possessed by the fields E(0
and D(0 themselves.

8. APPLICATIONS TO THE THEORY OF
SUPERCONDUCTIVITY

As already noted in Sec. 3, from the results of this
article there follows, in particular, the following state-
ment: systems within which the electrons do not repel
each other, as they do in the vacuum, but attract each
other (at large values of k, i .e. , at comparatively
short distances) can, in principle, exist. This state-
ment, as we shall show below, can turn out to be im-
portant for the physics of the phenomenon of supercon-
ductivity, since the character of the static interaction
of the electrons at relatively large values of k is impor-
tant for the formation of Cooper pairs and for the actual
appearance of this phenomenon.

The statement made often seems trvial to those peo-
ple who are familiar with the theory of superconductivity
from its popular accounts, in which the formation of the
Cooper pairs is explained by precisely the electron-
electron attraction induced by their interaction with the
lattice (phonons).

Actually, however, it has been well known for some
time"' 1 8 1 that the electron-electron interaction V which
is responsible for their "pairing" and which, in a super-
conductor, should in fact have an attractive character,
differs appreciably from the true electron-electron in-
teraction V (cf. (8)). It turns out that if we write the
latter in the form V= Vstl+Vc, where Vph is the phonon
part (the attraction) and Vc is the Coulomb part (the
repulsion), then V' = Vvh + a Vc, where a is less than
unity. Therefore, from the condition V < 0, necessary
for "pairing, " it follows that the true interaction V is
smaller than the quantity (1 - a)Vc and can be either
negative or positive. Moreover, the available experi-
mental data support the view that forces of repulsion
between the particles dominate in the known supercon-
ductors.

At the level in which we are interested, the most im-

9>It is necessary to keep in mind the condition, not stipulated
up to now, that the infinitesimal quantity δ appearing in many for-
mulas of this article has a sign coinciding with the sign of ω.
We also note that, for ω§<0, violation of the Kramers—
Kronig relation for ε occurs because the function ε (t) loses
the property of causality: according to the first formula (18),
in this case, e(f,k)-«(i)~ exp(- 7ω$|ί I).

portant consequence of the statement discussed con-
cerns the existence of an upper bound for the critical
temperature Tc of the superconducting transition. If
the Kramers-Kronig relation (4) were valid for large
values of k and, consequently, the restriction e(0, k) > 1
were fulfilled, then the inequality V > 0 would, in any
case, follow. At the same time, the "pairing" inter-
action would turn out to be bounded (I V I < (1 - a)Vc),
and with it the magnitude of Tc.

ll3>in An estimate per-
formed in the first of these papers gives for the upper
bound of Tc a value close to that already attained for
the record-breaking superconductors, and if this esti-
mate is reliable it would leave little hope of a radical
raising of the critical temperature. Although this esti-
mate cannot be regarded as quantitatively reliable and,
moreover, there are a number of factors favoring a
raising of Tc that are not taken into account in the dis-
cussions given in : i 3 ' 1 7 ] , nevertheless, the restrictions
on Tc that stem from the inequality κ(0, k) > 1 seemed to
be extremely serious and worrying.

From the results of this article it follows that such
restrictions simply do not exist, because the inequality
e(0, k) > 1 itself is incorrect for large k. We do not know
any general requirements which would forbid an arbi-
trarily strong attraction between electrons at large val-
ues of k and, correspondingly, an arbitrarily high val-
ue of the critical temperature. Of course, the problem
of the actual existence of structures with ε(0, k)< 0 or of
their artificial synthesis remains completely open, as
yet. However, such a possibility cannot be excluded
and it appears that the search for structures of this
kind is an interesting and important problem of solid-
state physics. It may be that the hopes of a radical
raising of the critical temperature of the superconduct-
ing transition could be realized in precisely this way.

9. CONCLUSION

The outcome of the analysis performed in this article
can be summarized in the form of the following state-
ments:

a) The Kramers-Kronig relation for the quantity
1/e (ω, k) and the restrictions ε(0, k) > 1 or ε(0, k)< 0 are
necessarily valid for any stable system;

b) the Kramers-Kronig relation for e(w, k) and the
stronger restriction ε(0, k) > 1 hold good only in the long-
wavlength limit k - 0;

c) for sufficiently large values of k, negative values
of the static dielectric permittivity become permissible;

d) there exists in principle a class of substances with-
in which the static interaction of the electrons has the
character not of repulsion, as in vacuo, but of attrac-
tion.

Analogous conclusions as applied to the magnetic per-
meability of a substance are also valid.

On a more general level, the analysis carried out in
this article serves as a caution against the mechanical
extension of the formulas of ordinary electrodynamics
to the case of media with spatial dispersion.
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PACS numbers: 03.50.—ζ

1. The application of Gauss's theorem to a nonsta-
tionary spherically symmetric charge distribution leads
to an unexpected result. Suppose that the charge is
bounded by a sphere of radius R, and the charge density
inside the sphere is determined by the function p(r, t).
If we seek the field outside the charged sphere, by
Gauss's theorem we obtain

4nr*eE (r, t) =4nQ(t), (1)

where Q(t) is the total charge of the sphere at time t.
From (1) it follows immediately that

(2)

and for the potential φ(Ε = - V<p)
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φ (Γ, ί ) = — Q(t) (3)

The results (2) and (3) are, of course, surprising.
Gauss's theorem is, in essence, the Maxwell equation
div D =4irp, and in the Maxwell theory the speed of
propagation of interactions (the speed of propagation of
the field) is finite and equal to the speed of light 1/
νεμ". From (2) and (3) it is possible to conclude that the
field propagates instantaneously. Instantaneous prop-
agation of the field manifestly contradicts the special
theory of relativity.

The fact that the expression (3) corresponds to in-
finitely fast propagation of the interaction can also be
seen, in particular, from the fact that D'Alembert's
equation (for the vacuum)
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