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The question of the expressions for the energy density W and evolved heat (dissipation) Q in the
electrodynamics of a dispersive and absorptive medium is discussed. Attention is concentrated on
explaining the fact that W and Q are not expressed, generally speaking, in terms of the complex dielectric
permittivity e(a)). This statement is illustrated with the example of a medium consisting of a collection of
oscillators and with the example of the simplest model of a plasma. A convenient expression for the energy
density of a field with arbitrary time dependence in a transparent medium is obtained in the Appendix. A
derivation of the high-frequency average of (1/4π)3ϋ/3ί for a quasi-monochromatic field in an absorptive
dispersive medium is also given there.

PACS numbers: O3.5O.Jj

Up to comparatively recent times, in the discussion
of the energy relations in electrodynamics and optics
courses, the medium has been assumed to be nondis-
persive. In this case, and in the absence of absorption
all the terms appearing in the Poynting relation can be
interpreted unambiguously and we can assume that the
expressions for the energy density W of the electro-
magnetic field and for the energy flux S are known. In
fact, however, all media possess dispersion and,
whereas we can usually neglect the spatial dispersion
in the low-frequency region, and, partially, in optics
too, it is often absolutely necessary to take the fre-
quency dispersion into account. In the presence of dis-
persion the question of the energy relations in macro-
scopic electrodynamics is, in certain respects, not so
simple, especially when absorption is taken into account
(at the same time, as follows from the dispersion rela-
tions, a dispersive medium is always absorptive, al-
though the absorption and dispersion may be dominant
in different spectral regions).

The energy relations in a dispersive medium have
already been considered more than once, and, in par-
ticular, have been elucidated in the monographs^3

(Sec. 22) andC2: (Sec. 3), where the other literature is
also indicated. Nevertheless, in the presence of ab-
sorption the question evidently remains insufficiently
clear (or at least insufficiently well-known), as indi-
dicated, e. g., by the appearance in 1975 of an article1 3 3

that is incorrect. The latter circumstance stimulated
the authors to publish a critical comment1'1 and to
analyze certain questions in somewhat more detail than
in 1 1 · 2 3 . We hope that the account of the corresponding
material in the present article is sound and will be
useful.

1. We write the equations for the field in the medium
in the form

reflected only in the relationship between the generalized
induction D and the electric field Ε (for more detail,
see, e.g. , β ] ) . From (1), by the well-known route, we
arrive at the Poynting theorem

(2)

Below we shall consider only a linear medium, at rest
and not changing in time. If, in addition, the medium
is isotropic, nonmagnetic and nonabsorptive and does
not possess dispersion, then D=e'E, B = H, and e'= e
is a real quantity. Then the relation (2) takes the form

(3)

In this simplest case, which we have already mentioned,
the quantity W= (ε'Εζ + Ηζ)/Ζιτ is immediately identified
with the energy density, and the vector S= (c/4i)ExH
has the meaning of the total energy flux through unit
surface. The generalizations which pertain to taking
the magnetic permeability μ or the anisotropy into ac-
count are obvious and do not involve fundamental dif-
ficulties. The same can be said about the transition to
a moving medium (so long as its velocity u can be as-
sumed to be constant). l ) The relation (2) is valid in all
these cases, and, in the absence of dispersion, the
values of D, Β, Η and Ε taken at the same point r and
at the same time t are mutually related (in linear elec-
trodynamics, which we have in mind here, this rela-
tionship is linear). In addition, Eqs. (1) and the rela-
tion (2) are also valid in a dispersive absorptive medium,
but in this case D is a linear functional of E, or, to be
more specific, the value of D(r, t) is determined by the
field Ε (r', t') at times t' « t and at points r ' situated in a
certain region about the point r. For a linear station-
ary medium, uniform in space and unchanging in time,

( 1 )

div D = 4np e l t divB = 0.

In this form the properties of the medium are obviously

"True, a moving medium possesses the feature that a term
corresponding to the work done by the force acting on the
medium appears when we go from (2) to a relation of the type
(3) (cf., e . g . , m ) .
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the dispersion and absorption are taken into account
using the relationship

D,(a,K) = eil(a, k) Ε, (ω, k),

where

Ε (ω, k) = J L . j Ε (r, t) e-«*-«r& dt

and analogously for D, where ε4ί(ω, k) is the complex
permittivity tensor. The dependence of ε,̂  on ω cor-
responds to the frequency dispersion and the dependence
on k corresponds to the spatial dispersion.

In the presence of spatial dispersion, besides the en-
ergy flux S= (c/4f)ExH there appears, generally speak-
ing, an additional energy flux S ( 1 ) (cf. Β : ) . We, how-
ever, shall not consider media with spatial dispersion
but confine ourselves to the simplest class of disper-
sive media—an isotropic and nonmagnetic medium with
frequency dispersion describable by the permittivity
ε(ω) = β' + »β", e' = Ree, e " = Ime. As in the absence of
dispersion, with only frequency dispersion the gen-
eralization to a magnetic and anisotropic medium also
presents no difficulty and only leads to more cumber-
some expressions (for convenience, however, some of
these expressions are given in the Appendix).

2. For the medium just mentioned, characterized by
a complex permittivity ε(ω), the Poyntingrelation (2) can
be written in the form

j _
[ E X H ] _

awE

+ 0O

D(i, r)= f ε (ω, r)E(co, r)e-
Mda,

E(t, r)= f

(4)

(5)

manifested in the fact that the functions E0(i) and H0W
vary very slowly in the time T= 2ττ/ω. Below it will
also be assumed that Eo(- °°) = 0 and Ho(- °°) = 0. This
condition is obviously not satisfied by a monochromatic
field, and this prevents unrestricted use of it.

We substitute the fields (7) into (4) and carry out aver-
aging over high frequencies ω; this is equivalent to
neglecting the terms containing factors e*2 '"' (such aver-
ages are denoted below by a bar). We then obtain the
following result (cf., W ] and the Appendix):

_ 1 d (die' (ω)) a

d (<oe" (ω)) / 8 E Q (()

S3 (—-

ωβ* (ω)
—g^-

a~T~E

where, as below, the frequency derivatives are taken at
the "carrier frequency" ω appearing in (7) (in the Ap-
pendix, this frequency is denoted by ω0).

In the absence of absorption, when ε"(ω) = 0 and
ε" (ω) = ε (ω), obviously,

aw Ε (t) ι «£(<) 81 Εο (t) ρ
at

(9)

(—ω, Γ) = Ε·(ω, r),

This widely known expression is given in a large num-
ber of textbooks and monographs (cf., e.g., Cl»2>7·83^
and is obtained in different ways. In the Appendix we
give yet another derivation of the relation (9).

If there is no absorption, then, as is clear from (4)
and (9), the interpretation of the quantity WE as the
average energy density of the electric field raises no
doubts. But what is the situation in an absorptive
medium ?

At first sight it seems that in an absorptive medium
the average energy density has the form

where the argument r will be omitted in the following,
since, in the assumed absence of spatial dispersion, it
appears only as a parameter . The relation E ( - ω)
= Ε*(ω) reflects the fact that the field Ε is real; from
the reality of D it then follows that

^ d(<ng'(<p)) | E Q P (10)

ε (—ω) = ε* (ω), Re ε (—ω) = ε' (—ω) = ε' (ω),

Im ε (—ω) = ε" (—ω) = — ε " (ω).
(6)

In the case of a field with an abritrary time dependence,
the expression for [d(WE+ WM)/dt] + Q can be written in
the form of an integral over frequencies, but it is then
impossible to carry out the time integration in general
form. However, the latter can be done for a nonab-
sorptive medium (see the Appendix). For an absorptive
medium it is possible to obtain certain general results
only by making the time dependence of the field Ε
specific. The most important such case is a quasi-
monochromatic field

Ε (i) = i [Eo (i) e-«°< +E0* (t) e*»«],

Η (t) = i [H, (t) «-*">' + Η? (t) e*>%
(7)

since just this expression appears in (8), in which the
other terms depend on ε" (ω) and vanish in the absence
of absorption so that it is natural to associate them
with the evolved heat Q. There are, however, insuf-
ficient grounds for this conclusion, since the separation
of the given sum into unknown terms is manifestly non-
unique. Moreover, the expression (10) in the general
case is certainly not the energy density of the electric
field. Below this will be shown using examples which,
at the same time, indicate that the densities WB, WE

and Q can in no way be expressed directly in terms of
the permittivity ε(ω) in the general case. 2 ' Such a con-
clusion is natural even from extremely general con-
siderations. The permittivity ε(ω) determines the linear
"response" of the medium, i. e,, the induction D that

where the quasi-monochromatic character of the field is

2)In a state of thermodynamic equilibrium there are no average
losses and, therefore, even in an absorptive medium, the
average electromagnetic-energy density, being a thermo-
dynamic quantity in the familiar sense (cf.C9:), can be ex-
pressed in terms of the dielectric permittivity of the medium.
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L=xR

arises under the influence of the field E. There are no
reasons why, for a sufficiently complicated absorptive
medium, this "response" should also uniquely determine
a quantity quadratic in the field, namely, the energy
density. The nonunique correspondence between the
linear "response" and the energy stored in the system
is demonstrated particularly prominently by the ex-
ample of discrete electric circuits. We shall consider,
e. g., the circuit depicted in the figure, which is well-
known from the literature. If to such a circuit (a two-
terminal network) we apply a voltage &'=g'oe~t"t, the
current will be equal to 7=/0£Γ<ω( = %/Ζ(ω), where Z=R
for any values of the parameter κ if the self-inductance
L=v.R and the capacitance C = H/JR*.3 > At the same time,
the energy concentrated in the circuit is equal to

2C

and depends, of course, on the values of L and C.

Of course, it certainly does not follow from the argu-
ments given that it is completely impossible to obtain
any expressions for the energy or dissipation sepa-
rately for an absorptive medium. The simplest ex-
ample of this kind is the expression for the amount of
heat, averaged over a period, in the case of a mono-
chromatic field. For a strictly monochromatic field,
obviously, Eo = const (cf. (7)). Furthermore, it is clear
that in this case the energy averaged over a period
(WE(t)) is constant in time; therefore, from (4) and (8)
we obtain

(11)

We shall consider now the rather instructive case of
an absorptive medium (called a "medium without dis-
persion") in which

.·
where ε' and σ are real and frequency-independent
quantities. Of course, the dielectric permittivity ε(ω)
= ε' + ί(4πϋ·/ω) of such a medium possesses obvious fre-
quency dispersion, but, nevertheless, from a physical
point of view, the term used ("absorptive medium

3)As is clear from the Figure, » =ItR- i
- (/2/ίωΟ = Z^ = ZQi +I2) = ZI. From this follows the well-
known relation for parallel circuits: 1/Z = (1/Z1) +(1/Z2).
For the circuit considered we indeed have \/Z = \\/(R — i<j>L)
+ {l/[R - (l/toC)]} = 1/Λ for all values of χ. We note that this
same circuit recently figured in the pages of Usp. Fiz. Nauk
(Soviet Physics Uspekhi)HQ1. The very small overlap between
the present article and1101 is further justified, it seems to us,
by the fact that the articles as a whole are devoted to com-
pletely different topics.

without dispersion") is reasonable and, after what has
been said, completely clear. The relation (2) in the
given case takes the form

(12)

At first sight, it follows from (12) and (4) that the quanti-
ties W'(t) = (ε'£2 + # 2)/8π and Q(t) = aEz(t) can be identi-
fied unambiguously with the energy density and loss
density, but in fact this is incorrect. Only in the case
of a field varying sufficiently slowly in time does the
expression for the heat (and, in the general case, only
this expression) take the form written out above: Q = aEz.

In fact, in the presence of dispersion of the permit-
tivity ε(ω), i .e . , for a relationship between the quanti-
ties considered and the field that is nonlocal in time,
the terms 8 WE/Bt and Q in the relation (4)

dW, (4')

can be represented in the form of series of the type

In the case of a medium with ε' = const and σ = const,
only the terms containing E2(f) or 8Ε2(ί)/9ί will appear
in the right-hand side of (4'). Therefore, we see from
(4) that the expressions for the energy and heat in a
medium without dispersion of the quantities e' and σ,
for an arbitrary time dependence of the field, have,
generally speaking, the form

(13)

(14)

(15)

with

but, generally speaking, a and c cannot be expressed
separately in terms of the dielectric permittivity, and
the coefficients in the terms not written out are ad-
justed such that in the expression for (8 WE/dt) + Q all
such terms containing time derivatives of the field that
are higher than first-order cancel. If the electric field
varies sufficiently slowly with time, so that IcΙ / Τ « σ ,
where Τ is the characteristic time for the variation of
the field, the expression for the heat evolved, as can be
seen from (14), takes the form

Q (t) = oEa (0. (16)

As regards the expression for the energy of the field
in an "absorptive medium without dispersion, " i. e . ,
for ε'(ω) = const and σ(ω) = const, only under the condi-
tion lei » Icl does it take the form WB(t) = [e'Ez(t)/&v]
= WE(t). However, it is by no means certain that the
above condition Ι α I » Icl will be fulfilled and it is per-
fectly possible that lal S Icl ; we shall see this below in
a specific example (cf. (29), (30)). Of course, the
possibility of the appearance in (13) and (14) of t e r m s
containing time derivatives of the field is due to the fact
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that the medium under consideration possesses fre-
quency dispersion of the permittivity (ε(ω) = ε' + «(4ιτσ/
ω), £,' = const, σ = const).

3. Since we cannot express WB and Q in terms of e
in the general case, to find these quantities it is nec-
cessary to turn to the analysis of one or another specific
medium or model of the medium. It is also natural to
do the same to elucidate the situation as a whole. As
is well-known, an extremely general model of a medium
is the model reducing to a set of oscillators with masses
mk, eigenfrequencies wk (we are concerned with fre-
quencies in the absence of absorption) and effective
collision numbers vk (mk vk is the coefficient in the
frictional force). The equation of motion for such an
oscillator, of the type k, has the form

(17)

where ek is the charge (ekrh is the dipole moment of the
oscillator) and Ε is the field acting on the oscillator.
Below, in order not to complicate the model unneces-
sarily, the field Ε will be identified with the average
macroscopic field. This assumption is, generally
speaking, particular or approximate. But, e. g., for a
plasma (in this case ωΗ = 0), it is practically completely
justified (cf.,U : Sec. 3). Applied to a plasma, Eq. (17)
with u>k = 0 has an extremely wide range of applicability,
as is clear from a more general analysis on the basis
of the kinetic equation. [ 1 · β ] As regards the application
of the classical model of oscillators to atomic or molec-
ular gases and to certain other media, this finds its
justification on the basis of quantum theory (the oscil-
lator model in the scheme discussed below was men-
tioned in c i ' e ] and was considered in more detail in c l l ] ) .

In the field E = E o e " l u t the forced solution of Eq. (17)
has the form

(17')
mh ( ω 2 —

Since the polarization of the medium is P = 2ke,,Nk rk

and, by definition, for the field under consideration,
= ε(ω)Ε, we have4>

the medium).

The energy conservation law for an oscillator of type
k has the form

(20)

From this it is clear that for the model of the medium
under consideration,

(21)

where Κ is the kinetic energy associated with the field,
U is the potential energy and Q is the heat evolved in
Unit time in unit volume (more precisely, Q is the work
done by the frictional forces, which we assume is con-
verted to heat).

The energy density of the field and of the motion of
the charges (oscillators) that is induced by the field in
the medium is WE= (Ez/8ir) + K+ U. Inasmuch as we are
concerned with quadratic quantities, it is convenient
now to consider a real field E = E 0Ree'< l 0 t = E0costi)i,
E 0 = Ej = const, and finding, Q and then the values
averaged over a period (WE and Q) (this means in
practice that all terms containing factors e*2""* are dis-
carded). The result of the elementary calculation is:

« - ^ 1 (ω2-
ft

since, according to (18),

8π 8π

(18)

(22)

(23)

(24)

(24')

and, therefore, WE is not expressed in terms of ε'(ω)
(see also below). In the particular case of the plasma
model (19) already mentioned,

At the same time,

where Nk is the concentration of oscillators of the type
k. For a plasma, when ωΛ = 0,

"((φ
4πα (ω)

(19)

where, for simplicity, the plasma is assumed to be a
one-component plasma and the index k is omitted (we
do not touch upon the question of the background of,
say, positive ions maintaining the quasi-neutrality of

4)We recall that, with the choice of time dependence in the form
e-*at, by definition, Doe"""' =f(a)E o e ' " " .

(25)

i .e . , not only is QE expressed in terms of ε(ω) but so
too is WB (specifically, in terms of ε'(ω) = ϊ?ε ε(ω)).
This case, however, is clearly special. Moreover,
the actual values of WE(t) and Q(t), as distinct from the
corresponding averages, are not expressed directly
in terms of ε (ω), even for a plasma; they have the form
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For a system of oscillators the quantity defined by (10)
is

and for a plasma

16n
_ Γ. η | Eo |

2

J 16π *

(27)

(28)

It is obvious that, in the presence of absorption, W E

*_WE in both cases (cf. (22), (25), (27) and (28)), and
W E = WE only in the absence of absorptionJi.e., for
vk = 0), i .e. , the average energy density WE is cor-
rectly defined by formula (10), which goes over in this
case into (9). This could not be otherwise, since in the
absence of absorption

ι 3D F gwE

4π at dt

as can be seen from the formulas, by the parameter
Ω2/ν2, and for Ω 2 /^>1 we have \c\> \a\.

4. Although, generally speaking, the quantities WE(t)
and Q(t) in general form cannot be expressed in terms
of ε (ω), for the sum

this is, of course, possible. From this it is clear
that both the term 8WE(t)/at and the term Q(t) make a
contribution to the terms with ε'(ω) and with ε" (ω) ap-
pearing in the expression for (1/4ττ)(8ϋ/8ί)Ε. Neverthe-
less, it is fairly instructive to convince oneself of this
using a specific example. Of course, a medium con-
sisting of oscillators is suitable for this, but we shall
confine ourselves to the plasma model considered above.

We note that in this case it is also particularly easy
to check the validity of the relation

and we do not need to divide the quantity (1/4TT)(8D/
Bt)E into parts BWB/dt and Q (cf. (4)).

The examples given (which, incidentally, have an ex-
tremely general character) do not leave any doubts
about the fact that the quantity

awB

at
- l dD Ε
~4ί~δΓ '

(4')

itself, which, it can be said, has been written out pre-
viously on the basis of general considerations. In fact,
for the plasma model under discussion,

= _ d (ω Re e (ω)) I Ep I2

n E da 16π

(cf. (10)) is not, generally speaking, the energy densi-
ty of the electric field in the medium. From (27), (28)
it_is also clear that WE can be negative (e. g., in (28)
#^<0 if fiV>fiV+ (u2

+vzf; in the limiting case ι/2

» ω2 this reduces to the condition Ω2 > vz). But the
quantity WE> as is clear from (22) or (25), is always
positive, as should be the case for the quantity WE

= (E*/&ir) + K. We note that in the articleC 3 ] already
mentioned it is the quantity WE that is unjustifiably as-
sumed to be the average energy density; this is only
masked by the notation (for more detail see1 4 3).

For the region of frequencies ω2 « νζ, according to
(19), ε' = 1 - (Ω2/ι/2) and σ= Ω2/4πι/, and this means that
in the given case the plasma is an example of an ab-
sorptive medium without dispersion, already discussed
above5'. In this case, from (26), (26'), in complete
correspondence with (13)-(15), we have (we recall that

) = E0coswi in (26), (26'))

WK m = ι + iL.

4πν

E 2 (t)

dt

(29)

(30)

so that α = 1 + Ω2/ΐ/2, e = - 2Ω2/ΐ'2, and a+c = l - Ω?/νζ

= '. The relationship between α and Icl is determined,

5)We note that for σ>0 and e' < 0 such a medium is unstable in
the absence of external sourcesC81, by virtue of which the
case of a plasma with o>2« v2 and Q2>v2 must be treated with
the usual care (it is necessary to lean on the general expres-
sions (19), which indicate the stability of the corresponding
model of the plasma). In this connection, we note that, in
essence, nowhere do we rely on the inequality ω 2 « ν2.

where Ρ is the total polarization of the medium (if the
conduction current j and polarization Ρ are introduced
separately, the form e№r = j + 9P/9i is used; cf.,
e · g· > c 6 ] ) . On the other hand, according to the equation
of motion, mr + mvr = eE, and therefore

Hence,

? - ^ » E.

as should be the case.

For a monochromatic field E = E0coswi the values of
WE and Q have already been written out (cf. (26), (26'))
and, thus,

ι = < — ω sin cos 2ωί} | |
νΩΜω 2-ν 2)

C0S 2<0ί + 2 ϊ ~νψ
 S I« 2 ω ί

Ί Ε!

= -ξ^·-^-Ε = [—ωε' (ω) sin 2ωί - ωε" (ω) -f ωε" (ω) cos 2ωί] - J -

= ί — ο) sin 2ωί ^ — ^ — = - sin 2ωί -|—^—- 4- -
\ ' ω 2 + ν2 ' ω2 -{- ν 2 ' «

νΩ2

cos 2 ω ί ) - = - ,

(3D
where the last expression is obtained by substituting
the expressions (19) for ε'(ω) and ε " ( ω ) ; as regards
the penultimate expression in (31), it is obtained im-
mediately when the relationship between the field
E = E0(e"-" + e-{at)/2 and the induction D= (E0/2)
x (ε(- ω)β<ω* + e(o))e"'wt) is taken into account, since,
when the relation (6) is taken into account, we then ob-
tain ϋ=ε'(ω)Ε0οο3ω<+ e"(a>)
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From a comparison of the different terms in (31) it is
clear, e.g., that the term

- ωε' (ω) sin 2ωί = — ω sin 2ωί +
ω 2 " ζ sin 2ωί

is formed (or, if preferred, arises) both from dWB/dt
and from Q. This, obviously, also applies to the term

ωε* (ω) cos 2ωί = . 2 cos 2<ot.

Only the time-independent term

is due to the dissipation alone. The latter is not sur-
prising if we take into account that we are considering
a monochromatic field. It is entirely obvious that
analogous conclusions remain valid after integrating
over the time. We remark here that in integrating (31)
over the time and determining the quantity WE(t)
+ !Q(t)dt in this way, it is necessary to exercise some
caution and, in essence, to return first to the expres-
sions (26), (26'). In fact, from (31) we obtain

; (*)+j £(*)*=«'Μ—
(32)

As is clear from the discussion in Sees. 2 and 3 and
the comments that follow below, generally speaking,
the integration constant appearing in (32) in the gen-
eral case cannot be expressed in terms of ε. But in
the absence of absorption, by comparing (32) with (9)
it can be seen that

const = da 16n

On the other hand, for the model of a medium, and,
specifically, for the model of a plasma, determining
the quantity WE(t) + fQ(t)dt does not present any diffi-
culty even in the presence of absorption. In fact, we
already know the expression for WE(t) in the case of the
plasma (cf. (26)), and here, taking into account that
cos2a>i= (1 + cos2wf)/2, it is convenient to write it in the
form

(33)

(34)

where the integration constant is chosen in such a way
that, for the period-averaged energy dissipation over
a time interval t, with monochromatic behavior of the
field, we have fQ(t)dt= }Q(t)dt~t. Thus, combining (33)
and (34) and equating with (32), we obtain

Next, integrating (26') over the time, we find

f . , „ , Γ ί ω2 — ν 2 sin2toi vcos2mt~] Ε}
j (? (ί) Λ = νΩ2 | |

Ε· ν Ω 2 ( ω 2 — ν 2 ) sin2<i>f ν 2 Ω 2 cos 2ωί "I EJ _ 1 f 3D .

Γ , , . cos2oi . » , , . . » , . sin2ωί , . Ί Ε3
= ε (ω) — = l· ωε (ω) t + ε (ω) — = Υ- const -= -̂

L A v / 2 J 8 n

where all expressions are written in complete analogy
with (31). It is clear that, even in the presence of ab-
sorption, the integration constant exactly determines
the expression for WB(t) (cf. (33), (35) and (19)).

We also emphasize here that, even for a quasi-mono-
chromatic field, it is impossible to integrate the
Poynting relation for an absorptive medium over the
time in general form, and, in this sense, the use of the
initial conditions Ε (- °°) = 0 and H(- <*>) = 0 does not lead
to a solution of the problem. In fact, it can already be
seen from (8) that the terms containing ε"(ω) cannot
be represented in the form of total time derivatives of
certain expressions. The latter fact is not surprising,
since, as is well-known, the heat evolved is not a func-
tion of the state of the system, and 5Qt as in ordinary
thermodynamics, is thus not an exact differential.
Therefore, depending on the way in which the field
E0(i) varies in time from Eo(- °°) = 0 to the value Eo, we
can obtain different answers on integrating the relation
(8) over the time for an absorptive medium.

The reasons why we considered it appropriate to
discuss such simple calculations in detail have already
been mentioned in the Introduction. All that remains
for us to note is that the discussion of the energy rela-
tions in an absorptive medium situated in an electro-
magnetic field is not only useful for understanding the
mechanism and character of the absorption and relaxa-
tion but is also used in the calculation of the "energy
velocity"—the rate of energy transfer in electromag-
netic waves propagating in an absorptive medium
( c f i [1,2,8,10,11]^

The authors are grateful to L. A. Vainshtein for
comments he made on reading the manuscript.

APPENDIX

We use the Fourier expansion

oo

E(t, r)= f

Ο ι (ί, r)= j

, r),

Γ) Ε) (ω, Γ)

(Α.1)

For an isotropic medium, (A. 1) goes over, of course,
into (5)o Substituting (A. 1) into the expression for
(1/4JT)(8D/8*)E (cf. (4)) and integrating over the time,
we obtain

, r) + const.

(
In a nonabsorptive medium, as is well-known (cf.,

0

(Α. 2)
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εί/(ω) = ε|1(ω) (Α. 3)

and, in addition, since the fields E(i, r) and D(t, r) are
real in any medium, we have, in analogy with (6)

.„(-«)=.δ(«). (A. 4)

Using (A. 3) and (A. 4) it is not difficult to see that for a
nonabsorptive medium the singularity of the integrand
in (A. 2) at α^ = ω2 has a "fictitious" character, i. e.,
its contribution is cancelled on integration because of
the appropriate symmetry of the integrand. In fact, we
shall replace the integration variables in (A. 2): a^
- - ω ζ, ω2 - - α>!. Using (Α. 3) and (Α. 4) and taking
into account that Ε (- ω, r) = Ε* (ω, r), we obtain an ex-
pression, the half-sum of which with (A. 2) gives

i_ , j d^e-'^-^'Etl^, r) "',«,, (ω,,^-ω*,, (ω,, r) £ . ( ω,, r ) + c o n s t .

(Α. 5)
Suppose that Ε (ί, r) - 0 as t - - «=; this imposes certain
restrictions on Ε (ω, rh Since the quantity

l i m •
(02-*tt)l

(ω!, ή—ω 2 β ί >(ω2, r)
ω ! — ω 2

(ωι, r»
(A. 6)

is finite, it is c lear that the requirement

and for this quantity averaged over a period we have

i d (ωε;> (o), r))

' • r )

£Si ο *M w- (A. 11)

For an isotropic medium, from (A. 11) we thus obtain
formula (9).

We now reproduce the deviation of formula (8). For
this we expand the field (7) in a Fourier integral

[g (ω) i (A. 12)

In the language of the spectral quantities g(co) the quasi-
monochromatic character of the field means that at ω
= ± ω0 the function g(o>) has sharp and extremely large
(but finite; cf. (A. 9)) maxima, and as we move away
from these points g(co) tends, sufficiently rapidly, to
zero. For the electric induction we have

D (t) = \ e' (ω) [g (ω) «-<u( + g· (ω) eM\ do

Thus,

(A. 7)

leads to the determination of the integration constant:
const = 0. Thus, in a nonabsorptive medium the expres-
sion for the energy density of the electromagnetic field,
for an arbitrary time dependence of the field, has the
form

« ωιΕ" ( M " r J ~ ' Γ )

(A. 8)
For a real medium with absorption, for (A. 8) to be ap-
plicable it is, of course, required that the spectral
components of the field differ substantially from zero
only in those regions of the spectrum in which the ab-
sorption can be neglected.

As a part icular case, we now consider a monochro-
matic time dependence of the field (cf. (7), in which we
assume that E o = const), when

Ε (ω, Γ)=-2-[ ω—S) + EJ(r) (Α. 9)

The deviations from monochromaticity, associated
with the condition E{f~ - °°) = 0, will be taken into ac-
count automatically when formula (A. 8) is used.

Substituting (A. 9) into (A. 8) and taking (A. 3), (A. 4)
and (A. 6) into account, we obtain

WE(t, r) =
1 d ( ω ε ί ί (ω, r))

16π ti (r) Eo) (r)

- Re [E o i (r) Eal (r) eu (ω, r) s " 2 " 1 " ] ,

+ g (ω) g· (a) ')e- i " a - M '>'-g· (ω) g (ω') f i | - " ' l 1 - g · (ω) g* (ω1) ί«
ω+<Λ')'] Λα Λα'

ο

14)

We now find the high-frequency average of the expres-
sion (A. 14), i. e., the average over a time longer than
2π/ω0 but short compared with the characteristic time
of variation of the amplitude E0(i). It is not difficult
to convince oneself that this averaging is equivalent to
discarding terms with β*<<ω*ω'>* as compared with terms
containing eiUa'a>)t. Furthermore, in carrying out this
averaging we take into account the aforementioned char-
acter of the behavior of the quantities g(co), because of
which, in the first approximation in (A. 14), we put

)^ωοΒ' (ω,) + * ( M ° f (
(Α. 15)

By next making use of the symmetry of some of the
integrands in (A. 14) under interchange of the integra-
tion variables (ω-ω' , ω'~ω), after extremely simple
calculations we arrive at the expression

+ 2σ(ω0) ( f g(co) g* (ω') »-<("-··')'

(A. 10) Taking into account that
(A. 16)
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E 0(i) = 2 f

ο

= 2 j j g (ω) g· (ω') ,,-
(A. 17)

from (A. 16) we arrive at formula (8). When the anisot-
ropy and magnetic properties are taken into account,
calculations completely analogous to those described,
but taking into account in addition the hermiticity of
the quantities ν'{/(ω), ε'/}(ω), μ'(](ω) and μ^(ω), where
ε·ίί(ω) = εί/(ω) + ie{J(w) and μα(ω) = μ'{/ω) + ίμ',',Ιω), lead
to the relation"3

Ιβπ
(A, 18)

In conclusion we shall consider the case when, in a
nonabsorptive medium (i.e., for ε ^ ε , ρ , a quasi-
monochromatic field (packet) has, nevertheless, a line-
width Δω such that it is necessary to take corrections to
formula (A. 11) into account. To find the correction
terms we turn to the general formula (A. 8). Using the
expansions

«ι««(ωι, Γ)— o^e^fe, Γ)

<*" (ω^ίί («2. Γ» •?, <*"*

•Σ-
η—Ο

, r)) ( M l — O

, r), ( M a _ m

(Α. 19)

for the high-frequency-averaged energy density we
obtain from (A. 8)

(Α. 20)

where ω0 and Ε0(ί) are defined in (A. 12) and (A. 17).
Using formula (A. 20) we now write out an expression
which is analogous to (A. 11) but takes into account the

first two corrections corresponding to the nonmono-
chromatic character of the time dependence of the field
(A. 12):

* 96n ]•
(A. 21)

We note that the reality of the corrections of each order
of smallness in (A. 21), as in (A. 20) also, is guaranteed
when the condition (A. 3) for the dielectric permittivity
in a nonabsorptive medium is taken into account. For
an isotropic medium, formula (A. 21) was obtained by
another method in t l 8 j .
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