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A unified explanation of the Gibbs and Einstein paradoxes and of a new paradox in the mixing of
quantum ideal gases is given. It is shown that all three paradoxes are due to the same physical cause—the
corresponding discontinuity in the partial density on going from mixing of different gases to mixing of
identical gases.
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Analyzing the change in entropy in the diffusion of
gases, Gibbsc l ] established that the entropy increase
produced by mixing gases of different kinds at constant
temperature and pressure does not depend on the na-
ture of these gases, while mixing of two masses of the
same ideal gas does not give rise to any entropy in-
crease. Thus, mixing of two identical gases cannot be
regarded as the limiting case of mixing two different
gases, and, in going over from mixing of arbitrarily
close gases to mixing of identical gases the entropy
change experiences a discontinuity (the Gibbs paradox)

AS = 2kN In 2, (1)

where k is the Boltzmann constant and Ν is the number
of atoms of each of the gases being mixed.

In a paper on the quantum theory of the ideal gas,
Einstein121 drew attention to a paradox to which this
theory leads; this consists in the fact that a mixture
of degenerate gases with Nt atoms with mass mx and
Nz atoms with mass n^ (differing by an arbitrarily
small amount from m^i at a given temperature has a
different pressure from that of a simple gas, with N1

+ NZ atoms, possessing practically the same mass of
atoms and situated in the same volume.

It can also be established that on adiabatic mixing of
quantum ideal gases a new paradox occurs—a discon-
tinuity in the temperature change when we go from mix-
ing of arbitrarily close gases to mixing of identical
gases.

Here we wish to show that all three paradoxes are
due to the same physical cause—the discontinuity in the
change in the partial density of the gas when we go from
mixing with arbitrarily close gases to mixing with iden-
tical gases; allowance for this discontinuity makes it
possible to explain the paradoxes named.

We shall find the change in density of a gas when it
is mixed. Suppose that in two equal volumes V, sepa-
rated by a partition, there are Ν particles of each of
the gases A and B, respectively. The particle-number
density of gas A before mixing is equal to nl=N/V,
and after isothermal mixing its density will be n^^N/ZV.
As a result of the mixing, the density of gas A is de-
creased by an amount

Δη =71,-«·, = -!£-; (2)

this decrease does not depend on the nature of the other

gas Β or on its arbitrarily small difference from gas A,
whereas mixing of two masses of the same gas A pro-
duces no change in its density.

Thus, the mixing of two masses of identical gases
cannot be regarded, using (2), as the limiting case of
the mixing of two different gases, and when we go over
from mixing of arbitrarily close gases to mixing of
identical gases the change in the density of gas A ex-
periences the discontinuity (2).

In its formulation, this result coincides completely
with the formulation of the Gibbs paradox, and could be
called the density paradox; it is, however, so obvious
that it does not seem unusual or paradoxical. But it
leads to consequences which do seem paradoxical. We
emphasize that the discontinuity in the change in den-
sity of the gas as we go from mixing of two different
gases to mixing of identical gases does not depend on
whether the difference between the gases changes dis-
cretely or continuously: the discontinuity (2) in the den-
sity change will be the same in both cases. Therefore,
hardly anybody will assert that this discontinuity is due
to the impossibility in the real world of an arbitrarily
small difference between gases inasmuch as the atoms
of gases differ from each other by some discrete quan-
tum number.

We shall consider the paradoxical consequences of
the discontinuity in the change in the partial density of
the gas.

1. The Gibbs paradox (entropy paradox). We shall
calculate the entropy change when quantum ideal gases
are mixed. The configurational part of the entropy11

of a weakly degenerate gas of Ν particles in a volume
V at temperature Τ is equal t o m

where m is the particle mass, h is Planck's constant,
δ = - 1 for a Bose gas and 6 = 1 for a. Fermi gas.

Before mixing, the entropy of gases A and Β with
masses m t and m2 will be

Sl= 2kN [ .«l + i (3)

'Only this part of the entropy is necessary in the analysis of
isothermal processes.

271 Sov. Phys. Usp., Vol. 19, No. 3, March 1976 Copyright © 1976 American Institute of Physics 271



and, after isothermal mixing of them, when each gas
occupies a volume 2V, the entropy of the mixture be-
comes

(4)

Consequently, the change in the entropy of the system
on mixing is equal to

is equal t o 2 ' 1 "

Nh*

Let the masses of the atoms of gases A and Β be
equal to ml and m2 respectively. Then the internal
energies of the system before and after isothermal
mixing of the gases are, respectively, equal to

On mixing of arbitrarily close gases, when m2 = m1 = m,
the entropy change is equal to

Nh'
V (nmkT)' »"]· (5)

It is impossible to obtain the entropy of the mixture in
the limiting case of mixing of two identical gases (wz2

= ml = m) from formula (4), because it does not take
into account the discontinuity in the density of the gases
which occurs when this limit is taken. In order to find
the entropy S^ of the system in the limiting case of mix-
ing of identical gases using (4), when putting mz = m1

= m in this formula we must simultaneously replace the
density N/V by the quantity 2N/V. We then obtain, in
agreement with thermodynamics,

S°IL=2kN

whence it follows automatically that the entropy change
on mixing of identical gases is equal to zero.

Thus, when we go from mixing of arbitrarily close
gases to mixing of identical gases the entropy change
experiences the discontinuity (5). This is the quantum
Gibbs paradox. In the classical case {h — 0) the dis-
continuity in the quantity Δδ does not depend on the na-
ture of the gases being mixed and is equal to (1).

It can be seen from this account that the origin of
the Gibbs paradox is the discontinuity in the change of
the partial density of the gas when we go over from
mixing it with a close gas to mixing it with an identical
gas; allowance for this discontinuity makes it possible
to understand the origin of the discontinuity in the above
limiting process, i. e., it explains the Gibbs paradox.

2. The Einstein paradox {pressure or internal-en-
ergy paradox). Using the well-known relation for an
ideal gas:

where p is the pressure of a gas in volume V and U is
its internal energy, we formulate the Einstein paradox
in the following form: although the internal- energy
change Δί/ on isothermal mixing of degenerate ideal
gases depends on the nature of the gases being mixed,
when we go over from mixing of arbitrarily close gases
to mixing of identical gases Δ{/ experiences a discon-
tinuity. The internal energy of a weakly degenerate
ideal gas of iV particles in volume V at temperature Τ

(β).

(7)

and the change in internal energy of the system on mix-
ing the gases will be

!). (8)

Hence, on mixing of arbitrarily close gases, when mz
aml = m, we find

32 V {nm)3'2 (kT)1'2 '
(9)

From formula (7) it is impossible to obtain the expres-
sion for the internal energy in the limiting case of mix-
ing of identical gases {m^^m^-m) since (7) does not
take into account the discontinuity in the density of the
quantum gases that occurs in this mixing. In order to
find the internal energy of the system in the limiting
case of mixing of identical gases by means of formula
(7). it is necessary to replace the density N/V by the
quantity 2N/V in this formula. Then we obtain directly
that the change of internal energy on isothermal mixing
of identical gases is equal to zero and consequently,
in going over from mixing of arbitrarily close gases to
mixing of identical gases the change in internal energy
of degenerate ideal gases experiences the discontinuity
given by formula (9); this constitutes the Einstein para-
dox.

For a Bose gas the discontinuity AU is equal to

32
(10)

and, correspondingly, the pressure discontinuity will
be

1^Ε-
2 V

(11)

From this account it can be seen that, as in the case of
the Gibbs paradox, the source of the Einstein paradox
is the discontinuity in the change in density of the gas
when we go from mixing it with an arbitrarily close gas
to mixing it with an identical gas; allowance for this
discontinuity explains away (makes compreshensible
and natural) the Gibbs and Einstein paradoxes.

In the classical case (h-~0) the discontinuity (10) is

2)This expression for the internal energy takes into account the
quantum-mechanical indistinguishability of the particles.
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equal to zero, i. e., the Einstein paradox has no clas-
sical analog. This is due to the fact that the internal en-
ergy of a classical ideal gas is independent of its den-
sity.

3. The temperature paradox. The Einstein paradox
arises in the isothermal mixing of quantum ideal gases.
In adiabatic mixing of such gases it is absent. However,
in this case, a new paradox is displayed—a discontin-
uity in the temperature change on going from adiabatic
mixing of arbitrarily close quantum ideal gases to mix-
ing of identical gases.

We shall consider adiabatic mixing of Ν particles of
each of the weakly degenerate gases A and B, with
masses m1 and m2 respectively, in equal volumes V
separated by a thermally conducting partition and having
temperature To.

Before mixing, the internal energy of the gases is
equal to

After removal of the partition and adiabatic mixing of
the gases, when each gas occupies a volume 2V, for un-
changed internal energy of the system the temperature
of the gases will be different (Γ) and the expression for
the internal energy of the mixture takes the form

(12)

and we find the resulting temperature change T- To

from the condition U[ = UU, i. e, from the equation

T _ T 6 Nhs I 2 \_ \

'«-32 V(nmkfn [γψ-α yf)-
(13)

For adiabatic mixing of arbitrarily close gases (m2

= m) we have

In the limiting case of adiabatic mixing of two portions
of an identical gas (mz = m-i = m) we find the expression
for the internal energy of the system from (12) by taking
into account the density discontinuity which occurs in
this mixing; this leads to Τ - To = 0.

Thus, on going from adiabatic mixing of arbitrarily
close quantum ideal gases to mixing of identical gases
the temperature change in the mixing experiences the
discontinuity given by Eq. (13). This new paradox for
the temperature in the adiabatic mixing of quantum
ideal gases is also due to the discontinuity in the density
of the gas when we go from mixing of arbitrarily close
gases to mixing of identical gases.
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The relativistic contraction of moving bodies of sys-
tems of bodies sometimes leads to misunderstandings
associated with the confusion of two essentially different
phenomena. On the one hand we have the difference in
the dimensions of a body as measured in two reference
frames moving relative to each other, and on the other
we have the change in dimensions of a body that is set
in motion (or stopped) in a given coordinate frame.
Whereas in the first case the answer is unique and is
given by the Lorentz-transformation formulas, in the
second case the answer depends essentially on precise-
ly how the body under consideration has moved between
two measurements. Despite the obviousness of these
statements, it is useful to illustrate them by a simple ex-

ample, especially as it shows in what conditions the
difference disappears and the result can be expressed
by the Lorentz transformation in both cases.

The one-dimensional problem of the motion of a plane
layer of charges under the action of a plane electro-
magnetic wave serves as such an example. This prob-
lem arises in the problem of acceleration of particles
in neutral current layers in a plasma.C l ·2 3 We shall
consider it in its simplest variant.

Suppose that a plane electromagnetic wave with a
square front is incident on a thin layer of charged par-
ticles (in the (x,y)-plane; see the figure) along the nor-
mal to the layer. The problem is especially simple in
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