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1. INTRODUCTION
In recent years a new method is being intensively de-

veloped for the study of matter with the aid of μ* me-
sons. The special feature of a μ* meson consists of the
fact that it is a tagged particle, the spin of which can be
observed by recording the positrons from the μ* — e*
decay emitted predominantly in the direction of the μ*-
meson spin. Of course the μ* meson disappears in the
\i* — e* decay, but information remains as to how it was
polarized at the instant of decay. Thus, one can study
different interactions of μ* mesons with matter in which
the μ* meson acts like a light isotope of a proton. On
capturing an electron a μ* meson forms a hydrogen-like
muonium atom (μ*β"). In this review experiments are
described on the determination of the frequency ω0 of
the hyperfine splitting of a muonium atom in matter.

The frequency ω0 is determined by observing a phe-
nomenon to which we have given the name of two-fre-
quency precession of a μ* meson in a muonium atom.
This phenomenon describes the motion of the spin of a
μ* meson in a muonium atom in a magnetic field. Of
course, the two-frequency precession does not refer
exclusively to muonium. The motion of a nuclear spin
will be of the same nature in any other one-electron
atom. It is important only that, just as in muonium,
the electron should be in an S state, while the nuclear
spin should be equal to \. It is also evident that the
two-frequency precession is a special case of a more
complex, multi-frequency time dependence describing

the motion of nuclear spin in an atom with an arbitrary
electronic configuration. As has already been stated
above, a muonium atom is distinguished only by the fact
that it presents special possibilities for observing the
motion of the spin of a nucleus, i .e. , of a μ* meson,
by the method of recording the positrons from the μ*
— e* decay.

The two-frequency precession determines the motion
of the spin of a μ* meson in a free muonium atom. In
practical experiments a muonium atom is obtained by
the slowing down of a μ* meson in matter. In the ma-
jority of substances the muonium atom, formed there
quickly, during a time of 10"11 sec, enters into some
kind of a diamagnetic compound with compensated elec-
tron spins. In this case the spin of the μ* meson can
interact only with an external magnetic field, and this
leads to Larmor precession with the frequency of a
free μ* meson. However, there exist substances in
which the impurity muonium atom lives for a sufficient-
ly long time. In such an impurity atom with an uncom-
pensated electron spin the precession of the spin of a
μ* meson is similar to the precession in a free muonium
atom. Any difference can be due only to the deforma-
tion of the electronic wave function for muonium in mat-
ter. The deformation of the electronic wave function
will alter the magnitude of the interaction of the spins
of the μ* meson and of the electron in muonium, and
this will lead to a change in the parameters of the two-
frequency precession. Observation of the two-frequen-
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cy precession of a μ* meson in a muonium atom in mat-
ter thus permits one to measure the deformation of its
electronic wave function. Below we briefly describe the
essence of the phenomenon of two-frequency precession
of a μ* meson in muonium.

In a sufficiently weak transverse magnetic field Β a
muonium atom in a triplet state precesses as a whole
with Larmor frequency u> = eB/2Mec, where Me is the
electron mass. Observation of the frequency ω usually
is the experimental proof of the existence of a long-
lived impurity muonium atom in a given substance. But
such a single-frequency muonium precession is only an
approximation which is valid only for relatively short
times and weak magnetic fields. In actual fact the pre-
cession or the time dependence P(i) of the direction of
the spin of a μ* meson in muonium is determined not by
one but by several frequencies. This is a consequence
of the fact that the S state of a muonium atom in a mag-
netic field represents a four-level system and in the
general case is a superposition of four stationary states
of energies u>lk (K = 1) corresponding to different com-
binations of the spins of the electron and the μ* meson.

The selection rule Am =± 1, where m is the magnetic
quantum number, leads to the fact that of the six pos-
sible frequencies ω ί 6 = ω{ - ω,, (i, k = 1-4) only four ap-
pear in the expression for P(t). The expression for
P(t) is essentially simplified for cases of a weak and a
strong external magnetic field B. The characteristic
quantity separating these regions (corresponding in
spectroscopy to the Zeeman and the Paschen-Back re-
gions) is the magnetic field £ 0 = 1594 Oe. The field Bo

is equal to twice the value of the magnetic field pro-
duced by the magnetic moment of the μ* meson at the
position of the muonium electron.

The time dependence of P(t) in weak transverse fields
Β « Bo is determined, as will be shown below, by two
low and two high (~ 1010 sec"1) frequencies. If in an ex-
periment the high frequencies are not detected, then
after averaging the corresponding terms one obtains the
following expression for the observed dependence Poba(t)
which is the one to which the name of two-frequency
muonium precession has been given (cf., (9)):

(1)

here Ω1 = ω2/ω0, u>0 = eB0/Mec is the frequency of the
hyperfine splitting of the ground state of muonium. The
frequency ω0 is determined by the density Ι ψ(0)\ 2 of the
electronic wave function at the μ* meson of muonium1-13:

32.-TII.UM

">o= 3Λ" №φ)\*=Β0-2μ,. (2)

For vacuum ν = ωο/2ττ = 4463 MHz; here μβ and μμ are
the magnetic moments of the electron and of the muon.

In strong fields B»B0 P(t) depends practically also
on only two frequencies:

(cf., (10)) and can also be called two-frequency preces-
sion.

From the relations given above it follows that an ex-
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perimental observation of the two-frequency precession
enables one to determine the frequency of the hyperfine
splitting ω0, and, consequently, the value of the elec-
tron density at the μ* meson of muonium in a given sub-
stance. The quantity obtained Ι ψ(0)Ι2 is of great inter-
est, since muonium in matter behaves like an impurity
hydrogen atom, while the experimental determination
of the electron density Ι ψΗ(0)Ι 2 for hydrogen is not al-
ways possible.

The contents of this review are as follows. In Chap.
2 expressions are given for the frequencies u>lk and for
the function P(t) which determines the precession of the
μ* meson of muonium in a transverse magnetic field.
In Chap. 3 the case is considered of a weak magnetic
field and it is shown that the precession of the μ* meson
of muonium observed in this case is characterized by
two frequencies. t 2 : In Chaps. 4 and 5 the two-frequency
precession of muonium in a strong magnetic field and
the "cessation of precession" are described.C3: In
Chap. 6 the experimental arrangement is described and
values of the frequencies ω0 of the muonium atom in
different substances determined by the method of the
two-frequency precession are given."3 Chapter 7 is
devoted to a discussion of the experimental results.
Chapter 8 is devoted to the interesting paper1-53 on the
observation of the two-frequency precession of muonium
in silicon, In Chap. 9, a study163 is described in which
the values of the electron density of muonium Ι ψ(0)\ 2

found experimentally in germanium and silicon are com-
pared with calculated results.

2. MUONIUM IN A MAGNETIC FIELD

The time dependence P(t) of the polarization of the μ*
meson of muonium in a transverse magnetic field (pre-
cession) is determined, as has been stated in Chap. 1,
by four energy eigenvalues ω( of stationary states of
muonium in an external magnetic field B. The expres-
sions for ω{(Β) are as follows1-43:

ω, = — -j ω0

1

-^ o)J — ω;

III

m

m

m

= -

= 0.

= -

= 0,

1.

1,

/

7 =

= 0;

]

1,

(3)

here ω± = ω(1±ξ), ξ=Μβ/Μ)1, Me and Μ,, are the masses
of the electron and of the μ* meson. The four values of
ω( refer to different values of the spin / of muonium and
of its component m along the direction of the magnetic
field. The functions (3) ω{(Β) are shown schematically
in Fig. 1. As has been noted in Chap. 1, the preces-
sion of the μ* meson in muonium is determined by four
frequencies Q){k with Am -± 1. These frequencies are

(4)
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Magnetic field

the rapidly oscillating terms cosa>14i ?nd coso>34i are
averaged and do not contribute to the observed form of

FIG. 1. The energies of stationary states of muonium in a
magnetic field. Arrows indicate the frequencies ω12, ω23 and
ίθΐ2> ω34> which determine the two-frequency precession re-
spectively in weak (S«B 0 ) and strong (B»Bt)) fields. In the
figure are shown quantum numbers determining the state of
the muonium atom in weak and in strong fields: the total mag-
netic moment / and its component m along the direction of the
magnetic field for Β « So and the components of the spins of
the μ* meson (ma) and of the electron (me) for B»B0.

Utilizing the standard computational technique we obtain
the following expression for the time dependence P(t) of
the polarization or the precession of the spin of the μ*
meson in a transverse magnetic field BC4]:

Ρ (?) = -r (cos ω1 2ί + cos ω2 3ί + cos ω14ί + cos ω34ί)

-) '"* (cos <o12i — cos ω23ί — cos ω14ί 4- cos ω 3 4ί).

ν(ω·/4) + ω=
(5)

From expression (5) it can be seen that the function P(t)
is of a rather complicated form. Expression (5) is es-
sentially simplified for the cases of a weak (B«B0) and
a strong (B » JB0) magnetic field which are investigated
respectively in Chaps. 3 and 4. As will be shown, in
these cases P(t) is described by only two frequencies.

3. TWO-FREQUENCY PRECESSION OF MUONIUM
IN A WEAK MAGNETIC FIELD

In a weak (B« Bo) magnetic field the frequencies
ω± — ω =eB/2Mec are much smaller than the frequency
wo = eBo/Mec of hyperfine splitting, as a result of which
one can neglect in expression (5) the term in the second
bracket and Pit) turns out to be equal to

Ρ (S) » - j (cos ω,2ί + cos G)23< 4- cos ω14ί -f cos to34i),

while expressions (4) can be rewritten in the form

ω,2«;ω — Ω,, Λ

here

(6)

(7)

(8)

The expression (6) for P(t) is simplified if in the exper-
iment (as was the case in our experiment) the high fre-
quencies ωΗ= ω 3 4 - ω0 are not detected. In such a case

Ρ oix ( f) = y (cos ω12< + cos ω2 3ί) = i- cos Ω,ί • cos i»i; (9)

here ω=£(ω12 + ω23) =eB/2Mec is the Larmor frequency
of precession of muonium in the field B, fit = (ω23 - ω12)/
2= ω2/ω0 is the beat frequency (cf., (8)). From expres-
sion (9) it can be seen that the time dependence of Pota(t)
is determined by two frequencies and can be named the
two-frequency precession or the beats of the spin of the
μ* meson of muonium.

Observation of the two-frequency precession enables
one to obtain the frequencies ω and fit and to determine
in this manner the frequency ωο = ω2/Ώι of the hyperfine
splitting of a muonium atom. The experimental deter-
mination of the frequencies ω0 in different media by the
method of two-frequency precession in a weak field is
described in Chap. 6.

4. TWO-FREQUENCY PRECESSION OF MUONIUM
IN A STRONG MAGNETIC FIELD

In Chap. 3 we have considered the precession of a μ*
meson in muonium in a weak field. Here we discuss
the precession in a strong (B>> Bo) field. In the case
B»B0 the factor ω+/ν(ω2/4) + ω2 in expression (5) tends
to unity and P(t) can be written in the form of a two-
frequency precession:

Ρ (t) as y (cos ω,2ί + cos a>3it) = cos - ^ t • cos Q2t,

here

ΊΟ)

(11)

where 2ξω = ωΒ =eB/Muc is the frequency of Larmor
precession of a μ* meson in the field B. Thus, in the
two-frequency precession (10) the carrier frequency
does not depend on the external magnetic field and is
equal to ωο/2. The dependence on the field Β of the
beat frequency Ω2 determines expression (11). Ω2(Β) is
not monotonic and is shown in Fig. 2. With increasing
Β the frequency Ω2 at first falls, attaining for

its minimum value Ω""1 =Λ

0, and then begins to in-

Magnetic
field

β ' = •

FIG. 2. Dependence on the transverse magnetic field Β of
the beat frequencies Ut and Ω2 in expressions (9) and (10) for
the two-frequency precession respectively in weak Β «Bo
and strong S » B 0 magnetic fields (arbitrary scale).
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crease. Accordingly in fields B« Β Ω2~ ω§/8ω~ 1/B,
while in fields Β » Bo Ω2 = 2ξω ~ Β and attains the value of
Ω2 = ωο/2 for

which corresponds to the intersection of the terms u^
and ω2 (cf., Fig. 1). For the vacuum value of ω0

5 = 11.3 kOe and B* = 164 kOe.

A case of a probable observation of the two-frequency
precession (10) is described in Chap. 8.

5. CESSATION OF MUONIUM PRECESSION

In the region of the Paschen-Back effect when ω » ω0

one can observe yet another beautiful effect—the cessa-
tion of the precession of the spin of a μ* meson in muon-
ium. The cessation of precession is associated with
the crossing of the terms GOJ and ω2 (cf., Fig. 1) for a
field B*, when the frequency ω12 = 0. The crossing of
the terms occurs as a result of the fact that the total
magnetic moment of muonium in state "1"—(μβ - μΜ) is
smaller than in state "2"—(μ^ + μ^Κ Therefore the en-
ergy of the ω2 term grows considerably more rapidly
with increasing magnetic field than the energy of the ω1

term. From expressions (10) and (11) it follows that as
B-B* Ω 2 -ω 0 /2 and P ( f ) - i ( l + cosa>0i). In the case of
insufficient resolving power of the detecting piece of
equipment the term cosw0i is averaged andP(i) —i,
i .e . , cessation of precession is observed. In the case
of good resolving power precession with frequency ω0 is
observed. From expression (10) it follows that slow
precession of a μ* meson in fields -Β — 5* is determined
by the frequency ω12 which in accordance with (4) for
B~B* is approximately equal to

, ™ e(B*-B) _
' • 2M.c ~'.

(12)

where ΔΒ=Β* -Β. From (12) it can be seen that for
B~B* the frequency ω12 is equal to the Larmor frequen-
cy of precession of a free μ* meson in the field Δ5.

The experimental determination of the field B* by the
method of cessation of precession can also be utilized
for the determination of the frequency ω0 of an impurity
muonium atom in matter.

6. EXPERIMENTAL OBSERVATION OF TWO-
FREQUENCY PRECESSION IN A WEAK
MAGNETIC FIELD

The scheme of the experimental arrangement for the
observation of the two-frequency precession of a μ* me-

τ 1

FIG. 3. Schematic outline of the experimental arrangement
for the observation of two-frequency precession of the μ*
meson of muonium in a transverse magnetic field.

.° « 4ZDD\
3 s h

.1400
LI

SO I2S

Channel number Ν
.'SO.

FIG. 4. Two-frequency precession (beats) of the spin of the
μ* meson in muonium in fused quartz. The solid curve rep-
resents the theoretical dependence N(t) (13) with parameters
chosen by the method of least squares. In the diagram the
theoretical and the experimental values of Λ(ί) have been "cor-
rected" by the decay exponential for the μ* meson e"t/To (τ0

= 2.2 μ sec). The channel width of the time analyzer is 1 nsec;
the magnetic field is Β =95 Oe. The arrow indicates the chan-
nel corresponding to i = 0.

son in muonium is shown in Fig. 3. A beam of longi-
tudinally polarized μ* mesons from the synchrocyclo-
tron of the JINR was slowed down and stopped in the tar-
get Μ made of the substance under investigation situated
in a magnetic field Β perpendicular to the spin of the μ*
meson.

The polarization (9) Pob,(t) of the μ* mesons was mea-
sured in terms of the asymmetry of emission of posi-
trons from the μ* —e* decay in the following manner.
The instant tu of the stopping of a μ* meson in the target
Μ was fixed by a system of signals from the scintilla-
tion counters 12 3 4 (coincidence of signals from coun-
ters 1, 2, 3 and an anticoincidence with counter 4), the
instant tg of the emission of a positron in the μ* —e* de-
cay was fixed by the system of signals 4 5 6 3. The
time intervals t = te(4 5 6 3) - tu (1 2 3 4) for each case
of β* ~ e* decay were analyzed by means of a time-am-
plitude converter using an amplitude analyzer. The
time spectrum N(t) obtained in this manner for the posi-
trons from the μ* ~ e* decay is associated with the
change in the polarization (9) Pobs(t) of μ* mesons with
time by means of

Ν (ί) = Noe~"^ [1 -cP O b s(/)J

= Λ > - Άο (Ι — L· e - '/τ cos Ω,ί • cos ωί) ; (13)

here τ ο =2.2χ1Ο' 6 sec is the lifetime of the μ* meson;
τ is the muonium lifetime; c is an experimental coeffi-
cient for the asymmetry of the angular distribution of
the positrons from the μ* — e* decay, which is deter-
mined by the polarization of the μ* mesons in the beam,
by the probability of formation of long-lived muonium in
the medium, by the solid angle of the positron counter
telescope and by the time resolving power of the appa-
ratus.

Experimentally the two-frequency precession (beats)
of μ* mesons in muonium is observed in media in which
the free muonium atom lives for a sufficiently long
time. At the present time it is known that among such
media are the noble gases, and also quartz, germanium
and i c e . m In Figs. 4 and 5 are shown experimental
dependences 2V(i) (13) obtained in the course of observ-
ing the two-frequency precession in fused quartz and in
germanium. The experimental values of the frequen-
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40 60
Channel number Ν

100

FIG. 5. Two-frequency precession of the spin of the μ* meson
in muonium in germanium. Channel width of the time analyzer
is 1 nsec; the magnetic field is £ = 98 Oe.

cies ω and Clu and also of τ, Νο and c, appearing in ex-
pression (13) were obtained from a comparison by the
method of least squares of the theoretical dependence
(13) and the experimental spectrum Nm(t), The quan-
tities ω, Ωχ and τ obtained in this manner for all the
investigated substances are shown in Table I. In the
same table are also given the parameters of the Pear-
son relation χ2 and their average values χ2, equal to the
number of experimental points with the number of ad-
justable parameters subtracted. In the case of quartz
beats were observed for different values of the intensity
of the magnetic field B, and this gave us the possibility
of experimentally checking the dependence fy ~ B2,
which follows from relation (8). The obtained functional
dependence Ωχ(Βζ) is shown in Fig. 6. From this dia-
gram it can be seen that the experimental values of
Ω£"(.Β2) agree well with theoretical predictions. From
the relation O^B* (cf., also Table I) it follows that the
two-frequency precession can be conveniently observed
in the case of relatively strong fields B, when fit is suf-
ficiently large. In the case of small fields B, when
ω»Ω 1 , it is necessary to record many periods of Lar-
mor precession in order to observe one beat period.
Such an experiment requires the field Β in the target to
be homogeneous with a high degree of accuracy. There-
fore in measuring the functional dependence of Ot(B) in
the present experiment the field Β was varied within
the limits of Β = 50-100 Oe.

7. DIMENSIONS OF AN IMPURITY MUONIUM ATOM
IN MATTER

The frequencies ω and Ω1 shown in Table I for differ-
ent substances enable us to determine the frequencies

TABLE I. Parameters of the two-frequency precession of a
μ* meson in ice, germanium and quartz.

s, Oe ω *),
100 sec"'

98

98
96

47
C8
78
89
95

118

*)The

160 1

100
100

1500

« „

irrors in ω

858

808
848

417
597
086
783
837

1043

Ice, 7· = 77°

24.5+.1.5

Κ

4791±300

Germanium, Τ = 77° Κ

48.1+1.1
42.7±1.3

I:used quartz ,

6.1+0.9
1l.6±0.7
16.8±0.8
21.3±0.7
25.7+0.4
41.6+.2.0

do not exceed 0.3% and
the accuracy of determining V.

2494±00
2682±80

r = 300°K

4534±680
4879±30O
4469±200
4575+. 150
4335±7O
416O±2O0

practically

285

323
330

79
62

204
115
317
257

do not

| 289

290
307

57
67

186
69

305
185

affect

so-ws

_ 40

40
i f Oe1

FIG. 6. The experimental dependence of the beat frequency
Ωι in quartz on the square of the intensity of the magnetic
field B. The straight line represents the theoretical depen-
dence (8).

ν = ωο/2π of the hyperfine splitting of the ground state of
the muonium atom in these substances. The values of
ν obtained in this manner for ice, germanium and
quartz are shown in Table I. From Table I it follows
that the frequencies ν in ice and in fused quartz coin-
cide within the limits of error with the vacuum value
!\ a c = 4463 MHz. For ice vHz0 = 4791 ± 300 MHz; for
quartz the frequencies vslOz are close for all values of
the field B, the average value is ϊ»31θ2 =4404± 70 MHz.
The agreement of uHzO and fsio2 with the vacuum fre-
quency ΙΛ,10 indicates that the "dimensions" of muonium
in the ground state in ice and in quartz are the same as
in vacuum. The frequencies uGe (averaged over the two
fields yGe = 2580±50 MHz) in germanium are signifi-
cantly smaller than the vacuum value i>Tac. This means
that the Bohr radius of a muonium atom is

1/3
I

V 3to0 I \ ω0 / \ ν I '

while in germanium it is bigger than in vacuum

- ? 2 ^ = ( ^ ^ ) " 3 = 1.20 ±0.01.
"vac \ VGe '

(14)

(15)

Relations (14) and (15) are naturally valid only on the
assumption that the muonium atom in germanium is hy-
drogenlike. In actual fact the interaction with the me-
dium deforms the wave function of the muonium elec-
tron. It is specifically to this that the difference be-
tween ν in matter and the value of i\ao is related.
Therefore, strictly speaking, the frequency ν deter-
mines only the value of Ιψ(0)Ι2 of the electron density
at the origin (cf. (2)):

The values of ν for a muonium atom in matter that
were obtained above can be compared with the value of
fH for the hyperfine splitting of an impurity hydrogen
atom. The values of vK for fused quartz and ice were mea-
sured by the method of electron paramagnetic reso-
nance (EPR) in c e > 9 ]. The values of vH obtained in this
manner are given in Table II where the values of ν for

TABLE II. Frequencies of the hyperfine splitting of free hydro-
gen atoms (vH) and of muonium (v) in ice and in quartz in units
of v™.

Substance

Ice

Fused quartz

1.07±0.07

0.987±0.016

"Η/(»Ή)™

1.00

0.985

References
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FIG. 7. The frequency spectrum of the precession of a μ*
meson of an impurity muonium atom in quartz and in silicon
in a transverse magnetic field of β = 100 Oe. The peak of the
frequency spectra (from left to right): at the frequency of 1.36
MHz—the precession signal of a free muon; at 19.2 MHz—the
signal of the frequency structure of the accelerator beam;
43.6 ±2.9 MHz—anomalous precession in silicon; two peaks
centered at 139 MHz correspond to the usual two-frequency
precession of muonium in quartz and in silicon.

a muonium atom in the same substances have also been
given for comparison. The value of vH for ice quoted
in Table Π was obtained at a temperature of 4 °K. The
search by the method of EPR for a free hydrogen atom
in ice at a temperature of 77 ° Κ did not give positive
results. The coincidence of the frequencies of hyper-
fine splitting for free atoms of hydrogen and for muoni-
um in matter that follows from Table Π shows that the
interactions of these atoms with matter are similar and
can be studied both by the method of EPR (fH), and by
the method of two-frequency precession of muonium
(v), complementing one another. One should note this
advantage of the two-frequency precession that this
method enables one equally effectively to record a free
muonium atom both in insulators, where there are no
free electrons, and in semiconductors (germanium).

8. TWO-FREQUENCY PRECESSION OF MUONIUM
IN SILICON

This section is devoted to the work of Brewer, Crow,
et al.[5] on the observation of the two-frequency pre-
cession of muonium in silicon. The design of the ex-
periment in this paper is in principle analogous to the
one described in Chap. 6. The difference consists only
in the interpolation of experimental results which are
represented not in the form of the function (9) P(t) (cf.,
Figs. 4, 5) but in the form of an expansion of the func-
tion P(t) in a Fourier series. The spectra of the Fou-
rier amplitudes obtained in this manner characterizing
the precession of muonium in quartz and in silicon are
shown in Fig. 7. From Fig. 7 it can be seen that the
precession of muonium in quartz is characterized by
two frequencies. The value of (w0)SiO2 for quartz deter-
mined from these frequencies coincides with the vacuum
value of ω0 in agreement with the results of1-2'43.

In silicon (Si of the p-type with the number of im-
purities equal to 5X1012 cm"3) at a temperature of Τ
= 77 °K four frequencies were observed, as can be seen
from Fig. 7. Two of them correspond to the two-fre-
quency precession of muonium in a weak magnetic
field, which differs from the two-frequency precession

in quartz only by a lower value of (wo)sl = (0.45 ±0.02)ω0

and is thus analogous to the two-frequency precession
in germanium (cf., Table I). The value of (ωο)31 ob-
tained above agrees with the result (ωο)81 = (0.41 ±0.03)ω0

due to Andrianov et al.[10: obtained from less direct
experiments on the measurement of the residual polar-
ization of the μ* mesons in longitudinal magnetic fields.
Two other (smaller) frequencies in silicon can be
ascribed to the two-frequency precession of muonium
produced under some sort of different conditions. But
these frequencies exhibit a number of peculiarities and
were therefore labeled153 as anomalous. The anomalous
frequencies are characterized first of all by the non-
monotonic dependence on the intensity of the external
magnetic field. This dependence is shown in Fig. 8.
From Fig. 8 it follows that the anomalous frequencies
can be compared to the frequencies ω^ and ω34(4) in the
domain of strong magnetic fields (cf., Fig. 2 which
shows the dependence on the magnetic field of the beat
frequency Ω2 = (ω34 - ω12)/2 in fields Β » Bo). But such
a comparison would require renormalization of two
parameters at once in expressions (4) for ω12 and ω34:
the frequency ω0 and the magnetic moment (or the g-
factor) of the electron. Another characteristic feature
of the anomalous frequencies consists of the fact that
they turn out to depend on the orientation of the single
crystal of silicon with respect to the direction of the
magnetic field. This dependence is also shown in Fig.
8. The renormalized values of the frequency (ωο)31 for
two different orientations of the silicon crystal turn out
to be equal to (u'0)si = (0. 0198 ±0. 0002)ω0 for the case
when the [ l l l j crystal axis is parallel to the field and
(wi')si = (0· 0205 ± 0.0003)ω0 when the [100J axis is parallel
to the field. The best value of the #-factor in both
cases is the same: g= 13 ±3. From this it follows that
the value of the field β ο = ωο/2με (2) for the "anomalous"
muonium in silicon is very small:

(S0)Sl = B0 - p i I f f-) = 1 0 9 4 . - ^ = 5.3 Oe .
\ }Xe / Si \ t^o ' vac " · ΰ

The renormalization of the parameters ω0 and g in-
dicated above naturally represents only a phenomeno-
logical description of the experimental data which can

soa tow
Magnetic field, G

FIG. 8. Dependence of the frequencies of the anomalous pre-
cession of muonium in silicon on the intensity of the magnetic
field (smooth curves represent the dependence on the field of
the frequencies ω12 and ω34 with renormalized values of ω0

and g). The circles and the solid curves correspond to the
case when the [111] is parallel to the field, the triangles and the
broken curves correspond to the case when the [100] crystal axis
is parallel to the field. The horizontal strokes denote individ-
ual weak peaks of unknown origin.
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correspond to different physical models. One such
model is the assumption"·1 that the anomalous preces-
sion corresponds to a surface impurity muonium atom
the wave function for the electron of which differs from
zero within the limits of several elementary cells.
The large size of the surface impurity atom leads to a
natural explanation of the small experimental values
of the frequency (ωο)81. In order to explain the strong
renormalization of the ^-factor of the muonium elec-
tron and the effect of the anisotropy of the interaction
of the spin of the μ* meson in a silicon crystal one
should abandon the assumption of a contact interaction
between the spins of the electron and the μ* meson,
since the latter can lead neither to a strong renormal-
ization of g, nor to any kind of anisotropic effects.
Therefore it was assumed that in this case muonium is
formed not in its IS ground state, but in the 2P excited
state (observed lifetime of 300 nsec). In the case of a
strong spin-orbital interaction a good quantum number
is the total angular momentum of the muonium electron
J which in the Breit-Rabi Hamiltonian formally re-
places in this case the operator S for the electron spin.
But the total angular momentum J can be strongly re-
normalized due to the contribution of the orbital motion,
and this determines the strong renormalization of the
^"-factor of the electron and the anisotropic effects.
Naturally, in such a case the relationship (2) between
ω0 and Ι φ(0) 12 does not hold, and a measurement of ω0

is in this case equivalent to the measurement of the di-
pole magnetic field produced by the electron at the site
of the muonium μ* meson.

The physical model described above introduced to ex-
plain the anomalous precession of muonium in silicon
is not the only one, although it appears to be the most
natural one. In t 5 1 other models are also considered,
which are based on the interaction of the magnetic mo-
ments of the μ* meson and of certain paramagnetic com-
plexes formed as the μ* meson is slowed down in matter.

9. CALCULATION OF THE MAGNITUDE OF
HYPERFINE SPLITTING OF THE IMPURITY MUONIUM
ATOM IN GERMANIUM AND SILICON!6!

Above we have described experiments on the deter-
mination of the frequency ω0 of the hyperfine splitting
of an impurity muonium atom in matter. The concept
natural in the majority of cases concerning a contact
interaction between the spins of the μ* meson and the
electron in muonium (an exception is provided by the
anomalous precession of muonium in silicon discussed
in Chapter 8) means that the measurement of the fre-
quency ω0 is equivalent to a measurement of the density
Ιψ(0)Ι2 of the wave function of the muonium electron at
the point r = 0, i .e., at the position of the μ* meson.
An experimental determination of Ιψ(0)Ι2 for muonium
enables one to check the correctness of the theories in
which the properties of an impurity hydrogen atom (or
muonium) in matter are calculated. The identity of the
properties of hydrogen and of muonium in a solid is il-
lustrated by Table Π. It should be emphasized that a
measurement of Ι ψ(0) 12 for muonium in germanium and
in silicon is of particular interest since an impurity
atom of hydrogen in these crystals has not been ob-

served to date.

A theoretical estimate of the electron density Ι ψ(0)Ι2

of an impurity muonium atom in germanium and silicon
has been carried out in the paper by Wang and Kittel. c e i

This estimate is not the result of a rigorous calcula-
tion of the interaction of muonium in matter, which is
very difficult to carry out, but is based on model con-
cepts. An impurity atom of muonium in germanium
and in silicon is regarded as a deep donor whose elec-
tron moves in the centrally-symmetric field of a μ*
meson, while the frequency u>0 is determined by the con-
tact interaction between the spins of the electron and
the μ* meson. The effect of the medium is taken into
account by the introduction of the dielectric constant
ε and by the relatively small renormalization of the
electron mass (the mass renormalization can be ab-
sent). From this it can be seen that the results of cal-
culations1·8·1 can be compared only with the experimental
data on the usual two-frequency precession, when the
muonium electron is in an S state. A calculation of the
states of the impurity atom corresponding to anomalous
precession of muonium in silicon is not given in : e ], al-
though the possibility is indicated of the existence in
germanium and in silicon of surface donor levels for
hydrogen or muonium.

Wang and Kittel present two model calculations: a
model involving an empty interstitial vacancy, and a
model in which the dielectric constant is determined on
the basis of the electron structure of semiconductors.

A. The model of an empty interstitial vacancy

According to this model the interstitial vacancy in
which the impurity muonium atom is situated is of
spherical shape of radius R. At distances r<R this
sphere is empty. The interaction of the muonium elec-
tron with the medium manifests itself only for r>R,
i .e., the following functional form of e(r) and m(r) is
introduced:

FIG. 9. The ionization energy —E in vacuum Rydberg units
as a function of the radius of the spherical vacancy R in units
of the Bohr radius a. Calculation according to the empty va-
cancy model. dH and dT are the radii of the hexagonal and
tetragonal vacancies for silicon and germanium.
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FIG. 10. The density of the wave function of the muonium
electron at the site of the μ* meson in units of the vacuum val-
ue of this quantity. Calculation according to the empty va-
cancy model.

(16)

(17)

here e(r) and m(r) are the permittivity of the medium
and the renormalized mass of the muonium electron.
In carrying out the calculation the following values of
ε0 and m* were adopted: e0 = 12.0, m*/m = 0.31 for
silicon and ε0 = 15. 8, m*/m = 0.17 for germanium.
The relations (16) correspond to the following interac-
tion potential for electrons in muonium:

1

m

m'

for

for

for

• for

r<R,
r>R,

r<R,
r~> R-

-— for r<R,

- — for Γ>Λ.

(18)

However, potential (18) does not have the property of
continuity. Therefore for the calculations the follow-
ing potential is utilized

for r<fl,

for r>R,

(19)

which in its properties is close to V(r) and which is
continuous at the point r = R.
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FIG. 11. The average value of the radius of muonium in units
of the Bohr radius a. Calculation according to the empty va-
cancy model. (Si-m(r) for the solid curve on the right).

TABLE ΙΠ. The density Ι ψ(0) | 2 of the elec-
tron wave function for muonium in germanium
and in silicon.

Method of calculation.

m(r)

r < R

m ( r ) " \ m · , r>R
m — const

Experiment

d

d H

dT

4H
dT

i*(n)i»/l*(0)|2v a c

Ge

0.506
0.565
0.787

0.8C0
0.58+0.01

Si

0.578
0.642
0.756

0.837
0.45+0.02

The results of the calculations obtained by solving
the Schrodinger equation with the interaction potential
(19) and taking into account condition (17) are shown
in Figs. 9-11. The values of the ionization potential,
of the density of the electron wave function for muoni-
um, and of the average radius of the muonium atom
shown in those diagrams are plotted as a function of
the sphere radius R. Also in these diagrams are
shown the values of the radius of an empty sphere d in
crystals of germanium and silicon. The radius d was
determined from the condition that a sphere of such a
radius would fit in an interstitial vacancy on the as-
sumption that the atoms of the lattice represent rigid
spheres touching one another. In crystals of germani-
um and silicon there exist two possible positions of an
impurity atom—with hexagonal and tetragonal symmetry
of surrounding atoms. In accordance with this one ob-
tains two values of the radius d—dH and dT, respectively,
for hexagonal and tetragonal vacancies. A comparison
of the values calculated in this manner with experimen-
tal values of the electron density for muonium is given
in Table ΠΙ. From Table m it can be seen that the re-
sults of calculation are in sufficiently good agreement
with experiment for such a rough model.

The vacancy radius d for ice calculated by the same
method turned out to be larger by approximately a fac-
tor four than the Bohr radius for muonium, and this is
in agreement with the vacuum value of the frequency ω0

for muonium in ice (cf., Tables I and II). An estimate
of the radius of a vacancy in the case of fused quartz
appears to be difficult.

B. Determination of the functional form of ε (r) from
the electronic structure of germanium and silicon

In accordance with this method of calculation the
functional form of e(r) for germanium and silicon is

FIG. 12. The functions e(r) assumed in calculating the rela-
tionship (20).
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TABLE IV. Calculated values of the ionization energy - E, of
the density Ι ψ (0) 12 of the electron wave function and of the
average radius (r) of a muonium atom in Ge and in Si obtained
by solving the Schrodinger equation with the potential V
= — ez/r e(r), where e(r) is determined by the relationship (20)
(here <r) is in units of the Bohr radius a).

Walter and
Cohen
Vinsoine

and
Richardson

0

0

Q

.87

.84

ε

14

14

0

.0

.9

Germanium

E, Ry

0.116

0.126

1*1·

0

0

1 * 1 ^

.453

.478

m

2.53

2.43

0

0

Q

.92

.92

eo

11

10

5

5

E,

0.

0.

Silicon

R y

112

116

ι * ι ·/1 ψ ι ; a c

0.427

0.429

2

2

.62

.59

assumed to be of the form

6 (r) Co V So /

Such a form of ε (r) with an appropriate choice of the

parameters ε0 and Q gives a good description of the

functions e(r) obtained by Walter and CohenCU] and Vin-

some and Richardsoncl2] from the electronic structure

of the semiconductors. The functions utilized in the

calculation are shown in Fig. 12. The parameters e0

and Q which correspond best to the results oiliu andc123

are shown in Table IV.

The values of the electron density Ιψ(0)Ι2 were ob-
tained, just as in the first calculational model, by
solving the Schrodinger equation for the muonium elec-
tron with the potential V=^/e(r)r. The results of the
calculation shown in Table IV were obtained for a re-
normalized value of the mass m of the muonium elec-
tron since already in this case the agreement between
theory and experiment turns out to be quite satisfactory
and the introduction of a renormalization of m does not
improve it.

Good agreement of calculated and experimental val-

ues of l'./i(0)l2 in germanium and in silicon (cf., Tables

ΙΠ and IV) shows that the concept of an impurity muoni-

um atom situated in an interstitial vacancy is correct.

It would be highly desirable to measure also the ioniza-

tion energy £ of an impurity atom of hydrogen or of

muonium. This would enable one to carry out a more

detailed comparison of the conclusions of the theory

with experiment and, in particular, to determine in

which of the two possible vacancies is this impurity

atom situated.
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