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Large differences between the characteristic times of various electronic relaxation processes (momentum
relaxation, energy relaxation, intervalley relaxation, electron-hole recombination) make it possible to divide
carriers into groups between which relaxation is relatively slow. Each of the "long" relaxation times can be
matched by a characteristic diffusion length which is much greater than the usual mean free path.
Transport coefficients of such groups are generally anisotropic even in cubic crystals and the anisotropy
varies from group to group (this anisotropy may be natural or it may be induced by pressure, magnetic
field, etc.). Therefore, the passage of a current produces nonequilibrium carrier densities in such groups.
The density gradients are oriented at right-angles to the current and they decay over distances of the order
of the diffusion length. The effects associated with the formation of nonequilibrium carriers and the
influence of their diffusion on the transport coefficients are referred to in the paper as the anisotropic size
effects. The paper reviews experimental and theoretical investigations of various manifestations of such
effects. An analysis is made of the size dependences of the electrical conductivity and magnetoresistance
manifested in "thick" samples (thickness of the order of the diffusion length). Other topics considered
include nonlinearity of the electrical conductivity in relatively weak fields, redistribution of carriers in
"strong" fields (accompanied by giant changes in the total number of carriers and by formation of
domains, depletion layers, and accumulation layers), influence of the anisotropic size effects on the skin
effect (which changes the surface impedance of semimetals by an order of magnitude), and electromagnetic
excitation of sound in semimetals.
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INTRODUCTION

Solids always exhibit a hierarchy of electronic relaxa-
tion times representing the rates of recovery of equilib-
rium by an electronic system. A very important point
to note is that the differences between the characteristic
times of various relaxation process may be very
large, particularly in semiconductors. Typical ex-
amples are the momentum relaxation time τρ, ener-
gy relaxation time τ , intervalley relaxation time
τν, and electron-hole recombination time rr. The
shortest of these is the momentum relaxation time τρ

-ΙΟ^-ΙΟ" 1 2 sec; the times τ and τυ are often two or
three orders of magnitude longer and the time rr can be
six to nine orders of magnitude greater than the momen-
tum relaxation time. Each of the "long" relaxation
times can be matched by a characteristic diffusion
length: £, ~VDre, Z,r~VDTV, ir~VDrT; here, D, is the

times, all these diffusion lengths exceed considerably
Zp ~ VDTP ~ vTt, which is the usual mean free path (v is
the typical electron velocity). These large differences
between the relaxation times make it possible to divide
carriers into groups between which relaxation is slow;
we shall make such a division later.

In the linear theory of the transport phenomena in
homogeneous media, the dominant influence is exerted
by the shortest of these times and the influence of all
the other relaxation mechanisms is usually slight.1'

The situation is quite different in the case of size ef-
fects: since the largest characteristic lengths are as-
sociated with the longest relaxation times, it follows

diffusion coefficient. If τ, is the shortest of these

"One of the exceptions is the low-temperature resistance of
pure metals, which is controlled by umklapp pro-
cesses" 4 9 · 1 5 0 1; we shall not consider such cases.
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that, when a sample is reduced in thickness, these re-
laxation lengths are the first to become comparable with
the geometric dimensions of the sample and, therefore,
the size effects begin to be manifested in the phenomena
described by these lengths. Only in the case of the thin-
nest samples do we observe the usual size effect"1 as-
sociated with ls.

Since the relaxation length corresponding to the elec-
tron-hole recombination in semiconductors reaches
~ 1 cm, trivial size effects such as the dependence of
the photoconductivity on the dimensions of a sample can
easily be observed experimentally.8> We wish to stress
here those features of the generation of nonequilibrium
carriers and their spatial distribution which are typical
of anisotropic size effects. Nonequilibrium carriers
are usually either generated by external sources (illu-
minated spot) or are injected across a p-n junction, so
that the density gradient is oriented along the current.
In anisotropic size effects discussed below, we shall
assume that the current itself generates nonequilibrium
carriers on the lateral faces of a sample3' and, there-
fore, the density gradients are normal to the direction
of the current. The condition for the appearance of non-
equilibrium carriers is the presence of anisotropic
groups of carriers for which the current is directed at
an angle relative to the applied electric field. The
anisotropy can be natural or generated by pressure,
magnetic field, etc. Nonequilibrium densities estab-
lished near the boundaries disappear over distances of
the order of the corresponding relaxation lengths L and
size effects can be observed over distances dSL, where
d is the geometric dimension. Therefore, anisotropic
size effects can be used to measure large relaxation
lengths (or, which is equivalent, the rates of slow re-
laxation processes).

Each of the anisotropic size effects not only has a
bulk relaxation time which governs—via the correspond-
ing diffusion length—the spatial scale of the effect, but
also a definite surface relaxation rate such as the de-
gree of diffuseness of the surface scattering, rate of
surface cooling of carriers, and rate of intervalley scat-
tering and recombination. The surface relaxation
mechanisms involving short characteristic lengths are
practically unimportant in the size effects which are
larger on the spatial scale; for example, the diffuse-
ness of the surface scattering should not influence the
effects associated with the relaxation lengths Lt, Lv,
and Lr. The special feature of the anisotropic size ef-
fects is that they are maintained and sometimes have
maximum values when the corresponding surface relaxa-
tion mechanism becomes unimportant and they disap-
pear completely in homogeneous samples if the rate of
relaxation on the whole outer surface increases without
limit. Conversely, the traditional size effects (see, for
example,Cl]) appear due to surface relaxation and are
no longer observed when the relaxation disappears on
the whole surface. We shall show later that nonlinear
anisotropic size effects are strongest when the relaxa-

tion rates differ considerably from one face of a sample
to another.

Related effects also appear in the course of propaga-
tion of electromagnetic waves, which should be accom-
panied by carrier density waves. Here, the role of d
is played by the wavelength λ (or the skin depth δ).

1. MECHANISMS OF ANISOTROPIC SIZE EFFECTS

We shall use the concept of a "carrier group" in the
following sense: the relaxation time between groups of
carriers should be considerably greater than the relaxa-
tion time within a group. We shall discuss in detail the
following examples of groups: a) carriers belonging to
different valleys in the case of a many-valley energy
spectrum (such as that exhibited by electrons in Bi, Ge,
Si, and GaP, by electrons and holes in lead chalcogen-
ides, etc.); b) carriers with different kinetic energies
within one band (or one valley); c) carriers belonging
to different bands (for example, electrons and holes).
However, this list can be continued to cover electrons
with a specific spin orientation, or electrons belonging
to one part of a multiply connected Fermi surface of a
metal. Sometimes, the anisotropy of individual groups
is created by the application of a magnetic field.

If the relaxation times differ very greatly, then each
group may be assigned a separate set of transport coef-
ficients such as the mobility tensor u", tensor of the
diffusion coefficients D", conductivity tensor σ", etc.;
here, α is the label of a group. It is very important to
note that the transport coefficients of individual groups
are usually strongly anisotropic even in high-symmetry
crystals.

In this section, we shall consider several examples
to demonstrate the physical factors which can make τ,
considerably shorter than the other relaxation times and
discuss the mechanism as a result of which the presence
of anisotropic groups gives rise to nonequilibrium car-
riers.

A. Long relaxation times

There is a variety of reasons why rr, τν, and re may
be considerably greater than τρ; therefore, the absolute
and relative values of these "long" relaxation times may
vary greatly.

The rate of electron-hole recombination in semicon-
ductors is limited by the need to transfer electron ener-
gy of the order of the forbidden band width (~1 eV). The
recombination times are in the range τ,.-ΗΓ'-ΚΓ* sec,
depending on the mechanism.4)

The electron spectra of semimetals and quite a few
semiconductors are of the many-valley type: energy
extrema are found at several points in the Brillouin
zone. The scattering of an electron from one valley to
another involves the transfer of momentum of the order
of the Brillouin value and, therefore, the geometric

2 'For details, see, for example, §19 in11511 and1 1 5 2·1 5 3 1.
3 O r on other "transverse" inhomogeneities.

4)The discussion of the recombination mechanisms in semicon-
ductors can be found in relevant books. I 1 5 2-1 M1
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cross section for impurity intervalley scattering is
σ~ 10"15-10"1β cm2. Allowance for the processes which
include capture or exchange scattering results in some
increase of these cross sections. For example, in the
case of scattering by donors in Ge at Γ = 4 °K, we have
σ~ 10'13-10"12 cm2, C2~4] which are still much smaller
than the cross sections for the usual Coulomb scattering
under the same conditions (σ~10'π cm2). Since the
Debye screening radius lD of semimetals (lD~ 10-100 A)
is considerably greater than the lattice constant, once
again the difference between the probabilities of intra-
valley and intervalley scattering shouldbe large. Natural-
ly, intervalley phonon scatteringprocesses are also possi-
ble . However, they involve the transfer of energy which cor-
responds to the Debye frequency and, therefore, their
probability is exponentially small at low temperatures.
It must be stressed that, in the case of semimetals,
there is no basic difference between the intervalley elec-
tron scattering and electron-hole recombination: the
latter process is also limited by the need to transfer a
large momentum and the relaxation time is of the same
order of magnitude (τυ~τγ). According toC51, the relax-
ation times τ p and τΓ of Bi become equal at Τ = 15 °K
but at lower temperatures the difference between them
reaches two orders of magnitude.

The difference between τρ and τ ε is due to the fact that
the scattering of electrons by impurities is elastic and
that by acoustic phonons is quasielastic. In the latter
case, the expansion parameter is {cs/v)z«\ (c, is the
velocity of sound). When these mechanisms dominate
the momentum dissipation, it is usually found that τ,/
τε~10"3.

Β. Physical mechanism of anisotropic size effects

We shall now consider the physical mechanism and the
principal features of anisotropic size effects. The ex-
perimental geometry is shown in Fig. 1: a sample is
assumed to be bounded along the directions y and ζ but
not along x; the current flows along the χ axis and its
average density is i. We shall assume that all the times
ταΒ representing relaxation between groups α and β sat-
isfy the criterion τ α β » τρ and, therefore, different
transport tensors ua, of =enau

a, and ba can be attrib-
uted to the two groups (na is the density of carriers in
group a, i .e . , the density of a electrons). The various
vectors can be represented conveniently in the form
A = AI +A1; and a similar notation can be introduced for
the components of the transport tensors.

We shall consider the currents which are produced by
an external electric field Ε =E,. and we shall assume an
initially homogeneous distribution in the transverse di-
rection (all na - const). Under these conditions, the cur-
rent is entirely due to the field and, since the tensors
σ" are anisotropic, the partial currents associated with

FIG. 1. Experimental geometry.
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individual groups i° = σ" Εχ, have nonvanishing trans-
verse components ii =a^xEx.

The situation is simplest in the case when there is
only one group of carriers: the resultant transverse
current generates a transverse field Έλ (quasi-Hall
field) such that the current due to the total field Ε is
entirely longitudinal if =(aaE)j. = 0. The carrier density
na is then constant because of the neutrality condition.

The situation is completely different when the number
of carrier groups is more than one. In this case, we
can select the vector E x in such a way that only the total
transverse current density vanishes:

0, 5 = Σ5«. (1-1)

i.e. , we can ensure conservation of the electric charge.
Then, Ei and the total current are given by5'

Σ (οο)
(1.2)

The partial transverse currents associated with individ-
ual groups are

ί^ Ισ^-^^Γ'σ^]^. . (1.3)

Deriving, by analogy with Eq. (1.3), the expression
(1.1) for the total transverse current iL, we readily see
that the partial currents if vanish together with ij. only
if

(έϊχ)-'σ!, = ε, (1.4)

where C is independent of a. The relationship (1.4) is
satisfied only exceptionally, for example, when the
tensors σ" for all the valleys are proportional to one
another (all groups have the same anisotropy) or when
σ£, =0 for all the groups.

The pattern of the transverse currents of Eq. (1.3)
may be stationary only if mechanisms converting car-
riers of one group ("arriving" carriers) into carriers
of other groups ("departing" carriers) act on all sur-
faces with a practically full efficiency. Such conversion
includes intervalley scattering, electron-hole recom-
bination, inelastic scattering of electrons, etc. How-
ever, if the rate of such intergroup surface conversion
is limited, the initial electron balance is disturbed:
each of the surface layers exhibits the accumulation of
carriers from some groups and depletion of carriers
of other groups. The resultant transverse density gra-
dients give rise to diffusion currents and a new steady
state is established only when the partial transverse
currents on the surface balance the rate of the inter-
group surface scattering. Then, the partial currents
should be described by the general formulas

Here, ea =±e(e> 0) for the hole and electron groups,
respectively.

Thus, the arriving current generates a spatially in-
homogeneous carrier distribution; there is an apparent
separation in the r space of the carriers belonging to

5 'For a cubic crystal, σ is naturally a scalar and σ* = σ.

Ε. I. Rashba et al. 363



different groups (for example, those belonging to differ-
ent valleys in the ρ space).

Since there is always some intervalley scattering in
the bulk, nonequilibrium carrier densities relax in the
direction of the interior of a sample. In weak electric
fields, such relaxation occurs over distances equal to
the intergroup lengths L~ VVrai (see Sec. 2). Conse-
quently, the carrier densities are perturbed in surface
layers ~ L thick but, at greater depths from the surface,
they return to their equilibrium values. Therefore, for
an arbitrary rate of surface conversion, Σ(°°) repre-
sents the conductivity of bulk samples {dy, d, »L); this
is indicated by the argument °° in parentheses.

We shall usually assume that all the dimensions are
considerably greater than the Debye screening length
lD (dy, dt, L»lD). Then, the quasineutrality condition
is satisfied practically throughout the bulk of the sam-
ple:

(1.6)

In weak fields Ex, when the densities na are perturbed
only slightly compared with the equilibrium values, the
behavior of ambipolar systems (i .e., systems with
groups of carriers of different charges) does not differ
in any way from the behavior of unipolar systems. The
position changes greatly in strong fields: in the case of
a unipolar system, the condition (1.6) governs the sum
of densities, whereas, in the ambipolar case, it gov-
erns the difference w+ -« . . Therefore, in unipolar sys-
tems, certain groups of carriers can replace others
without a change in the total number of carriers; conse-
quently, the size effects may be largely due to differ-
ences between the mobilities of various groups. On
the other hand, in ambipolar systems, we may have
extensive accumulation and depletion regions, and the
resistance may change by a large factor. We shall post-
pone the consideration of the nonlinear effects to Sees.
3 and 4 and estimate here only the size effects in weak
fields.

In estimating the magnitude of an anisotropic size ef-
fect as a function of the rate of surface conversion, it
is convenient to begin with the case when there is no
surface conversion and the thicknesses are dsdl«L.
The partial transverse currents can then be ignored
throughout the sample. In weak fields Et, the values of
Ej. and Vno remain almost constant throughout the sam-
ple. 6 ' It follows from Eqs. (1.5) and (1.6) that

(1.8)

where e a is governed by the condition D" = tji" (in the
case of nondegenerate statistics, we have εα = T/e).
Hence, using Eq. (1.5), we immediately obtain the for-
mula for the current in a thin sample

(1.9)

According to the system (1.9), each group in a thin
sample makes its own contribution to the total conduc-
tivity Σ(0) quite independently of the other groups. It
must be stressed that this change in conductivity occurs
when the total number of carriers in each of the groups
is constant because of the diffusion contribution to the
total current.

A comparison of the system (1.2) with Eqs. (1. 8) and
(1.9), which represent two extreme cases of thin sam-
ples (maximum and minimum rate of surface conversion,
respectively) shows that the expressions for the conduc-
tivity and transverse field are quite different.

We shall now consider cubic crystals. For these
crystals, we have σ^ = 0 and it follows from Eq. (1.2)
that Σ(°°) = σ* = σχχ = σ, where the latter quantity is the
bulk conductivity. On the other hand, the separate con-
ductivities are σ&*0 and, therefore, Σ(0)< σ. We shall
determine their ratio in the case of η-type germanium,
whose spectrum includes four valleys, which are el-
lipsoids of revolution lying along [ i l l ] axes. If the χ
axis is directed along one of the fourfold axes and the y
axis along the face diagonal, we find that

Σ(0)
Σ(οο)· (l.io)

6)We can show that this applies for any finite rate of surface
conversion provided the inequalities rfy, dz«L are satisfied
sufficiently well.

where θ = 55° is the angle between the [lOO] and [ i l l ]
axes, and σ, and at are the principal values of the con-
ductivity for one ellipsoid. If σ,/σ4 =0.05 or 0.2 (acous-
tic and impurity scattering, respectively1·6·1), we find
that Σ(0)/Σ(«) «0.2 and 0.5. We shall assume that <H/
σ {=0.05.

The above discussion makes clear the two simplest
manifestations of anisotropic size effects, which are
the dependence of the conductivity Σ on the thickness
over distances of the order of L and the appearance
(even in cubic crystals!) of a transverse emf associated
with the field Ei.

The first to point out the phenomena which we call
here anisotropic size effects was Fowler in his mono-
graphC7] in connection with the Hall effect in an ambipo-
lar conductor (i.e., with the effect which occurs in a
length Lr). The interest in this size effect, usually
known as the magnetoconcentration effect, was stimu-
lated by the theoretical and experimental investigations
of Welker et al.is~u: A systematic theory of the size
galvanothermomagnetic effects in ambipolar semicon-
ductors was given by PikusC123 (see also"3 1). Investiga-
tions of the anisotropic size effects associated with the
anisotropy not due to the magnetic field were started
inC 1 4 '1 5 3. Somewhat later, a study was made of the aniso-
tropic size effects occurring over distances equal to the
other diffusion lengths such as the intervalley length Lv

(electrical conductivity,Clel Hall effect,C17] magnetore-
sistance,C181 skin effectci9]) and the cooling length Le

(magnetoresistanceC201), which were shorter than Lr in
the case of semiconductors.
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C. Main equations and boundary conditions

The currents i can be calculated normally if we know
the spatial distribution of the carrier densities. We
shall confine our attention to the one-dimensional case
(rfz-°°), i .e . , a plate of thickness 2dy = Id, so that all
the quantities depend exclusively on the coordinate y.

The dependence of na on y is found from a system of
equations of continuity for the currents./01 =ia/ea:

(1.11)

subject to the boundary conditions on the free surfaces
y =±d:

(1.12)

where we have introduced the bulk times τ α β and surface
rates s*e of departure from a group α to a group β.

We can determine all the values of na{y) and the fields
Ey(y) by supplementing the above system with the Pois-
son equation. In many important cases, it can be re-
placed with the quasineutrality condition (1.6) or the
equivalent condition iy =0, which applies to a spatially
homogeneous one-dimensional problem. Then, the
rates s*s are specified on the boundaries of a quasineu-
tral region and are phenomenological parameters; we
can relate them to the rates on true surfaces by solving
the exact problem of surface space-charge layers.

After the elimination of Ev{y)y the equations have two
components of the field: Ex and Ez. The former is as-
sumed to be given and the latter is governed by the
quasi-Hall condition specifying that the total current
along the ζ direction is zero.

It must be stressed that we are confining ourselves
to the one-dimensional case simply for reasons of math-
ematical convenience; all the principal qualitative rela-
tionships can then be followed quite fully. However, in
view of the appearance of the currents along the ζ direc-
tion, the numerical value of a size effect may sometimes
be much smaller. In particular, in the case of n-type
Ge considered at the end of Sec. IB, we find that, in the
limit d)~0! d r-°°, Eq. (1.10) should be replaced with

(1.10a)

which means that, for the same parameters as before,
the ratio ajat is 0.6-0.75 (instead of 0.2-0.5).

2. ANISOTROPIC SIZE EFFECTS IN WEAK ELECTRIC
FIELDS

We shall begin a systematic discussion of anisotropic
size effects from the case of weak electric fields when
the nonequilibrium carrier densities are low and pro-
portional to E. In this case, the analysis is relatively
simple and, to some extent, universal: the pattern is
practically unaffected by the sign of carriers. On the
other hand, the range of phenomena in which anisotropic
size effects should be observed is fairly wide and in-
cludes the electrical conductivity, magnetoresistance,
thermoelectric power, etc.

Linearization of the system (1.11)—(1.5) and elimina-

FIG. 2. Orientation of a plate relative to cry stall ographic axes
in which a two-valley situation is established in η-type Ge.

tion of Ey(y) gives a system of homogeneous diffusion
equations from which the first derivatives and the field
Ex drop out; the field occurs only in the boundary condi-
tions [(1.12) in conjunction with (1.5)]. In the case of
ν carrier groups, this system gives the (i '-l)-th dif-
fusion length L „ and all the solutions are sums of the
exponential functions exp{±y/Lx).

A. Intervalley redistribution of carriers

The influence of the intervalley redistribution on the
electrical conductivity is considered inC163. The results
can be conveniently illustrated by the example of a semi-
conductor with two equivalent valleys (u = 2). It follows
from the equations in Sees. IB and 1C that, for all the
anisotropic effects, the important coefficient is

a — a-i — a 2 , (2.1)

The coefficients aa are a measure of the anisotropy in
each of the valleys; they are one-dimensional analogs
of the left-hand side of Eq. (1.4).

A realistic physical model is a plate made of n-type
Ge and cut so that it behaves as a two-valley semicon-
ductor. This is achieved by directing one of the four-
fold axes along ζ and the other two at an arbitrary an-
gle φ relative to χ and ν axes (Figs. 1 and 2).

The equations in Sec. 1C then reduce to one diffusion
equation with an effective coefficient Ώ(φ) related to the
usual bulk diffusion coefficient D by

(2.2a)

For Ge, we find that σ,/σ, « 1 and a0 ~ 0.5. The diffu-
sion length L{<p) =V D{ip)r also depends on φ; we also
have τ = τ α ί / 4 . 7 > This diffusion length governs the depth

7)In all those cases when there is only one relaxation mecha-
nism, we shall drop the indices of τ and L.
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of the layers in which intervalley redistribution takes
place. The main angular dependence is contained in the
anisotropic factor

003'2φ
α»(φ)= (2.2b)

The degree of modulation of the conductivity is gov-
erned by the thickness 6 = d/L(<p) and by the dimension-
less surface recombination velocities S*((p)=s1L(<p)/
D(cp) (in principle, the velocities s* may also include the
dependence on φ):

Σ (δ, φ) = Σ (οο) [1 - α2 (φ) ζ (δ, φ)]; (2 . 3a)

here, Σ(°°) =σ is the bulk electrical conductivity and

t h 8 l+(l/i){S++S-)cth6 n^r^, /o ou\
°<ί<1 (2.3b)

The change in the conductivity is greatest for φ =0. Its
dependence on δ for φ = 0 and several values of S* is il-
lustrated in Fig. 3. The effect disappears for S*»1.
If only one of the recombination velocities S* is high,
the effect is still large.

The field E, generates a quasi-Hall transverse emf
Vl = 2dEy, where

Εν=-γα1ζ(δ, φ)-
sin 4φ (2.4)

In addition to Σ and Ey, direct experimental measure-
ments can also be made of the permittivity anisotropy
induced by the intervalley redistribution of free car-
riers. The maximum change in the surface density oc-
curs for S* =0, φ = 0 and is given by

«0 EL

D
uL

(2.5)

The quantity EL represents the diffusion field and it
sets the limit to the linear regime:

aE*<BL (2.6)

(provided &<\.).

There is one other quantity which can conveniently be
studied experimentally: this is the conductivity anisot-
ropy in the (x, z) plane. It appears when the y axis
does not coincide with a high-symmetry direction in a
crystal (i.e., with a threefold or fourfold axis). For
example, if <p=7r/4, it follows from Eqs. (2.2b) and
(2.3a) that the conductivity is equal to σ, i.e., there is
no size effect. However, if the current is directed in
the same plane along a fourfold axis (which corresponds
simply to a change of the z and χ axes), the con-

w 2.0 3.0 δ

FIG. 3. Dependences of [Σ(δ) - Σ (0)]/α§Σ (·») =1 -£(fi) (with φ
= 0) Β plotted for different values of S*: 1) S*=S" = 0; 2) S*=l,
S- = 0; 3) S* = °°, S- = 0; 4) S*=S" = 1; 5) S*=», S~ = l.

FIG. 4. Depletion (a) and accumulation (b) layers near the sur-
face.

ductivity is

(2.3c)

where £(δ) is given by Eq. (2.3b) in which D(q>)~ (1 -ao)D
andS*-4Si2=4Si3 (Fig. 2).

The latter case has an interesting feature: the conduc-
tivities of valleys 2 and 4 are not diagonal in terms of
the plate axes, whereas those of valleys 1 and 3 are
diagonal (we have effectively a three-valley system).
Nevertheless, the field Ey(y) generated by electrons in
valleys 2 and 4 causes electrons from valleys 1 and 3
to participate in the intervalley redistribution: their
density is highest in the central part of the plate and
falls toward the edges.

The variation of the conductivity with ψ and d, de-
scribed by Eqs. (2.2)-(2.3), does not exceed 25%. In
the case described by Eq. (2.3c), the conductivity anisot-
ropy is stronger: in the limit rf-0, it may reach a fac-
tor of 2. An even greater effect is observed if aniso-
tropic deformation transfers all the carriers in Ge to
two valleys. The size-effect reduction in the conductiv-
ity may then amount to a factor of 4-5.

It should be stressed that, in the linear approximation
used in the present section, the corrections to the den-
sities are proportional to Ex and, consequently, the cor-
rection to the field current is negligible. Therefore,
the change in the conductivity represented by Eq. (2.3a)
is entirely due to the diffusion currents.

All that we have said above applies directly only to
ideal homogeneous plates in which the influence of in-
homogeneous surface layers can be described by the re-
combination velocities s*. This is possible only if the
contribution of these layers to the total conductivity is
negligible. Since it is unlikely that the inequality L «lD

is satisfied by a large margin, the theory has quite rigid
limits of validity.

The most favorable case is that of two depletion lay-
ers. Carriers are then concentrated in the region be-
tween these layers (d,tt < d; Fig. 4a) and s4 are expo-
nentially small. In fact, the majority of carriers is
reflected from the smooth potential of the space-charge
layer with momentum transfer too small for intervalley
transitions and only a proportion of carriers ~exp(- φ,/
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Τ), where φ, is the band bending, reaches the real sur-
face.

An accumulation layer in which a large number of
carriers is concentrated is itself analogous to a thin
sample, one of whose sides is a real surface and the
other is an electrostatic potential which reflects elec-
trons (Fig. 4b) and causes practically no intervalley
scattering. For this reason, an anisotropic size effect
appears in the surface layer irrespective of the actual
value of s on the real surface. Such an intervalley re-
distribution in a surface layer imposes a corresponding
redistribution on the bulk electrons; the dependence
s(<ps), which includes a sign reversal (sic!), is deter-
mined inC 2 1 ]. However, if the band bending is sufficient-
ly strong, the conductivity of a thin sample and the in-
fluence of an anisotropic size effect on the conductivity
are governed by carriers in the depletion layers. The
thickness of these layers, controlled by the surface
charge, is then the effective thickness of a sample dttt.

Observations of anisotropic size effects in such de-
pletion layers are reported inC221. An investigation was
made of Ge samples with a free (112) surface. As ex-
plained above, the conductivity on such a surface should
be anisotropic. Figure 5 shows the dependence of the
anisotropy parameter on the band bending: we can see
that this dependence appears only when the accumulation
is sufficiently large. The intervalley length L, esti-
mated from the thickness of the carrier localization re-
gion corresponding to the onset of the anisotropy, is
= 10'5 cm at 297 °K and =10"4 cm at 77 °K, in agreement
with the results deduced from the acoustoelectric ef-
fect1·21; in this temperature range, the dominant effect
is the phonon intervalley scattering.

B. Redistribution of carrier energies

We shall now consider anisotropic size effects in
which the individual "groups" are electrons with specific
energies. In this case, an anisotropic redistribution re-
sults in the symmetric part/0(e) of the electron distribu-
tion function/(p) becoming dependent on the coordi-
nate y.

The electronic system is characterized by the times
τρ, rt, and j e e , the last of which is the electron-electron
collision time. If τ ρ is governed by quasielastic scatter-
ing (see Sec. 1A), and the electron densities are rela-
tively low, then

Tp«xt, τ... (2.7)

κ

1.2 -

1.0

0 2 4 S Ys

FIG. 5. Anisotropy coefficient Κ = σ5([ΐ10])/σ5([111]) of the
surface conductivity σ5 plotted as a function of the surface po-
tential Ys =<ps/T for a sample with y II [112]. The black dots
represent a chemically etched surface and the open circles a
surface subjected to ion bombardment. C 2 2 ]

If these two criteria are satisfied simultaneously, elec-
trons of energy ε form a separate group (ε electrons).

We shall consider a single-valley system. The ap-
pearance of anisotropic size effects requires that α(ε)
= uyx(t)/uyV(e,) [compare with Eqs. (1.4) and (2.1)] should
differ from zero and depend on ε: then, different ε elec-
trons have different anisotropies. The consequences
can conveniently be discussed by considering the exam-
ple of transverse magnetoresistance of a semiconduc-
tor with an isotropic spectrum (H in the plane of a plate).
In this case,

α(ε) = ω,τρ(ε), ω< = - ^ ( 2 . 8)

represents the tangent of the Hall angle. The classical
transverse magnetoresistance appears entirely because
(due to the dependence of H O I K ) the Hall field compen-
sating the total transverse current does not compensate
the partial currents (with different values of ε). Since
anisotropic size effects influence significantly these
currents, we can expect the effect to be large. This is
indeed demonstrated in1-201.

A special feature of this situation is that ε, which is
the index of a group, is continuous and the transition
from group to group occurs not only because of colli-
sions but also because of the application of an external
field. Therefore, instead of the system (1.11), we ob-
tain an integrodifferential equation in terms of partial
derivatives

divj-eE-§-=-*?[/„]

for the density of the ε-electron current

(2.9a)

(2.9b)

where, R(f0) is a functional describing relaxation of the
function/„(ε), ^(ε) is the density of states in a band, and
Ό(ε) is the tensor of the diffusion coefficients

D« = D»=-£r
(2.10)

related to the mobility u(e) by κ(ε) = - eD{t) dlnfo/de.
The boundary condition (1.12) becomes

/.(ε, ±d) =>[/„], (2.11)

where s* is the functional of the surface relaxation of
the distribution /„.

We can distinguish two limits, depending on the re-
lationship between re and τκ. If ree «rt, an electron
temperature Te(y) is established in the electron gas,
i .e . ,

(2.12)/.(β, »)«ΓΓ" 1βχρ(—£-

The temperature T,(y) is given by the equation for the
electronic thermal conductivity; it is established in a
distance Lee ~ V Dree and relaxes in a cooling length Le

~S~DTI, However, if ree » τ,, the electron-electron col-
lisions are unimportant; /„ is then non-Maxwellian and
relaxes in a distance Lt.

It is convenient to begin with r e « Tee, discussed in lz31

in the specific case of acoustic scattering, and to rep-
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FIG. 6. Size coefficients in the formula (2.13) for some limit-
ing cases on surfaces™: 1) 1 -£4(<5) for i* = i" = 0; 2) £2(δ)
for s" = 0, 3*="°; 3) l-ζ^δ) for s" = 0, i* = °°. The dependence
1 — ii(6) for s' = s*='° is practically identical with curve 1 and
for s ' = 0, s* = °° with curve 3. The dashed line is function 1
— £ι(δ) corresponding to s* = 0, obtained in the temperature ap-
proximation for the scattering of electrons by acoustic pho-
nons. ®n If s* = °°, ft has the equilibrium value on the corre-
sponding surface.

resent the weak-field conductivity in the form t 2 4 3

Σ (δ) = a [l - (-£-) 2 (1 - ζ, (δ)) - (•§£•) 2 (1 - ζ2 (δ))

» ι * 0.275;

(2.13)

here, the second term in the brackets describes the
magnetoresistance, the third the nonohmic behavior,
and the last term in the mixed effect; Ea ~ T/eL e and
H0~mc/eTt are the characteristic electric and magnetic
fields. The functions £((δ) describe the size effect; £j
and £2 decrease monotonically from 1 to 0 with increas-
ing δ and £3(0) = £3(°°) =0; I £31 passes through a maxi-
mum at δ~1 and differs from zero only if "S*#"5". If
"s* ="s~ = 0, only ζ1 differs from zero and the size effect
is exhibited solely by the magnetoresistance. If s* = s '
= °°, only £2 is retained. For s* =0, ? " - °°, we find that
Sf *0. The explicit form of the functions £t(6) depends
on the functionals "s1, which are not known. Figure 6
shows the form of the functions £((δ) for certain limit-
ing conditions on the surface.

It is clear from Fig. 6 that, if d~Q and 3**«, the
transverse magnetoresistance vanishes.8 ' This result
is general and is also valid in strong (but not quantizing)
magnetic fields. It is self-evident in the s* ="s" = 0 case
the transverse currents (responsible for the transverse
magnetoresistance) vanish on the surface and, therefore
(for d « Le!), throughout the sample. If si*0, there-
suit is still valid since the dimensionless surface relax-
ation rate in a thin plate is now std/D (here, s ( is the
characteristic rate corresponding to the operators "s*),
which vanishes in the limit d~ 0.

In strong magnetic fields, the value of D decreases
as/Γ 2, in accordance with Eq. (2.10). Consequently,
we have Lt&H~l and the ratio d/Le increases proportion-
ally to H; therefore, the anisotropic size effect weakens
with increasing H. This is illustrated in Fig. 7. If Η
is normal to the plane of the plate, the size effect should

0 k 8 12 16 H/Ho

FIG. 7. Schematic representation of the dependences of the
magnetoresistance on a magnetic field (Hllz) for samples of dif-
ferent thickness: 1) d»Lt; 2) d>Le; 3) d~Lt; 4) d<Le; 5)
d«Lt; Le is the diffusion length in Η = 0.

not be observed; therefore, the transverse magnetore-
sistance of a thin sample should depend quite strongly
on the orientation of H.

If τ ε » τ « , the theory inC 2 0·2 4·2 3 1 simplifies consider-
ably because the temperature approximation can be ap-
plied if d> Lee, and new details appear in the physical
picture. These details are associated with the existence
of an intermediate range of thicknesses Lee <:d«Ll,,
in which electrons become thermalized and the total
transverse electron energy flux does not change signifi-
cantly. Therefore, the size-induced change in the trans-
verse magnetoresistance occurs in two stages; when the
thickness of the sample is reduced, we find that, in the
range d~Lc, the transverse magnetoresistance falls
from its bulk value (Δ/>/ρ)«, to an intermediate value
(Δρ/ρ)Χββ corresponding to the lower limit of validity of
the temperature approximation (Lee«d«Ls) (Fig. 8).
A further reduction in Ap/p to zero occurs in the range
of thicknesses d~ Lee. The value of the ratio (&p)Le /
(Δρ)«, depends strongly on the scattering mechanism.1203

For the deformation acoustic scattering, this ratio is
0.54, whereas, for other mechanisms, it is much
smaller than unity (i. e., practically the whole of the
fall of Ap/p occurs in the range corresponding to the
temperature approximation).

The criterion of weak redistribution is E«ELt,
where ELt = T/eL,, ~E0 is the diffusion field active in the
energy redistribution. However, this criterion is the
condition for weak heating. Therefore, strong heating
may be accompanied by a strong redistribution of Te in
a sample.C 2 6 :

Anisotropic size effects also appear in other transport
phenomena in which the transverse currents are impor-
tant, for example, in the longitudinal Nernst-Ettings-
hausen effect (the change in the thermoelectric power
in a transverse magnetic field). The contribution of
the drag of electrons by phonons may reverse the sign of
the magnetothermoelectric power and, in the same tem-
perature range, the size dependences may be monotonic

8>We shall not consider the range of small thicknesses dSlv

when the magnetoresistance, in the case of diffuse scattering,
is of different origin. 1251

FIG. 8. Size dependence of the transverse magnetoresistance
in two limiting cases: 1) Lt,»Lt; 2) Lt,«L . In case 2, the
size-induced change occurs in two stages.
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and exhibit sign reversal. ' 2 7 1 Several other effects are
described in the review1*83.

C. Combined mechanism of anisotropic size effects in

magnetoresistance of semiconductors

The transverse magnetoresistance in one-valley
semiconductors is associated with the transverse cur-
rents of the ε electrons. In many-valley semiconduc-
tors, there is an additional mechanism associated with
the transverse currents of various α electrons; there-
fore, the transverse magnetoresistance does not disap-
pear even for rp(e)=const. If Lv»Le, the size-induced
change in the transverse magnetoresistance, due to the
intervalley mechanism, appears throughout the range
dSLv, and that due to the energy mechanism only for
dSLe.

Then, if d»Lt, the theory is exactly the same as in
Sec. 2A. The only difference is that the tensors uf,
have antisymmetric parts. Therefore, the transverse
magnetoresistance differs from zero also for the orien-
tations of a crystal for which there is no size effect in
the electrical conductivity.

Galvanomagnetic intervalley phenomena in Ge are con-
sidered in t 2 9 3 in the configuration shown in Sec. 2A. If
Η fly, the Hall field Ez has a strong size dependence:
when d is varied, the ratio Ez/Ex changes by a factor of
4 [ i .e . , much more than the conductivity—compare with
Eq. (2.3a)]. If φ ΦΌ or π/4, a longitudinal Hall effect
appears (this effect is not observed in bulk samples).
An unexpected feature is the weak dependence of the
size-induced transverse magnetoresistance on the angle
φ [in contrast to the size-induced dependence of the con-
ductivity—compare with Eqs. (2. 2) and (2. 3)] and on the
direction of Η in the (y, z) plane. When d is reduced,
the transverse magnetoresistance remains finite pro-
vided τ depends on ε; in the acoustic scattering case,
it falls by a factor of about 2. A further fall to zero oc-
curs in the range dSLt. In this range, the two mecha-
nisms of the transverse magnetoresistance are activated
in turn (like the Lt and Lee mechanisms in Sec. 2B). A
calculation for the three-valley case of w-type Si is
given in1C301

Clearly, the inequality Lv »LC is never very strong.
We can easily find the situations in which the converse
inequality can be expected (for example, a heavily doped
semiconductor). Therefore, the case Lv~Le is impor-
tant; in this case, the mechanism of the anisotropic size
effects is of the combined type. Since the dependences
αα(ε) vary from valley to valley, the departure from an
equilibrium energy distribution occurs under different
circumstances in each valley and this gives rise to an
additional intervalley redistribution mechanism (similar
to that in heating fields'·311). Similarly, the unequal oc-
cupancies of the valleys generate carrier currents and,
consequently, energy fluxes between the valleys.

The actual result depends on the scattering mecha-
nism. In the impurity intervalley scattering case, the
dependence τν(ε) for the mechanisms with virtual or real
electron capture by donors123 is a rising function of ε;
therefore, slow electrons participate mainly in interval-

ley transitions and these transitions heat the more heavi-
ly populated valley and cool the less populated one. In
heating fields, this situation corresponds to the anoma-
lous Sasaki effect.C321 In the phonon intervalley scatter-
ing, the opposite result should be obtained because T\,(E)
falls strongly in the range ε >, ωρη.

In this situation, the intervalley redistribution pro-
duces a nonequilibrium energy distribution not only in
the transverse magnetoresistance but also in the size-
affected electrical conductivity.C33]

The mutual influence of the two mechanisms becomes
weaker at high carrier densities because of the exchange
of energy between the valleys resulting from the elec-
tron-electron collisions. It is shown in t 3 4 ] that, in the
common temperature approximation, the two mecha-
nisms can be separated in weak and strong fields Η
(and for an arbitrary configuration Η ιι ζ in Fig. 2), and
the contributions of these mechanisms to the magnetore-
sistance are additive.

D. Surface relaxation

We may assume that the surface rates (velocities) of
intervalley scattering sv and cooling s f are—like the
thoroughly investigated surface recombination velocity
sr—structure-sensitive quantities and depend strongly
on the state of the surface. It is well known9' that sr

of Ge can be varied within the range 102-106 cm/sec by
a suitable surface treatment and field-induced band
bending.

In the absence of surface band bending, it follows from
general considerations that sv should be large and st

should be much smaller. In fact, sE should be related
to the inelastic processes. Conversely, sv may be due
to elastic scattering accompanied by the transfer of
large momenta to surface imperfections on the atomic
scale. If the concentration of such imperfections is
high, the value of sv should be comparable with the av-
erage velocity of the "boundary" flux v/4. In the phe-
nomenological theory, the rates sv, comparable with v,
should be regarded as sv =•». The rate sv, may be con-
siderably smaller for atomically perfect surfaces andin
the presence of depletion layers" 5 3 (see Sec. 2A). In
this case, we clearly have sv$ (1/4) i7exp(- φ,/Τ). A
slight band bending <p,~3T ensures the necessary reduc-
tion in sv.

The occurrence of surface energy relaxation should1·363

reduce considerably the electron heating in layers with
d<:Lt and alter the conductivity (and all the galvanomag-
netic coefficients^8'373) in heating fields so that the con-
ductivity becomes size-sensitive.

This effect was observed in η-type si ' 3 8" 4 0 1 and in p-
type GeC413 at 77 °K. The experiments on />-type Ge
were carried out on plates whose thickness was varied
by grinding and etching, whereas the experiments on
w-type Si were carried out using surface channels of a
width controlled by the nonequlibrium depletion meth-
od. C 4 2 ] A strong size effect in the electrical conductiv-

9),'See, for example, S18 in1 1 5 1 1.
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ity, exhibited by both «-type Si in the absence of band
bending1-38'39] and Ge, C 4 1 ] corresponded to an unexpectedly
high value of s£, which was of the order of the thermal
velocity v. In the case of η-type Si with depletion lay-
ers, iio1 the dependence of the electrical conductivity on
the size was not observed in the range Ε < 500 V/cm but
appeared fairly abruptly in fields Ε Ζ 500 V/cm. These
results demonstrated the efficiency of the suppression
of s, by depletion layers and the possibility of overcom-
ing the barriers by strongly heated electrons. The
high values of sE reported i n

C 3 8 ' 3 9 · 4 1 1 can be explained in
a natural manner by a two-stage relaxation mechanism
when energy is first transferred to electrons localized
at the surface levels (and characterized by a quasicon-
tinuous spectrum) followed by the transfer of energy to
the lattice.

This subsection can be summarized as follows: the
establishment of a depletion layer on at least one sur-
face should facilitate observations of anisotropic size
effects over distances Lv and LF.

E. Experimental investigations of size anisotropy of

magnetoresistance

A special dependence of the transverse magnetoresis-
tance on the orientation of Η in thin samples was re-
ported in several papers.C 4 3-4 9 1 in all cases, use was
made of samples known to exhibit a strong dependence
of the conductivity on y. This inhomogeneity could of
itself give rise to an anisotropy of the transverse mag-
netroresistance, i .e . , it could give rise to a dependence
of this magnetoresistance on the orientation of Η in the
(y, z) plane. However, it was concluded in the investi-
gations of />-type Ge" 5 " 4 8 1 and η-type GaAsC49] that in-
homogeneities could not account for the whole of the ob-
served effect and, therefore, the size effect over dis-
tances Lr was invoked (see Sec. 2B). The transverse
magnetoresistance anisotropy exhibited by macroscopic-
ally homogeneous samples of />-type Ge was also attrib-
uted to the size effectC50]; however, the measurements
inC50] were carried out in strong magnetic fields which
enhanced the importance of small random inhomogene-
ities.C 5 l ]

We shall now consider in greater detail the results
reported inCS2] where the homogeneity of «-type Si
plates, which were 2d = 40-700 μ thick, was checked
specially and moderate magnetic fields were used. The

210° 330'

no 100°

153

FIG. 10. Dependence of the ratio of the magnetoresistances
for HII ζ (Δσ,ι) and HIIy (Δσχ) on the half-thickness of a sample
a t T = 25°Kc52:l: DuH/c=0.5; 2)uH/c = l; the circles are the
experimental values and the curves are the theoretical depen-
dences.

plate axes were oriented along fourfold crystallographic
axes so that the anomalous size effect was not exhibited
by the conductivity. The rates of surface relaxation
were reduced by establishing depletion layers on the
surface. Figure 9 shows the angular distributions of
the transverse magnetoresistance in samples of two
thicknesses: it is clear that the distribution for a thick
sample has a fourfold axis, whereas that for a thin
sample has only a twofold axis. Figure 10 shows the
thickness dependences of the ratios of the magnetoresis-
tances obtained for Η ll ζ and Η ll y for two values of H.
These results are used inC521 to determine the charac-
teristic relaxation length L~ 15 μ (at Γ = 25 °K), which
is in satisfactory agreement with the value of Le, calcu-
lated by the same authors on the basis of the results
reported inC 3 8 ]. The effect is treated in : 5 3 ) as of the
combined type (see Sec. 2C) occurring over distances
Le and Lv, which—as indicated by indirect estimates-
are of the same order of magnitude10'; it should be noted
that, in the phonon scattering range, we always have
LvZLt. The experimental dependences of the effect on
Τ (in the range 20-160 °K) and Η are in agreement with
this interpretation.

We shall now state the conclusions. Experimental
investigations of anisotropic size effects over distances
equal to the intervalley length Lv and cooling length Lt

are difficult primarily because, in the case of semicon-
ductors, these lengths are short. A quantitative theo-
retical interpretation of the results is also complicated
by the fact that, although the characteristic lengths Lf

and Lv are "literally" independent and, in principle, can
differ considerably, in real situations the difference be-
tween them is small and, therefore, we may expect to
observe the combined mechanism. Judging by all the
evidence, this is the effect observed in «-type Si.

F. Intervalley redistribution in semimetals

Semimetals such as Bi (see, for example,C54·551) have
many-valley electron spectra and, therefore, they can
exhibit intervalley redistribution. However, the numer-
ical values of certain parameters of semimetals are
such that it is desirable not to confine the treatment to
the phenomenological theory but to extend it to the range

FIG. 9. Dependence of the transverse magnetoresistance on
the angle between Η and the y axis in thick and thin sam-
p l e s ' 5 " : 1) 2^ = 700 μ; 2) 2rf = 40 μ.

""Recent independent measurements of τ ν of Si gave 1O"8-1O"9

<™ 1158)
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of thicknesses d~lt on the basis of a solution of the
transport equation.

The point is that, in contrast to semiconductors
whose lengths /„ are short (lv< 10'4 cm), the value of I,
for Bi reaches 0.3 mm and such thicknesses are en-
countered in studies of the size effect (see next subsec-
tion). On the other hand, the ratio Lv/lv does not ex-
ceed 10 even for the best samples. Moreover, when the
thickness is increased, the size effects decrease pro-
portionally to d'1, i .e . , they decrease slowly so that
there may be an overlap between the regions in which
the size effects associated with different characteristic
lengths are observed. Therefore, it is desirable to ob-
tain equations valid for all the thicknesses; this natural-
ly results in the loss of the advantages of the phenomo-
logical approach because certain assumptions must now
be made in advance about the energy spectrum and nature
of the relaxation processes.

This theory was developed for a special situation inC56]

and for the general case inC 5 7 ]. We shall confine our-
selves to a model demonstrating the general approach.
If we assume that/ a =/ 0(ε- eF) + <pa 9/0/3t, we find that,
for τν» τ,, the transport equations for separate electron
valleys (derived in the approximation of a scalar relaxa-
tion time) are:

— eEv + fa — 'fa - = 0. (2.14)

The bar above a quantity denotes averaging in a given
valley. The quantities <pa(y) are corrections to the
chemical potentials of the individual valleys. In the
case of a system of equivalent electron ellipsoids, the
quasineutrality conditions are

ΣΪ«(!/) = 0. (2.15)

If we assume that the intravalley scattering is diffuse
(its probability is waa) and the intervalley is described
by the probabilities waa.(a' Φ α), the condition of con-
tinuity of the fluxes (currents) on the y = - d surface is

?£(-<*)(!>„)> + Σ «Va!<Vf<. (-d, V) = O, Σ « ν « = 1 (2.16)
tx' a'

and there is a corresponding condition for the y = d sur-
face. C 5 7 > 5 8 ] The function <p% refers to the vy^0 cases;
similarly, the superscripts £ of any other quantity indi-
cate that they differ from zero only if vs ^ 0. The sub-
script identifies the valley for which the averaging is
carried out.

If we consider <pa(y) and E(>>) in Eq. (2.14) to be
known functions, the solution of this equation is of the
Fuchs type m :

(V> ν) = βία iy) + [(φ* (+d) -fca (zpd)) e.xp ( - ^

(2.17)

where

and the quasifields are

E . ( » ) = ( * „ E,-&-r&-, Et).

Equation (2.16) gives lv constants of integration ψ\ (τά).
The quasifields E a(y) are found by making the solutions
of Eq. (2.17) self-consistent by a procedure involving
averaging over the velocities (rates). In the case of the
quadratic dispersion law εο(ρ):

d

- j dy' sign (y'-y) e g , (/) {e-»"-^> V ) > = ( 1 —

where

ta (y) = 3 Eai (y) -^- , ε,, (ρ) = -|" Σ εΐ;Ρ

ϊ«(»)>

(2. 20)

(2.21)

The equations (2.20) together with the conditions (2.15)
can be used, in principle, to find all the values of <pa(y)
and the field Ε(y).

These equations are solved analytically (for limiting
situations) or numerically. Analytic singularities of the
solutions can be separated by differentiating Eq. (2.20).
We can see that &a{y) contains terms of the type {(1/^)
xexp[(z -ά)/ν1ιτ]}>

α, which give rise to contributions pro-
portional to lnfid2 -yz)/l\]. Therefore, the values of
Ey and d(pa/dy diverge logarithmically at the edges.

We shall now consider the conditions in a surface
layer. In the case of Bi, we have Ζβ-lO"6 cm and the
inequality lD«ls is well satisfied, i .e . , the electron
motion in the surface layer is ballistic. Since t> ~10'2

eV, a surface field £θ~104-105 V/cm is sufficient to
ensure that \cfs I >eF. Then, depending on the sign of
φ,, the potential is repulsive for carriers of one sign
(electrons or holes). These carriers escape to the sur-
face only if their velocity lies within an "attainability
cone, " namely, if \vy I > (2eys, \<ps l ) 1 / 2 . The considera-
tions put forward in Sees. 2A and 2D demonstrate the inter-
valley scattering should be experienced by carriers within
the "attainability cone" [ensuringthat saa, ~{\/A)vwaa.\
whereas carriers outisdethis cone are scattered inside
the valley and the scattering is largely t 5 7 : specular. u >

This mechanism can simulate the diffuse scattering
"cutoff " discussed in the case of size effects in : 5 9 1.

We shall now list the principal conclusions which fol-
low from an analysis and solution of the above system.

All the quantities have two characteristic lengths lv

and Lv. In the case of samples with d» Zp, the results
are the same as those deduced from the phenomenologi-
cal theory (compare with Sec. 2A), except that, in
quasineutral surface layers ~ Zp thick, the fields and
carrier densities have singular terms so that
EyccExdliwa/dyccExwaa.lii{d*-yi)/ll]lli>). Here, we

(2.19)

"'The influence of a surface barrier on carrier reflection was
established experimentally in recent investigations"563·1591,
where a strong angular dependence of q was established di-
rectly (for electrons in Bi) and a considerable difference be-
tween the values of q for electrons and holes was found for Sb.

12'These terms should be manifested in the effects which re-
ceive a considerable contribution of carriers moving in a
layer Slv thick near the surface; for example, they may be
manifested in electromagnetic generation of sound (Sec. 5b)
of wavelength λ ~lf.
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have probabilities waa, with α * a and, therefore, these
singular terms disappear if the intervalley scattering
is suppressed (for example, if the bands are bent so
that only holes with a one-valley spectrum are present
on the surface). The conductivity Z(d) in plates of this
kind is governed only by the intervalley scattering rate,
is independent of the degree of reflection specularity q,
and is described by the expressions obtained in Sec. 2A,
i. e., the conductivity exhibits a plateau in the range
lv«d«Lv.

In the case of samples with dSl,, the analytic behav-
ior of Σ(ά) is influenced greatly by the degree of diffuse-
ness of the surface scattering and the characteristic
length is naturally lv. However, the amplitude of the
change in Σ(ά) in this range is a function of all the prob-
abilities ωαα.. If the bands are not bent, all the car-
riers reach the surface and the asymptotic effective
range in thin plates [d«1(1- q)\ is

(by analogy withc i ]). However, if the bands are bent,
electrons moving outside the "attainability cone" are
scattered specularly and, in the limit d~ 0, they make
a finite contribution to Σ; therefore, Z(d) tends to a
finite limit for rf— 0. If q = 1 (specular scattering!) ap-
plies to all carriers, the conductivity is constant over
distances d~lr and the plateau in the range d«Lv ex-
tends to d~lD«lg. If d«lt, the logarithmic terms in
Ey and d<pa/dy include a small parameter rf/Zp; accord-
ing to the numerical calculations reported in t 6 0 ], Ey(y)
and d<pa/dy then vary only weakly within a sample. If
all the probabilities are waa, =0 for α Φ a', the trans-
verse carrier currents of all groups balance out and
both Ey and dqia/dy are constant.C56]

The general nature of the theoretical dependences
Z(d) can be judged from Fig. 11, which applies to Bi.
If sv = 0 and either electrons (qn = l) or holes (qp=l) are
scattered specularly, three plateaus (curves 2 and 3 in
Fig. l la) are observed; if qn=qp =1, two plateaus with
a transition region at d~ Lv can be found. If sv is large,
the size effect is manifested mainly for d~lv and the
plateau in the range d «lv appears only if qp = 1 for
holes.

It should be stressed that a consistent solution of Eqs.

FIG. 11. Theoretical curves for the size effect in the electri-
cal conductivity of Bi. The trigonal axis is C3II ζ and the binary
axis is C2llz and the binary axis is C2llji. In this geometry,
there is no redistribution of holes and electrons in one valley.
The carrier mobilities are taken fromc 6 9 ] ; LjLp = 10. a) sv

= 0: 1) qn = qp = l; 2) qn = l, qp = 0; 3) ? n = 0, qp = l; 4) qn = qp = 0.
b) sB=10: 1) qn = 0, qp = l; 2) qn = qp = 0; the arrow identifies the
value 1d = lp.

(2.20) and (2.16) is essential if correct results are de-
sired. In the early papers, the transport equation was
applied to the size effect in many-valley systems" 9 ' 6 1" 6 3 1

and the self-consistency conditions were not satisfied;
a basically incorrect result was obtained inC e 2 '6 3 J, where
a prediction was made of the existence, for specular
scattering (q = l), of the size effect in a distance lt in
the case of ellipsoidal valleys (compare curve 1 in Fig.
l l a and the results reported in C 5 6 ' 6 ").

We shall illustrate the influence of a magnetic field
in the Η H ζ geometry. Since the Larmor radius is
rL = ν/ω,.«Zp, it governs the size of the region of non-
local action in the calculation of the conductivity. If
rL « d, the phenomenological theory applies throughout
the plate. In semimetals, the electron and hole densi-
ties are equal (w =p) and the conductivity of the bulk sam-
ples is Eoc/r2 (seeC65J, §27) due to the disappearance of
the Hall field in a lower order of a'1 = rL/lt [compare
with Eq. (2.8)]. In a strong field, the diffusion length
decreases: LV(H) ~ Lv/a « Lv. The conductivity of thin
plates with rL«d«Lu(H) can be found from Eq. (1.9).
Allowing that σχίι=- ayx ~ σ/α and σνν = am ~ σ/α2 [see, for
example, Eq. (2.10)], we obtain σ*~σ, which is identical
with the conductivity in Η = 0. This is due to the exis-
tence of transverse gradients which act as the effective
Hall field and each group of carriers behaves indepen-
dently as in a unipolar metal. In a bulk sample of thick-
ness d»Lv(H), the surface layers of thickness ~LV(H)
have a higher conductivity. Therefore, the distribution
of the current is similar to that in the static skin effect
(seeCS8] andC65J, §29), except for the difference that a
region of higher conductivity extends not to rL but to
Lv(H)~rL(rv/Tt)

1/z»rL. UsOSLjarO, the contribution
of layers of this thickness to the conductivity Z(d) is
~aLv/ad. If sv£Lv/a7v, the contribution of such layers
to the conductivity is ~ aD/azdsv.

ilMM11 The size effect
appears when the contribution to T,(d) of the surface lay-
ers becomes comparable with σχχ~σ/αζ. In the two
ranges of the values of sv identified above, this corre-
sponds to d~aLv and d~D/sv~lvv/sv, respectively.

Thus, in a strong magnetic field, there are three
characteristic lengths at which the size effect should ap-
pear: rL, LV(H), and aLv or D/sv. The last two lengths
may exceed considerably LV(H).

A description of the effects occurring at distances
~rL is given in1671 in terms of the transport equation ap-
proach similar to that used inC571. If q*l at the bounda-
ries, both Ey(y) and dlpjdy have singularities of the
(»"i,/(rf- l;yl))1/2, type, which influence considerably the
Hall coefficient (in the Η II ζ configuration). Since the
magnetic field bends the trajectories, the glancing elec-
trons enter the "attainability cone" and, consequently,
the conductivity plateau disappears for small thicknesses
in the range rH S d.

G. Size effect in electrical conductivity of Bi

The interest in the size effect in the electrical conduc-
tivity of Bi has been stimulated by the discovery1683 of
the saturation of T,(d) in the range of small thicknesses
dSl mm. The results reported in that paper are plotted
in Fig. 12. They were interpreted on the basis of163·1 as
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FIG. 12. Dependences of the electrical conductivity of Bi on
its thickness at 4.2°K.C 6 8 ] Orientation C3llz, φ is the angle
between C2 and x.

the size effect in a distance Zp resulting from the specu-
lar surface scattering in systems with anisotropic spec-
tra. We have shown above (Sec. 2F) that such an effect
does not occur. Moreover, the cited interpretation is
in conflict with some experimental results: the dis-
tance ls ~l mm deduced from the size effect is consider-
ably greater than that obtained from the mobility (/p = 0.1 —
0.4 mm at 4.2 °K, according to [ 6 9 ] ; see a l so"") . For
Bi at 4 °K, we have τυ/τν~30cn]; this ratio was deter-
mined for r r because the intervalley scattering and re-
combination in Bi involved practically the same momen-
tum transfer and we might expect that rv~Tr. It is sug-
gested in t 3 5 ] that the observations can be attributed to
the anisotropic size effect in a distance Lv. In the case
of thin plates (d« Lv), and for 5 « 1, the angular depen-
dence S(rf, φ) is exactly the same as that obtained inC63]

for d«lt; therefore, the qualitative agreement with the
theory ofC631 obtained ince81 on the basis of an analysis
of the dependence of Σ on φ applies equally well to the
interpretation based on the anisotropic size effect. This
interpretation explains why the value of Σ reported for
thin samples ince81 was finite when a special surface
treatment destroyed the scattering specularity; this was
a natural consequence of sv being small.

Subsequently, similar experiments were carried out
by several authors on plates, wedge-shaped samples,
etc. Typical experimental curves are plotted in Fig. 13.
We can see that, in all cases, the characteristic length
is ~2 mm. Curves 2 and 4 exhibit an additional fall in
the range d~0. 5 mm, which may be due to the size ef-
fect in a distance /,. This tendency also appears in the
results reported inC70] where it is reported that the mo-
bility of some samples saturates again in the range

soo

ΖΰΟ

• /

u Ζ h 2i, mm

FIG. 13. Dependences of the electrical conductivity of Bi on
its thickness at4.2°K: 1) from c e 6 ] ; 2) from [ 7 2 ] ; 3) from u";
4) from C 8 0 ] .

d« lv; this may be attributed to the specular component
of the scattering.1-73·741

These observations are in agreement with the inter-
pretation based on anisotropic size effects. However,
there are also some difficulties. The fall of Σ by a
factor of six in Fig. 12 can be explained only if the con-
tribution of holes to the conductivity is S. 10%; however,
according toC 6 9 ], the contribution is =25%. The theory
(Fig. 11) cannot account for a fall as steep as that ex-
hibited by curve 3 in Fig. 13; however, since other
curves (particularly, curve 4) are much smoother, we
cannot exclude a possible influence of inhomogeneities,
•particularly in wedge-shaped samples. The greatest
difficulty arises from the large anisotropic size effect
observed for the orientation along which it can appear
only as a result of a small inclination (=6°) electron el-
lipsoids relative to the basal plane (curve 2); the cause
of this is not clear.

In this connection, we must mention other attempts
to explain the size effect. It is hypothesized inC75] that
the effect is due to the drag of phonons and their scatter-
ing by the surface; subsequent extimatesC76] and the re-
sults reported inC771 indicate that these should be weak
effects. The saturation of Σ in the range of small val-
ues of d is explained in [ 5 9 ] by the specular scattering of
glancing electrons but this mechanism may be active
only in the range d<lt.

Clearly, a more direct manifestation of the anisotropic
size effect is the appearance of a dimensional transverse
field Ey. The first report of such a field with (Ev/Ex)mu

= 20 was made in1-781. More detailed investigations were
described in" 9 · 8 0 1 (Fig. 14). The values of Es/Ex at high
temperatures, when the size effect disappeared, gov-
erned the constant contribution associated with the
anisotropy of the bulk conductivity and a possible rela-
tive shift of the measuring electrodes. An estimate

0.6

0.U

0.1

Zd-0.09cm

0Λ8
-+-• •

8 12 IB T,°K

FIG. 14. Temperature dependences of the average transverse
field I , in samples of different thicknesses. i n i
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based on the diffusion theory formulas, similar to Eq.
(2.4), demonstrated that, in the case of Bi, the maxi-
mum value of this ratio was (Ef /Ex)mu «0.5; the results
reported inC7fl>803 were in agreement with this value. It
was assumed inC 7 e > 8 0 ] that the onset of the rapid fall of
the curves in Fig. 14 corresponded to L{T)~d and this
was used in the determination of the temperature depen-
dence τ,,(Γ) which agreed with the dependence r r(T) de-
duced from the acoustomagnetoelectric effect.1·51

The first experimental studies of the size-effect-re-
lated transverse magnetoresistance of Bi were carried
out at 77 °K and interpreted as the "diffusion size ef-
fect."'18·1 However, according toC 5 ], Bi is characterized
by τ, < τν only at temperatures Γ<15°Κ; therefore, the
anisotropic size effect should only be manifested at low
temperatures. The measurements of the transverse
magnetoresistance were carried out in c e e l at 4.2 °K for
samples with d> LV(H) in fields Η up to 2 kOe. The
measured dependence of the size-effect component of Σ
on Η agreed with the theory in fields H~IQQ Oe; devia-
tions at higher values of Η were attributed to the depen-
dence sv(H). The measured values of τΌ exhibited a
large scatter and were an order of magnitude lower than
those reported i n m . Velocities of s~106 cm/sec, de-
duced for various orientations of H, did not agree in the
limit H—0 even for a single face. Thus, the reliability
of the results obtained was problematic. Purer samples
and stronger fields Η (Fig. 15) were used inC81]. Esti-
mates of the parameters obtained inC8U gave T,,=2X10" 8

sec, in accordance with t5]. The surface recombination
probability, estimated on the basis of a model with a
single-valley electron and hole spectrum, t 6 7 : l was w^
~l/3. This value of w^ corresponded to the range sr

»Lr/arT, and, therefore, the observed size effect clear-
ly corresponded to a characteristic length D/sr(Sec. 2F).
Studies of the size effect in Sb were reported inC 8 2 ' 8 3 ].

It is worth noting that there are no grounds for ex-

,.,η" -

a1- a
Zd, mm

FIG. 15. Dependences of the magnetoresistance on the thick-
ness Id of a sample of rectangular cross section1813 in Η II C3.
The abrupt drop in p(H) on the extreme right is due to the re-
moval of a damaged surface layer. 1) Τ = 4. 2°K, Η = 1 kOe; 2)
T = 4.2°K, H = 10kOe (left-hand scale); 3) Γ = 14°Κ, # = 5 kOe;
4) T = 20°K, H = 5 kOe.

pecting semimetals to exhibit significant effects associ-
ated with energy relaxation (Sec. 2B). In fact, in the
range T«tr, the change in αα(ε) (Sec. 2C) is small at
energies ~ T. Moreover, in the case of Bi, c,pf is of
the order of a few degrees and, therefore, at Γ =4 °K,
we have τ ~τ, . Some complications may arise only
when the phonon mechanism begins to dominate the in-
tervalley scattering (Γ£6 °Κ in the case of BiC5]) so that
the intervalley redistribution produces a secondary flux
of hot electrons of energy wph = 40 °Kt5] from one valley
to another (Sec. 2C).

It is worth noting the following circumstance. The dif-
fusion lengths L, associated with the intervalley scatter-
ing and recombination, are very large (of the order of
millimeters) in Bi and, therefore, the preparation of
samples L presents no difficulties. In spite of that,
there is a considerable scatter of the experimental re-
sults obtained by different workers. This may largely
be due to the absence of any standard procedure for sur-
face treatment and monitoring of the surface state. It
is known that the surface treatment has a strong influ-
ence on the transport coefficients'88'81'155]: this influ-
ence is clearly due to a change in the conditions of mo-
tion of carriers in the surface layer because of the in-
fluence of etching on the magnitude and sign of the sur-
face potential φ, (Sec. 2F). Interesting possibilities of
direct experimental determination of the influence of the
surface treatment on the specularity coefficient are pro-
vided by studies of the focusing of carriers in a trans-
verse magnetic field.Cl56] Another possible cause of the
scatter of the experimental results is clearly insuffi-
cient control of the bulk parameters of bismuth and of
the degree of spatial homogeneity of these parameters.
The high plasticity of Bi makes it difficult to avoid the
generation of large numbers of dislocations: since it is
natural to expect strong intervalley scattering of car-
riers by dislocation cores, plastic deformation can have
a considerable influence on the size effect. This in-
fluence on the transport coefficients of bismuth is re-
ported in c l 5 7 ] .

3. ELECTRICAL PINCH EFFECT IN AMBIPOLAR
SEMICONDUCTORS

In this section, we shall consider the behavior of an
anisotropic ambipolar semiconductor in a strong elec-
tric field. An anisotropic ambipolar drift concentrates
carriers from a large part of a sample in narrow lay-
ers, where the carrier density becomes much higher
than the equilibrium value; we shall call these the pinch
layers. Thus, a sample as a whole may be strongly
depleted of carriers or may exhibit a strong carrier ac-
cumulation. The large diffusion lengths (Lr~0.1-1 mm)
mean that, at room temperature, high fields begin from
EL ~ 1 v/cm and complications associated with heating
(Sec. 4) are unimportant. Large values of Lr make it
possible to observe the pinch effect in "ordinary" sam-
ples, i. e., the effect is not confined to thin layers.
Consequently, the various aspects of this effect have
been investigated in numerous experiments performed
on anisotropic samples as well as on isotropic samples
in a magnetic field. The theory has been compared in
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detail with the experimental results.

A. Physical situation and theory

We shall consider a plate made of an intrinsic semi-
conductor whose electron and hole mobility tensors (u"j
and if{j) are nondiagonal when expressed in terms of the
axes linked to the plate. Using Eqs. (1.5), (1.11), and
(1.12) and the quasineutrality condition (1.6), we obtain
the following equation for the transverse ambipolar dif-
fusion

dtp , 0 dp _ _ aeL _ a E, (3.1)

subject to the boundary conditions η=± 6;

here, a =an-ap is analogous to Eq. (2.1); L =Lr=jDrr;
D is the ambipolar diffusion coefficient defined by
D = 2£$yI%s/(D"y +£%y); r,=y/L; 5=d/L; S = sL/D; p{ is the
equilibrium hole density. The coefficient 2y, which oc-
curs in Eq. (3.1) in front of the first derivative, is the
dimensionless effective transverse field which ensures
the ambipolar drift in the y direction.

The solution of Eq. (3.1) gives two characteristic
lengths:

£ i . 2 = — Λ _ • ( 3 · 3 )

In high fields y 2 » 1, which will be of prime interest to
us later, we find that

Lt-+L(E)=2\y\L=^-\aEx\r, u = -^-, (3.4)

i .e., this length becomes the drift (extended diffusion)
length, and

(3.5)

[84]

~ 2 M ~ ' ~ 2 | γ | - | « £ x l

becomes the contraction diffusion length.

If aEx > 0, the effective field drives the carriers to-
ward the τ) = - δ surface. Consequently, a depletion
layer of thickness ~ L(E) extends from the τ/ = δ surface
into the sample, whereas an accumulation pinch layer
of thickness ~L(E) forms at the η = - 6 surface. In the
limit 2y» δ, δ"1, S*, 1/S~, the depletion region extends
over almost the whole crystal and, in this region, the
hole density is /> = ft(S* + δ - η)/2γ, i .e . , the density de-
creases proportionally to E~l. In the pinch layer, the
maximum density reaches saturation: p~~pj(S* + S~ +2δ)/
S", and the total number of carriers decreases propor-
tionally to E'1. Consequently, the current through the
sample becomes saturated. Its value depends on S* and
rectification is observed for S**S".

There are several special situations which are excep-
tions to the above rules. If S* = «, the carrier density
throughout almost the whole of the crystal is ~p{ and,
in the pinch layer, the carrier density increases pro-
portionally to y near η = - δ; as a result, we have ixa= y.
If S" = 0, we find that the density obeys p'ocy and the cur-
rent is ix cc y. if we have both S* = « and S" = 0, then p~
and ix are both proportional to y2. In the latter case,
the rectification effect is strongest; the reverse current
saturation is minimal and the forward current rises
proportionally to £ 2 .

These results apply equally well to an isotropic semi-
conductor in a magnetic field and to an arbitrary aniso-
tropic semiconductor. In the latter case, the redistri-
bution of carriers is known as the electrical pinch ef-
fect; we shall adopt this term for all the related phe-
nomena. The formal difference is that, in the case of
a magnetic field, the tensors u"j have an antisymmetric
part.

We must stress in conclusion that, in contrast to Sec.
2a, the effects discussed here are mainly due to a change
in the carrier density and are governed by the parame-
ter γ, whereas changes in the conductivities of the order
of az (corresponding to the substitution σ— σ*, as shown
in Sec. IB) play a secondary role.

B. Electrical pinch in homogeneous samples-experimental
results

Direct observations of the redistribution of carriers
under the electrical pinch conditions were made inC8S!

using the absorption of light by free carriers. The mea-
surements were carried out on intrinsic Ge subjected
to a uniaxial stress. The experimental dependences
(Fig. 16) yielded directly the distributions of carriers
in a sample for small values of s* (Fig. 16a) and for
small s" but large s* (Fig. 16b). Depletion regions ex-
tended over a large part of the sample, pinch layers
were observed (where the carrier density increased by
an order of magnitude), and both depletion and accumu-
lation of the carriers in the sample as a whole were
found, depending on the direction of the current (Fig.
16b). It should be stressed that all the curves were ob-
tained for small values of a (=0.7 to 0.1) and the non-
linearity appeared in weak fields because of the small-
ness of EL(~0.1 v/cm). A change in the carrier density
near the surface was also deduced from the reverse cur-
rent across a local p-i junction1·861 (Fig. 17).

FIG. 16. Changes in the transmission of infrared radiation
(left-hand scale) and transverse distribution of the carrier den-
sity (right-hand scale) a i 8 1 for a sample with 2rf = 1.5 mm, L
= 2 mm, T = 50°C; deforming stress X = 1500 kg/cm2; E = EX:
a) s ' « s ' « 1 0 ! cm/sec, Ε (V/cm) =20, 40, 60, and 100 (curves
1-4 respectively); b) s '«10 2 cm/sec, s*«104 cm/sec, Ε
(V/cm) = - 5 , -10, -15, -20, -30, 5, 10, 15, 20, and 30
(curves 1-10, respectively). The horizontal segments in the
upper part of the figure denote the size of an infrared illumina-
tion spot.
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FIG. 17. Dependences of the current/, through a.p-i junction
on the external field Ex, plotted for different pressures X pro-
ducing uniaxial deformation (s" « s*).lm The p-i junction was
formed by local alloying a side (x,z) surface (y = -d) of an in-
trinsic Ge crystal with indium. An ohmic contact was formed
on the opposite surface. Pressure X (kg/cm2) =400, 800, and
1200 (curves 1-3, respectively).

The current-voltage characteristics of a plate were
of the type shown in Fig. 18. All the features predicted
above were observed: strong nonlinearity and rectifica-
tion, saturation of the current (the residual slope was
due to the fact that n0 - ή, *0), and even superlinearity of
the forward current ί'^-Ε* in moderate fields.

The main feature of the carrier kinetics was the domi-
nant role of the ambipolar transverse drift. Therefore,
when carriers were driven to the surface characterized
by a large value of s, the relaxation time was identical
with the drift time 2d/\(a/2)uEx I oc^;1. The kinetics
was also investigated in' 8 7" 8 9 1 .

The effects described in Sec. 3A should be observed
not only for equilibrium carriers but also in the case of
photoexcitation of electron-hole pairs. The photocur-
rent characteristics (Fig. 19) were reported to exhibit
a strong saturation'8 7 '9 0 1; the origin of this saturation
was the same as in an intrinsic semiconductor.

The electrical pinch effect was observed not only in
deformed Ge but also in two naturally anisotropic semi-
conductors: CdSbC91J andTe. C 9 2 :

It was suggested inC85] that the qualitative changes in
the asymptotes of the current-voltage characteristics
under uniaxial deformation could be used in the construc-
tion of highly sensitive strain gauges.

C. Electrical pinch in magnetic fields

The theory of the electrical pinch effect in magnetic
fields was started in1·83 and developed in several pa-
pers. "o.i2.93-9e,.tc.] T h e v e r y f i r s t e x p e r i m e n t a l inves-
tigations revealed rectification of the current in the case
of strong asymmetry of s* and s" (in this connection, the
concept of a magnetic blocking layer was intro-
duced"'1 1 3), nonlinear current-voltage characteristics
with a tendency to saturation of the type shown in Fig.
18, influence of light on magnetic blocking layers, re-
duction in the relaxation times with increasing Ex and H,,,
luminescence due to nonequilibrium carriers,C 9 7 1 and so
on. An advantage of measurements in a magnetic field
is the practically unlimited range of variation of the

FIG. 18. Current-voltage characteristics of the same samples
as in Fig. 16t85J: 1) undeformed sample (X = 0); 2)-4) rectify-
ing characteristics of a sample with s'« 102 cm/sec, s*« 104

cm/sec, subjected to pressures X = 100, 300, 1500 kg/cm2

(curves 2-4, respectively); 5) nonrectifying characteristics of
a sample with s*»s"« 100 em/sec, subjected to X = 1500 kg/cm2.

anisotropy parameter a, whereas, in an anisotropic sit-
uation in Η = 0, we always have a < 1 and the range of its
variation as a result of deformation is even less. The
phenomena occurring in magnetic fields can be used in
measuring the parameters of semiconductors such as
s*, τ, and D, and in the determination of the magnetic
field itself. We shall not consider these points in
greater detail because a review of the earlier work can
be found in Beer's monograph1-983; the number of papers
published on this subject is now about 100.

D. Electrical pinch in bent samples'991

An ingenious variant of the electrical pinch effect is
reported inC99]. If uniaxial compression (Sec. 3B) is re-
placed with bending, the deformation in a plate and,
consequently, the anisotropy parameter a(y) become
linear functions of y:

FIG. 19. Photocurrent-voltage characteristics of intrinsic Ge
at room temperature (2d = 0.15 cm, L = 0.21 c m ) . : 8 n The y = -d
surface was illuminated with strongly absorbed light (3x 1017

photons/cm2): 1), 2) s*— °°, X = 1200 kg/cm2, S-(l)<s -(2); 3),
4) s* — °°, s"(3)=s-(4)=s"(l), X(3) =600 kg/cm2, X(4)=400
kg/cm2; 5) s*» s~, X = 1200 kg/cm2. Only the reverse branches
are shown for curves 3 and 4.
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FIG. 20. Transverse distribution of
the dimensionless carrier density/
=p(y)/pi in a sample with δ = 0.125, α0

= 0.04, plotted for different values of
the dimensionless electric field >j
= aaedEx/2T in the case of "forward"
(1-3) and "reverse" (4-6) bending.119"
The dashed line gives the dependence
e(y). 1),4)γ 1 = ±2; 2),5)γ 1 = ±5; 3), 6)

50 100 Kvolts

FIG. 22. Experimental current-voltage characteristics, /1 / 2

=f(V), of a bent germanium diode (dimensions 2<f = l . l mm, lz

= 3.5 mm, /v = 5.5 mm, a o 4 1 plotted for different pressures XQ :

0) 0; 1), 1') 100; 2), 2') 200; 3), 3') 300; 4), 4') 400 kg/cm2.
The unprimed numbers correspond to forward bending and the
primed numbers to reverse bending.

a (y) = aoy d. (3.6)

A bent plate is compressed on one side of the neutral
plane and stretched on the other. Therefore, the direc-
tions of the transverse drift are opposite on the two
sides of the neutral plane. Consequently, if s* = s~, a
density extremum is established in the neutral plane:
it can be a maximum or a minimum, depending on the
direction of the current. Calculated distributions are
plotted on a logarithmic scale in Fig. 20.

The current-voltage characteristics corresponding to
s* = s" exhibit strong rectification: the forward direction
corresponds to the presence of a pinch layer near the neu-
tral plane and the reverse direction to the drift of the car-
riers from the bulk of the sample to two identical pinch
layers at the surfaces, where the carriers rapidly recom-
bine. The experimental current-voltage characteristics
are in good qualitative agreement with the theory (Fig. 21).

E. Related effects

1) Electrical pinch in heating fields. The electrical
conductivity of a cubic crystal becomes anisotropic in

FIG. 21. Theoretical (curves) and experimental (points) cur-
rent-voltage characteristics of bent samples of intrinsic Ge
plotted for ao = O. 04 (corresponding toX0 = 600 kg/cm2 applied
to the surfaces y = ±d): 1) 6 = 1.0; 2) 6=45; 3) 6=0.312; 4)
6 = 0.125. The dashed line represents the current-voltage
characteristic of an undeformed sample QC0 = 0).

heating fields (Sasaki effect). [ 3 1 ] It is pointed out in U 4 ]

that this anisotropy may itself be a cause of the electri-
cal pinch effect. Such an effect was observed experi-
mentally a o o ) in Ge subjected to fields of ~1 kv/cm and
it was manifested by a strong dependence of the resis-
tance on the orientation of a sample. The theory of this
effect is presented i n

C l 0 1 · 1 0 2 3 .

2) Piezodiode effect.1103·10" The electrical pinch ef-
fect also appears as a result of the injection of nonequi-
librium carriers across a p-n junction. The special
feature of this case is a strong inhomogeneity of the
carrier distribution in the direction of the current (i. e.,
along the χ axis). A drift distribution of a nonequilibri-
um plasma is established when a strong field Ex is ap-
plied to an isotropic long diode: the density varies in
accordance with the law p(x) oc V ixTttf/x and the current-
voltage characteristic is ίχ^τ^ Vz, as shown in [ l 0 5 : l

(and then in c l 0 6 ]) and c l 0 7 ] . Here, r. f f allows for the in-
fluence of surface recombination. By way of example,
we shall consider the bending deformation. Under
"reverse" bending when the plasma approaches the
walls, we have Tttt~l{E)/sa:E?, the current falls, and
the current-voltage characteristic becomes ohmic. In
the case of "forward bending, " the injected plasma be-
comes detached from the walls, the recombination rate
falls (τ,,, — r r), the current rises, and the current-volt-
age characteristic of long samples retains the form
i oc 7 2 , whereas, in the case of shorter samples, injec-
tion breakdown is observedCloe]: the voltage across the
sample tends to saturation. All these features are dem-
onstrated by the curves in Fig. 22, recorded for a plate-
like germanium diode.

The current-voltage characteristics of samples sub-
jected to homogeneous deformation are similar to those
obtained under "reverse bending." The same charac-
teristics are obtained in the magnetodiode effect13' in

13'The universal mechanism of the magnetodiode effect, based
on the dependence of L on Η due to the ordinary magnetore-
sistance, is suggested and investigated in" 0 9 -" 1 1 . This ef-
fect is weak in the plates under discussion here but it pre-
dominates in samples of different geometry.
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thin plates. C l 0 3 ' 1 1 2- 1 1 4 : i Ambipolar transport in a differ-
ent geometry is analyzed inC 1 1 5 3.

3) Electrical pinch in semiconductors with deep cen-
ters. It is shown in c u e : i that the electrical pinch effect
may occur in a semiconductor with an almost unipolar
conduction (equilibrium densities n0 > />„) and a high trap
concentration. The effect is then due to a strong asym-
metry of the recombination times of electrons and holes,
τρ/τη « 1 , and it is manifested by an almost complete
capture of electrons by levels when holes are driven to
the surface.

The results of the present section can be summarized
as follows. The large value of the recombination length
LT makes the electrical pinch experiments absolutely
reliable and a wide range of phenomena can be studied.
The agreement between the theory and experiment is
complete and only special situations and technical ap-
plications need to be studied in future.

4. MANY-VALLEY CRYSTAL IN STRONG FIELDS

We shall now consider a very special nonlinear be-
havior in strong electric fields, which is exhibited by
many-valley crystals. We shall show that electrons
belonging to different valleys should become completely
separated in space, filling separate layers (domains).
In ambipolar situations, the holes should participate in
this redistribution and this may result in giant changes
in the conductivity.

A. Unipolar conduction. Domains'117-1181

We shall assume that the field Ex is sufficiently
strong. The intervalley redistribution is then consider-
able either throughout the sample or at least in its sur-
face parts. The transverse component of the α-electron
current is

Γ /

1 »„ =—uaoynEx \_\

( o = l , 2, . . . , v),

£y (if) Τ dfa

(4.1)

where ν is the number of valleys, fa(y) =«α(ν)/«, η is the
equilibrium electron density, so that the neutrality con-
dition is Σα=ι/α = 1 · Although Eq. (4.1) applies to non-
degenerate electrons, the basic conclusions are valid
more generally.

We shall first consider a plate of thickness Id. Then,
provided the bulk and surface intervalley scattering
rates are finite, the currents^,, remain finite when the
field Ex

have
is increased. Therefore, in high fields Ex, we

E'-
- 2 Γ

(4.2)

Since /„ ^ 1, the term with the derivative may play an
important role only in layers whose thickness is of the
order of the contracted length l(E) ~ T/aeEx. Inside
such layers, we have

The solutions of the system (4.2'), satisfying the neu-

FIG. 23. Distributions of aj and a2 electrons in a domain
(αι-α^) wall.

trality condition in the limit Ex~°°, are

h (V) = δβα, Ε, = - ααΕχ (α, β = 1, 2, . . ., v). (4.3)

Consequently, electrons form domains, which are
layers parallel to the surfaces of the plate. Each do-
main contains electrons of one type and, in the case of
the α-electron domain (briefly, α domain), we have
Ey=-aaEx.

It remains to determine the law governing the relative
positions (sequence) of the domains and to calculate
their thickness.

We shall consider a hypothetical wall between αχ and
az domains (Fig. 23). In this wall, we have/ a i + / a 2 =1,
where/ a i falls from 1 to 0, fai rises from 0 to 1, and
E/E i fEy/Ex varies from - a
(4.2) that

ai to - a . It follows from Eq.

(4.4)

and, therefore, if Ex > 0, such a wall can only exist if
aax

 > αα2> * · e · , if domains are distributed along the y
axis in monotonically decreasing order of aa. If Ex < 0,
they are distributed in increasing order of aa.

The thickness of α domains, da, is governed by the
overall balance of intervalley transitions in a sample.
If there is no surface intervalley scattering, a redis-
tribution of a electrons in a sample does not alter their
total number and δα =da/2d = f°at where/" are the equi-
librium values of/„. In the case of equivalent valleys,
we have/ a =l/v and all the thicknesses da are the same.
In the "degenerate" case of α α ι =αα2, a domain of twice
the normal thickness is filled uniformly with αλ and a2

electrons. However, i f s* e *0, the number of layers
ν does not always agree with the number of domains:
ν « v, or the outer domains may be expelled from a
sample completely and their electrons confined to sur-
face walls ~l(E) thick (Fig. 24). A system of equations
which describes an overall balance for each of the ν
groups of electrons

(4.5)
= O (a = l , 2,

-d

a;

X

~y

FIG. 24. Distribution of domains in a
plate (aai <aai): electrons with aas <aOj
are concentrated near the y =—d surface
and those with aas>aaj are concentrated
near y =d.

378 Sov. Phys. Usp., Vol. 19, No. 5, May 1976 E. I. Rashba ef a/. 378



consists of (ν - 1) independent equations; here. * s

= s*e/2rf, /* =fa(±d). This system and the conditions

3 κ - Σ / ; = * /; = ι. M : < > " <4·6>
a = t 'λ -1 α--]

yield ν nonzero thicknesses δα and v — v' = 2 nonzero
values of f*a corresponding to electrons in the two outer
domains and v — v expelled domains.

For example, in the case of a two-valley semiconduc-
tor («j < az) with <? *##•', there are two domains with
δ1>2 = (1/2)[ΐ±(;Γ- (ΐ*)τ], as long as τ | ( ί " - ί ' * | < 1, and

τ(ιΙ~- a*) > 1, i .e., the first domain expands so as to
fill the whole sample with the exception of a thin layer
near the y=-d surface.

Inside a domain, the density varies over the interval-
ley drift length L(E)~mtExj and, in the walls, it varies
over the length 1{E). Therefore, the criteria for the
appearance of the pattern described above are

<EL (4.7)

The first of them may be satisfied only by thin plates
for

(ψ-)2>ι. ( 4 · 7 ' }

which is the reverse of the criterion (2.6).

The criterion "a" of Eq. (4.7) cannot be satisfied in
thick samples. In such samples, a strong intervalley
redistribution occurs at distances SL{E) from the sur-
faces. The structure formed consists of layers of thick-
ness ~L(E) in which there are several types of electrons
whose densities vary smoothly; the layers are separated
by walls ~l(E) thick. An example of this distribution is
shown in Fig. 25.

B. Transport coefficients of sample with domain structure

We shall now consider some experimental manifesta-
tions of the domain structure. The effective electrical
conductivity in a high field isCll7 : l

Σ M ) = B VA. , . = i - M . (4.8)

The subscript in Σ. shows that we are considering the
value in the limit Ex — °°; the mobilities it* are one-di-
mensional analogs of the conductivities in Eq. (1.9).
Η s£e = 0> w e n a v e δα = /° in all cases and Z«(d) is equal
to Σ0(0), which is the conductivity in a very thin plate

0.50 -

0.350.5 W y/yf

FIG. 25. Distributions of relative densities of α electrons.
fa(y), near the (010) surface of a semi-infinite Oy>0) sample of
fi-type Ge.C117] The current is assumed to flow along the [101]
axis; a\ = —a^, ai=a3=§; l)/i(y); 2)/2(y) =f$(y); 4)/4(y); y\
= (ut—i

•-Θ-

FIG. 26. Two-valley semiconductor
which has no domain structure (a 1 =a 2 "0)
in Hz = 0. The magnetic field Hz results
in αϊ * a2 and in the appearance of a do-
main structure.

in a weak field given by Eq. (1.9); the subscript in Σο

indicates that we are considering the limit Ex— 0.
Therefore, Zjd) = Σ0(0)« Σ0(«0 (Sec. 2a). Ks* s *0,
we also have cases with Σ»(<2) > Σ0(ά), and the differ-
ences between these two conductivities may be consid-
erable. The letter index of Σ is the ratio uxlut of the
principal mobilities in one ellipsoid. For cubic crys-
tals and d<Lv, the conductivity is Σ0{ά)~σ, and the
minimum and maximum values of the ratio Σ»(<2)/σ for
ul«ut are Zut/2ut and 3/2. If s**s~, the conductivity
Σ. depends on the sign of Ex (rectification effect).

The magnetoresistance of a domain structure is due
to the influence of the field H,. on aa. Therefore, Hz may
alter the domain sequence; if the domains which inter-
change places correspond to different values of δα, the
conductivity Σ» changes abruptly. The simplest exam-
ple is a two-valley semiconductor with the geometry
shown in Fig. 26. If Hz =0, we find that u^x =utax=Q and
we have just one uniformly filled 1-2 domain. If Hz Φ0
and s**s~, there are two domains of different thickness.
I f r U " - ^ * l > l , one domain fills the whole sample and
the second is expelled. Depending only on the sign of
Hz, either domain 1 or domain 2 is retained; consequent-
ly, we have either Σ, ~nuUx or Σβ ~nu2xx ^nu^y, and, at
the point Hz =0, the conductivity Σ., changes abruptly by
a factor ut/u,.

Even if Hz =0, a quasi-Hall emf is established"1" and
its order of magnitude is aEx min{rf, Is" - s* IT}. The
conductivity in the case of a weak transverse current is
limited by the intervalley scattering and is of the order
of a/L(E), which is less than the equilibrium conductiv-
ity σ/2ά by a factor ~L(E)/d» 1.

C. Ambipolar conduction. Photoconductivity135·119"1211

In unipolar crystals, the scale of the effects is limited
by the fact that only the effective carrier mobility
changes whereas the total number of carriers remains
constant, and redistribution is significant only over dis-
tances which do not exceed the extended intervalley
length. We shall show that, in an ambipolar system,
the amplitude and spatial scales may increase consider-
ably, the former because of a large change in the total
number of carriers and the latter because of the activa-
tion of the electron-hole recombination and because of
the length Lr.

Many-valley effects should be manifested at low tem-
peratures when τν is large. Under these conditions
ambipolar and intrinsic conduction exist only during il-
lumination (photoconductivity), or in narrow-gap and
zero-gap semimetals and semiconductors (see, for ex-
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FIG. 27. Field dependences of the photocurrent in a semi-in-
= -a2=a).finite (ji>0) two-valley semiconductor

/,ι, is the dimensionless photocurrent;
s r = l , 2) sv = 0, s r = 0.1; 3) su = l, s r = l ; 4) s v =

Here,
1) sv = 0,

r = 10; 5)

ample," 2 2 1).
taneously.

We shall consider these two cases simul-

We shall discuss the specific case of a hole with an
isotropic spectrum and electrons with a many-valley
spectrum. We then have two different situations: n»p
and η S p.

In the former case, the intervalley redistribution in
high fields Ex at the surface produces a strong field
Ey ~aEx directed toward the surface in a layer of thick-
ness ~ LV(E). This new field creates a surface potential
well for holes and the depth of this well is ~aExLv{E),
which ensures that the effective value of sr increases by
the factor exp[(eaExLv/T)*]. As a result, bulk excita-
tion produces a depletion layer, ~Lr thick. In the case
of surface excitation, a retarding field increases the
rate of surface recombination so much that the photo-
currant decreases exponentially in a certain range of Ex

(Fig. 27).

In the second case, we can conveniently describe the
motion of carriers by the ambipolax diffusion coefficient

In the limit y - 0, this coefficient reduces to the ordinary
coefficient and, beginning from aEx >,ELv, it increases
proportionally to Εξ. The corresponding diffusion length
Ln(E) =[D(E)rr]

in increases proportionally to IEX\.
This increase is easily interpreted if we bear in mind
that a electrons drift transversely under the action of
a force ~eaEx, due to the field Ex. This force is random
because of the intervalley scattering and, therefore, in
a lifetime r r, an electron diffuses in the y direction to
a distance ~auExJ τνττ, which agrees with the value
~Ln(E) obtained above. Pinch layers of thickness ~l(E)
are formed at both surfaces (as described in Sec. 3)
and this increases the effective values of s*. Conse-
quently, depletion layers ~Ln(E) thick are formed.
Two types of current-voltage characteristic (Fig. 28)
may be observed, depending on the ratio of the parame-
ters. Samples with near-intrinsic conduction and with
s*Lv < D and S'T,. > d exhibit .TV-type characteristics.

The second ohmic region in the characteristics corre-
sponds to fields in which depletion layers spread over
the whole sample and the majority carrier density is
equal to the difference between the equilibrium densities

In all cases, the depletion is maximal for n0 ~p0, i .e . ,
in an intrinsic semiconductor. iino=po, provided only
d«Ln(E), the residual carrier density in the bulk
is proportional to l/Ex. This density is high only in
surface layers whose thickness is proportional to 1/EX,
where it reaches a finite value in the limit £„ — «>.
Therefore, the total number of carriers in a sample
and, consequently, the conductivity decrease in propor-
tion to E'1 and the current tends to saturation. The ex-
ception is the case when the χ axis is parallel to the
principal direction of one of the electron ellipsoids: the
electrons in question and the same number of holes are
then retained in the bulk and the conductivity remains
finite.

It is interesting to note that the intervalley redistribu-
tion changes the photoconductivity even in the sv = »
case. The number of photocarriers generated by
strongly absorbed light is then not given by the usual
formula Ν =Gxr/(l +Sr) but by N = Grr which applies in
strong fields y » 1; here, G is the rate of carrier gen-
eration.

Thus, in an ambipolar situation, the intervalley re-
distribution generates effects extending over distances
~Lr and even ~Ln(E).

D. Discussion of possibilities of observing postulated

effects

The domain structures described in the present chap-
ter and the associated nonlinear phenomena have not yet
been investigated (to the authors' knowledge). There-
fore, to facilitate the design of suitable experiments,
we shall list here some of the experimental manifesta-
tions of the formation of such domains (layers) and we
shall then discuss the conditions for the observation of
these manifestations.

1) Sublinear current-voltage characteristics should
be exhibited by unipolar samples: if s**s~, rectification
should be observed.

2) A transverse emf should appear in cubic crystals
(for s**s~).

3) Abrupt changes in the resistance and transverse
emf should be observed when an external magnetic field
alters the domain sequence. Kinks in the dependences
of the same quantities on various parameters (deforma-
tion, values of s* and s", etc.) should occur when the

FIG. 28. Typical current-voltage characteristics of ambipolar
many-valley semiconductors: 1) characteristic typical of non-
intrinsic samples and of intrinsic samples with large values of
sv and small values of s r; 2) characteristic typical of intrinsic
samples with small values of su and large values of s r .
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number of domains in a sample changes.

4) There should be a special dependence of the photo-
conductivity on the field Ex (Sec. 4c).

5) A strong anisotropy of the photoconductivity should
be a feature of cubic crystals in very high fields.

The main difficulty is the heating of the electron gas.
The average electron energy can be represented by
ea =ε0 +βναΕχτ?, where va(Ex) is the drift velocity. In
the case of strong heating, the second term predomi-
nates and Eq. (4.7) changes to ντί/α«ά«αυτυ, which
is possible only if τ( « αζτυ; this condition is essentially
the same as the general criterion of the validity of the
whole phenomenological theory of the present section.
The second criterion of itself ensures the formation of
a layer structure at the surface of a bulk semiconductor
(end part of Sec. 4a). The first criterion applies to the
domains in plates and is more stringent. A quantative
agreement with the theory of Sees. 4a-4c requires that
important parameters should not change as a result of
heating. The strong temperature dependence TV

<χ exp(- ωρ11/Τ) in the intervalley phonon scattering range
requires in the replacement of (4.7') with more stringent
criteria:

\ ELc I ^ Opjj ' ε iflph

The numerical values of τ ν and r t of Ge have now been
reliably estimated. If the donor concentration is =lo 1 2

cm"3 at Τ «20 °K, it follows from extrapolation of the
results inC2] that τν~2.5χ10^ sec. The time τ ε , esti-
mated for the acoustic scattering, is of the order of
5xl0"1 0 sec. This means that the second stringent cri-
terion is satisfied well.

5. SKIN EFFECT IN SEMIMETALS

In semimetals, a skin layer, which is penetrated by
an external electromagnetic field, acts as a "plate"
where anisotropic size effects are observed. The inter-
valley redistribution results in the participation of car-
riers from various valleys in the oscillatory process.
Consequently, mixed electromagnetic-density waves are
are generated; their number increases and the depth of
penetration changes considerably. The electron-phonon
coupling means that the densities create deformations
in the lattice, i .e . , they generate sound; this conversion
of electromagnetic into acoustic waves is a very effec-
tive mechanism.

A. Influence of intervalley distribution on skin effect

We have assumed so far that the applied electric field
is homogeneous and, therefore, a redistribution of car-
riers appears only where the spatial homogeneity of the
system is disturbed: this happens—with the exception
of the two cases considered in Sec. 3D and at the end of
Sec. 2A—only near the surfaces of a sample. A com-
pletely different situation is established in an alternating
field; the field inhomogeneity in a distance of one wave-
length results (because of the anisotropy of the mobility
tensors ufj) in inhomogeneous fluxes in the direction of
wave propagation and, consequently, it produces non-
equilibrium carriers. Since, in this case, nonequilibri-
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um carriers are generated not only on the surface but
also in the bulk, the effect does not disappear even if
s-°°. Under the skin effect conditions, the pattern re-
sembles that discussed in Sec. 2A in the case of a sur-
face accumulation layer: nonequilibrium carriers are
generated both at the surface of a crystal and on the
inner boundary of the skin layer.

The system of basic equations includes Eqs. (1.5) and
(1.11) and the Maxwell equations. The order of this
system is, in accordance with Εq. (1.11), a function of
the number of groups. We shall find later that the im-
portant case is that of strong magnetic fields when
W C T P » 1 . It is well known (see : 6 5 1, §27) that, in this
limit, the asymptotic behavior of the transport coeffi-
cients is different for "even" and "odd" metals (those
with η = p and η Φρ). Therefore, a simple model of iso-
tropic electron and hole bands, which we shall use (fol-
lowing1-671) to illustrate the main results, is quite ade-
quate in the case of semimetals.

We shall assume that static and alternating magnetic
fields Η and Η are both parallel to ζ and the wave vector
is oriented along the normal (II y). Then, in the classi-
cal range corresponding to w c « T, the dispersion equa-
tion for electromagnetic—density waves is of the form14'

where LZ = LZ(H)=D(H)T(W), τ(ω) =τ/(1 - ίωτ); L is the
diffusion length; D(H) is the ambipolar diffusion coeffi-
cient; τ is the recombination time; ω is the frequency
of the wave. The skin depths δ and δ0 are

1 4 π ω . , , », 1 4 π ω » (5.2)

If
*

where σ* and σ*, are given by Eqs. (1.2) and (1.9).
a~u)cTp»l, the conductivities are σ*~σ/α2 and σ^ρ~σ"
and δ~αδ 0 » δ0; we then also have D(H) ~D(Q)/az and
L~L(0)/a. The quantity δ is the classical skin depth
of an even metal and δ0 is the corresponding depth of an
odd metal. Equation (5.1) applies to the normal skin
depth, i .e . , for krL« 1 (this is the local limit" 2 3 1 of the
validity of the phenomenological theory).

Since δ / δ ο ~ α » 1 , the roots of Eq. (5.1) are quite dif-
ferent: I*! I 2 » \kz I

2. Their values depend on the pa-
rameter

We shall now consider two limiting cases.

Case A corresponds to
/ _ t \ 2 j , 1_ , (_

Case Β corresponds to

(£)•>'• ^

(5.3)

(5.4a)

(5.4b)

We can see immediately that the depths of penetration of
the waves are equal to the diffusion length L and to the
skin depth δ only if L « δ0. On the other hand, if L » δ0,
they reduce to the values corresponding to H = 0.

U) In general, the degree of the dispersion equation is 2v.

I. Rashba et al. 381



The ratio of the amplitudes of the two excited waves
and, consequently, the surface impedance Ζ depend on
the surface recombination velocity:

case A

Z=z0

case Β

*=0,
(5.5a)

*=«,; (5.5b)

here, Zo =4πωδ/ί1/ζεζ is the usual expression for the
impedance which is obtained in the absence of anisotropic
size effects. We can see that Eq. (5.5) gives this im-
pedance only in case A when additional conditions are
satisfied: either s =« or 1(0)« δ0.

Thus, under conditions corresponding to the normal
skin effect, there is a wide range of fields and frequen-
cies in which anisotropic size effects alter the depth of
penetration of the field and surface impedance by an
order of magnitude, depending on the anisotropy param-
eter a »1. Naturally, the size effects occur also in
Η = 0: their magnitude is governed by the parameters aa

of the individual valleys.C19J In the anomalous skin ef-
fect case, the Sondheimer results'1 2 4 1 are basically re-
tained and the influence of anisotropic size effects is
confined to corrections which do not exceed δ/L.C19]

In the quantum range, wcj> T, there is an additional
mechanism of nonequilibrium carrier generation, which
is the quantum dependence of the carrier density n{B)
on the magnetic induction B. At the same time, oscil-
lations of the premeability μ =dB/dH become important
in electrodynamics.C125·1263 A phenomenological theory
of the quantum range is developed in c i 2 7 ] . We shall not
analyze the waves but note only that the formula for
(L/60)

2, similar to Eq. (5.3), now includes μ(Β) and the
full range of the parameters corresponding to cases A
and Β above can be covered in one quantum oscillation
if its amplitude is sufficiently large.

B. Electromagnetic excitation of sound15'

The deformation potential of conduction electrons de-
pends on the electron momentum Λ =Λ(ρ). Therefore,
a change in the electron distribution function alters the
lattice energy and the gradient of the distribution func-
tion produces a bulk force acting on the lattice. This
mechanism of the interaction of electrons with the lattice
is known as the deformation interaction. a 2 8 ~ 1 3 0 ] In semi-
metals, each valley has its own deformation potential
Aa, which can be assumed to be independent of the mo-
mentum.

The deformation interaction causes an electromagnet-

15'The propagation of sound in many-valley systems (including
absorption, amplification, acoustoelectric and acoustomag-
netoelectric effects) itself has a number of interesting fea-
tures and includes processes which, in some respect, are
similar to those discussed in the present review. However,
there is no space to consider this important subject. We shall
discuss the excitation of sound simply as a method of detecting
anisotropic size effects in the presence of a skin layer.

ic-density wave to generate an inhomogeneous force
which acts on the lattice and which should excite acous-
tic waves. The conversion coefficient Γ, defined as the
ratio of the energy fluxes in the acoustic and electro-
magnetic waves, can be described most simply1" for
long acoustic waves ks =u/ca«ku kz

il3l~133i·.

where ρ is the density and

,Λ (5.7a)
(5.7b)

In both case A and Β [compare with Eq. (5.4)], we
have Γ oca2 but with different coefficients. The temper-
ature dependence of Γ is governed by the temperature
dependences of τ(ω) and of the mean free time τ ρ . If
s=°°, and also if s=0 and Ζ,δ/δ§«1, we have Γ α τ ^ ( ω ) .
If s =0, we find that if Ζ,δ/δ2»1 (case A) and, in case
B, we obtain Γ « τ (ω).

In addition to the deformation mechanism, there is
always the ponderomotive mechanism of the excitation
of sound(ci35], §34). If k, «ku kz, which is the case we
shall discuss here, the ponderomotive mechanism gives
Γ ec H2 and the conversion coefficient is independent of
temperature. In semimetals, the relative importance of
this mechanism is small because of the large factor
Λ η -Λ,)7 f,~104 (see [ 1 3 e ]) which occurs inEq. (5.6).

Experimental investigations of the electromagnetic
excitation of sound in semimetals were started inC l 3 7 ]

with Bi in which the effect was observed beginning from
fields H~10 Oe. The sample acted as an acoustic reso-
nator and the effect was deduced from the characteristics
of the surface impedance corresponding to the excitation
of standing waves. It was later suggested1·1383 that the
high-intensity sound was not excited because of the
ponderomotive mechanism but was due to the intervalley
redistribution of the type described in c i e > 5 7 ] . The gener-
ation of sound was investigated later inC132' 1 3 8~1 4 0 ]

 and
interpreted in t l 3 1 ] .

Figure 29 shows the dependence of the intensity of
sound I on Η and Fig. 30 gives the temperature depen-
dence of /. We shall follow here mainly the analysis
of these results given in c i 3 2 ] .

The absolute value of this effect in Sb was described
by τ = 10'β sec. For the values of Η in Figs. 29b and
30b, this gave—subject to Eq. (5. 3)-an estimate (L/
δ0)

2~10 corresponding to B. The field dependence of /
(Fig. 29b) was close to the theoretical relationship
IccH*. The absence of a temperature dependence in the
range TSi °K under conditions such that τρ depended
strongly on temperature clearly indicated that s was
small (s «0), so that /<* Γατ(ω). The behavior of / at
higher temperatures corresponded to a fall of τ by a
factor of about 5 at 10 °K.

It is known that τ~ 10"8 sec for Bi. t 5 > 7 l ] In the case

1 6 )In thin samples, the conversion of acoustic waves back into
electromagnetic waves may become important and, therefore,
it may be necessary to provide a self-consistent analysis.11341
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7 H'YOc 10' «ΓΤΤϊΓο.
b

FIG. 29. Dependences of the amplitude of the acoustic r e s o -

nance on the magnetic field at T= 4.2°K a) Bi, ω/2ττ = 0.51

MHz c l 3 8 ] ; b) Sb, ω/2ττ = 2.8 MHz c l 3 2 ] ; the continuous lines cor-

respond to IazH2 and /oc/f3.

of the parameters in Figs. 29a and 30a, this gives
(L/60)

2~0.1 (case A) and Ζ,δ/δ[|~1. The dependence
I(T) in the range 2-4 °K (Fig. 30a) is in qualitative
agreement with the dependence Ice τ | τ 2 , which predicts
a fall of / by a factor of 6. The assumption that s is
large helps to explain this dependence.17' An interesting
dependence I(H) is plotted in Fig. 29a. The maximum
of / at Η = 300 Oe corresponds to k,~kz; a further in-
crease in the depth of the skin layer reduces / in ac-
cordance with the theory.C 1 3 2 '1 3 3 1

Oscillations in the range HS2 kOe are a quantum
phenomenon, which is analyzed theoretically in1·1 3 8·1 4 1 3.

The good qualitative agreement between the theory
and experiment leaves no doubt about the validity of the
adopted interpretation. Therefore, there is every rea-
son to consider the experiments reported inC l 3 7 ] and later
as the detection of anisotropic size effects by the excita-
tion of acoustic waves. A direct experimental investi-
gation of the behavior of the impedance, which would
make it possible to check formulas such as (5.5), has
not yet been carried out (to our knowledge). The depen-
dence of the impedance Ζ on the frequency and magnetic
field should differ considerably from the standard de-
pendence in the case of the normal skin effect. There-
fore, it would be interesting to measure the impedance
under controlled surface conditions.

CONCLUSIONS

We shall conclude by summarizing the results obtained
and try to define the range of phenomena which we re-
gard as anisotropic size effects. This is not so simple
because they are closely linked to a number of related
phenomena.

The anisotropy of electronic properties results in
transverse electron currents and, consequently, pro-
duces circulation (eddy) currents. They are well known
in the theory of the thermoelectric power, α 4 2 · 1 4 3 ] κϊ-
koin-Noskov photomagnetic emf,C144] transverse Dember

photo-emf, t l 4 5 i l 4 e I etc. We shall include in the category
of anisotropic effects also the phenomena (discussed
above) in which the transverse currents create nonequi-
librium carrier densities in macroscopic regions.
More exactly, these are the phenomena in which the ap-
pearance of density gradients has been demonstrated
experimentally or theoretically.

The theory developed for specific phenomena has a
number of limitations. All the dimensions are assumed
to be macroscopically large, so that there are no quan-
tum size effects. t l 4 7 l l 4 e ] Electric fields (both weak and
"strong") are assumed to be nonheating; this is an im-
portant limitation in those cases when anisotropic size
effects disappear with rising temperature.

On the other hand, the theory has a fairly wide range
of validity and covers anisotropic size effects associated
with several "large" relaxation lengths, which are the
recombination, intervalley, and cooling lengths, and it
can easily be extended to other cases. Certain conse-
quences follow from the theory and these can be com-
pared directly with experiment: the size dependence of
the electrical conductivity (including its dependence on
the orientation even in cubic crystals and the specific
dependence on the state of the surface), appearance of
a transverse electric field, nonlinearity of the electrical
conductivity in a relatively weak field, giant redistribu-
tion of carriers in ' strong" fields (accompanied by the
formation of accumulation and depletion layers, do-
mains, etc), changes ( by an order of magnitude) in the
surface impedance of semimetals, strong electromag-
netic excitation of sound, and so on.

Some experiments were carried out before the de-
velopment of the theory but the majority after and some
of the consequences have not yet been subjected to an
experimental test. On the whole, the agreement be-
tween theory and experiment is satisfactory. However,
the interpretation of some of the experiments on the
basis of the theory of anisotropic size effects is only
qualitative or even tentative; difficulties are encountered
in the explanations of some of the experiments. The
main features of the above analysis can be stated as
follows.

In semiconductors, the recombination length Lr reaches
values Lr ~ 1 mm. Therefore, extensive experimental
studies of anisotropic size effects over distances Lr are
absolutely reliable and their comparison with the theory
gives fully convincing results (Sec. 3). Here, there are

4 VK S 10 Τ,'Κ

l7)The conclusion s B l »Sg b was reached independently in

1 8 1.8 3 1

from an analysis of the size effect.

FIG. 30. Temperature dependences of the amplitude of the
acoustic resonance: a) Bi, ω/2ττ = 0.51 MHz, # = 140 O e t l 3 a ;
b) Sb, ω/2π = 2. 8 MHz, Η = 1200 Oe. a 3 2 :
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no unsolved physical problems and such effects have
now entered the stage of technical applications.

The situation is much more complex in the case of
anisotropic size effects over distances equal to the in-
tervalley length Lv or the cooling length Lt. At temper-
atures Γ«20-77 °K, it is estimated that Lv and Lr are
of the order of 1-30 μ. Studies of plates containing ac-
cumulation layers of this thickness are difficult for a
number of reasons; therefore, the precision of the re-
sults is not yet high. A quantitative analysis of the ex-
periments is difficult because, in some cases, we have
Lv *>L and anisotropic size effects over both the dis-
tances overlap. However, the general conclusion to be
drawn from the experimental results is this: anisotrop-
ic size effects have been found in the electrical conduc-
tivity and magnetoresistance (Sees. 2A and 2E). Un-
fortunately, no observations have yet been reported of
a very interesting pattern of anisotropic size effects
which should occur over distances Lv in "strong" fields
(Sec. 4); experiments of this kind can be carried out
successfully only at low temperatures and in sufficient-
ly pure samples.

In the case of semimetals such as Bi, we have Lv

 aLr;
in pure Bi at 71«4°K, Lv reaches ~1 mm. In spite of
the large value of Lv, there is a considerable scatter of
the results in studies of the size effect of the electrical
conductivity and this is evidently due to purely experi-
mental difficulties in preparing sufficiently perfect ori-
ented samples and establishing standard conditions on
their surfaces. Therefore, experimental studies should
be made of the transverse electric field and electromag-
netic excitation of sound: their interpretation in terms
of anisotropic size effects is practically identical
(Sec. 5).

Note added in proof. Investigations of the anisotropic
redistribution of carriers accompanied by the violation
of the quasineutrality condition were recently re-
ported. "β 0 '1 β 1ι The considerable nonlinear change in
the conductivity in this case appears either because
of changes in the populations of deep centers,cieo' which
may be present in the bulk or on the surface, or due to
a change in the carrier mobility across a sample.t161'
The latter effect was observed experimentally.
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