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1. CHARACTERISTICS OF THE METHOD

A. The fundamental idea

The generalized natural-oscillation method (GNOM)
consists in expanding the diffracted field in a series in
terms of the eigenfunctions of the homogeneous problem,
in which the chosen eigenvalue is not necessarily the
frequency. The formulation of the homogeneous prob-
lem depends on the nature of the diffraction problem,
while the eigenvalue therein (the spectral parameter λ)
is a quantity that can be introduced in varied ways in
different variants of the method. It can enter either in-
to the equation, or into the boundary condition at the
surface of the object or at infinity. For example, for
the scalar problem of diffraction at the surface S,

-/At=/, !t|s = ( l .D

with the radiation condition at infinity, the solution u is
represented in the form

u = u»+ZAnun. (1.2)

Here u° is the field of all the sources / in a vacuum (the
incident field) or the field arising from diffraction by
any other object, while the κ* are the eigenfunctions of
the homogeneous problem for the surface S. The for-
mulation of this homogeneous problem differs in differ-
ent variants of the method, but the un are always real
and orthogonal, while explicit expressions are found
for the An have the resonance factors

Λ-,Α-. (1-3)

where the λπ are the eigenvalues, while λ° is the value
that the spectral parameter has in the diffraction prob-
lem. This can be the dielectric constant of the object
(Chap. 2), the impedance of the wall (Sec. A of Chap. 2),
its transparency (Sec. Β of Chap. 3), or a quantity that
amounts to a reflection coefficient for a convergent
wave (Sec. F of Chap. 3), etc. For resonators of high

Q-factor, one of the terms is much larger than the
others in the series of (1. 2) near a resonance. Then
the field has the form

uxu°+Amum. (1.4)

B. Comparison of the GNOM with the natural-frequency
method

In the theory of resonators, people apply the natural-
frequency method (NFM). This consists in seeking the
solution of the inhomogeneous problem in the form of a
series in the orthogonal system of eigenfunctions of the
auxiliary homogeneous problem in which the eigenvalue
is the frequency. The EFM came into the theory of
resonators from the theory of oscillations of systems
having a finite number of degrees of freedom. The
NFM can be considered to be one of the variants of the
GNOM. The spectral parameter λ in it is the frequency
(more exactly, the square of the wavenumber kz; k dif-
fers from the frequency by the factor 1/e, where c is
the speed of light in a vacuum). Just as in the NFM,
one doesn't first solve the diffraction problem in the
GNOM, but the homogeneous problem, and the eigen-
elements (eigenvalues and eigenfunctions) of the object
are determined. They do not depend on the excitation,
i. e., on the right-hand side of an inhomogeneous prob-
lem like (1.1). If we know the eigenelements, we can
then solve the problem of diffraction of any field by this
object. This article treats the variants of the GNOM in
which the characteristic λ is not the frequency (with the
exception of Sec. Η of Chap. 3). In the studied variants,
there is another difference from the NFM: the isolation
of the term M°. These differences lead to definite ad-
vantages of the presented methods. We shall note those
among them that are realized in solving the concrete
problems given below.

In these variants, the functions un in which the dif-
fraction field is expanded satisfy the radiation condi-
tion at infinity. In the NFM (for all objects but closed
resonators), the eigenfunctions increase (exponentially)
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as we go to infinity; this causes a number of theoretical
and calculational difficulties. Moreover, it gives rise
to a continuous spectrum. The spectrum is always dis-
crete in the described variants, i .e., an integral does
not figure in (1.2). The behavior of the eigenfunctions
at infinity permits one to use simple stationary func-
tionals of the Rayleigh type to determine λπ and un

(Sees. Β and F of Chap. 2). Open and closed resonators
are studied by the very same apparatus.

One can simplify the coefficients of the series in (1.2)
by choosing the field w° in a suitable way (Sees. C and
F of Chap. 2). The isolation of u° improves the con-
vergence in (1. 2) (Sec. Β of Chap. 3). The algorithms
for calculating λπ are usually substantially simpler than
for calculating the eigenfrequencies (Sees. C and F of
Chap. 3). In the variants of the GNOM in which λη is
introduced into the boundary condition (Chap. 3), the
dimensionality of the series is less by one than in the
NFM. If all the losses are concentrated at only one
site (only in the dielectric (Sec. D of Chap. 2), only in
the walls (Sec. A of Chap. 3), or only in the radiation
(Sec. F and G of Chap. 3), then we can use a variant of
the GNOM in which the eigenelements λπ and un are
real. Here the complex-valued nature of the solution
of the diffraction problem will enter into the coefficients
An via the quantity λ°, which is complex under these
conditions, rather than via the λπ.

On the other hand, an advantage of the NFM over the
other variants of the GNOM is manifested in those prob-
lems concerning resonators of high Q-factor in which
one must trace the frequency-dependence of the field.
In the NFM, Eq. (1.3) has the form

4 . ~ T = T - . (1-5)

Here kn is the eigenfrequency, k is the frequency in the
diffraction problem, and if we know one complex num-
ber km we can immediately determine the frequency
dependence. In order to do this in the GNOM, we must
find the function λη(£). Yet if we must analyze the de-
pendence of the field on λ°, rather than on the frequency,
then (1.3) gives an immediate answer, while the NFM
requires calculating the function £π(λ°). This is pre-
cisely the formulation that arises in a number of physi-
cal problems (e. g., in studying resonance properties
as depending on the parameters of the material in the
measurement technique).

C. Problems to which the GNOM can be expediently
applied

Generally, the described variants of the method are
formally applicable to any diffraction problems what-
ever in acoustics and in electrodynamics, and to elastic-
scattering problems in nonrelativistic quantum me-
chanics, etc. Just like the NFM, they are primarily
applicable to resonators of high Q-factor, since the
solution for them has the form of (1.4). They permit
one to study both open and closed resonators; they are
especially convenient for trap-type resonators. One
can apply them to two-dimensional resonators to find

the complex propagation constants of leaky waves in
open waveguides.

We give below the solutions of some problems that
illustrate the application of some variants of the gen-
eralized method, and we describe these variants. The
aim of this article is to show by examples the poten-
tialities of the natural oscillation method that arise
when we refrain from introducing the natural frequen-
cies, and to show the effectiveness of this approach.
The article does not present variants of the GNOM
whose effectiveness has not yet been illustrated with
non-trivial examples (with the exception of Sec. A of
Chap. 3), even if the formal apparatus of these methods
has been worked out in detail (e. g., the methods of
Chap. 2 for vector problems, objects having compli-
cated boundary conditions, the variational apparatus
for the methods of Chap. 3, etc.). The GNOM would
seem to be applicable in elasticity theory, in the theory
of chains, and in the theory of oscillations of systems
having a finite number of degrees of freedom.

At the end of the article in the review of the litera-
ture, we shall cite some studies close to the theme of
this article, and compare them with the known results.
We shall cite in the same place some studies that con-
tain a partial mathematical justification of the formal
procedures that are to be carried out below. We shall
point out at the beginning of each section the studies in
which the pertinent results have been presented in
greater detail.

2. INTRODUCING THE SPECTRAL PARAMETER INTO

THE EQUATION

A. A dielectric object made of a homogeneous material1 * ]

Let us formulate the problem of the diffraction of a
field created by the sources /by an object occupying
the volume V* with the limited surface S:

Δ» + k'e'u = / in V*. Au + k'u = / in V, (2. 1)

(2.2a)

(2. 2b)

u* — ir | s =

du.* dur

Moreover, u must satisfy the radiation condition. In
all the homogeneous and inhomogeneous problems stud-
ied below (apart from that of a closed resonator (Sec. D
of Chap. 2) and the homogeneous auxiliary problem
(Sec. Η of Chap. 3)), the fields must satisfy this condi-
tion, and we shall henceforth assume it.

In (2.1) and (2.2), the signs " + " and " - " refer to the
regions inside and outside the object. We shall arbi-
trarily call (2.1) and (2.2) the problem of diffraction by
a dielectric object, though, strictly speaking, (2.1) and
(2. 2) describe such a diffraction only for a two-dimen-
sional problem and for ^-polarization. Even for a two-
dimensional problem with .ff-polarization, the condition
(2.2b) must be replaced by the condition

1 du*
e,o dN

du- j
dN

= 0. (2.3)
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Yet in the three-dimensional case, the electromagnetic
diffraction problem generally does not reduce to a
scalar problem, and it is more convenient to operate
directly with the Maxwell equations than with the wave
equations. However, we can present the fundamental
features of this variant of the GNOM with the simple
problem of (2.1) and (2. 2).

We shall introduce the spectral parameter λ into the
homogeneous problem in place of ε °. The value of λ in
the diffraction problem, i .e. , λ°, is e °. We shall de-
note the eigenvalue of λ „ by ε B. The homogeneous prob-
lem is

Δ» η + k2Enun - Ο in V* = 0 in ν,

<j.v =o. (2.4)

It has an independent physical meaning: it describes
the free, undamped oscillations of an object (of the
same form as V*) having the dielectric constant επ that
occur at the given frequency k. In contrast to the NFM,
the spectral parameter is lacking in the equation within
V", and un satisfies the same equation in V as does the
diffracted field.

Just as in all the methods of Chap. 2, η is a triple

index, and triple sum figures in (1.2).

We can easily derive the physically evident property
of the eigenvalues

ImE,>0 (2.5)

(for the chosen time-dependence exp(tW)) that undamped
oscillations in the absence of sources are possible only
for an object that releases energy when placed in an
electric field. The eigenfunctions un are real-orthog-
onal, i. e.,

j unumdV = 0, n=hm. (2.6)

Let us take as u° the field that arises from the same
sources / i n the absence of the object, i. e., in a vac-
uum. The series (1. 2) satisfies all the boundary con-
ditions and the equation in V term by term. Precisely
where this does not happen (in V*), the eigenfunctions
are orthogonal, and we get the following for An:

1-ε» ν

\u"undV

e»-B» [u%dV
(2. 7a)

We can eliminate the function u° from (2. 7a), and ex-
press An directly in terms of/:

1 — 6° 1 Vt+V-
"nf dv

J u\dV
(2.7b)

For the total field in V", we must isolate u° in (1. 2)
(one need not do this only if all the sources lie in V*),

and the function w° is generally not expandable in terms
of the un in V". Such an expansion exists in V*, and
we can write instead of (1. 2):

Μ»»», (2. 7c)

The formulas (2. 7) give the solution of the problem of
(2.1) and (2.2).

In Sees. C and D of this Chapter, we shall treat prob-
lems in which a dielectric object lies in an open (Sec. C)
or closed (Sec. D) resonator, rather than in a vacuum.
All of the above-derived formulas continue to hold here,
except only that u° and un must satisfy the same extra
conditions at the surface of the resonator as does the
total field. In a closed resonator without losses in the
walls, we shall have Im ε „ = 0 instead of (2. 5).

The effectiveness of the entire apparatus is deter-
mined primarily by how one actually finds the επ from
(2. 4). We shall describe in the next section the varia-
tional method of calculating επ, while in Sees. C and D
we shall apply it to two concrete problems.

B. The variational method121

We shall first formulate the variational method of de-
termining the eigenvalue εη of the problem (2.4) by as-
suming that a dielectric object is placed in a closed
resonator so that the field un vanishes on some surface
So that surrounds S. In the NFM for a closed resonator
having a dielectric insert, people widely use stationary
functionals of the Rayleigh type. (That is, in contrast
to functionals of the Schwinger type, they do not contain
double integrals of the kernels of the corresponding in-
tegral equations.) For (2.4), we shall use the functional

L(u) u*dV. (2.8)

It is stationary over the solutions of (2.4). That is,
when one substitutes for un therein the similar function
ηη + μφ, the following equation holds:

L (un + μφ) = L («,) -:- Ο (μ2). (2. 9)

The functional of (2. 8), which is usually used to deter-
mine kn, is also directly applicable for determining
επ from (2. 4). The situation proved to be so simple be-
cause stationarity, i .e., the property (2.9), requires
only that φ should be continuous, and the value of e
does not enter into the condition for the admissible
functions. If the conditions for the admissible func-
tions themselves were to contain ε , then the corre-
sponding functional could not be applied for finding e „.
For example, the functional (2. 8) is stationary over the
solutions of the homogeneous problem having the bound-
ary condition (2. 3) instead of (2. 2b) only if the admis-
sible functions themselves satisfy (2. 3). For the prob-
lem having the condition (2. 3), we would have to use
the following functional to determine επ:
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FIG. 1. Plot of ε ' Ί and >n" vs kp
for a resonator made of a semitrans-
parent circular envelope containing
a dielectric ellipse.

0,02 DM IDS 0.08 hj>

) = | \ (vu)W+ -w- j u'dv, (2.10)

The condition (2. 3) is natural for this functional, i . e . ,
it need not be imposed on the admissible functions.
There is a regular way of constructing stationary func-
tionals for determining λη also for the homogeneous
equations of Chap. 3.

For the GNOM, the extension of the result of (2.9) to
an infinite region is carried out automatically. Since
the eigenfunctions satisfy the radiation conditions at
infinity, the admissible functions must also satisfy it
(and some of them may decline more rapidly). Hence,
in order that the integrals in (2. 8) in V" should con-
verge also for an infinite region, it suffices in calcu-
lating them to assume that Im k = - 0. This procedure
can be rigorously justified.

Of course, L(u) in (2.8) does not have the property of
extremality (L is a complex-valued functional). How-
ever, according to (2.9), we can formally apply the
Ritz method to it. As we know, this method consists
in seeking u in the form of a series over some basis
functions vm L becomes a quadratic form of the co-
efficients of this series, the derivatives of L with re-
spect to them are equated to zero, a homogeneous sys-
tem of linear equations arises, and the vanishing of its
determinant is the sought equation for calculating tn.

C. A resonator consisting of a semitransparent envelope
containing a dielectric object131

Let us find the eigenvalues en of the homogeneous
problem (2. l)-(2. 2) supplemented by the conditions

ui-ui | S l =o, ^ . _ i ^ _ i U n = o | S l (2.11)

on some surface Sy surrounding the surface S of the ob-
ject. The number ρ characterizes the transparency of
the envelope Sj within which the dielectric object has
been placed. If ρ is small (kp« 1), then the system is
an open resonator of high Q-factor. When ρ =0, the
resonator becomes closed, while there is no envelope
when ρ =« .

We might supplement L(u) in (2. 8) with a surface in-
tegral over Si in such a way that the conditions (2.11)
become natural, i. e., one need not impose them on the
basis functions. However, we shall restrict ourselves
to a simple form of the contour St (the environment),
and shall take the basis functions in the form

vnm = Hit'(kr) cosny

Here Jn(vnm) =0, J'n{vM) = 0, α is the radius of Su and
A»m and Bn are found in such a way that (2.11) is satis-
fied for the vnm. The surface S willbeanellipse. Thus,
one is studying a dielectric ellipse in a circular semi-
transparent envelope. This problem cannot be solved
by the method of isolating the variables.

Figure 1 shows the real and imaginary components of
the first eigenvalue e l = ε J + ε f as functions of the trans-
parency of the envelope kp. The semiaxes of the ellipse
are denoted as OQ and b0; for all of the curves, ka = l,
and kbQ = 1/2. The calculations were performed for
four values of the ratio of the long axis of the ellipse to
the envelope: aja = 0. 5; 0.6; 0. 8; and 1.0. Figure 2
shows ε { as a function of the radius of the envelope.

According to (2. 7) (cf. (1.3)), the dependence of the
field on ε ° is mainly determined by the factor l/(e°
- ε x). The graph of the function F(e °) = 18° - ε 11 -1 gives
the resonance curve. Its maximum lies at e°= ε ( ,
while the half-widthisequaltothe sum of two quantities:
the imaginary component of e t ( i .e. , ε"), which de-
scribes the radiation losses, and - Ιπιε °, which de-
scribes the losses in the dielectric. If Ims°=0, then
the increment of ε° with respect to ε { at which the am-
plitude of the field falls by a factor of two is e ('. We
can define the Q-factor Qt. with respect to the dielectric
constant as the ratio of Re t ° at which the resonance
curve reaches its maximum to its half-width. When
Ime°=0,

<?e= — (2.13)

If Ime ° Φ 0, then 1/Qt equals the sum of two reciprocal
Q-factors arising from the two types of losses.

For example, in the treated example with Jfep = 0.05,
ka = l, kao = l (the ellipse touches the envelope), and
60/σ0 = 1/2, Fig. 1 gives: ε ί = 6 . 1 , ε'ί=0.0224, i .e . ,
Qe =280. QE increases approximately as 1/p2 with de-
creasing transparency.

The quantity in (2.13) differs from the Q-factor Qk

with respect to the frequency that is introduced in the
NFM, since Qt describes an experiment in which k
= const., while Qft describes an experiment in which
ε° = const. The quantities Qk and Qe are related by the
equation

k'n da'n (2.14)

Here kn=k'n + ik" is the complex natural frequency, i. e.,
the complex root of the equation επ(£) = ε°.

(r < a),
(2.12)

FIG. 2. Plot of ε4 vs the radius
of the envelope.

IS ZS Z.6 ht
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FIG. 3. Closed resonator of compli-
cated shape containing a dielectric
insert.

ε° = 1. Just as arbitrarily as in Sec. 3, we shall call
(2.17) the problem of diffraction by an object made of
an inhomogeneous dielectric. This is just the form of
equation that we shall need in the next section. The
same arguments that are developed below for (2.17) can
be used to solve the vector electromagnetic problem of
diffraction by an inhomogeneous object (ε = e(r) and
μ = Μ(Γ)) or for the scalar "second-polarization" equa-
tion

D. A closed resonator of complicated shape containing a
dielectric object131

A dielectric object in the form of a 2/x2a rectangle
is placed in the resonator depicted in Fig. 3. The con-
ditions of (2.4) must be satisfied at the boundary of the
dielectric, and the condition Μ =0 at the boundary of the
resonator. The problem consists in finding επ.

Since it is hard to find a basis system of functions
for such a complex figure that satisfies all the boundary
conditions, we shall supplement the functional of (2.8)
with contour integrals in such a way that these condi-
tions become natural, and we need not impose them on
the admissible functions. The functional possessing
this property that we shall use in this problem is the
sum of the functional of (2.8) and the integrals

(2.15)

The basis functions were taken in the form

Jin (b — x) ,
(in V-).

(2.16)

For them, the boundary conditions are violated on the
lines \x\ =a, and the integrals of (2.15) are taken along
these lines.

Figure 4 shows the relationships of εη (« = 1, 2, or 3)
to I. The process of successive trimming of the deter-
minant that arises in the Ritz method can be considered
to be established when 10 functions have been taken in
V*, and 15 functions in V.

All of the ε η in this problem are real, regardless of
whether ε ° is real or complex. The quantities ε „ do
not depend at all on ε °. A complex-valued field that
involves losses in the dielectric arises in the diffrac-
tion problem only when one substitutes a complex ε°
into An (primarily in the factor 1/(ε ° - επ)).

Ε. A dielectric object made of inhomogeneous material11'41

Let us treat the problem of solving the equation

\u (r) u = /, (2.17)

where 8°(r) is a function of the coordinates. We can
consider it to be continuous, and derive the case with
discontinuous functions (i. e., when there is a phase
boundary) by taking a limit. Outside some finite region,

ν (—ν«) +k2u=f. (2.18)

For the problem of (2.1) and (2. 2), the spectral pa-
rameter was introduced in place of the number ε°. In
(2.17), the spectral parameter must be introduced into
the function ε °(r). One can show two ways of introduc-
ing it in which the fundamental features of the apparatus
are preserved, in particular, the orthogonality of the
eigenfunctions. We shall use one of these methods.

Let us treat the homogeneous problem

&u + k2 {a (r) + λ [ε° (r) - α (r)]} u = 0, (2.19)

where a(r) is generally an arbitrary function that dif-
fers from ε °(r), and is equal to unity in the region in
which 8°(r) =1. The eigenvalue in (2.19) is λ; in the
diffraction problem, λ° = 1. We can treat the problem
of (2.19) as being that of the natural oscillations of an
object having the dielectric constant

en(r) = o ( r ) - α (r)]. (2. 20)

that occur at the assigned frequency. If there are
losses (e.g., by radiation), then en must be complex,
and ImXn>0. The eigenfunctions of (2.19) are orthogo-
nal with the weight ε° _ a:

f (ε° — α) unum dV = 0 when η Φ πι. (2.21)

The two last formulas are the fundamental result of this
section. We shall not give the formulas similar to (2.7)
for the coefficients in (1.2). One can easily derive
them by substituting (1.2) into (2.17), while using (2.21).
Of course, these coefficients have the denominator
1 - λπ. We can write a stationary functional for the λπ;
we shall restrict ourselves in the next section to writ-
ing it out in the one-dimensional case.

FIG. 4. Plot of the eigenvalues en (n = 1,
3,4) vs the dimension I.

0.15 05 0J5 l/L
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F. The quantum-mechanical problem of elastic scattering
by a quasistationary level'41

Let us imagine a spherically symmetrical potential
V(r) that forms a barrier. That is, it is small (or
zero) at small r, it reaches a maximum value F m a x at
some finite r=rmtt, and then vanishes or approaches
zero a s r - > » . A flux of particles of energy fe2 less than
Vma falls on this potential barrier. The potential forms
a trap. For almost all k, only a few particles pene-
trate within, while the rest are reflected from the outer
part of the barrier. However, at some energies, the
weak tunneling infiltration causes a considerable effect,
and a resonance arises.

This phenomenon has been studied for a long time in
detail, and methods have been developed for calculating
the scattering matrix Sf from its complex poles in the

. k plane. This apparatus is an application of the NFM.
We shall apply to the formulated problem the variant of
the GNOM that was developed above. It would seem to
permit one very simply to find St for any barriers what-
ever; one could also use the method of Sec. F of Chap.
3. Mathematically, the problem of solving the Schro-
dinger equation for a flux of particles of energy kz in-
cident on the potential V(r) is identical to the problem
of solving the Helmholtz equation for diffraction of a
plane wave by an object having a dielectric constant that
is a function of the coordinates:

e ° ( r ) = l - I (r) (2.22)

In the symmetrical case, this object is a spherical
layer having a dielectric constant that varies with the
radius, being negative in part of the layer, and unity
outside the object. The field of the incident plane wave
is expanded in spherical harmonics, and the problem is
reduced to a set of one-dimensional diffraction prob-
lems. As we know, they can be formulated as follows:
to determine the numbers S, (IStl =1), with 1=0, 1,
2 , . . . , from the equations

with the boundary conditions

e-ik'-( - I ) 1 S,e*

(2.23)

(2.24a)

(2.24b)

The time-dependence in this section has the form
βχρ(-ζ'ωί).

Let us use the apparatus of the preceding section to
solve this inhomogeneous problem. We shall assume
that 1=0, and not write out this index; the generaliza-
tion to ΙΦ0 can be done in an elementary way.

In the studied problem of an externally-excited reso-
nator of high Q -factor, we can conveniently use the
above-noted possibility of introducing «° into (1. 2) in
different ways. Let us define the auxiliary potential
V°(r), which equals V(r) when r > r m S B , and equals VmUL

when r<rmaL. The term w°, which arises when the plane

wave is incident on the barrier V°(r), does not have a
resonance nature. We shall denote the value of the co-
efficient S that corresponds to it as S°; S° varies slowly
with varying k. We shall also relate the function a that
figures in the fundamental formulas of the preceding
section to V°. That is, we shall assume that a = l
- V°/kz. In other words, analogously to (2.19), we
shall introduce the system of eigenfunctions «„ by the
equation

^ - + [k2— χ,,ν (r) — (l — Κ) V (Γ)] «„ = ο (2.25)

having the homogeneous boundary conditions

un(0)=0, (2.26a)

un(r).= exp(ifcr); (2.26b)

Here λπ is the eigenvalue; in the diffraction problem
(i. e., in the inhomogeneous problem of (2.23) and
(2.24)), λ = 1.

The functions un and u° are connected by two relation-
ships. The first is the orthogonality condition (2.21),
while we can easily derive the second from the equa-
tions for un and M° by using the fact that all the condi-
tions at infinity in this method contain the very same
real number k:

rraax

j (V-V°)unumdr=0 when ηφπι, (2.27a)
ο

Tmax , H

 rmax

j (F-F0)unu°dr= -ψ- j (V-V>)\ii,,\2dr. (2.27b)
0 " 0

Now we can easily find the required expression for S.
Upon substituting (1.2) into (2.24b) and into (2.23), we
get

Λ«

max
5 (V-\">)\un\i-dr

Κ A
1 — Λη 'max

Κ \ (Γ-Ι'Ο) u· dr

(2.28a)

(2.28b)

We have used (2.27b) in deriving the second of these
formulas.

The resonance nature of the scattering is manifested
in the fact that some interval of k values contains one
eigenvalue (we shall call it \m) for which 11 - λ£, I
« Ι λ ,̂ I. Near the resonance, the second factor in
(2.28b) is approximately equal to S°. For all the terms
of the series of (2.28a), \An I « 1 when η Φτη; we must
keep in the series only the term Am =[λζ/(1 - \m)] S°,
and

S=s°l-\™. (2.29)

This is the final formula for calculating the scattering
matrix. If we denote S/S° =exp(2i6), then the relation
of δ to k is a resonance curve, while the root k of the
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TABLE

k,a

26kta

1

2

0

•

3

.499

.224

2.

(1

Ν

4

499

2276

2

0

5

.498

.2275

2

0

6

.4961

.2286

Exact
value

2.4952

0.2289

FIG. 6. Resonance curves for the
potential barriers in Fig. 5.

equation δ = π/2 (i. e., λ^ = 1) is a quasistationary level
(real). The width of the resonance 25k (the band of k
values where δ varies strongly) is determined by the
roots of the equation 11 - Xj, I = Ι λ£ I (i. e., δ = ττ/2 ± ττ/4).

The actual determination of Xm(k) from (2. 25) and
(2.26) was performed by the Ritz method, which was
applied to the stationary functional

= f (^.y dr- \ (/£2-
max

f (V-V>)u*dr. (2.30)

This functional is derived from (2.8) by treating ε in it
as a variable, introducing it inside the integral, sub-
sitiuting according to (2. 20), and replacing the func-
tions e(r) and a(r) by 1 -(V/kz) and 1 -(V°/kz). Of
course, the stationary nature of (2.30) over the solu-
tion of the problem of (2.25) and (2.26) can also be
proved directly.

In the calculations whose results are given below, we
have used the basis functions

' < 0), V,, :

Here b is the outer boundary of the potential (V(r) =0
when r>b). The condition that such a boundary should
exist is not necessary for application of the method.

Table 1 gives the results for a rectangular barrier
that occupies the segment from r=a to r = b (b/a =3. 2),
with the height Vma = 20/a2, as functions of the number
Ν of basis functions taken for calculation.^ The last
column gives the exact values of ka and 25ka, which
one can find by a transcendental equation for this shape
of barrier. The table illustrates the convergence of the
method.

Figure 5 shows three shapes of barriers (2, 3, and 4)
that begin at r =a and end at r = b, with b/a = 3/2, and a
rectangular barrier (1) for which b/a =5/4. As we
know, the problem can be solved exactly for the rect-
angular barrier. Figure 6 shows the resonance curves
for these barriers when Vmaa

z = 20. The points mark
the boundaries of the regions (δ = 7τ/4 and δ=3π/4) and
the quasistationary level k(5 = v/2). For the same
shapes of barriers, Fig. 7 shows the relationship of

FIG. 5. Shapes of potential barriers.

the resonance characteristics to the height of the bar-
rier. With increasing height, resonance is reached at
higher energies of the incident particles, but the rela-
tive height of the quasistationary level (k Z/Vmax) de-
clines. Therefore the transparency of the barrier de-
creases at the resonance energy, and the resonance be-
comes narrower.

It takes about two minutes of machine time on a
Minsk-32 computer to calculate one resonance curve.

3. INTRODUCING THE SPECTRAL PARAMETER INTO
THE BOUNDARY CONDITIONS

A. The impedance method151

We shall illustrate it with the example of the vector
problem of diffraction by a closed surface S. The fields
Ε and Η must satisfy the Maxwell equations

rot Ε = - — • j< (3.1a)

Here j < e > and j ( m ) are the given currents, and the follow-
ing conditions must be satisfied at the surface S:

Moreover, the radiation conditions must be fulfilled.
In the relationships of (3. lb), t and τ are two unit vec-
tors tangent to S, w° is a. given number, which is the
impedance of the surface. For an ideal metal, w" =0.
We shall assume that w° = const. The generalization to
a variable impedance is carried out in about the same
way as in the last section for a variable e (r).

Let us define the eigenfunctions en and hn as being the
solutions of the homogeneous equations

rot kn — iken = 0, rot «„ — ikkr, = 0,

that satisfy on S the conditions

<?„, — i«.',,AnT = 0 , e n T -i- iwn hnx = 0

(3.2a)

(3.2b)

0.7S 1.0 US IS
r/t

FIG. 7. Plot of the resonance
characteristics vs the height of
the barriers.
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and the radiation condition. The index η has a dimen-
sionality one less than that of the diffraction problem.
This is inherent in all the methods of Chap. 3. The
number wn is the spectral parameter of the homogeneous
problem (3.2). We can easily derive from the law of
conservation of energy that Jiawn «* 0. The equality
holds for closed resonators. The fields en and h» are
othogonal on S:

= 0, ηφηι. (3.3)

The solutions of the problem (3.1) can be written in the
form

(3.4)

•where E° and H° are the fields of the same sources in a
vacuum. The coefficients An have the structure of (1.3),
and are equal to

J \
s

x-E%hni -iw" (Η )] dS

An = - (3.5)

The solution must also satisfy the appropriate condi-
tions near sharp edges and the radiation condition. On
the complement S, the overall field and its normal de-
rivative must be continuous:

u*-u-|5 = 0, (3.9a)

" '_ = 0. (3.9b)

The eigenfunctions in which we shall expand the dif-
fracted field of the problems (3.6)-(3.9) must satisfy
the homogeneous equation

Au,, + k*un = 0, (3.10)

the radiation condition, and the condition that the en-
ergy should be finite near the edges. At the boundary
of the regions V* and V, we shall subject the eigen-
functions to the coupling conditions, into which the
spectral parameter λ = ρη is introduced: for .E-polariza-
tion,

• 4 - · * = < (3.11)

We emphasize that the solution is represented by a
double, rather than a triple series, that the sums lack
the gradient terms (they are automatically included in
E° and H°), and that the coefficients of the expansions
for Ε and Η are identical. These are the differences of
the apparatus proposed here from the commonly ac-
cepted one.

B. Coupling conditions161

Let us study with the example of scalar problems the
features of the method in the case where the spectral
parameter λ is introduced into the boundary conditions,
which amount to coupling conditions at the boundary be-
tween the regions.

The method is applicable to closed and open diffrac-
tion problems with metallic and dielectric objects, and
also on infinitesimally thin surfaces that can be, in par-
ticular, semitransparent.

Let us study here the construction of the solution of
the two-dimensional problem of diffraction by an un-
closed, infinitesimally thin shield. The complement
S (the slit) constitutes together with the shield S a com-
plete contour that separates all space into inner (V*)
and outer (V) regions. We must find the solution of the
equation

and for H-polarization,

Au + k2u = /, (3.6)

that satisfies on the shield S either the condition

u|s = 0 (E-polarization , u = EZ), (3.7)

or the condition

-|jjU = 0 (//-polarization, u = HZ). (3.8)

(3.12)

Here α is some function of the coordinate on the con-
tour, which is selected in solving the concrete problem.

These conditions can be set both on the contour S
(the shield in the diffraction problem): (3.11) instead
of (3.7) or (3.12) instead of (3.8) (here the conditions
(3.9) must hold on the complement S), and on the com-
plement S, and then the corresponding conditions (3.7)
or (3.8) for the eigenfunctions hold on the shield S.

Orthogonality conditions hold on the part of the con-
tour where the eigenvalue has been introduced (on S or
on 5): for ^-polarization,

or for H-polarization,

, dun dum

'~"W

(3.13)

(3.14)

The physical treatment of the auxiliary homogeneous
problems consists in the idea that they describe un-
damped natural oscillations (occurring at a real fre-
quency k). The coupling conditions (3.11) and (3.12)
describe an active semitransparent film in which en-
ergy is released to compensate the radiation losses
(toipn>0).

The formal solution of the initial diffraction problems
is represented in all cases by the series of (1.2). The
system of eigenfunctions in (1.2) and the isolated term
are determined by the polarization, and they depend on
the part of the contour in which the coupling conditions
that contain the spectral parameter are established.
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The field w° is the solution of the inhomogeneous equa-
tion (3.6). When one introduces the eigenvalue on S,
u° can be made quite simple: the field of the sources
/ in free space. Yet it is expedient to take a more com-
plicated u° in a number of cases. For example, in the
problem of excitation of a resonator consisting of a pair
of mirrors, we should add to the field/ of the sources
in free space the sum of the diffracted fields from each
mirror taken individually. This w° contains all the non-
resonance background, and the resonance phenomenon
will be well described in all space by one term of the
series in un that substantially exceeds the others.

It is convenient to introduce the spectral parameter
on the complement S if it constitutes a small fraction of
the total contour (the shield is almost closed). Τηβηκ0

is the diffraction field/ of the sources at the metallized
total contour. That is, it also includes all of the non-
resonant background, while the resonance is given by
one term of the summation. This approach is used
(Sec. D) in the problem of excitation of resonators hav-
ing a small aperture.

If the spectral parameter is introduced on the shield
S, then the representation (1.2) having arbitrary coef-
ficients An fails to satisfy only the boundary condition
on the shield S ((3. 7) or (3. 8)). When we require that
the entire series should satisfy them, we can use the
corresponding orthogonality conditions to get an ex-
pression for these coefficients: for £-polarization,

9n \cuAdS '

or for .//-polarization

d.V) !•„ dS

"~\ 3Λ- as I Is (3.15)

(l»uJ
(3.16)

Under resonance conditions, one of the eigenvalues be-
comes small in modulus, and the corresponding term of
the series predominates.

Yet if the spectral parameter has been introduced on
the complement S, then (1.2) for arbitrary An fails to
satisfy only one of the conditions (3.9) (depending on the
polarization—(3.9a) or (3.9b)). If we make the entire
series satisfy this condition, we find by using orthog-
onality: for ^-polarization,

(1.2) and (3.15)-(3.18) to finding the field u" and the
eigenelements of the homogeneous problems. In the
next two sections, we shall give and illustrate by con-
crete examples the ways of finding these eigenelements.

The formal application of the method for constructing
the solution of the problem of diffraction by a dielectric
object faces no theoretical difficulties, and it is carried
out by an analogous scheme (Sec. E) with small changes.

C. A resonator consisting of a pair of mirrors

When we introduce the spectral parameter on the
shield S, the homogeneous problem for ^-polarization
can easily be reduced to a simple integral equation:

(3.19)

Here G is the Green's function for free space for the
Helmholtz equation; in the two-dimensional problem
G = (t/4) Ho

iZ) (kR), where Ε is the distance between the
observation and integration points.

Equation (3.19) is an effective algorithm for calculat-
ing open resonators of arbitrary shape. It has been
used to study the resonance properties of resonators
made of a pair of mirrors (Fig. 8), which play an im-
portant role in microwave technology. The well-known
asymptotic (quasioptical) theory of these resonatorsC 7 ]

assumes that the conditions ka» 1, L/a» 1 are satis-
fied. The apparatus presented above permits one to
calculate these resonators rigorously, and in particular,
to determine the limits of applicability of the quasiopti-
cal theory.

Equation (3.19) (in which the function a was taken to
be unity) has been solved numerically for resonators
with plane and confocal mirrors. Figure 9 shows the
frequency-dependence of the modulus of the first eigen-
value, which gives the resonance frequencies and also
permits one to calculate the Q-factor of resonators by
the simple formula

(3.20)

J (du°/dX) un dS
S

P " J (l/a) u* dS '
(3.17)

Here δ (kL) is the half-width of the resonance peak.
For example, for a resonator with plane mirrors having
L/a = 2, kL = 40.89, the Q -factor is Q =680. Table 2
gives the resonance frequencies and the width of the
resonance peaks of the first (fundamental) natural oscil-
lation for a fixed value of the quasioptical parameter
ka2/L with different values of L/a. These results im-
ply that the quasioptical theory gives satisfactory ac-

or for #-polarization,

(3.18)

The eigenvalue increases in modulus at resonance.

The diffraction problem is reduced by the formulas

FIG. 8. A double-mirror reso-
nator.
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FIG. 9. The frequency-dependence of I pj I . Curve 1—plane
.jmirrors with L/a = l; curve 2—confocal mirrors with L/a = 3.

curacy when L/a *4 (1% in determining the resonance
frequency, and of the order of 10% in determining the
width of the resonances).

We note that the same eigenvalues pn also simulta-
neously describe resonators having semitransparent
mirrors (e.g., consisting of a closely-spaced grating).
In this case it suffices to construct the curve 1/1 p°
-Pnl, where p° is the transparency of the mirrors (see
also Sec. F)). For mirrors consisting of a closely-
spaced grating made of metallic strips, p° = (ρ/2π)
xlnsin(7rg/2), where p is the period, while q is the
covering coefficient of the grating.Ce]

D. The two-dimensional problem of diffraction by an
arbitrary cylinder having a longitudinal slit191

Let us study the problem of excitation of an open
resonator consisting of a cylinder of arbitrary cross
section with a longitudinal slit cut in it (Fig. 10). We
shall assume the width 21 of the slit to be small in com-
parison with the wavelength, while the wall is infinitely
thin. In its mathematical formulation, this is^the prob-
lem of (3.6)-(3.9) for the case of a small slit S.

Let us introduce the spectral parameter on the slit
S. Then the corresponding homogeneous problems
prove to be analytically solvable, and thus, according
to the formal apparatus of Sec. B, one can write the
solution of the original problem of excitation of the
resonator in closed form.

The method of solving the homogeneous problems con-
sists in reducing them to equations over the slit S (an
integral equation for .//-polarization and an integro-dif-
ferential equation for Ε-polarization). If we assume
that the function a that enters into the coupling condi-
tions (3.11) and (3.12) is

(3.21)

(s is the coordinate referred to the middle of the slit),
then the eigenvalues and eigenfunctions of these equa-
tions can be written in explicit form. Here it turns out
that we must retain in the total field only one resonance

Plane minors, ka*/£ = I.IJT

L/o

1.58
2.04
2.42
2.74
3.03
3.98

kL

9.58
15.86
22.15
28.43
34.70
59.85

Asymptotic value:

26 (liL)

0.210
0.192
0.186
0.179
0.175
0.164

0.147

Confocal minors, kai/L = 1.2

L/a

2.74
3.22
3.63
4.67
5.24
5.76

kL

16.49
22.77
29.05
49.70
60.47
73.03

26(/tLl

0.122
0.110
0.122
0.115
H.123
0.117

II.11(1

term that corresponds to the first eigenvalue, in addi-
tion to M°. All the remaining terms are not of reso-
nance type, and they are negligibly small.

Since the slit is small, evidently, the resonance fre-
quencies of the open resonator are close to the eigen-
frequencies knm of the corresponding closed resonator.
Hence it suffices in studying the resonance phenomena
to know the structure of the solution near the frequen-
cies knm. In these frequency ranges in the case of H-
polarization, for instance, under external excitation,
one can show that the current at the wall of the reso-
nator far from the slit (if we consider it to be exponen-
tially narrow) has the following structure:

u" (s) « ;i° (s) J-

u* (s) χ —

2Z.ni (

[1 (k-kn

2Ln° (0) G* (0, s)

-IB
(3.22)

— *„„,) 41-Η

Here 2L is the length of the overall contour of the cross
section of (S+S). G* and G" are the Green's functions
for the inner (V*) and outer (V) regions of the reso-
nator under the condition 8G*/eJVIs*3=0:

(3.23)

is a parameter that characterizes the coupling across
the slit (the equivalent transparency),

B=2L Im Γ,-(Ο,Ο), (3.24)

(3.25)

the vnm are the eigenfunctions that correspond to the
natural frequencies knm of the closed resonator under
the condition Bvnm/dN = 0.

For the sake of simplicity, we have treated only res-
onators of shapes symmetrical about the slit, and solu-
tions that are even with respect to the coordinate s.

According to the obtained results, the field within the
resonator, and also the term complementary to u° out-
side it are almost always small (they are proportional

FIG. 10. Cross section of a cylinder
having a longitudinal slit.
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to 1/1η(πΖ/2Ζ,)). Resonance is manifested in the mutual
compensation at certain frequencies of the first two
(large) terms in the denominators of (3.22). Here the
scattered field outside the resonator undergoes a finite
perturbation (the term complementary to «° is of the
order of unity), while the field inside becomes large
and proportional to ln(7r//2L). These formulas also
imply that the field inside is no longer large (of the or-
der of unity) at the eigenfrequencies knm of the closed
resonator, while it equals u° outside, since the second
term in (3.22) vanishes here.

One can derive from the resonance condition (vanish-
ing of the real component of the denominator of (3. 22))
a simple formula for the shift in the resonance fre-
quencies arising from the cutting of the slit:

A* n m «_Z. (3.26)

The half-width of the resonance curve is much
smaller, being of the order of £ ( p 0 ) 2 . In contrast to
&knm, the half-width depends on the sort of objects that
lie near the resonator.

In the case of £-polarization, the resonance denomi-
nator in the expression for the total field has the same
form as in (3.22), and the shift of the resonance fre-
quencies is given by the same formula (3.26), except
that the quantities A, p°, and Β are determined in this
case by the formulas

(3.27 a)

(3.27b)

(3.27c)

Here knm and vnm are the natural frequencies and the
corresponding eigenfunctions of the closed resonator
under the condition that vnm\ S t s

 = Oj G is t n e Green's
function for the exterior of the resonator under the
same boundary condition. Actually one calculates Β
(and also A for complicated cross sections) by the
method of Sec. H, rather than by (3.24), (3.25), and
(3.27).

According to these formulas, the solutions for the
two polarizations have analogous resonance properties,
except that the characteristic small parameter for E-
polarization is (l/L)2 rather than l/ln(vl/2L).

The corresponding analysis of internal excitation for
the two polarizations shows that the field is large at
resonance, both within the resonator (of the order of
l/(p0)2) and outside it (of the order of l/p°). Far from
the resonance frequencies, the total field in the outer
region and the term complementary to u° on the inside
are equally small (of the order of p°).

The presented apparatus can be extended in a trivial
way for calculating closed resonators that are coupled
through a small slit, with the obvious changes in the
formulations of the problems (the radiation condition
is omitted). Table 3 gives for if-polarization the shifts

.4

B--

1

' •

l l r l l

Tin

SL

\ -·*

v+

m 1"'

,,-G-

mdY

a.\ I- '

' (II. Hi

Afcnm of the resonance frequencies for several concrete
forms of coupled resonators.

E. A resonator of arbitrary shape made of material
h a v e i n g e » 1 [ 6 · 1 0 1

In this section we shall briefly describe the fundamen-
tal physical phenomena that arise in diffraction by an
open resonator in the form of an object having e » 1.
This is also a "trap, " and application of the apparatus
of Sec. Β to this problem also permits one to study the
qualitative side of the resonance phenomenon. We shall
give only the results of this study, without writing out
the formulas, neither for the diffraction problem itself
(a scalar wave equation that is homogeneous within the
object, but inhomogeneous outside; in the case of E-
polarization, e. g., continuity of the field and its normal
derivative at the boundary S of the object, and the radia-
tion condition), nor for the eigenfunctions.

As before, the field u° is the result of diffraction of
the same sources by a metallic resonator of the same
shape (with the boundary condition u I s = 0). The total
field is written in the form of the series of (1.2); the
coefficients An are proportional to the eigenvalues pn.
These quantities are small at all frequencies (of the
order of 1/Ve) except for the neighborhoods of the res-
onance frequencies. These latter frequencies are close
to the eigenfrequencies knm of the internal problem (a
shielded volume filled with a dielectric) with the bound-
ary condition dvnm/BNs=0 (which differs from the con-
dition for u°\ s ) . The shift of the center of the resonance
curve and its width are of the same order of magnitude
here (~1/ε), and both of these characteristics depend
on the type of bodies that lie near the resonator. Even
at the maximum of the resonance curve, the field inside
does not become large, but remains finite (yet the en-
ergy stored within the object, which is proportional to
e, is large). The actual calculation of all the param-
eters that determine pn(k) requires (just as in the prob-
lem of Sec. D) solving the boundary problem in V" (the

TABLE 3.

ν i )

Zn-

- η f

ν y
u
Za*

6

4

h

π

Ir

η

b

ΔΑ

— 1

2(i'2A-o;,1 In (6+δ~·4)

1

,-„,„,,.-.-,

—1

—1
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•
rameter A=sn):

FIG. 11. Cross section of a cylinder having
a semitransparent wall.

definition of un in V" in terms of u~ I s = vnm I s ) . Hence,
here also one can obtain the quantitative results more
easily from integral equations analogous to those to be
given in the next section.

F. The spectral parameter in the conditions at
infinity 1 1 1 1 2 1

The method presented in this section for solving dif-
fraction problems is essentially a variant of the bound-
ary method. Its advantage over the already studied
variants of the GNOM is manifested in studying open
problems where losses occur only by radiation. It con-
sists in the idea that the homogeneous problem of this
method is real-valued, and it reduces to a simple inte-
gral equation having real eigenfunctions and eigenvalues.
As we have noted in Chap. 1, this advantage arises from
the circumstance that here the spectral parameter is
introduced precisely in that region of space where the
losses occur, i. e., at infinity. The energy source in
the auxiliary homogeneous problem is a natural wave
that converges from infinity. The solution of the homo-
geneous problem also contains the eigenwave scattered
by the object being studied. The angular dependences
of the converging and diverging waves, which are deter-
mined by the shape and properties of the object, coin-
cide apart from taking the complex conjugate. The
spectral parameter is the amplitude of the scattered
natural wave.

This method is applicable for solving problems of
diffraction by objects and surfaces having the most
varied properties. Here we shall present it with the
example of a two-dimensional scalar problem of dif-
fraction by some semitransparent surface S (Fig. 11)
for the case of £-polarization. In particular, the sur-
face S can be open.

Assume that we need to find the solution of the equa-
tion

Δι* + k'u = /, (3.28)

that satisfies the radiation conditions and the boundary
conditions onS:

u+ — u- = 0,

0 / au* au- \ _
r I "aw aTT /

(3.29a)
(3.29b)

The parameter p° characterizes the transparency of the
surface S (see the end of Sec. C). For a metallic sur-
face, p° =0, and Μ I s =0.

In order to solve the formulated problem, we shall
introduce the eigenfunctions wn of the auxiliary homo-
geneous problem that satisfy Eq. (3.10), the boundary
conditions (3.29) on S, and the following condition at
infinity (in which we have introduced the spectral pa-

with the requirement on Φη(0) that

(3.30)

^ " ™ - (3.31)

In the absence of losses at the surface S, lsnl =1. The
set of numbers sn constitutes the scattering matrix.

This homogeneous problem is reduced in the standard
way to a real integral equation over the boundary S:

4p°u,, = f unlN0{kR)-KnJ0(kR)]dS, (3.32)

Here R is the distance between the integration and ob-
servation points; the real spectral parameter κ π of this
equation is related simply to the spectral parameter sn:

«,= *fe. (3.33)

where u% is defined by the formula

If the observation point lies outside S, then (3.32) de-
fines un throughout space from its values on S.

The formal solution of the original diffraction prob-
lem is represented in the form

(3.34)

(3.35)

(We note that the expansion is not carried out in terms
of un in this variant of the GNOM.) According to this
definition, the functions uf, satisfy Eq. (3.10), the radi-
ation condition, and the boundary condition (3.29a)
(owing to the property of continuity of the potential of a
simple layer). Upon comparing (3.32) and (3.35), we
get a relationship that holds at any point in space:

— p"un = Re u'n— «„ Im u'n. (3. 36)

In particular, this implies the biorthogonality condition

(ηφηι). (3.37)

The field u° that is isolated in (3.14) can be selected
in various ways: the coefficients An depend on this
choice. Here we shall study two methods. In one of
them, u° is a very simple field (that of the same sources
/ in a vacuum). In the other, which is effective in anal-
lyzing resonators of high Q-iactor having a closed bound-
ary, M° is the diffraction field for a completely metal-
lized resonator. In both cases, (3.34) satisfies term-
wise all the conditions of the original diffraction prob-
lem except (3.29b). With the use of the orthogonality
of (3.27), the imposition of this condition gives an ex-
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FIG. 12. Frequency dependence
of the field at the center of a rect-
angular resonator having a semi-
transparent wall. Resonance in
the 1st natural oscillation.

ul (k) as — !;„„,+ (k— knm) ^ (knm) in V\

u'n (k) as (k-knm) - ^ - (kum) in V-.
(3.41)

In the studied problem one can conveniently choose as
M° the diffraction field for a metallized resonator.

Upon substituting (3.39) into (3.38b), we get after
simple transformations

! , ' < * - * „ „
J (Ou'ldN) (donm[dN) dS

[1 (k-knm)A\ + (1 ι
(3.42)

pression for the coefficients An. If u° is the field of the
sources/ in a vacuum, then

1 s
J u°undS

\ u n

(3. 38a)

while if u° is the diffraction field for a metallized res-
onator, then

Po
S (da!>;eN) un dS

(3. 38b)

Thus, the original diffraction problem is reduced to
solving the integral equation (3.32) and calculating the
field M°.

The presented method is applied in the next section
for analyzing the resonance properties of a resonator
having a closed semitransparent boundary.

G. The two-dimensional problem of diffraction by a
semitransparent cylinder1 1 0*1 2 1

Let the transparency of the wall of the resonator be
small (kp°«1), and the excitation be external. For
such an open (trap-type) resonator, just as for the cyl-
inder with a small slit that was treated in Sec. D, the
resonance frequencies are close to the natural frequen-
cies knm of the corresponding closed resonator, and we
must find the structure of the eigenvalues κ „ and of the
coefficients An near these frequencies.

We can show that in these frequency ranges,

xn(fc)«-t (3.39)

The quantity A that figures here is expressed in terms
of knm and the corresponding eigenfunctions vnm of the
closed resonator under the condition vnm I s = 0;

A = 2k,, (3.40)

The quantity Β also does not depend on the frequency
nor on the transparency. It characterizes the Q -factor
of the resonator, and like (3.27), it can be expressed
in terms of the Green's function of the region outside
the resonator. The following formulas hold in the same
frequency ranges:

This gives rise to a formula of the same form as in
Sec. D for the shift of the resonance frequency k* with
respect to knm: Aknm = - p°/A.

According to (3.39), the eigenvalue κ „ vanishes at
this frequency:

= 0. (3.43)

The derived formulas imply that the resonance prop-
erties of the studied resonator are analogous to those of
a resonator with a small slit (Sec. D). The field in V*
and all the terms complementary to M° in V far from
resonances are small (of the order of p°). At resonance,
the total field in V' undergoes a finite perturbation (of
the order of unity), while the field inside becomes large,
and proportional to l/p°. Figure 12 shows the field at
the center of a rectangular resonator having semitrans-
parent walls (a/6 = 2) when excited by a plane wave in-
cident on the broad wall. Figure 13 illustrates the re-
lationship of this field at the resonance frequency k* to
the transparency of the walls. The calculation was per-
formed by using the integral equation (3.32) and the
formulas (3.39) and (3.42).

H. Calculation of the velocity and attenuation of leaky
£-waves in waveguides of arbitrary cross section having
semitransparent walls or a slit

As we know, only the so-called leaky waves can prop-
agate along open waveguides of the studied type. One
can expand the total field in the excitation problem in a
series in terms of them. These waves have complex
propagation constants. The coupling between the inner
and outer regions (the slit or the transparency of the
wall) causes attenuation of the wave and adifference be-
tween its phase velocity and the velocity in the corre-
sponding closed waveguide.

The propagation constants hnm=h'nm+ ih"m are ex-
pressed in terms of the transverse wavenumber, or the
complex natural frequency k m of the corresponding

FIG. 13. Relationship of the field at
resonance to the transparency of the
walls.
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two-dimensional resonator that amounts to the cross
section:

fcm = *>-**„. (3.44)

Here k is the given real frequency of the generator.

Thus the problem is reduced to finding the eigenval-
ues of the homogeneous problem:

(3.45)

At the radial infinity, unm must constitute an outgoing
and exponentially increasing wave. S is the contour of
the cross section of the waveguide. For a metallic
waveguide with a slit, p°=0, and S is an open contour.

Let us compare the problem (3.45) with the homo-
geneous problems (3.10), (3.30), and (3.31). If we
generalize the latter to the region of complex frequen-
cies (of course, here now \sn\ Φΐ, and κ η is complex),
then the condition (3.30) transforms at the frequencies
at which sn =°° into the condition at infinity of the prob-
lem of (3.45), while the condition (3.31) drops out ow-
ing to absence of the incoming wave. Since the equa-
tion and the boundary conditions on S are the same in
these problems, both formulations are fully identical
at these frequencies, and we get the usual result that
the complex natural frequency is a pole of the function
sn(k). That is, sn(fenm) =°°, or equivalently,

x.(« B m )=-i. (3.46)

If we assume that κ „ is an analytic function of k, and
expand it in a Taylor's series in the neighborhood of the
resonance frequency k*, we have the following with ac-
count taken of (3.43):

κ,, (A.·) « (fe_fc»)-^L. (/c*). (3.47)

For resonators of high Q-factor (Imfenm bing small),
(3.46) and (3.47) give a simple formula for knm:

i

dxn/dk (*·;
(3.48)

Thus the complex natural frequency is expressed solely
in terms of the real quantities k* and dx.Jdk(k*), which
can be determined by solving the real integral equation

FIG. 14. Characteristic frequency
dependence of the eigenvalue χπ in
the vicinity of the spectrum of the
closed problem.

0.015 -

O.D50 -

0.025 -

FIG. 15. Characteristics of a
semitransparent waveguide of
rectangular cross section.

0.U50 0.100 l4p"/a

(3.32). The formula (3.48) is general in nature, and it
proves to hold for any resonators or waveguides of high
Q -factor having slightly leaky waves, including even
those that are not nearly closed.

For resonators and waveguides having semitranspar-
ent walls (or with a small slit), the calculation of the
quantities that figure in (3.48) is substantially simpli-
fied if one uses the structure of *„(£) (3.39) (or the
analogous structure for a resonator with a slit), which
is valid in a wider frequency range.1' Then Eq. (3.48)
is transformed into

P" • .· (P°)2 (3.49)

The quantities p°, A, and Β differ for waveguides having
a longitudinal slit (see Sec. D) and those having semi-
transparent walls (see Sec. G). We obtain, respec-
tively, for the attenuation and the phase velocity of the
leaky waves far from the critical frequencies of the
waveguide:

(3.50)

where hnm=Jkz -k\m is the propagation constant for the
closed waveguide. For a waveguide with a slit, the
equivalent transparency is defined by Eq. (3.27a).

The unknown quantities A, B, and knm are found by
using (3.39) (or its equivalent for a waveguide with a
slit) from the *n(k) curve that is obtained by numerical
solution of the corresponding integral equation. This
curve has the standard form in the frequency range of
interest to us. It is depicted in Fig. 14 for a waveguide
having a closed semitransparent boundary.

Figures 15-19 show quantities proportional to the at-
tenuation (solid curves), and to the correction to the
phase velocity (dotted curves) of the first leaky £-wave
in waveguides of varying cross sections having semi-
transparent walls and having slits, as calculated by the
above-described method. According to what we have

1)If we assume that κη= —i in (3.32), we get an equation for the
complex natural frequency km that figures in the argument of
the kernel of the integral equation. Thus, using the de-
scribed method permits one to solve this equation, while
staying in the region of real ft, and it gives a groundwork for
Eq. (3.48), and as is especially important for the sake of
calculation, for Eq. (3.49).
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FIG. 16. Characteristics of a semi-
transparent waveguide of elliptical
cross section.
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said, this method does not require a knowledge of the
Green's function of the outer region for a metallized
waveguide. Therefore the sought quantities can be
found without the usual assumption that the slit is filled
with an infinite flange.

One of the first studies in which the field is repre-
sented in the form of a discrete series without bringing
in a continuous spectrum isC l 6 ] . Here the solution of
the Schrodinger equation is expanded in terms of the
eigenf unctions of the self-adjoint problem (Sturm func-
tions), which corresponds to a negative total energy.
These functions decline at infinity. In our notation,
this implies that kz <0 in (2.25) and (2. 26b). The eigen-
value is the coefficient of the potential energy (coupling
constant). The later literature on this method is given
inC173. It was assumed that k>0 inc i 8 ] , and as in the
GNOM, the eigenfunctions obey the same condition for
outgoing waves at infinity as the scattered field does.

We have formulated all the problems above in differ-
ential formulation. One can convert them to integral
equations by introducing the Green's functions. The
coupling constant is the eigenvalue of the Lippmann—
Schwinger equation, while the Sturm functions are the
eigenfunctions of this equation. This equation for com-
plex k not lying on the semiaxis k>0 and the Neumann
series for it have been studied in detail in c i 9 ] . The
functions used above in the expansions are the eigen-
functions of the other equation (the Lippmann-Schwinger
equation in the so-called distorted-wave method1·203).
Here the kernel is not the Green's function for a vacuum
(as in the ordinary Lippmann-Schwinger equation), but
the Green's function of the auxiliary dielectric object or
the auxiliary potential V°(r). Moreover, in contrast to
the cited studies, one does not expand the total scat-
tered field in a series in the above-described method,
but the difference between it and the field that arises
upon scattering by the same potential V°. This expan-
sion holds throughout space, while the resonance scat-
tering, just like the resonance in closed resonators, is
described by a single term.

-Ala

FIG. 17. Characteristics of a
rectangular waveguide having
longitudinal slits. The slits are
in the centers of the walls.

FIG. 18. Characteristics of a rect-
angular waveguide having slits at
the corners.

-0.1/05

The NFM is presented in many textboods (see, e.g.,
e. g., C 2 1 ] ) . The ordinary quantum-mechanical theory of
scattering with a continuous energy spectrum, and with
eigenfunctions that increase at infinity for energy val-
ues that correspond to the poles of the scattering ma-
trix, is an example of its application for open systems.
It is applied inC22] to open electrodynamic systems.
Variational methods in the theory of closed resonators
have been treated inC233.

V. A. Steklov and other authors (see, e. g.,C24:l) have
studied in detail the scalar problem having the spectral
parameter in the form of a factor in the third-type
boundary condition for the inner region. An inhomo-
geneous integral equation of the first type with the same
simple kernel as in (3.19) (with a = l) is often used in
diffraction problems. An asymptotic boundary condition
analogous to (3.30) was introduced inC22], and then used
inC25] and independently in1-263. An asymptotic theory of
open resonators that lacks the restriction L/a » 1 has
been presented inC 2 7 ' 2 e l . A theory of resonators and
waveguides having narrow slits (but necessarily having
a flange) has been developed, e.g., inC29J. Other ex-
pansions for the field at the surface of metallic objects
have been proposed and studied in : 3 0 ] .

The convergence of infinite series of the type of (1.2)
and the validity of the formal procedures performed on
them have been studied in: 3 1 ] . The functions un and the
numbers λπ are the eigenelements of the non-self-
adjoint operators for the infinite-region problem. The
spectral properties of these operators are more com-
plicated than for the self-adjoint operators that arise
in closed-resonator problems (in particular, in the
NFM). Yet, in many respects, the operators of diffrac-
tion theory are close to self-adjoint. By using the

FIG. 19. Characteristics of a
circular waveguide having
longitudinal slits.

0.2
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theorems from"2-1, it has been possible for all the fun-
damental problems to prove the completeness of their
system of eigenfunctions and the summability of the
corresponding series2', and to find the asymptotics of
the eigenvalues, etc. However, there is as yet no full
mathematical justification for the correctness of all the
procedures performed above for the most general dif-
fraction problems. Yet the problem of the convergence
of the direct variational methods (e. g., the Ritz meth-
od) as applied to complex-valued functionals of the type
of (2.8) that are generated by these operators has ap-
parently not been studied theoretically.

2)More exactly, the characteristic and adjoint series. Exam-
ples are constructed in which adjoint series exist. For sim-
plicity of notation, we have assumed that they do not exist,
so that, in particular, integrals of the type of (2.6) for n = m
differ from zero. If the adjoint functions exist, then the
number of them for each eigenvalue is finite. They must be
included in series of the type of (1.2). The coefficients An

that correspond to these eigenvalues will be determined by a
finite system of linear algebraic equations.
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