equal to zero, i.e., the Einstein paradox has no clas-
sicalanalog. This is due to the fact that the internal en-
ergy of a classical ideal gas is independent of its den-
sity.

3. The temperature paradox. The Einstein paradox
arises in the isothermal mixing of quantum ideal gases.
In adiabatic mixing of such gases it is absent. However,
in this case, a new paradox is displayed—a discontin-
uity in the temperature change on going from adiabatic
mixing of arbitrarily close quantum ideal gases to mix-
ing of identical gases,

We shall consider adiabatic mixing of N particles of
each of the weakly degenerate gases A and B, with
masses m, and m, respectively, in equal volumes V
separated by a thermally conducting partition and having
temperature 7.

Before mixing, the internal energy of the gases is
equal to

5 Nh3 -
UI=3NkT°[1+WW(mI

3/z+m2—3/2)J.

After removal of the partition and adiabatic mixing of
the gases, when each gas occupies a volume 2V, for un-
changed internal energy of the system the temperature
of the gases will be different (T) and the expression for
the internal energy of the mixture takes the form

[\ Vi

Uy = 3NkT [1+EW(m

{"""’+m5“/3)]. (12)

For adiabatic mixing of arbitrarily close gases (m, =m,
=m) we have

, 7. ) Np3
U= SNHTo [ 1+ 45 3o |

, . 5 NK3 .

Uty =3NkT [1 ey (amkT)*72 J
and we find the resulting temperature change T - T
from the condition U; = Uy, i e, from the equation

0 Nh3 2 1 13
T—Tym g (). (13)

In the limiting case of adiabatic mixing of two portions
of an identical gas (m,=m, = m) we find the expression
for the internal energy of the system from (12) by taking
into account the density discontinuity which occurs in
this mixing; this leads to T~ T(=0.

Thus, on going from adiabatic mixing of arbitrarily
close quantum ideal gases to mixing of identical gases
the temperature change in the mixing experiences the
discontinuity given by Eq. (13). This new paradox for
the temperature in the adiabatic mixing of quantum
ideal gases is also due to the discontinuity in the density
of the gas when we go from mixing of arbitrarily close
gases to mixing of identical gases.

13, W. Gibbs, The Collected Works, Vol. I., Thermodynamics,
Longmans, N. Y., 1931 (p. 226 in Russ. transl., Gostek-
hizdat, M.-L., 1950).

2A. Einstein, Sobranie nauchnykh trudov (Collected Scientific
Works), Vol. 3, p. 488, Nauka, M. 1966.

8L. D. Landau and E. M. Lifshitz, Statisticheskaya fizika
(Statistical Physics), Nauka, M., 1964 [English translation
published by Pergamon Press, Oxford, 1969].
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The relativistic contraction of moving bodies of sys-
tems of bodies sometimes leads to misunderstandings
associated with the confusion of two essentially different
phenomena. On the one hand we have the difference in
the dimensions of a body as measured in two reference
frames moving relative to each other, and on the other
we have the change in dimensions of a body that is set
in motion (or stopped) in a given coordinate frame.
Whereas in the first case the answer is unique and is
given by the Lorentz-transformation formulas, in the
second case the answer depends essentially on precise-
ly how the body under consideration has moved between
two measurements. Despite the obviousness of these
statements, it is useful to illustrate them by a simple ex-
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ample, especially as it shows in what conditions the
difference disappears and the result can be expressed
by the Lorentz transformation in both cases.

The one-dimensional problem of the motion of a plane
layer of charges under the action of a plane electro-
magnetic wave serves as such an example. This prob-
lem arises in the problem of acceleration of particles
in neutral current layers in a plasma. {23! We shall
consider it in its simplest variant.

Suppose that a plane electromagnetic wave with a
square front is incident on a thin layer of charged par-
ticles (in the (x, y)-plane; see the figure) along the nor-
mal to the layer. The problem is especially simple in

Copyright © 1976 American Institute of Physics 273



the symmetric case in which a similar wave arrives
simultaneously from the opposite side of the layer. In
this case the magnetic fields cancel each other and the
electric fields add, setting the charges in motion in the
direction of the z-axis (see the figure). The current
that arises, with density j=nev, where # is the density
of charges and v is their velocity, in turn generates
radiation (a reflected wave). The exact solution of this
self-consistent problem presents no difficulty and we
shall not give it here (cf. '?). We shall discuss only
one question: how is the density » of the moving
charges related to its initial value 7,?

The answer to this question follows automatically
from the one-dimensionality of the problem (all quanti-
ties are independent of the coordinates x and z in the
plane of the layer) and from the conservation of particle
number: all the particles move simultaneously and
equivalently, and, therefore, no change in density is
possible. It would be an error to assume that the dis-
tances between the charges, and their density, will
vary in accordance with the relativistic formulas

=L} 1-%, n=— B0 (1)

ViI=(2/

as the velocity of the charges increases. In fact, any
two charges move equally and independently of each

other, with conservation of the distance between them.

In this case, application of the Lorentz transformation
shows that in the proper reference frame (moving with
the charges) the density of the latter is equal to

' =n, ¥V T— (059, (2)

i.e., the layer is found to be “expanded,” with a larger
distance between the particles than in the initial state.
This expansion is entirely real and its cause lies in the
fact that, unlike in the original “laboratory” frame, in
which the front or a fixed phase of the wave acts simul-
taneously on all the particles, in the “proper” frame we
no longer have this simultaneity. In the proper frame
the retardation of the front at the point zg as compared
with the point z] is equal to

A=t —t; = — 20 (5,— ), (3
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as follows from the Lorentz transformation and the si-
multaneity in the laboratory frame, In other words, in
the proper frame of the layer the waves are no longer
incident “head on”; they come together at a certain
angle and their fronts are not parallel to the layer, al-
though, as before, the whole physical picture is sym-
metric with respect to the layer.

In view of the expansion of the layer in the proper
frame, the set of independent charges under considera-
tion cannot be chosen as a measuring scale for the
lengths and, correspondingly, cannot satisfy the trans-
formations (1). In the theory of relativity, for mea-
suring scales we choose real bodies in identical physical
conditions in different systems, e.g., elastic rods in
the unloaded state. By virtue of the principle of rela-
tivity their proper lengths will be the same in all sys-
tems.

We shall modify our problem by fixing the charges on
an elastic plate. The motion considered above first
gives the plate a velocity along the z-axis and, second-
ly, gives rise to expansion of the plate, i.e., takes it
out of elastic equilibrium. In order that we can use it
again as a measuring scale, we must wait until these
stresses relax and elastic equilibrium is restored.
This time, obviously, will be determined by the size of
the plate along the z-axis and by the velocity of propa-
gation of the interactions determining the equilibrium
of the plate {in the case of an elastic plate, by the ve-
locity of the elastic waves, i.e., sound waves). When
this time has elapsed the size of the plate will take the
equilibrium value and, by virtue of the principle of
relativity, will obey the relations (1).

Thus, in those cases when the body being used as a
measuring scale changes its state of motion {(e.g., on
transfer from one coordinate frame to another), the
formulas for the relativistic transformation of the length
will be valid only after the time necessary for establish-
ment of the internal equilibrium state of this body (i.e.,
for removing the stresses which arise in the transfer);
the conclusion is completely trivial, although it is not
always taken into account. We point out here that, ina
wider scheme, a discussion of the question of the Lo-
rentz transformation in the process of establishment of
equilibrium is contained in the article by Feinberg,®

15, 1. Syravatskii, Izv. AN SSSR, ser. fiz. 31, 1303 (1967)
[Bull. Acad. Sci. USSR, phys. ser.].

23, V. Bulanov and S. I. Syravatskii, Trudy FIAN SSSR 74, 88
(1974).

E. L. Feinberg, Usp. Fiz. Nauk 116, 709 (1975) {Sov. Phys.
Uspekhi 18, 624],
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