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1. INTRODUCTION

In this review, we shall be concerned with physical
phenomena which have not as yet been observed experi-
mentally, namely, the effects associated with the non-
conservation of parity in atomic transitions. At the
present level of optical research, the observation of at
least some of these effects is within the reach of reason-
able expectations. Such experiments are exceedingly
interesting if only because they may lead to the discovery
of an interaction between elementary particles which has
not as yet been observed, namely, the weak interaction
between electrons and protons or neutrons, which is
due to the so-called neutral currents.

A. What are neutral currents?

One of the central problems in contemporary physics
of weak interactions is the question of the existence of
neutral currents. Let us illustrate the situation with
some simple examples. Consider the usual β decay of
the neutron

which is a well-known weak interaction process, and
the closely associated reaction

ρ + e- -»- η + ν,,
ve + p-*-n+e*.

All these processes (Fig. 1) are accompanied by a
change in the electric charge of the strongly-interacting
particle (the nucleon) and a transfer of this charge to
the electron or positron. Both processes and, generally,

all weak-interaction processes which involve the trans-
fer of charge from hadrons (strongly-interacting par-
ticles) to leptons (e, ve, μ, and vu) are said to be due
to the weak interaction of charged currents. The inter-
action of charged currents can also give rise to purely
leptonic processes, for example, the muon decay

Moreover, known conservation laws do not forbid pro-
cesses that are not accompanied by the transfer of
charge from hadrons to leptons, for example, elastic
scattering of a neutrino by an electron, or a muon by a
nucleon, due to the weak interaction. Processes of this
kind are usually said to be due to neutral weak currents.
Neutral currents should also give rise to purely leptonic
processes such as, for example, the elastic scattering
of an electron by an electron, or a muon neutrino by an
electron. (The concept of charged and neutral currents
will be discussed in greater detail in the second chapter
of the present review.)

The existence of neutral currents has frequently been
discussed in the past. ll~s2 They attracted particular
attention after the emergence of renormalizable models
which provided a unified description of electromagnetic
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and weak interactions (see, for example, the review
in : 9 ]). In the most popular of these models, the neutral
weak currents appear in a natural fashion.

The first experimental evidence for the existence of
neutral weak currents was obtained in 1973 at CERN
and Batavia. c l 0 " u ] These experiments resulted in the
observation of the scattering of muon neutrinos and
antineutrinos by nucleons and electrons, apparently
due to weak interactions of neutral currents. The prob-
abilities of these processes were found to be compar-
able with the probability of processes due to charged
currents. However, no experimental data are avail-
able as yet on the weak interaction between electrons
and muons, and between electrons and nucleons, due to
neutral currents. The point is that it is exceptionally
difficult to separate the contribution of the weak inter-
action from the background of the much stronger elec-
tromagnetic interaction. One way of obviating this
difficulty is to work with high energies because, in
contrast to the electromagnetic interaction, weak inter-
actions are found to increase with increasing energy
(see the review in a 2 ] ) , and there is an accompanying
increase in their relative contribution to the scattering
cross section.

On the other hand, attempts to detect effects due to
neutral currents in atomic physics, where the precision
of measurements is high, are by no means hopeless.1 '
We shall consider these problems in the present review.
We note that Ya. B. Zel'dovich discussed some effects
associated with the nonconservation of parity in atomic
physics in connection with the existence of neutral cur-
rents as far back as 1959. t 2 ]

B. Possible manifestations of neutral currents in atomic

physics

We shall now consider, in a purely qualitative fashion,
the effects which may result from the existence of a
weak interaction between electrons and nucleons in
atoms. As in the case of the usual weak interaction,
we shall suppose that this particular interaction has a
very short range, i. e., in practice, it occurs only
when the electron and nucleon are located at the same
point. For the purpose of very approximate estimates,
we shall suppose that the eN weak-interaction constant
is of the same order as the Fermi /3-decay constant

6 = 1Ο-»Λ-, (1.1)
mp

where mf is the proton mass.

To establish the scale of these phenomena, let us
estimate the energy-level shift δΕ due to the weak in-
teraction in the case of the hydrogen atom. Since the
interaction has a short range, this shift should be pro-
portional to the probability density for finding the elec-

tron near the proton, i. e.,
the Bohr radius. Thus,

,10"' MHz

Ι ψ(0) I2 = l/ττα3, where a is

(1.2)

1(It is important to note that, some years ago, the methods of
atomic spectroscopy yielded a result of interest for weak-in-
teraction physics. Thus, measurements of the dipole mo-
ments of cesium,C133 xenon,c l 4 ] and thallium11153 show that the
electric dipole moment d of the electron is subject to the
restriction d/e<2xl0' 2 4 cm. However, this particular set of
problems will not be discussed in the present review.

The level shift due to the weak interaction will, in
general, depend on the angular momentum of the atom.
Hyperfine splitting of the ground state of the hydrogen
atom will therefore change as a result of the weak in-
teraction by an amount of the same order, i. e., 10"4

MHz. Hyperfine splitting in the hydrogen atom can be
measured to within ± 1. 7 x 10-9 MHz [16] which, in itself,
is more than sufficient for the detection of the weak-
interaction effect. However, in the present case, this
precision is of little use. The point is not only the un-
certainty of the theoretical calculations of the hyper-
fine splitting (~ 10'2 MHz), resulting from proton polar-
izability and proton structure due to the strong inter-
actions (see, for example, U 7 3 ) . Even the magnetic mo-
ment of the proton, which is present as a factor in the
expression for the hyperfine splitting, has been mea-
sured to only six significant figures, t l 8 ] which corre-
sponds to an uncertainty of about 10"3 MHz in the inter-
pretation of the hyperfine splitting in hydrogen.

The use of a hydrogen-like system such as muonium
(lie) would facilitate the interpretation of experimental
data because the muon does not exhibit strong inter-
actions, and its magnetic moment has been measured
with a relative precision of about 3xl0 ' e . C 1 9 ] However,
the precision of hyperfine-splitting measurements in
the case of muonium is not, as yet very high [20] (~10"2

MHz). The accuracy is lower still in the case of posi-
tronium.C 2 U

This is a pretty general situation. Even when the
spectroscopic accuracy is, at least in principle, suffi-
cient for the detection of the weak interactions, this
cannot, in fact, be done because of uncertainties in the
interpretation of the results of measurement.

We must therefore resort to effects the very obser-
vation of which would indicate the presence of the weak
interaction. The characteristic feature of weak inter-
actions, which is exclusive to them, is the nonconserva-
tion of spatial parity. In our view, the observation of
nonconservation of parity in atomic physics would place
at our disposal an important tool for investigating weak
interactions. We shall discuss effects of this kind in
the present review.

They include, for example, the circular polarization
of the radiation emitted by unpolarized atoms. Essen-
tially, the point is that the radiation intensity / depends
on the component of the photon spin s r along the direc-
tion η of motion [ s r = - ie* χ e, where e is the photon
polarization vector]. This correlation is characterized
by the product s r · n, which is a pseudoscalar that changes
sign under inversion of the coordinate frame, i. e.,
η η, e— - e . It follows that a relationship of the
form /=/„+/! (sr ·η), i .e., I±=IO±IU where ± refers to
the two directions of circular polarization, would be an
indication of the nonconservation of parity.

Let us now consider in detail the mechanism whereby
pseudoscalar correlations may arise in atomic transi-

221 Sov. Phys. Usp., Vol. 19, No. 3, March 1976 A. N. Moskalev et al. 221



tions. The usual state of atoms is characterized not
only by definite values of the total angular momentum
and its component, but also by definite parity. When
weak interaction is included, parity is no longer an
exact quantum number, and the mixing of levels takes
place, i .e. , the stationary states acquire small ad-
mixtures of states with the same angular momentum
but opposite parity. At the same time, if only one of
the levels participating in an electromagnetic transition
does not have definite parity, the probability of emis-
sion of right and left polarized photons (they transform
one into the other under space reflection) will, in gen-
eral, be different. This will mean the presence of cir-
cularly polarized emission.

The size of the admixture to the station of opposite
parity is measured by (V)/AE, where (V) is the matrix
element of the parity nonconserving potential (see Chap.
2) evaluated between the mixing states and Δ£ is the
energy difference for these states. The matrix ele-
ment (V) contains an additional, as compared with δΕ
[see (1.2)], small factor ~a (a = 1/137 is the fine struc-
ture constant) which is connected with the fact that the
parity nonconserving interaction contains the pseudo-
scalar factor s -p/mc~v/c~ a, where s, p, and m are
the spin, momentum, and mass of the electron, re-
spectively. The mixing factor for states separated by
the normal energy interval AE~E~o?mcz is, therefore

atL
(1.3)

This is, of course, a fantastically small quantity. How-
ever, there are mechanisms in the atom which can en-
hance effects associated with the nonconservation of
parity by many orders of magnitude.

C. Mechanisms for the enhancement of the effects of
nonconservation of parity in atoms

The energy interval between the mixing states of
opposite parity may turn out to be much less than the
characteristic energy of an electron in the atom. From
this point of view, a unique situation occurs in the
hydrogen atom, : 2 · 8 · 2 2 ] where the energies of the wS1/2

and ηΡχ/2 levels with the same principal quantum num-
ber η differ from one another only by the Lamb shift.
For the 2S1 / 2 and 2P 1 / 2 levels, this splitting amounts
to about 10"* of the characteristic energy of the atom,
so that the mixing factor is approximately 10"10. The
mixing of these levels ensures that the amplitude for
the single-photon Ml transition 2 S 1 / 2 - lS 1 / 2 will con-
tain an admixture due to the amplitude of the E\ tran-
sition 2P 1 / E —lS 1 / 2 . Moreover, the amplitudes A± turn
out to be different: A± =A(Ml) ±FA{E1). The result of
this is that the emitted radiation is circularly polarized,
and the degree of this polarization is

|Λ+|»-|Λ-Ι*
A (Ml)

(1.4)

In the present case, the degree of circular polarization
may exceed 10"4. The reason for this substantial addi-
tional enhancement of the effect lies in the high degree
of forbiddenness of the single-photon Ml transition
2S1/2— lS 1 / 2 , the matrix element for which is ~ α2 μ

(μ is the Bohr magneton), so that^4(£l)/A(Ml)~ea/
α?μ~ a"3.

Unfortunately, there are considerable experimental
difficulties in observing this effect in hydrogen. Thus,
on the one hand, the above strong suppression of the
2S 1 / 2 —lS 1 / 2 transition seriously impedes observation
of the corresponding spontaneous emission. On the
other hand, the extreme proximity of the allowed 2P 1 / 2

— lS 1 / 2 transition (the frequency difference between
these transitions, i. e., the Lamb splitting, exceeds
the natural width of the 2P 1 / 2 level by a factor of only
10) means that stimulated single-photon excitation of
the 2S 1 / 2 state, which may also exhibit parity violation,
is not a very realistic prospect.

Effects associated with the nonconservation of parity
in the hydrogen atom will be discussed in greater detail
in Chap. 3.

Similar mechanisms, producing enhancement of par-
ity nonconservation effects, occur in two-electron
ions. [ 2 3 ] These problems are discussed in Chap. 4.

Another mechanism for the enhancement of parity-
violation effects exists in heavy atoms. The modulus of
the wave function for a valence electron near the nu-
cleus increases with atomic number Z, and this leads
to an increase in the mixing of levels with opposite
parities due to the weak interaction between the electron
and the nucleons. This was first noted by Bouchiat124 ]

and means that parity nonconservation effects in heavy
atoms are enhanced so much that their experimental
detection is a more or less realistic prospect.

We must now estimate, at least qualitatively, the de-
pendence of level mixing for outer electrons in heavy
atoms as a function of Z.

In the region r~a (e is the Bohr radius), where the
nucleus is screened by the other electrons, the poten-
tial energy of an outer electron is U~-e2/a. Since
the electron spends most of its time in this region, the
total energy is E~ -ez/a.

On the other hand, when r«aZ~1/3, the screening of
the nucleus is negligible, and the potential energy is
U(r) ~ - Zez/r and its modulus is much greater than the
modulus of the total energy, Finally, tor r«aZ~l, the
wave function φ of the outer electron is quasiclassical
so that, for aZ~1«r«aZ~1/3, it is approximately given
by

4=· (1-5)Ψ (r) ~ -
•VPF)

The coefficient in this expression is independent of Ζ
because, when r ~ a, the wave function must become
identical with the quasiclassical solution in the outer
region, and does not contain Ζ explicitly. Using (1. 5),
we find that, when r ~aZ'1, we have2'

ψ (oZ-1) ~ Zx'\ (1.6)

Since for r«aZ~in, the electron moves in the field
of the unscreened nucleus of charge Z, its wave func-

2)These ideas are borrowed from the book by Landau and
Lifshitz.1251
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tion in this region differs from the hydrogen-type func-
tion only by the normalizing factor, and its argument
is rZ/a. Hence, since for r — 0 the s-electron wave
function ips tends to a constant, and the p -electron func-
tion is ipp~r, we have, using (1.6)

Ψ.Ι-0 ,1/2 ι I -73/2 Τ (1.7)

This increase of the wave function for the valence
electron with increasing Ζ near the nucleus is a well-
established experimental fact. Thus, heavy elements
exhibit large hyperf ine splitting and isotopic level shifts,
which are determined by the behavior of the wave func-
tion in this region.

Using (1.7), we obtain the following estimate for the
matrix element which determines the degree of mixing:

..o~z*. (1.8)

If we consider parity nonconservation effects which
are not connected with the spin of the nucleon, we find
that all the nucleons in the nucleus contribute to these
effects. This results in an additional increase, pro-
portional to Z, in the mixing factor. Finally, one other
enhancing factor which increases rapidly with Z, and
amounts to about 10 in the case of lead, appears be-
cause the motion of the electrons near the nucleus in a
heavy atom is relativistic.

Thus, in heavy atoms, the parity nonconservation ef-
fects increase with Ζ more rapidly than Z3 if all the
nucleons in the nucleus contribute to them, i.e., if
they are not connected with the nucleon spin. In par-
ticular, in the case of cesium (Z = 55) and the highly
forbidden Ml transition 6s 1 / 2-"7s 1 / 2, the amplitude for
which is ~ 10"4 (see Chap. 5 for details), one would ex-
pect a degree of circular polarization of the order of

Gm'a?
~ 10"'. (1.9)

In normal Ml transitions in thallium, lead, and bismuth
(Ζ ~ 80, relativistic enhancement factor ~ 10), we have

Gm'a' Z3-10- • 10"'. (1.10)

Parity nonconservation effects can be observed in
heavy atoms during the excitation of highly forbidden
Ml transitions by photons of different circular polariza-
tion. : 2 4 ] Moreover, the detection of parity nonconser-
vation through the rotation of the plane of polarization
in metal vaporc2e>27:l is fairly realistic. It is quite pos-
sible that experiments with heavy atoms will result in
the course of the next few years in the discovery of a
weak interaction between electrons and nucleons. These
problems are discussed in Chap. 5.

There is considerable interest in the detection of the
weak interaction between muons and nucleons. This
could be found through the effect of parity nonconserva-
tion in μ-mesic atoms, the main properties of which
are similar to those of hydrogen. The muon wave func-
tion is large near the nucleus because the muon mass is
large. Parity violation effects in the radiation emitted
by μ-mesic atoms should therefore also be relatively
large. In some cases, they may amount to a few per-

cent. C26-31 ] Experimental searches for such effects
would appear to be very promising. These questions
will be discussed further in Chap. 6.

2. GENERAL FORM OF THE WEAK INTERACTION

BETWEEN ELECTRONS AND NUCLEONS

A. Fermi theory of β decay

We begin by recalling the fundamentals of the theory
of weak interactions describing processes such as, for
example, the β decay of the neutron

or the decay of the muon

The first variant of /3-decay theory was put forward
by Fermi as far back as 1934. : 3 2 ] Fermi based his
theory on an analogy with electrodynamics.

The interaction between a proton at a space-time
point χ and the electromagnetic field described by the
four-dimensional vector potential A u(x) =(φ, A) is known
to be of the form:

Vem(x) = (2.1)

In this expression, e is the charge of the proton, the
four-dimensional current vector j l i = (p, j) is given by:

/„ (*) = ρ (Χ) Υ μ Ρ (Χ), (2.2)

where p(x) is the proton wave function, and γμ are the
Dirac matrices (we used the metric and the notation
adopted in [ 3 3 ]).

This interaction can be given the following clear in-
terpretation: the initial proton radiates (or absorbs) a
photon at the point χ and becomes the final proton (Fig.
2).

In contrast to the electromagnetic interaction, the β
decay of the neutron involves the participation of four
particles. Assuming that the interaction 3β$ describing
the β decay is local (as is the electromagnetic interac-
tion), i. e., it occurs only when all four particles are
at the same point, Fermi postulated that

H.c, (2.3)

where p(x), n(x), e(x), and ve{x) are the wave functions
for the corresponding particles and G is a constant
characterizing the strength of the interaction.

This expression is the scalar product of two four-di-
mensional vectors. The first of them consists of the
nucleon wave functions and is analogous to the proton
electromagnetic current (2.2). It differs from the
latter only by the replacement of the initial proton by
the neutron, and a corresponding change in the nucleon

FIG. 2.
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charge in the course of the β decay. In this sense, the
quantity j *(x) =ρ(χ)γβη(χ) can be referred to as the
charged vector current. Instead of the potential Αμ(χ),
the interaction given by (2.3) contains the charged lepton
current;^ =e{x)yuve{x), so that the interaction is the
product of the nucleon and lepton charged currents. The
interaction given by (2.3) is essentially that illustrated
in Fig. 1.

Soon after Fermi postulated the interaction given by
(2.3), it was noted that it was not the most general one
possible. There are four other types of interaction
which are invariant under the Lorentz transformation
and space inversion (parity nonconservation was not
known at the time), namely, the product of two scalars

~pn and eve, pseudoscalars py5n and ey5ve {yi = -iyQyiy2.yi),
axial vectors py^y^n and ey^v^ and antisymmetric
tensors pv^jn and eo^ [σμν = (γβγν - γνγμ)/2]. The most
general interaction (without using the derivatives of
wave functions) would be a linear combination of all five
variants.

However, Fermi was very close to the truth. After
the discovery of parity nonconservation in weak-inter-
action processes, it was established that the /3-decay
interaction did, in fact, have the form

3St = -^T= ρ (χ) γμ (1 + γ»)«(χ)' (*) Υμ (1 + γ.) ν, (χ) + H.C, (2.4)

which differs from (2.3) by the replacement of the
charged vector current (nucleon and lepton) with super-
positions of vector and axial vector currents. The in-
teraction given by (2.4) is known as the V-A variant.3 '
As already noted, the constant G is equal to 10"5/»wJ.
As in (2.3), the interaction given by (2.4) is the product
of the nucleon and electron charged currents.

The interactions describing other weak processes,
for example, muon decay or muon capture by the nu-
cleus, can also be written as a product of two charged
currents.

B. Weak interaction of neutral currents

We shall now discuss neutral currents by considering
the example of the weak interaction responsible for
electron-proton scattering. As before, we shall as-
sume that the interaction is local, i. e., that the par-
ticles participating in the scattering process interact
only when they are located at the same space-time point
x. We shall also assume that the interaction is not
necessarily a scalar product of the lepton and hadron
vector and axial vector currents but can contain other
variants, for example, the product of the electron
scalar e(x)e(x) by the proton scalar p(x)p(x).

Finally, we assume that the weak interaction between
neutral currents is similar to the ordinary interaction
in the sense that it is invariant under the combined in-
version of the CP transformation, which consists of the

simultaneous application of charge conjugation C, i. e.,
the replacement of particles by antiparticles, and space
inversion P.

The most general expression for the weak ep inter-
action \p(x), e(x)] which satisfies all the above require-
ments and does not contain derivatives of wave func-
tions can be written in the form

<#„(*) = GsP(z) P (x) e(x) e (x) + GFpyspeyse

(2.5)
The constants G( and G\ (the subscript i identifies the
type of interaction, i. e., i=S, P, V, A, T) in this ex-
pression must be real. This follows from the require-
ment that the interaction $β n(x) =S6nM must be Hermi-
tian. 4 )

In (2.5) only the last two terms are pseudoscalars,
so that the parity conserving interaction is characterized
by the two constants G'v and G'A, and is equal to the sum
of scalar products of the vector and axial proton and
electron currents:

8ft (x) = G\rp (χ) γμρ (χ) e (x)

+G'AP(X) γμγ5ρ (χ)

(x)

χ).

(2.6)

The absence of other parity nonconserving variants of
the interaction is connected with the assumption of CP-
invariance of <$„(*). Consider, for example, the
pseudoscalar ίργφββ. The scalar ee does not change
under space inversion (P-even) and charge conjugation
(C-even)5> and, consequently, is CP-even. The pseudo-
scalar ipy^pee changes sign under inversion, but does
not change under charge conjugation, i. e., it is CP-odd.
Consequently, the above expression is CP-odd as a
whole and should, therefore, be absent from the inter-
action. Similarly, we can exclude all the other P-odd
variants of the interaction other than those shown in
(2.6).

C. Nonrelativistic potential for the P-odd electron-proton
interaction

We shall now s t a r t with (2.6) and derive a nonrelativis-
tic expression for the parity nonconserving potential
for the electron-proton interaction.

In the approximation of an infinitely heavy proton,
when the latter retains only its spin degrees of freedom,
the expressions for the components of the vector and
axial vector proton current have the form

Ρ {x) ΥοΡ Μ = <Ρ? <Ριδ (Γ), ρ {Χ) ΥΡ (Χ) = 0,

ρ (χ) Υ.Υ«Ρ (*) = °. Ρ W ΥΥ»Ρ (*) = -<Ρ/»ϊΦ(δ « : (2.7)

where φ/ and<p{ a r e two-component spin functions for
the final and initial proton and σρ a re the proton Pauli
matr ices .

The components of the vector and axial vector e lec-

3)More precisely, in the nucleon current (2.4), we should re-
place 1 +γ5 by 1 +λγ5. The appearance of the factor λ = 1.25
in front of γ6 is due to the renormalization of the axial-vector
constant by the strong interactions.

4>For example, the term Ggppee becomes G*s[ppee\* = G*sppee
when the interaction is Hermitian, so that it follows that
GS = G%.

5)The transformation properties of Dirac covariants under
charge conjugation are described in detail, for example, inC33].
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tron current in the first approximation in its momentum
are as follows:

e(x) \·β (χ) = —Β- ψ; (r) {V i - V, 4- i [(V, + V,)a]) Ψ,(Γ),

« W 7oW W = " 2 ^ 4V+ W σ (V, - V,) ψ; (r),

e(x)yy5e(x) = — ψΗΌσψ, (r);

(2.8)

where ^(r) and Ψ((Γ) are the two-component wave func-
tions of the electron, m is its mass, and σ are the elec-
tron Pauli matrices. The operators V( and V, act on
Φι and ty, respectively.

Using (2. 7) and (2.8), we can readily show that the
expression given by (2.6) in the first order in the elec-
tron momentum can be reduced to the matrix elements
of the following interaction potential.

Gh3

V{T,a,ap) = - {κ, [σρδ (Γ) + δ (r) σρ]

+ κ2 ΙΚ,ρδ (Γ) + δ (r) σρρ)— i [σ1 Χ Ορ ] (pg (r) _ δ(Γ) ρ)]),

(2.9)
where ρ = - ί% V is the momentum operator and the di-
mensionless constants κ χ and κ 2 are related to G'v and
G'A as follows: G'v = - (G/z 3/cV2) κ u G'A = (GH3/cJ2) * 2 .

The characteristic feature of (2.9) is the presence of
the function 5(r). The potential is nonzero only when the
coordinates of the electron and proton coincide, in ac-
cordance with the original assumption that the four-
fermion interaction was local.

Another characteristic feature of (2.9) is that this
expression depends only on the two constants κ 1 > 2 al-
though it contains (in the linear approximation in the
electron velocity p/m) the three independent CP-in-
variant spin structures

σρ, σρρ and i [o-op] p.

The more general form of the CP-invariant Hermitian
potential in the linear approximation in p/m contains
three independent real constants:

7 (r, σ, σρ) = - Grfl
•{κ,σ(ρδ(Γ

+ κ2αρ (p6 (r) + δ (r) ρ) + ίκ3 [σΧ^] (ρδ (Γ) - δ (r) ρ)}.

(2.10)
The presence of only two independent constants in the
potential given by (2.9) is due to our assumption that the
interaction $i n(x) is made up only of the wave functions
and does not depend on their derivatives.

It is readily shown that the only possible ep interac-
tion with parity conserving but CP-invariant derivatives
is

-~ [G"v (ρσμνδνρ + dyfo^p) f/^e + Gij^YsP («Ί»Αι« + ^«VOl.

(2.11)

where the factor tt/mc is introduced to ensure that the
new constants GyiA have the same dimensions as the
constants G(, G\ in (2. 5) and (2.6). In the limit of an
infinitely heavy proton, the first term in (2.11) is ob-
viously zero and the second leads to the appearance of
a third independent constant in the potential (2.10). The
addition to (2. 6) of terms of the form (2.11) corresponds
to the inclusion of terms of the form of an anomalous

magnetic moment in the vector proton and electron cur-
rents.

The parity nonconserving potential (2.10) is also
valid in the case of the electron-neutron and muon-nu-
cleon interactions.

The constants κ f are still unknown. The aim of the
experiments described below is, in fact, to determine
their values. If the interaction between neutral cur-
rents has a V -A structure (in the same way as the in-
teraction between charged currents) with a Fermi cou-
pling constant (GS = GP = GT=Q, Gr = GA=G'r = G'A=GR3/
V2c), the constants χ { are given by

κ, = - κ , = κ, = - 1 . (2.12)

In the Weinberg model [34] (unified renormalizable theory
of electromagnetic and weak interactions), which is the
most popular at the present time, the constants κ, are
given by

κ ) ρ = -2-(1— 4 sin2θ), κ , η = — ψ ,

••—κ3ρ= — κ27ι = κ 3 η = — - ί ( 1 — 4 sin2 θ) λ. (2.13)

where λ = 1.25 is the axial current renormalization con-
stant and the mixing angle θ is an independent param-
eter of the model. Analysis of the neutrino experiment
on the properties of neutral currents 1 · 1 0 ' u : within the
framework of the Weinberg model yields sin2e = 0.35.

A few words now about the parity-conserving weak
potential. In the nonrelativistic approximation, i. e.,
if we neglect the momentum dependence of not only the
proton but of the electron as well, we can construct
only two scalars, namely, the unit matrix and the
scalar product of the Pauli matrices (σ-σ^). Since the
interaction is local, we arrive at the following expres-
sion for the potential:

V (r, σ, σρ
(2.14)

In the case of the V -A variant, κ 4 = _ κ 5 = ι and the in-
teraction occurs only in the singlet state.

3. HYDROGEN ATOM

A. 2S1/2->1S1/2 transition

We shall begin our quantitative study of parity non-
conservation effects in atoms by considering the single-
photon transition 2S1/2— lS 1 / 2 in atomic hydrogen. By
considering a simple example, we can readily see how
the effects will arise and become enhanced.β)

Let us recall the situation which occurs in the absence of
weak interaction. The 2S 1 / 2 state is metastable. The
electric dipole transition 2S 1 / 2 —lS 1 / 2 is strongly forbid-
den because the initial and final states have the same par-
ities. On the other hand, the electric dipole transition
to the 2P 1 / 2 level, which differs from the 2S 1 / 2 level
only by the Lamb shift, is negligible because of the negli-
gible energy difference (the lifetime for this transition
is 39.6 years). The single-photon magnetic dipole

6)We shall neglect hyperfine splitting throughout this chapter
with the exception of formula (3.13).
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transition 2 S 1 / 2 - l S 1 / 2 is also forbidden in the nonrela-
tivistic approximation. The point is that the matrix
element of the magnetic dipole-moment operator μ = μσ
= (efi/2mc)ff vanishes because radial wave functions with
different principal quantum numbers are orthogonal.7>

The transition is no longer forbidden when relativistic
corrections to the wave functions for the electron and
delayed effects are included. This leads to the appear-
ance of the additional factor ~ i>2/c2 in the amplitude for
the Ml transition, which then becomes ~(v/c)3~ a3, as
compared with the £1 transition 2 P I / 2 - lS 1 / 2 , and not
v/c ~ a, as in the case of the usual Ml transitions. The
total probability of the Ml transition 2 S 1 / 2 - LS1/2

is1 3 5"3 7 3:

.0.25.10"6 sec" (3.1)

and the probability of the El transition 2P 1 / 2 — lS 1 / 2 is

The main mode of decay of the 2S1 / 2 state in the pres-
ence of perturbations (external electric field, atomic
collisions, and so on) is the 2 S 1 / 2 - l S 1 / 2 transition with
the emission of two electric dipole photons. Its prob-
ability1393 is 8.23 sec"1.

B. Mixing of the 2S1/2 and 2Pm levels and circular
polarization of the emitted radiation

If we ignore hyperfine splitting, the only contribution
to the mixing of levels is provided by the first term of
the P-odd potential (2.10), which is independent of the
spin of the proton:

ρ ( Γ ) = _ |? | ί1_ σ -, 1 ρ 6 ( Γ ) + δ ( Γ ) ρ 1 ι (3.3)

whereas the second and third terms are removed when
the average over the proton spin is evaluated. The in-
teraction given by (3.3) conserves the total angular
momentum of the electron, so that it mixes 2S1 / 2 with
only the wP1 / 2 levels, and the amount of admixture does
not depend on the component of the total angular mo-
mentum.

The main contribution to the admixture is provided
by the 2P 1 / 2 level which is separated from the 2S 1 / 2

level only by the Lamb shift:

f» (2Sl/a) -*Ψ η = Ψ™ (2Slh) + if <Fm (2P1/t); (3.4)

where *m(2S1 / 2) and *m(2P 1 / 2) are the nonrelativistic
wave functions for the electron with angular mo'mentum
component m:

— γ = Λ2Ι (r) (σ f ) Xm, (3.5)

Rnl and xm are the radial and spin functions, respec-
tively, and

if*
(2Pm{V\2Sl/2) (3.6)

"The operator for the orbital angular momentum 1 does not
contribute to μ since 1 = 0 in both states.

The matrix element (2P1 / 2IFi2S1/2) can be evaluated
with the aid of (3.3) and (3.5) in an elementary fashion,
as follows:

(3.7)

Since the Lamb shift is A i = £(2S 1 / 2 ) -£(2P 1 / 2 )
= 7.8a5mc2/67r, we have

F = —O.OZQGm^a.-1*! = —1.2 ·10"ιΙκ1. ^ '

The mixing of the 2 S 1 / 2 and 2 P 1 / 2 levels leads to the
circular polarization of the emitted photons because of
interference between the amplitudes for the main
M l ( 2 S 1 / 2 - lS 1 / 2 ) and the added £ l ( 2 P 1 / 2 - lS 1 / 2 ) t rans i-
tions. To calculate it, we note that the M l and £ 1 tran-
sition amplitudes can be written in the form Asa· [ e *
• n] and ΑΡσ·β*, respectively, where σ/2 is the total
angular momentum operator for the electron, e is the
polarization vector of the emitted photon, and η is the
direction of emission of the photon. The quantities As

and_Ap are normalized so that the transition probabili-
t ies (3.1) and (3.2) become Ws = 8n\As\

i and WP

= 8i71Ap 12. The amplitude for the transition between the
state described by the wave function (3.4) to the ground
l S 1 / 2 state is

A = (3.9)

The probability of emission of a photon with polariza-
tion e in the direction η is8 )

W(n, e) =

where

= 1.59-10',

(3.10)

(3.11)

and s r = - i[e* χ e] is the photon spin. The spin of the
photon is in the direction of its momentum for right-
handed polarization (sr ·η= + 1) and in the opposite di-
rection {&, · n = -1) in the case of left-handed polariza-
tion. The degree of circular polarization is therefore
given by1-223

eR)-W(n, eL) (3.12)

The expression for the circular polarization with al-
lowance for hyperfine splitting can be obtained'403 just
as simply if we use the potential given by (2.10) and
the wave functions which include the hyperfine structure.
The result is

p = - (" - + - (3.13)

In this expression, ESF and EPF are the energies of the
2S1 / 2 and 2P 1 / 2 levels with definite total angular mo-
mentum F of the atom. When hyperfine splitting is
neglected [Esl -EP1 and Es0-Ep0~ AL =£(2S1/2)

8)The invariance of the electromagnetic field under time re-
versal and the fact that the transition matrix is Hermitian in
the Born approximation ensure that the phases of the ampli-
tudes As and AP are equal. We shall use this when we
evaluate the trace in (3.10). Moreover, we have neglected in
(3.10) all terms that are quadratic inF.
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-·Ε(2Ρ1/2)], we again have the expression given by
(3.12). In the case of the V-A variant, we have 3 κ λ

+ κ 2 - 2 κ 3 = 0 , and only the energy difference for the
singlet levels is present in (3.13).

C. Parity nonconservation effects in an external magnetic

field

The Zeeman effect ensures that each of the 2S1/Z and
2P 1 / 2 levels splits in a magnetic field into two sub-
levels with m =± 1/2. Because of the difference between
the ^--factors of the 2S1 / 2 and 2P 1 / 2 states (gs=2> gp
= 2/3), the 2S l / 2 and 2P 1 / 2 levels with m=-l/2 are
found to cross when the magnetic field reaches 1.2 kG.
Neglecting the natural linewidths, one would expect
complete mixing of the (2S1/2)m=.1/2 and (2P 1 / 2)m.. 1 / 2

states in this case. However, when the linewidth is
taken into account, it is found that the mixing is much
less than unity. In the expression for the circular po-
larization, the energy factor l/AL, which is present
in the absence of the magnetic field, is now replaced
by the typical dispersion factor

where Ε is the difference between the (2S1/2)m=.1/2 and
(2P1 / 2)m =_1 / 2 Zeeman shifts, Γ is the natural width of
the 2 P l / 2 state (the width of the 2S1/2 state is negligible),
and the factor 1/2 appears because only levels with
m = - 1/2 are involved in the crossing effect. If we
consider the polarization as a function of the magnetic
field (or the quantity &L-E, which is a linear function
of the magnetic field), we find that the polarization in-
creases, reaching its maximum for AL - Ε = Γ = Γ/2.
It vanishes at the point of level crossing. The maxi-
mum polarization is found to be enhanced, as compared
with its value in the absence of the magnetic field,
roughly by a factor of (1/2)ΔΧ/Γ~ 5.

To avoid misunderstanding, we must introduce the
following word of caution. Photons connected with the
emission of a particular Zeeman line (for example,
m = - 1/2) and emitted in the direction of the magnetic
field are, of course, 100% circularly polarized. In the
present case, however, photons from the 2S1/2, m =-1/2
level are recorded together with photons from the 2S1/2,
m = +1/2 level because the Zeeman energy difference is
very small. Thus, despite the presence of the mag-
netic field, we are dealing with an unpolarized initial
state, so that the polarization of the photons is con-
nected exclusively with the weak interaction.9>

The external magnetic field leads to the appearance
of one further effect connected with parity nonconserva-
tion, namely, an asymmetry in the emission of photons
relative to the direction of the magnetic field H, i. e.,
a correlation of the form 1 + A(H) cosa. The coefficient
A(H) vanishes for H=0, and is almost equal to the cir-
cular polarization of the photons in the neighborhood of

the level crossing.

In addition to the above effects, the inclusion of the
magnetic field leads to the following new possibility.
When the S and Ρ levels with m - —1/2 approach one
another sufficiently closely, hyperfine splitting must be
taken into account. It then turns out that if the weak in-
teraction is of the V —A form, we have the mixing of
only the S and Ρ states with total angular momentum
component mF =0, and if the interaction is of the form
V +A, then states with mF = — \ are found to mix. If
the weak interaction is a mixture of V -A and V + A, or
has some more complicated matrix form, then S and
Ρ states with both m F = 0 and - 1 are found to mix. Thus,
by studying the polarization or the asymmetry as func-
tions of the magnetic field, we can, at least in principle,
establish the form of the weak interaction (magnetic-
field effects are discussed in greater detail inC40]).

D. Electric dipole moment of a metastable state

It is well known that CP (or T)-invariance ensures
that a stable particle of spin s cannot have an electric
dipole moment even when parity is not conserved. The
usual argument pan be reduced to the following. When
parity is not conserved, the electric dipole moment d
can only be parallel to the particle spin, i. e., d = eZs/s,
where s is the maximum component of the spin and I is
a parameter with the dimensions of length. However,
interaction with the electric field, d • Ε = el(a/s) • E, vio-
lates not only parity (s · Ε is a pseudoscalar) but also T-
invariance in the same way as in the case of time in-
version t~-t: E - E a n d s - - s .

Ya. B. ZerdovichUl] was the first to point out, how-
ever, that these arguments could not be extended to un-
stable particles. An excellent example of this is the
fact that the metastable 2S1/2 state has an electric di-
pole moment if the 2P 1 / 2 level mixes with it as a result
of parity nonconservation.

In the case of the mixing of the 2S1/2 and 2P 1 / 2 states
which we considered above [see (3.3)-(3.8)], we re-
garded these states as stationary and ignored the fact
that they might be unstable. To take this into account,
we must introduce the substitution £(2P1 / 2) — £(2P1 / 2)
-iV/2 in the mixing factor given by (3.6), where Γ is
the width of the 2P 1 / 2 state (the width of the 2S1/2 level
can be neglected).10' As a result, the mixing factor iF
[see (3.6)-(3.8)] is modified as follows:

if -+ir ir Δ ί _ Η _ ί ( Γ / 2 )

and the perturbed states * m have the form

(3.14)

m (2s1/2) (2P I / 2 ) .

The dipole moment of the electrons in this state is

{er)m= j d W i ^ m = i ( F - F * ) / 3 r a x > X m . (3.15)

9>More precisely, the probabilities of the different Zeeman
transitions will be slightly different because of the difference
between their frequencies. This leads to a circular polariza-
tion of about 10"6.

10)The rigorous approach involves the application of perturba-
tion theory in the weak interaction in the continuum of sta-
tionary states. The 2ί>1/2 state is then looked upon as a
resonance in the system consisting of the stable lSl/2 state
plus a γ photon.

227 Sov. Phys. Usp., Vol. 19, No. 3, March 1976 A. N. Moskalev et at. 227



In evaluating this integral, we use the explicit expres-
sions given by (3.5) for the wave functions. From
(3.14), we have

A = eF-£-VZaa. (3.16)

The corresponding length is Z=V3~F(r/Aja«-1.0
χ ΙΟ"80 κχ cm. The factor Γ/Δ£ is a characteristic fea-
ture of (3.16). The dipole moment vanishes during the
transition to the stable state. The existence of the di-
pole moment (3.16) leads to a linear Stark effect be-
cause of the interaction d · E, i. e., to the removal of
degeneracy with respect to the sign of the spin compo-
nent in the electric field.[423 Unfortunately, this effect
is exceptionally difficult to observe in hydrogen be-
cause of the rapid deexcitation of the 2S 1 / 2 state in the
external electric field, which is also due to the close-
ness of the 2P 1 / 2 level.

E. What prevents the observation of parity

nonconservation?

We shall now consider some of the factors which
impede the experimental investigation of parity non-
conservation in the hydrogen atom. We shall be mainly
concerned with the spontaneous 2 S 1 / 2 - lS 1 / 2 transition
because, as we have already noted in Chap. 1, the sti-
mulated 2S 1 / 2 »=* l S 1 / 2 transition in hydrogen is practi-
cally impossible to investigate because of the close-
ness of the 2P 1 / 2 level. When the 2 S 1 / 2 - l S 1 / 2 + γ
spontaneous emission process is observed (for example,
with the aid of the atomic-beam technique), the influ-
ence of the 2P 1 / 2 — l S 1 / 2 + γ transition is unimportant
because the 2P 1 / 2 state, which has a short lifetime
10"9 sec) is rapidly deexcited.

One of the main practical difficulties preventing the
observation of parity nonconservation is the two-photon
transition 2S— IS, the probability WZr of which exceeds
the probability Ws of the single-photon transition by a
factor of 3xlO6. This means that the necessary statis-
tics is difficult to achieve. Moreover, the photons from
the two-photon transition, the energy of which is close
to the energy difference between the 2S and IS states,
produce a background which reduces the degree of cir-
cular polarization. To avoid this background, we must
isolate the radiation in a relatively narrow frequency
band, defined by Αω/ω~Λ/Ψε/ΨΖγ~10-3.

Another serious problem is the necessity for screen-
ing from random external electric fields which produce
Stark mixing of the 2S and 2P states. In contrast to
the mixing by weak interaction, Stark mixing does not
in itself lead to circular polarization. However, it does
increase the probability of the single-photon transition
which, in the end, leads to a reduction in the degree of
polarization. To avoid this, the probability of deexci-
tation of the atoms as a result of the admixture of the Ρ
state should not exceed the probability Ws of the single-
photon transition. Hence, it follows'403 that the exter-
nal electric field must satisfy the condition £^10"5 V/cm.

If, in addition to the electric field, there is also an
external magnetic field H, the parity nonconservation
effects may be simulated, for example, by the appear-

ance of circular polarization proportional to the pseu-
doscalar (Ε ·Η). If the electric field is restricted by
the condition Ε < 10'5 V/cm, the restriction on the mag-
netic fieldUo3 is HSl G. If the proposed experiment is
to involve a high external magnetic field ~ 1 kG (see
Chap. 3), the restriction on the random external elec-
tric field becomes very stringent: Ε S 10"9 V/cm.

F. Hydrogen-like ions

The above discussion of parity nonconservation ef-
fects in the hydrogen atom can readily be extended to
the case of hydrogen-like ions. The dependence of the
various quantities defining the effect on the nuclear
charge Ζ (in the lowest approximation in Zot) is

WS~Z>°, WP~Z<; W^ · (3.17)

Hence, in hydrogen-like ions, the circular polarization
of radiation emitted as a result of the 2S 1 / 2 — lS 1 / 2 tran-
sition will decrease with increasing Z:

However, the observation of the 2S 1 / 2 — l S 1 / 2 + γ transi-
tion itself is then a more realistic proposition because
its probability rapidly increases (more rapidly than the
probability of the background two-photon transition).
At the same time, the restrictions imposed on the ex-
ternal field become less stringent. Figure 3 shows the
circular polarization Ρ and the probabilities Ws, Wiy

for hydrogen-like ions. [29]

4. TWO-ELECTRON IONS

A. Mechanisms for the appearance of circular polarization

The mechanisms that enhance parity nonconservation
effects, which we discussed in the case of the hydrogen
atom (highly forbidden main transition and closeness of
levels with opposite parities), can also be used for two-
electron systemsC23] such as, for example, the helium
atom and helium-like ions. Electromagnetic transitions
in such systems have recently been investigated with
great success as a result of the application of the beam-
foil technique. t43] We shall consider electromagnetic
transitions from singly excited states of the form (Is,
ws) and (Is, np). We shall designate these states as
rP'^Lj, where η and L are the principal quantum num-
ber and the orbital angular momentum of the excited

/ W 20 50 . Ί0

FIG. 3. Probabilities of the
2S — IS transitions (solid
lines) and circular polariza-
tion of photons (dashed line)
in hydrogen-like ions.
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electron, respectively, and s and J are the resultant
spin and the total angular momentum of the two elec-
trons.

Consider a single-photon transition from the meta-
stable 2 % state to the ground Vs0 state. If the nu-
cleus has zero spin (as, for example, in the case of the
He4 atom), the total angular momentum J of the electron
shell is a good quantum number, and the single-photon
transition 21S0— I^SQ is strictly forbidden because it is
a 0-0 transition. However, if the nucleus does not have
zero spin, the quantity which will be conserved will be
the total angular momentum of the ion F = J +1, where
I is the nuclear spin. Because of the hyperfine inter-
action between the magnetic moments of the nucleus and
of the electron, the wave functions for the stationary
states will be superpositions of wave functions with the
same total angular momentum F, the same parity, and
different J. In particular, the 21S0 (F=l) state will
acquire an admixture due to the nearest state of the
same parity, i .e., the 23S1 (F = I) state, which may go
over to the ground 11SO state with the emission of a
single photon. This transition is an Ml transition which
is doubly forbidden for the same reasons as the 2S~ IS
transition in hydrogen-like systems. Its amplitude is of
the order of ~ (aZ)z as compared with the amplitude for
the allowed Ml transition. t 3 7 ' 4 4 > 4 5 ] Because of this and
because of the small admixture of the 23S1 state, the
single-photon transition 21S0 — I^SQ has an exceedingly
low probability.

The inclusion of the weak interaction between the
electrons and the nucleus opens another possibility of a
single-photon transition from the 21S0 state. The weak
interaction will mix the 21S0 state with other states
having the same total angular momentum F = I but dif-
ferent parity (P states), so that the latter can partici-
pate in transitions to the ground state with the emission
of El photons. Altogether there are four Ρ states with
η =2 and F = I C-Pu

 3P0, and 3P 2), and the weak interac-
tion can mix all of them with the 21S0 state. However,
the admixture of the 3PQ state is of no interest to us be-
cause this state decays to the 11SO level by a single-
photon transition (0-0 transition). The admixture of the
3 P 2 state is also of little interest because the 2 3 P 2 - 11SO

transition is an M2 transition which does not interfere
with the main Ml transition and does not lead to parity
nonconservation effects in the first order in the con-
stant G. Of the two remaining states, 21Pl and 23P1 ;

the admixture of the former plays the main role in most
ions. The transition probability between this state and
the ground state is high :46] (this is an allowed El tran-
sition). The 23P t admixture usually plays a minor role
since the £1 transition 23P t - 11SO is highly forbidden
because the 3 P t state has a spin s = 1, whilst, in the
ground state, s =0. The dipole-moment operator does
not act on the spin functions and, in the nonrelativistic
approximation, the amplitude for this transition is zero.
The inclusion of relativistic corrections (spin-orbit
coupling) ensures that this transition is possible1"47·48]

but, roughly speaking, its amplitude is of the order of
(aZ)z as compared with the amplitude for the allowed
El transition 21Pl — I ^ Q . Nevertheless, for some ions,
for example, C13 V, Nie l XXVII, Cu63·65 XXVHI, the

admixture of the 23Ρλ state is anomalously large be-
cause of the closeness of the 23P t and 21S0 levels (see
below) which compensates the suppression of the 23P1

— 11SO transition. In these and the neighboring ions,
allowance for the 23PX mixture is important.

Thus, hyperfine and weak interactions ensure that
there are two possible branches of the single-photon
transition from the 21S0 state to the I'SQ state. They
differ by the multipolarity of the emitted photon:

Hyperfine
2»S,

, 2V,

Interference between these transitions leads to circular
polarization of the emitted radiation.

B. Estimated size of the effect

We shall write the amplitude for the single-photon
21S0 - l^o transition in the form

lAh (4.1)

where Au is the amplitude for the Ml transition 23S1

- 11SO and A% (s =0, 1) is the amplitude for the £1 tran-
sitions from the singlet (s =0) and triplet (s =1) states

22s+ipi _ 1 i S ( ) > T n e qU a ntity Η characterizes the admix-
ture of 23St to the original 21S0 state due to the hyper-
fine interaction, and the constants iFs represent the
admixture of the 22 s + 1P1 states due to the weak inter-
action. The probability W of the single-photon 2lS0

— I'SQ transition and the degree of circular polarization
Ρ of the emitted photons are given by the following
formulas:

( s = 0 · 1 ' · (4.2)

where WM, W°E, and Wg are the probabilities of the tran-
sitions from the 23Si, 2'Ρ 1 ; and 23P t states, respec-
tively. Let us consider the various quantities in (4.2),
and begin with the mixing factors H, Fo, and F1. We
shall confine our attention to simple estimates of these
factors and will write the wave functions for the ions in
the form of suitably symmetrized products of hydrogen-
like functions. This approximation is known to be valid
when effects associated with the screening of the nuclear
charge are neglected, i. e., if we ignore corrections

In the nonrelativistic approximation, the potential for
the hyperfine interaction between electrons and the nu-
cleus can be written in the form

= Ί Γ - ^ $ r < σ ' Ι δ <Γ (4.3)

where <J{ are the Pauli matrices for electrons (i = l, 2),
I is the nuclear-spin operator, g is the gyromagnetic
ratio for the given nucleus, and m, mp are the electron
and proton masses. The admixture of the 23SX state
can be calculated from the formula
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The potential for the weak interaction between the elec-
trons and the nucleus can, in view of (2.10), be written
in the form

Gh*

Vw = Vw (1) + Vw (2),

{(Ζκ,ρ + iVxln) a, [ρ,δ (r,) + δ (r,) P i ]

ρ + Xj.s») [ρ,δ (r,) + 6 (r,) P i ]

i ; , ( i = l , 2);

(4.5)
here Ζ, Ν is the number of protons and neutrons in the
nucleus and ŝ  and sn are the sums of spins of all the
protons and all the neutrons, respectively. The term
in (4.5), which contains H 1 P and κ1 π, is independent of
the nuclear spins and conserves the total angular mo-
mentum J of the electron shell so that, in general, it
does not contribute to the 2lP1 and 23P1 admixtures to
the 21S0 state. The terms including κ ^ and xZn do not
contain the electron spins and they do not, therefore,
mix the triplet 23P1 and singlet 21S0 states. Conversely,
terms including x3p and κ 3 η do affect the electron spin
and do not contribute to the 2lP1 admixture. Thus, the
quantity Fo depends only on ν.ζρ, κ 2 η , and ί\ on * 3 ί and

1 1 1

ί/', = (22·+1Λ, F = I\Vw\2iS0,

\E"W = Ε (2'50) -E (2 a"'/' 1),

F.= - Gm?
•(αΖ)*-

Gml· m i 1 —

.2, 3);

(4.6)

where sp and s are the reduced matrix elements of the
spin operators s, and sn between the nuclear wave func-
tions. 1 2 ' It depends not only on the nuclear spin /but
also on the structure of the nucleus. By Pauli's prin-
ciple, sp is zero for nuclei with an even number of pro-
tons and of the order of unity (and not Z) for an odd
number of protons. Similar qualitative conclusions can
be drawn with regard to sn.

Let us now consider the energy denominators in the
expressions for the mixing factors given by (4.4) and
(4.6). Figure 4 shows the level spacing as a function
of the nuclear charge Z. It is based on calculations of
the spectra of two-electron ions. U 9 - 5 U it is clear from
this figure that the quantities AEH=E(21S0) -£(23S t) and
AE^=E(21S0) - £ ( 2 ^ ) are monotonic functions of Z,
and AEH-(0.5-1.2) Ζ eV, AE,£~ (0.3-1. 5)Z eV. Hence,
we find that the order-of-magnitude estimates for the
mixing factors are H~10-*Zz, F0~lQ-liZ3 κ 2 .

An interesting situation occurs in the case of the en-

U )This distinguishes two-electron ions from hydrogen-like
systems or heavy atoms, where most of the parity noncon-
servation effects are determined by the constants x^, χ№.
Experiments with helium-like ions are therefore of indepen-
dent interest.

12)The reduced matrix element is defined by (IM'\(BPin)lt\lM>

ΊΟ

0

-20

-hO

•

- / \ ,

- V

20

FIG. 4. Energy difference be-
tween levels with η = 2 in two-
electron ions.

ergy difference ΔΕψ between the 21S0 and 23Ρ1 states.
These levels are always close to one another. In the
helium atom, the 21S0 state lies below the 23PU and, as
Ζ increases, these levels cross twice. This occurs for
the first time near Ζ = 6 (the C V ion), and the second
time between Ζ = 28 (Ni XXVII ion) and Ζ = 29 (Cu XXVIII
ion). The energy difference ΔΕψ for these ions is
anomalously low, and the factor Fj, relatively large
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For values of Ζ well away from the crossing points, the
factor F^ is greater by one or two orders of magnitude
as compared with Fo. To estimate the parity noncon-
servation effects, all that now remains is to consider
the probabilities of transitions from the admixture
states (Wu, Wg, and Wj). These probabilities were
calculated in 1 3 7 · 4 4- 4 8 1 and are plotted in Fig. 5. For ap-
proximate estimates of Wu and W%, we can use the for-
mulas obtained with the aid of the hydrogen-like func-
tions13»:

(4.8)W% as ^ a (aZ)4 -^p- » 1.25- 10»Z» sec"

The probability Wj is approximately proportional to
Z8 for large Z.

We can now use (4.2)-(4.6) to calculate the probability
of the single-photon 2 1 S 0 - l^o transition and the cir-
cular polarization of photons emitted as a result of this
transition. The results of the calculations for some
two-electron ions are shown in Table 1. As can be
seen, the probability of the 21S0 - 11SO transition in-
creases rapidly with increasing Ζ (roughly as Z 1 4 ) .
The circular polarization due to the 21P1 admixture
falls in accordance with the formula P 0 ~2xl0 ' 3 Z" 2 x 2 .
The circular polarization P1 associated with the 23Pl

admixture varies irregularly with Z. For the C V ions

1 3 )For more accurate estimates, Ζ in (4.6)—(4.8) must be re-
placed by Zett = Ζ—σ, where σ represents the screening of
the nuclear charge by the inner Is electron (σ~ 0.8-0.9).
This correction is important for small Z. In (4.4), we have
Zeti~Z because the main contribution to Η is provided by the
Is electron for which the screening by the outer electron is
small.
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and heavy ions with Ζ ~ 30, we have Px ~ 10"4 * 3 and this
determines the total circular polarization of the radia-
tion.

Since the energy difference between the S and Ρ states
is relatively large, the restrictions on the external elec-
tric and magnetic fields, which impede the observation
of parity nonconservation effects, are much less strin-
gent in two-electron ions than in the hydrogen atom. On
the other hand, for the same reason, it is practically
impossible to use the Zeeman level shift in a magnetic
field in order to enhance the parity nonconservation ef-
fects (see Chap. 3). In the most favorable case (the
C13 V ion), the crossing of the 21S0 and 2 3P t ( m ^ - 1 )
levels would require a magnetic field of ~ 10e G. It is
true that, since the width of the 2iP1 level in C13 V is
small in comparison with E\, (Yp ~ ΙΟ"6 ΔΕψ ) , the degree
of circular polarization Pl in this field can, at least in
principle, be made to be of the order of unity.C23]

Measurements of parity nonconservation effects en-
counter serious difficulties in the case of two-electron
ions because the single-photon 21S0 — 11SO transition is
exceptionally highly suppressed. The lifetime of the
metastable 21S0 state in two-electron ions is determined
mainly by the two-photon transition, the probability of
which is estimated from the formula137"441 WZr

= 16.4Z° f f sec - 1 (see Fig. 5). The relative probability
of the single-photon 2 1 S 0 - 11SO transition, i. e., W/WZr,
for ions with Ζ S 10 does not exceed 10-1° (see Table 1),
which presents a serious difficulty for the observation
of this transition. Moreover, to ensure that the two-
photon transition background does not reduce the cir-
cular polarization of the photons, the radiation must be
observed in an exceedingly narrow frequency interval
defined by Αω/ω~[χν/ψΖγ]

1/ζ. For example, in the case
of the C V ions, we must have Δω/ω S 10"6. For ions
with large Z, these restrictions become less stringent.

5. HEAVY ATOMS

A. Calculation of the mixing of levels with opposite
parities

As already noted in the Introduction, the mixing of
levels with opposite parities due to the presence of the
weak interaction between electrons and nucleons in-
creases rapidly with Ζ in heavy atoms. We must now
estimate this mixing quantitatively. Since, in this case,
relativistic effects are important, the parity noncon-

If.sec

FIG. 5. Probabilities of
radiative transitions in two-
electron ions.

W W ΐ

TABLE 1. Parameters of the 21S0 —
tion in two-electron ions.

ι transi-

Ions

H e M
C" V
F1» VIII

C u « XXVIII

EeV

20.61
304.3
731.8

8347

W, sec '

2.0-10-14
2.2-10-8
1.0-10-4

1 Po l/»2

2-10-4
10-4

2-10-5
2-10-e

1 Pi l/><3

10-'
3-10-4

10-5
3-10-4

4.10-ie

2-10-"
6-10-s

serving interaction between a relativistic electron and
the nucleus will be written in the form

), ·,
(5.1)

This expression is obtained from (2.6) in the approxi-
mation of infinitely heavy nucleons and a point nucleus.14)

The summation in (5.1) extends over all the Ζ protons
and the A - Ζ neutrons in the nucleus.

To evaluate the matrix elements for the interaction
(5.1), we shall need the electron wave functions in the
neighborhood of the nucleus. The relativistic wave
function for an electron with total angular momentum j ,
orbital angular momentum I, and component of total
angular momentum m has the form

1 ( i/ g"'(r
11 W Sjto (5.2)

where Sljlm is the spherical function including spin. For
distances r«aZ~l/3, where the Coulomb field of the
nucleus may be looked upon as unscreened, and the total
energy can be neglected in comparison with the poten-
tial, the radial wave functions can be expressed in
terms of Bessel functions, as follows:

/-«('•)·

(5.3)

In these expressions, we use the notation:

-0+4-) for i = z+4··

for ; = i— -y ,

As r — 0, we have

Za

Γ(2ν+1)
(5.3a)

To determine the normalizing constant cnjl, we note
that when r»aZ'1, the radial function gnj,(r) must be-
come identical with the usual quasiclassical solution of
the nonrelativistic SchrSdinger equation

(5.4)

14>The four-fermion interaction (2.11), which includes the deriv-
atives, will not be considered in this chapter.
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where

r! is the turning point and φ is the constant phase. The
constant bnl can readily be found by recalling that the
main contribution to the normalizing integral is pro-
vided by the quasiclassical region between the two turn-
ing points τχ and r2, so that

( 5 · 5 )

Differentiating the Bohr quantization rule for the radial
motion

= χ(η, + Ά (5-6)

with respect to nr, and remembering that k(rx 2) =0, we
find thatC52:

m dEni
*(r)

Hence,

, , 2m dEn, 2_J_
n'~ πΛ2 dnr πν 3 ο2 '

(5.7)

(5.8)

Here, we have used the phenomenological expression
for the energy of the outer electron

£ , ( = _ J 5 | L . T (5.9)

where u is the effective principal quantum number:
ν =nr+l +1 - σ, =n - ση and the quantum defect σ, is a
slowly varying function of nr for given I. It is readily
seen that, as nr increases, the atom becomes increas-
ingly hydrogen-like in character, so that σ, must fall.
As a result, allowance for this dependence should lead
to an increase in the calculated degree of level mixing.

Comparing (5.3a) with (5.4) for aZ~1«r«aZ -1/3

we see that

κ -. / " πα , •, / 1 x
= W K -2-*"' = K av3 |x| ·

(5.10)

The wave functions found in this way can be used to
show that the only nonzero matrix element which does
not conserve parity in the interaction between the elec-
tron and the nucleon (other than the Hermitian conjugate)
is given by

<sl/2 | H I Pl/2> =

(5.11)

where F is the total angular momentum of the atom and
gt is the proportionality factor between the nuclear ma-
trix elements of the operator Σ and the nuclear spin I.
It is related to the quantity κ 2 [see (4.6)] by the formula
gI = 2[l(I + l)]~1/zyi2· The divergence which appears in
the course of the calculation of the matrix element of
6(r) with the relativistic functions is removed by in-
troducing a finite nuclear radius r 0 = 1.2xl0~13.Al/3 cm.
The relativistic enhancement factor R is then given by

'(5.12)

It can be shown that more accurate allowance for the
finite size of the nucleus has little effect on R. This
factor increases rapidly for large Z, varying between
2.8 for cesium (.£ = 55) and 9 for bismuth (Z = 83).

Finally, the quantity q is determined by the form of
the weak interaction between the electron and the nu-
cleon. To be specific, calculations of this parameter
will be carried out within the framework of the Wein-
berg model1·34-1 in which

Ϊ = 1 - A/2Z - 2 sin2 (5.13)

For heavy atoms and sin20 = O. 35, it turns out that q
amounts to - (0.8-0.9).

We note that it is readily shown that not only the first
but also the second term in the Hamiltonian given by
(5.1) will not lead to the mixing of the s 1 / 2 and p3/z

states.

A more sophisticated but also more complicated cal-
culation of the mixing of levels of different parity is
given in t 3 1 j and leads to results which differ from (5.11)
by only a few percent. A method of calculation close to
that which we have used here is given in the review.C53]

After this general review, we must now consider pos-
sible experiments on the detection of parity nonconser-
vation in heavy atoms.

B. Nonconservation of parity in stimulated doubly-
forbidden ΜΛ transitions

The first experiment on the nonconservation of parity
in heavy atoms was proposed by Bouchiat. t24] It in-
volves a search for the circular polarization of photons
in the doubly forbidden Ml transition 6s 1 / 2—7si / 2 in
cesium (λ = 5395 A). The cesium level scheme is shown
in Fig. 6.

We must now estimate the expected magnitude of the
effect. Let us begin with the matrix element for the M\
transition. It is shown inC 3 1 i S 4 ] that neither relativistic
effects similar to those which occur in the hydrogen
atom (see Chap. 3) nor the mixing of terms due to the
hyperfine interaction are important in this case. The
main mechanism for the 6s-7s transition is configura-
tion mixing. On the other hand, this phenomenon en-
sures that the ,g--factor for the 6s electron in cesium
differs from the ̂ -factor for the free electron. t 5 5 J The
residual Coulomb interaction between the electrons,
which is not taken into account in the effective potential,
ensures that the 6s 1 / 2 and 7s 1 / 2 states contain an ad-
mixture of states with an additional βρ electron and a

7P,/2

FIG. 6. Low-lying levels of Cs.

Γ2(2Υ + 1)
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hole in the 5p shell. The large spin-orbit interaction of
this hole leads to corrections to the ^-factor for the
6s 1 / 2 and 7s 1 / 2 terms, and ensures that the 6s 1 / 2 -7s 1 / 2

transition is allowed. The matrix element for this tran-
sition isL 3 1 l 5 4 ]

Μ = βμ (σ),

1 ί\Α7); (5.14)

where ζ(5ρ) is the spin-orbit interaction parameter for
the hole in the 5p shell, Ε is the excitation energy for
the 5/> electron, which is much greater than the differ-
ence between the 6si / 2 and 7s 1 / 2 levels (so that the latter
difference and the hyperfine splitting of the hole level
can be neglected), and F and G are the Slater integrals

s, 5p; 6s, 6p),

s, 5p; 7s, 6p),

8, 5p; 6s, 6p),

s, 5p; 7s, 6p),

6 = Gi(6s, 5p; 6s, 6p),

7 = G,(6s, 5p; 7s, 6p),

6 = G,(7s, 5p; 6s, 6p),

, = G,(7s, 5p; 7s, 6p).

(5.15)

In the foregoing expressions we use the notation adopted
in156·1. To estimate β, it is convenient to compare it
with the correction to the ^-factor for the valence elec-
.tron in cesium. Experiment shows thatr[57]

= 1.1.10-*.

The theoretical prediction for this i

(5.16)

(5.17)

To find the relation between the different Slater inte-
grals, we note that, at distances that are characteris-
tic for the electron, the energies of the 6s and 7s elec-
trons can be neglected in comparison with the potential,
so that the ratio of the wave functions for the valence
electron in this region is equal to the ratio of the nor-
malizing coefficients [see (5.4) and (5.8)]:

\3/2 /1,9 \ 3 / 2 _ n K J ( 5 1 8 )

Accordingly,

Fn as Fel as O.I

Ge7 « 0.51GM,

0 · 5 1 ·

Fj, = 0.26iV

G77 as 0.51G7e. (5.19)

Finally, there is no reason to suppose that the integrals
G6e and Gn are essentially different. Assuming that
they are equal, and using (5.14), (5.16), (5.17), and
(5.19), we find that 1 3 1 · 5 4 J

β «f 10-*. (5.20)

Once the admixture of the n'pi/z states to the 6s 1 / 2

and 7s 1 / 2 states has been calculated with the aid of
(5.11)-(5.13) [the term independent of Zq in (5.11) can
be neglected], all that remains is to determine the ma-
trix elements for the El transitions ns-n'p. This can
be done by the Bates-Damgaard method,C 5 8·5 9 3 which
reduces to the use of hydrogen-like wave functions for
the outer electrons. It is well knownL6o:l that, in the
case of cesium, this approximation results in excellent
agreement with experiment.

It is important to remember, however, that the
Bates-Damgaard tables were compiled on the assump-
tion that all the radial wave functions were positive for
r~ °°. Moreover, in the calculation of the s and p level
mixing, we assumed that the corresponding wave func-

tions were positive at the origin. It is clear that their
sign for r~ °° is then determined by the factor (-1)"',
where nr is the radial quantum number. The numbers
in the Bates-Damgaard tables must therefore be multi-
plied by the further factor (- l)"r*nr.

Since the dipole matrix elements decrease rapidly
with increasing difference between the effective principal
quantum numbers of the initial and final states, the
main contribution to the effect is, in practice, given by
the admixture of the 6/>1/2 and 7/>1/2 states to the 6s 1 / 2

state, and the admixture of the 6p 1 / 2 to the 7s 1 / 2 state.
Simple estimates based on experimental values of the
oscillator strength for cesium show that allowance for
all the other states, including the continuum, can hardly
affect the result by more than a few percent. The so-
called autoionization states, which appear during the
excitation of closed-shell electrons, require separate
analysis. Experimental data on the corresponding tran-
sitions in cesium are insufficient for any meaningful
estimates of their contribution. Theoretical estimates
indicating that the contribution of the autoionization states
is small are reported in [ 3 i : l. The same conclusion fol-
lows from analysis of the polarizability of xenon, which
is determined by the dipole matrix element for the ex-
citation of an electron in the filled 5p shell.

We have thus outlined the essence of the calculation
which leads to the following result for the circular po-
larization of photons from the 6s—7s transition in cesium:

P«10-4- (5.21)

Bouchiat has proposed the following method for mea-
suring this effect. l z i l A tunable laser operating at λ
= 5395 A is used to excite the 6s 1 / 2 -7s 1 / 2 transition in
cesium vapor. The fluorescence photons from the
7s i / 2 -6£ 1 / 2 transition are recorded (see Fig. 6). If
parity is not conserved, the probability of excitation of
the 6s-7s transition and, consequently, the number of
fluorescence photons will vary with the sign of the cir-
cular polarization of the incident radiation. The rela-
tive magnitude of this effect will, clearly, be equal to
the degree of circular polarization Ρ [see (1.4)].

Of course, a necessary preliminary stage for this
very complicated experiment is the experimental deter-
mination of the amplitude for the doubly-forbidden Ml
transition under consideration. So far, the very in-
genious experiment described in1·1·1 has succeeded in
yielding only the following upper limit for this ampli-
tude [see (5.14) and (5.20)]

β<3-10-4. (5.22)

A curious situation, resembling that discussed in
Chap. 4, occurs1131 ] in the odd isotope Pb2 0 7. Because
of the hyperfine interaction, the 6/>2 3 P 0 and 6/>2 1S0

states contain an admixture of the 6pz 3 P t state, so that
the Ail transition between the perturbed levels, 3 P 0 -
'So (λ = 3394 A), becomes possible. The parity non-
conserving interaction, which depends on the nucleon
spin [see the second term in (5.1)], leads to a circular
polarization of the radiation emitted as a result of the
transition and, according to the Bouchiat estimates, [ 5 1 J

this amounts to P~6xlO"4. The parity nonconservation
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effects in the highly forbidden Ml transition are con-
sidered in t 5 3 J.

In conclusion of this section, we emphasize that we
have been concerned with searches for small circular
polarizations in transitions which are so highly for-
bidden that they have not as yet been observed experi-
mentally.

C. Rotation of the plane of polarization in heavy-metal
vapors

A more realistic possibility from the point of view of
the detection of parity nonconservation in atomic transi-
tions is provided by the rotation of the plane of polar-
ization in heavy-metal vapor. t 2 e ] The fact that parity
nonconservation results in the optical activity of a
medium was first noted by Zel'dovich.C2]

Let us now consider some possible experiments on
the rotation of the plane of polarization. The refrac-
tive index for right- and left-handed photons near
resonance at frequency ω0 will be written in the form

* h \a-a^-ii>le)aHl+HT№) /·

In this expression, JVis the density of atoms in the
medium and Γ is the width of the excited state. The
operator M± for dipole transitions is equal to the corre-
sponding component of the dipole moment. The bar
over the symbol in (5. 23) represents summation of the
square of the matrix element over the final polariza-
tions of the atoms and averaging over the initial polar-
izations. Angle brackets represent averaging over ν
(the projection of the velocity of the atom onto the
direction of the light beam).

If parity is not conserved, the matrix elements are
not equal and can be written in the form

A/± = Ar±fAr, = Af ( l ± - | - ) , (5.24)

where Ml is the admixture matrix element correspond-
ing to the "improper" parity. The plane of polarization
is then rotated over a length I through an angle given by

_ 2πΛΓ|Λ/|»ω .n / ,d>—con—(o/c) MQ \
~ he \ [ω—ωο—(ΐ>/£)θο]2+(Γ2/4) / *

(5.25)
Moreover, the absorption coefficients a± also turn out
to be different for right- and left-handed photons:

cc± = 2 — Im n±

^r>· (5.26)

The polarization will therefore be transformed from
linear to elliptic. The ratio of the minor to major
semiaxes of the ellipse is

1χ = 1- -r Urn (n+- n_) = i («+-«-)· (5.27)

It i s important to emphasize that the quantities ψ and
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χ, which, in this case, characterize the parity noncon-
servation effects, are proportional to the product of
the main and the admixture matrix elements [in con-
trast to the degree of circular polarization Ρ which is
proportional to their ratio; see (1.4)]. It is therefore
definitely inconvenient to look for the optical activity in
the neighborhood of the highly forbidden Ml transition.
The situation in which the main transition correspond-
ing to the matrix element Μ is allowed is also incon-
venient. Thus, for allowed transitions, the absorption
coefficient a is very large, and since the path length I
cannot appreciably exceed a"1, the possible rotation ψ
and ellipticity χ turn out to be exceedingly small.

It is therefore natural to turn to the case where the
Ml transition is the main one and the admixture is £ 1 .
It is well known that the Ml transition occurs without
additional suppression only between terms correspond-
ing to the same electron configuration. To observe the
small optical activity effects, it is then very desirable
for this transition to lie in the visible part of the spec-
trum or near this region. This situation occurs in
heavy elements. Finally, the material must have an
appreciable vapor pressure at a reasonable tempera-
ture. If by "appreciable" we mean a pressure of about
10 mm, and by "reasonable" temperature we mean
~1200 °C, the range of possible elements narrows down
to tellurium, iodine, europium, thallium, lead,
bismuth, and polonium.

Among these elements, tellurium has the lowest
atomic number (Z = 52) and should therefore exhibit the
smallest effect. This disadvantage is not compensated
by any advantages. The transitions in which we are
interested lie in the infrared in the case of tellurium
(λ = 9471 A, 21 048 A). Moreover, the vapor of this
element is mainly molecular (Te2). The absorption of
light through the molecular component of the tellurium
vapor may turn out to be an additional complication.15)

Similar considerations apply to iodine (Z= 53, λ = 13152

A).
In the case of europium, the energy states corre-

sponding to the required electron configuration are
still unknown.

Finally, polonium (Z = 84, λ = 4613 A, 5941 A) is
highly radioactive, which makes it difficult to work with.
This is particularly disappointing because, in the case
of polonium, the problem of a strong enough mono-
chromatic source of light (see below) is solved by the
fact that the second of the above lines is practically
coincident with one of the lines generated by the helium-
neon laser.

Thus, at present, the most suitable elements for our
experiments are thallium, lead, and bismuth.

15)It is important to note that searches for the nonconservation
of parity in the electronic spectra of molecules containing
heavy atoms are also of considerable interest. However,
reliable estimates of this effect are exceedingly difficult.
Nonconservation of parity in molecular transitions will not,
therefore, be considered in the present review.
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We must now consider the conditions imposed on the
frequency stability and linewidth of the light source.
Let us return to (5. 23). Averaging over the Maxwellian
distribution of the atoms yields

/ 1
\ ω — ω 0 — lo/c

-i&Le-^ll-aH-iw)]; (5.28)

where

is the error integral and the complex quantity w in the
frequency detuning Δ = ω - ω 0 and the Doppler broadening
AD = u)0^2kT/Mcz {M is the mass of the atom) are re-
lated by

We shall be interested in the situation where the
width Γ of the upper level (due to the resonance transfer
of excitation by collisions with atoms in the ground
state) is much less than the Doppler broadening AD, and
Δ is comparable with ΔΒ ) i . e . , ι>«1, u~l. The ex-
pression given by (5. 28) then becomes much simpler
and assumes the form

\ Δ-(»/ί)ωο+ί(Γ/2) / Δι, -i/(«. »))

(5. 29)

The function g(u) = le'^^e^dz has the maximum value
of 1.1 for Μ = 0. 9, and g(u) «1/M when w when M£ 3.

We must have Δ ~ Δ β to ensure that the rotation of
the plane of polarization ψ is not too small. Since ψ is
an odd function of the detuning [see (5. 25) and (5. 29)],
the stability of the source frequency and linewidth
should at least be comparable with the Doppler broaden-
ing which, in our case, amounts to about 10~β ωο· This
is less than the hyperfine splitting, so that the transi-
tion will occur only between definite hyperfine-structure
components. As a result, the optical activity will be
reduced since, firstly, not all the atoms in the ground
state will participate in the transitions and, secondly,
the probability of transition to a definite hyperfine state
is, of course, less than the total transition probability.

We shall begin our discussion of the possible size of
the effect in the above elements with thallium. The
ground state in this element is 6s26/>1/2 and the Ml
transition in which we are interested is &Pi/z-QPs/z·
The admixture of states of the form 6s2«s1 / 2 to the
ground state can be calculated from (5.11). The £1
transition amplitude can be deduced from experimental
data on the oscillator strengths in thallium. c e 2 ' e ! n The
signs of these amplitudes, on the other hand, can be
found from the Bates-Damgaard tables. : 5 e : A large
contribution to the effect is provided by states corre-
sponding to the 6s6/>2 configuration and the 6s electrons
which arise during the excitation. All of them except
one have positive energies and are therefore resonances
in the continuous spectrum. The expansion coefficients
of the wave functions for these states over the Russell -
Saunders functions are calculated in the intermediate-
coupling approximation. The effective principal quan-

tum numbers for the &p electron in the 6s 6£2 configura-
tion and the 6s electron in the 6s26£ configuration can
be found by assuming that the corresponding electrons
are added to the Tl Π ion in the 6s6/> state. The dipole
matrix elements of the £1 transitions can be determined
from the oscillator strength for the 6s26/>1/2-6s6£2!!.D3/2

t rans i t ion. i e i < m

In lead and bismuth, the intermediate-coupling ap-
proximation must be used even in the calculation of the
main configurations (6s26£2 and 6s26/>3) and the usual
excited configurations (&szGpns and 6sz6pzns). Experi-
mental data on El transitions in these atoms were
taken from t e e" e 9 ]. States belonging to the 6s6p3 and
6sGp* configurations have not been observed. Never-
theless, their contribution to the effect can be esti-
mated from the data on the Pb Π and Bi Π spectra.
The corresponding dipole matrix elements were taken
from the Bates-Damgaard tables. A comparable esti-
mate for the analogous transitions in thallium is in
good agreement with experiment.

The results of the calculations, a detailed account of
which is given inC70:l, are summarized in Table 2. This
table is concerned with transitions between states with
the highest values of the total angular momentum F of
the atom near which the rotation of the plane of polar-
ization is at a maximum. The quantity \M\Z represents
the result of summation of the square of the amplitude
for the Ml transition over the components of F and F',
divided by the total number of initial states [ i .e., it
replaces IMI2 in (5. 23)]. The detuning Δ is chosen so
that the absorption coefficient α is 1 m'1 at 1200 °C. It
is only for the last transition in bismuth, in which the
absorption is exceedingly small, that Δ was chosen
from the requirement that the angle ψ was a maximum.
The vapor pressure of thallium, lead, and atomic
bismuth at this temperature is 100, 17, and 23 mm,
respectively.C7l : The values of the scattering cross
section σ which we have adopted for thallium on thalli -
um, lead on lead, and bismuth on bismuth are not in-
consistent with the only known experimental results,
according to which σ< 10"14 cm2 for thallium. t 7 2 ] The
much smaller rotation angles in the case of bismuth
are due to the fact that its vapor pressure is lower than
that of thallium, the transition amplitudes are smaller
than in lead, and the angular momentum of the bismuth
nucleus is large, which leads to a complicated hyperfine
structure. We note, finally, that the transitions in
thallium and bismuth may also take the form of electric
quadrupole transitions which will, in general, lead to
additional absorption of light. However, estimates
show that the amplitudes of the E2 transitions are small

TABLE 2

Atom

Tl
p])20S
Bi

J

1/2
0

Sffi

. Parameters of Ml transitions in heavy atoms.

F

1
0
6

J '

3/2

3/2
5/2
1/2
3/2

F'

2
1
β
7
5
6

I, A

12832.8
12788.93
8757.45
6477.23
4616.39
3015.22

Π ί | «/μ*

0.139
0.572
0.056
0.007
0.010
0.0007

Ρ·10?

3.1
2.1
2.0
2.3
4.5
7

σ·10",
cm1

0.5
0.5

< 1
< 1
< 1
< 1

Δ/Δη

5.3
2.6
2.0
1.4
1.5
0.9

φ/!·10',
rad/m

79
78
15.7

3.3
9.2
1.2
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enough to ensure that the quadrupole transition can be
neglected. The only exception is the 3/2-5/2 transition
in bismuth, where the £2 amplitude is responsible for
about 16% of the absorption.

A few words, now, about the possibility of detecting
the effects. Rotations of ~ 10"e rad can certainly be
detected at the present time (seeC7S~75]). The most
promising experiments are those involving bismuth
vapor, in which two transitions (λ = 6477 A and 4616 A)
lie in the region covered by modern tunable dye lasers.
The λ = 3015 A transition can be investigated with the
aid of a similar tunable laser after frequency doubling.
Finally, the long-wave transition λ = 8757 A lies in the
working region of tunable semiconductor lasers based
on gallium arsenide.

It is important to note, however, the relatively com-
plicated problem presented by the random external
magnetic field which is also known to produce a rotation
of the plane of polarization. There are a number of
mechanisms through which a magnetic field will produce
optical activity. We shall briefly consider two of the
most hazardous from our point of view.

Firstly, an external magnetic field leads to the mix-
ing of different hyperfine states. The longitudinal mag-
netic field Ht which will simulate the effect can be esti-
mated from the formula μΗι/ΔΗΡ~Ρ, where &HF is the
hyperfine splitting energy. Hence, we have the condi-
tion H<H1~10~z-10~3 G.

Another mechanism which leads to more stringent
limitations on the magnetic field is the difference be-
tween the resonance frequencies for right- and left-
handed photons, which is due to the Zeeman splitting of
the lines by the longitudinal field.1β) The restriction on
this field, which follows from the formula μΗζ/Δ~Ρ,
is: H<HZ~ 10'4-10'5 G. We note that the rotation of
the plane of polarization in a magnetic field due to the
second mechanism is an even function of the detuning Δ,
in contrast to the rotation due to parity nonconserva-
tion. This result can be used as a means of reducing
the background.

D. Rotation of the plane of polarization in the
radiofrequency region

Parity nonconservation effects in heavy atoms, which
depend on the nucleon spin, are equally interesting.
They appear in transitions between hyperfine structure
components of a given electronic term. These transi-
tions lie in the radiofrequency range and are also mag-
netic dipole transitions, so that they are convenient
for observation of optical activity due to parity noncon-
servation.

Since, in this case, the effect is produced by the in-
teraction between an electron and one unpaired nucleon
rather than all the nucleons in the nucleus, as in the
case of optical transitions, the circular polarization is,

roughly speaking, smaller by a factor of Ζ than in the
optical region. However, the precision that can be
achieved in modern centimeter-wave techniques is much
higher than in optics,1 7 ) So that consideration of parity
nonconservation in the radiofrequency region can be
regarded as justified. The degree of circular polar-
ization in the case of transitions between hyperfine-
structure components has been calculated for cesium
and thallium.C 2 7 i 7 0 ] we shall not consider it here be-
cause it is not very different from the calculations dis-
cussed in the preceding section. We merely reproduce
the results:

1) Cesium (λ = 3.26 cm):
2) Thallium (λ = 1.42 cm):

Ρ = -0.6Χ10-»κ 2 ;

Ρ = 1 . 3 Χ 1 0 - 8 κ 2 ρ .

Linearly polarized radio waves propagating through
cesium or thallium vapor should exhibit rotation of the
plane of polarization. Moreover, the polarization itself
should become elliptic. All these effects are described
by the same formulas as in the optical region, namely,
(5. 23)-(5.27). The only difference is that, in the
present case, the Doppler broadening ΔΒ for pressures
of about 10"2 mm or more is small in comparison with
collisional broadening of the upper level. Averaging
over the velocity distribution of the atoms is therefore
unimportant in this case, and the term - {v/c)u>0 in the
denominator of (5. 23) and the symbol ( . . .) can simply
be omitted. We shall confine our attention to this case
henceforth.

The other difference which leads to a considerable
complication in the experiments which we are consider-
ing is that the upper and lower hyperfine-structure
levels must have different populations for optical
activity. The symbol ΛΓ in the above formulas must be
interpreted as the difference between the densities of
atoms occupying the upper and lower states. If we
confine our attention to the natural temperature dif-
ference between the populations, we find that the effects
are additionally reduced by a factor of 100-1000. How-
ever, a population difference much greater than the dif-
ference due to the temperature alone can be achieved
by laser excitation of one of these levels. Steps must
then be taken to exclude the possibility of optical orien-
tation of the atoms. We shall confine our attention to
this particular case, i. e., we shall assume that the
probability Γβ of excitation of the upper level by the
laser beam is much greater than the probability of in-
elastic collisions which tend to equalize the populations
of the hyperfine-structure components.

The rotation of the plane of polarization is a maximum
when the detuning is equal to the half-width of the line
which, in the present case, is Γ + Γβ. Calculations lead
to the following results:

1) Cesium. (The dephasing cross section which is

16)Since the laser frequency is unavoidably different from the
the resonance frequency, this mechanism must also be taken
into account in the experiment proposed by Bouchiat.C24]

17>Even when modulation methods are not employed, the sensi-
tivity with which rotations of the plane of polarization can be
measured in the radiofrequency region can reach 10"6—10"8

rad. Π6~781 In optics, the modulation technique can be used to
Increase the sensitivity of ellipsometric measurements by at
least three orders of magnitude.
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responsible for the collisional linewidth is σ = 2. 3xlO" u

cm2.C 7 9 ]) The absorption coefficient is a = 0. 08 [Γ/(Γ

^ j ^ - rad/m.

Crystal anisotropy is neglected

2) Thallium. (We adopt the same value for σ as in
the case of cesium.) a = 0. 03 [Γ/(Γ + Γ ^ η Γ 1

rad/m

It is convenient to work with a detuning equal to the
half-width of the line because the most hazardous,
second background mechanism for the rotation of the
plane of polarization due to the random external mag-
netic field (see preceding section) is unimportant in the
present case. To avoid the simulation of the effect by
the first mechanism, the mean longitudinal magnetic
field must be less than 2xlO"6H2i G in cesium and 3

G in thallium.

E. Parity nonconservation effects in superconductors

The parity nonconserving interaction between elec-
trons and nucleons can, in principle, be detected with
the aid of certain effects180·1 in superconductors with
polarized nuclei.1 8 '

Consider the weak interaction between electrons and
nuclei in a superconductor of this kind. Since the
electrons are unpolarized, the only term present in the
potential (1. 20) is that proportional to κ2- The parity
nonconserving interaction between the electron and the
nucleus takes the form

G)v>g,I (5.30)

where ξ ( is a unit vector indicating the direction of the
spin of the i-th nucleus, rt is the position vector, and
the constant g> is introduced in (5.11).

If we average (5. 30) over the electron wave functions
of a Cooper pair, we obtain the following expression
for the P-odd addition to the effective Hamiltonian de-
scribing the motion of the pair as a whole:

p1: (5-31)

where me is the effective mass of the electron, Ν is the
density of nuclei, £(r) is the nuclear polarization vector
(its modulus is equal to the degree of polarization), and
the factor Κ represents the difference between the elec-
tron current in the neighborhood of the nucleus and the
average current within the crystal:

„ l

In this expression, i/)*(r) is the electron wave function in
the crystal and the crystal momentum of the electron k

18)The nuclei can be oriented by an external magnetic field, and
this is followed by the establishment of the superconducting
state. We assume that the nuclear spin relaxation time,
which can reach a few seconds,C81·823 is sufficient for the ob-
servation of the effects we are discussing.

is assumed to be small.
in (5.31) and (5.32).

The interaction given by (5. 31) has a form analogous
to the electromagnetic interaction, and we can readily
show that it can be included (in the first order in G) by
introducing the substitution

(5.33)
2 e jt
c

2e 2
" c

r

We must now consider the associated change in the
electrodynamics of the superconductors. We shall con-
fine our attention to London-type superconductors
although it is clear that this restriction is unimportant
insofar as our conclusions will be concerned.

The Maxwell equations for a constant magnetic field
now have the form

(5.34)

where ρ is the density of Cooper pairs and φ is the
phase of their wave function.

If we take the curl of the equation given by (5. 34),
we obtain;

(5.35)

Thus, neither the magnetic field nor the current will,
in general, be zero within the superconductors. How-
ever, when polarization is achieved in the usual way
with the aid of an external magnetic field H0(r), the
polarization vector ζ(τ) is obviously proportional to
H0(r), so that curl £(r)=0, i .e . , neither the magnetic
field nor the current penetrate the superconductor.
Henceforth, we shall restrict our attention to this case
for simplicity.

The question now is—what is the effect of the inter-
action given by (5. 31) on the physics of superconduc-
tors? It is clear from the analogy between Λ and £
[see (5. 33)] that the quantization condition for the mag-
netic flux Φ through the superconducting ring is modi-
fied. It now takes the form

~O-2f=2nm (m = 0, 1, 2, ...),

(5.36)

We now draw attention to the relatively profound analogy
between the vector potential Λ and the polarization ζ.
In particular, the relation given by (5. 36) differs from
the usual quantization condition for a magnetic flux by
the term representing the flux of the quasimagnetic field
which is proportional to curl ζ (in the situation which we
are considering, curl ζ Φ0 on the boundary of the super-
conductor).

On the other hand, despite the presence of currents
and magnetic fields near the boundary of the supercon-
ductor, which modify the orientation of nuclei in this
region, the derivation of (5. 36) requires only the exis-
tence of a closed circuit at all points of which j = 0,
H=0, and curl £ = 0.

We now take as the second example the flow of cur-
rent through two Josephson contacts connected in
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parallel. It is well known1833 that the expression for
the maximum current is (for simplicity, we consider
identical contacts)

* max — 2/c (5.37)

where Ic is the maximum current through one contact
and Φ is the magnetic flux through the circuit. Inclusion
of the P-odd interaction (5. 31) results in the following
modification of (5. 37), just as in the case of the quan-
tization of flux:

• * m a i — * * c I C O S I s - * (5.38)

Thus, the quantity /„„ depends on the sign of Φ, i. e.,
it will change as a result of a change in the relative
orientation of the frame and the external magnetic field.
This can be used to make the effect a periodic function
of time by rotating the system because the orientation of
the nuclei in space will then remain the same.

Let us now estimate the magnitude of this effect. The
contribution of weak interactions is determined by the
dimensionless parameter

(5. 39)

where L is the length of the circuit. It is assumed that
the nuclei are polarized in the direction of the circuit.

Estimates of the factor Κ given by (5. 32) are not at
all trivial in this case. The electron wave function
Ψ*(Γ) can be found by the Wigner-Seitz method.C84] In
the first order in k, it is given by

(5.40)

where ρ is the momentum operator and ua is the wave
function for the lowest state in the band. The functions
ua are such that their normal derivative vanishes on the
boundary of the unit cell. The potential is usually
chosen to be the same as in the case of the atomic
problem, so that the only difference is in the boundary
conditions. This difference can be neglected in esti-
mates of the factor K.

It is clear from (5.40) and (5. 32) that the factor Κ
differs from zero in the small-k approximation only in
the case of the s and p conduction bands (i. e., when u0

describes the s or p state).

Since we are concerned with the interaction between
electrons and one unpaired nucleon in the nucleus, the
factor Κ is proportional to Z1 [see (1. 8) and (5.11)].
Recalling the relativistic enhancement factor R given
by (5.12), we find that, for heavy metals and |£ | ~ 1,
the parameter/ may exceed 10"6 L/cm.

Although the precision that can be achieved at present
is clearly insufficient for the observation of these
phenomena, the discussion of parity nonconservation
effects in superconductors is relevant, at least from
the methodological point of view.

6. μ-MESIC ATOMS

A. The 25-* 15+γ transition

An interesting and evidently very realistic possibility
of an application of the ideas discussed in Chap. 3 in

connection with the hydrogen atom is afforded by the
single-photon 2S-1S transition in μ-mesic atoms, i. e.,
atoms in which one of the electrons is replaced by a
muon. The muon orbits lie much lower than any of the
electronic orbits because of the large muon mass (m№

= 206. BrnJ, and the screening effect of the electrons is
negligible. This is why μ-mesic atoms are virtually
ideal examples of hydrogen-like systems, whatever the
atomic number Z. Studies of parity nonconservation
effects in mesic atoms have a number of advantages as
compared with the hydrogen atom. They include, above
all, the large magnitude of the effect which is connected
with the large mass of the muon, i. e., the small radius
of the Bohr orbit a№ = K/(am^c)* 2.6x10"" cm. The
use of mesic atoms with different Ζ should enable us
to obtain a more favorable relationship between the
probability for the 2S — IS + y transition and any compet-
ing processes. Moreover, because of the large dif-
ference between the level energies in mesic atoms,
there is practically no restriction off the random external
electromagnetic fields, which were quite stringent in
the case of the hydrogen atom. Experiments with mesic
atoms are also interesting because comparison of the
weak interaction constants for electrons and muons in-
teracting with nucleons should enable us to establish
whether the μ-e universality extends to the weak in-
teraction between neutral currents. The principal dif-
ficulty in experiments involving mesic atoms appears to
be the production of a sufficiently large number of such
atoms, so that the effect can be observed with accept-
able statistics.

Let us begin by considering parity nonconservation
effects in mesic atoms, neglecting the hyperfine inter-
action between the muon and the nucleus. l№~xi in this
case, the weak interaction potential between the muon
and the nucleus need retain only terms proportional to
the muon spin s = σ/2;

V= -Ζ?μσ[ρδ(Γ)+β(Γ)ρ],

(6.1)

where mM is the reduced mass of the muon in the mesic
atom, Ζ is the number of protons (nuclear charge), and
Ν is the number of neutrons in the nucleus. l 9 ) The
formulas that describe electromagnetic transitions and
parity nonconservation effects in mesic atoms are
analogous to the corresponding formulas for the hydro-
gen atom. In particular, the magnitude of the parity
nonconservation effects is characterized by the single
parameter P=- 2Fr, where

GY3 C» (Zo)«

(Ζα)-3«1.6·10'Ζ-3,

(6.2)

(6.3)

and the probabilities of the Ml transitions 2S— 1S+ y,
and the admixture of the £ l transition 2P — 1S+ y, are

19)If the μ — e universality occurs in the weak interaction be-
tween neutral currents, the constants x ,̂ and x^ are equal to
the corresponding constants in the electron-nucleon interac-
tion and qli = q [see (5.1)].
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FIG. 7. Levels with η = 2 in light μ-mesic atoms (Z = 3, 4, 5).

given by

w ( 2 \ 8 muc'

(6.4)

(6.5)

The most important difference between mesic atoms
and the hydrogen atom is that the reason for the energy
difference between the 2S and ZP levels in the mesic
atoms is completely different from that in hydrogen. 2 0 )

In the hydrogen atom, the main contribution to this dif-
ference is due to correction to the proper energy of the
bound electron. In the case of the μ-mesic atoms, the
energy difference between the 2S and 2P levels is de-
termined largely by vacuum polarization and by the
influence of the finite size of the nucleus. Vacuum
polarization, i .e., the creation of virtual electron-
positron pairs, distorts the field of the nucleus at dis-
tances of the order of the Compton wavelength of the
electron (r&K/mec), and this is much less than the
radius of the electron orbits (fi/amec) but is com-
parable with the radii of the μ-mesic orbits Ifi/Zamac).
Vacuum polarization ensures that the effective charge
on the nucleus at small distances is greater than Ζ (by
definition, Ζ is the charge at large distances) and,
consequently, the energy of all the levels and especially
the S levels is reduced. Vacuum polarization plays a
predominant role in the lightest mesic atoms (H, He,
and Li). In these atoms, the 2S1 / 2 level lies below the
2P 1 / 2 level. As Ζ increases from Z = 4 onward, the
main contribution to the energy difference between the
2S and ZP levels is due to corrections connected with
the finite size of the nucleus. They lead to an effect
which is opposite to vacuum polarization, i.e., they
increase the S-level energy. The P-level energies are
unaffected because the wave functions for these states
are practically zero inside the nucleus. Owing to this
effect, the 2S1 / 2 level in all mesic atom with Ζ » 4 lies
above the 2P 1 / 2 level (Fig. 7). In lithium and beryllium,
the effect of vacuum polarization and of the finite linear
dimensions of the nucleus are mutually compensated to
a considerable extent. In these mesic atoms, the

TABLE 3. Parameters of the 2S^1S transition
in light mesic atoms.
Mesic
atom

IH,
4 H e 2

«Li,
^Be,1

»°B,
12C,
1 β ο 8

E(2S)-£(2P1/2).
eV

—0.201
—1.37+0,01
— l . l ± 0 . 2

1.3+0.8
10.6+2.5

30±2
162+7

E v . keV

1.90
8.21

18.6
33.3
52.2
75.2

134

ws, sec"'

4.64-10-1
5.14-10-'
2.99-101
5.34-102

4.98-103
3.10-104

5.50105

Ρ/ςμ-10!

—5.3
—4.0

—12
17
3.4
1.7
0.6

FIG. 8. Probabilities of
radiative transitions from
the 2S level (solid lines) and
the circular polarization of
gamma rays (broken line) in
μ-mesic atoms.

energy difference between the 2S and ZP levels is
particularly small and, consequently, one would expect
large parity nonconservation effects.

Table 3 lists theoretical calculations of the 2S1/2

- 2P 1 / 2 level-energy difference for light mesic
atoms, t 2 8 · 3 0 · 8 5 ' 8 6 3 in these calculations, vacuum polar-
ization was taken into account in the lowest order in
a, t 8 7 3 and the level shift due to the finite linear dimen-
sions of the nucleus was estimated from the formula

_ 1
12AZ

= 0, (6.6)

where (r 2 ) 1 / 2 is the root mean square radius of the
charge distribution in the nucleus.21)

Using these data, one can calculate the parameter Ρ
which characterizes the parity nonconservation effects
in the single-photon 2S~ IS transition from (6. 2) and
(6. 3). The values of this parameter and of some other
parameters for the 2S— IS transition in light mesic
atoms 1 2 8 ' 3 o : are listed in Table 3. Estimates of the
parity nonconservation effects in mesic atoms with
large z t 2 9 : show that the mixing factor F is a slowly
varying function of Z, and is approximately given by

J~(1.0-1.3).10-V· ( 6 · 7 )

Hence, the value of Ρ for heavy mesic atoms is ap-
proximately given by (see also Fig. 8)

i>~(3-4)Z-V (6.8)

In particular, for mesic atoms with Ζ ~ 30-60, one
would expect that P~ 10"4-10"5. These estimates show

2 0 'it is precisely for this reason that parity nonconservation ef-
fects in mesic hydrogen are greater than in ordinary hydro-
gen not by a factor of {mll/m)2~4xlOi, as one would expect
from simple dimensional considerations (according to which
the effects are proportional to Gm\), but, as will be seen
from the ensuing analysis, they are greater by only two
orders of magnitude.

21)We note that uncertainties in the experimental values of the
nuclear radii lead to relatively large uncertainties in calcula-
tions of the energy difference between the 2S and IP levels in
light mesic atoms, which, in the case of lithium, beryllium,
and boron, amount to a few tens of percent. The correspond-
ing uncertainties arise also in estimates of P. Direct experi-
mental determination of the energy difference between the
2S and 2P levels would substantially increase the precision of
theoretical estimates of parity nonconservation effects.
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that light mesic atoms should exhibit greater noncon-

servation effects and are therefore convenient for in-

vestigation.

B. Possible P-odd correlations

We must now consider correlations, the observation
of which would enable us to determine experimentally
the quantity Ρ and hence the weak-interaction constants
for the muon-proton and muon-neutron interactions. An
important fact is that muons are always created in a
polarized state and, in a number of mesic atoms (for
example, in carbon), a relatively high degree of resid-
ual muon polarization persists even after capture of
the mesons into the 2Si/2 orbit. This leads to new (as
compared with the hydrogen atom) possibilities.

The probability of emission of γ rays in the direction

η in the course of the 2Si/2— lSi/ 2+ γ transition is given

by

]|§-, (6.9)

where Ws is the total probability of the transition (6.4),
s is the spin of the photon, and ξ is the polarization
vector of the muon in the 2Si/2 state. The parity con-
serving correlation between the spins of the gamma ray
and the muon (ξ· n)(sr°n) impedes the observation of the
circular polarization of the photon which is connected
with the nonconservation of parity and is proportional
to P. In fact, according to (6.9), the circular po-
larization of the gamma rays traveling in the direction
η is given by

ί ϊ ( η ) = ^ ± = ^ = ^ + | ^ . (6.10)

Special steps must therefore be taken in experiments on
the circular polarization in mesic-atom transitions in
order to reduce the effect of terms of the form — (ξ ·η).

The polarization of muons in the initial state, on the

other hand enables us to determine Ρ from measure-

ments of another P-odd correlation, namely, the

angular asymmetry of the gamma rays relative to the

muon polarization vector ξ. This correlation can be

obtained by summing (6. 9) over the polarizations of the

gamma rays:

dW(n) = Ws[l + P($-n)]^-. (6.11)

In principle, other more complicated correlations can
also be observed. For example, nonconservation of
parity may lead to the polarization of the meson in the
final IS state as a result of the 2 S - IS+ y transition
even when the initial 2S state is not polarized. The
degree of this polarization is also given by the param-
eter Ρ and can be determined by examining the angular
asymmetry of electrons originating in the decay of
polarized muons. Thus, the quantity to be determined
in this experiment is the correlation between the direc-
tions of emission of the gamma ray in the 2S— IS
transition and the direction of emission of the electron
from the subsequent muon decay.

C. Competing processes

Despite the considerable magnitude of the parity non-
conservation effects in the mesic-atom 2S— lS + y

transition, their observation is substantially compli-
cated by the presence of two other transitions from the
2S state. They do not affect the magnitude of the parity
nonconservation effects but they do impede the attain-
ment of the necessary statistics. We shall now briefly
consider estimates of the probabilities of the main
competing processes in light mesic atoms where parity
nonconservation effects are particularly large. The
probabilities of these processes must be compared with
the probability of the single-photon transition [see (6.4)
and Table 3].

1) Auger transitions. Apart from the single-photon
transition, there is another possible transition between
the 2S and IS states which does not involve the emission
of a gamma ray but, instead, the emission of an elec-
tron from the Κ shell (£0 transition). The probability
of this process is practically independent of Z, and is
approximately equal to 2X10® sec"1. For light mesic
atoms (with Ζ < 12), this process is the main competitor
to the single-photon 2S- IS transition. The exception
is the mesic atom of hydrogen, where the Auger transi-
tion is forbidden.w We note that, in principle, Auger
electrons can also be used in searches for parity non-
conservation effects which, in this case, take the form
of an angular asymmetry in the distribution of the emit-
ted electrons relative to the muon polarization. lM1 The
asymmetry coefficient for this process is practically
independent of Ζ and is given by P,= - 2F(mu/me)

i/2

which, for beryllium, yields ~ 10"s.

2) The two-photon 2S- IS transition. In the case of

the ordinary hydrogen atom, this process plays the

dominant role. For the mesic atoms, the probability

of the two-photon transitions can be estimated from the

formula

Wav « 1.6 103Z« sec'1 (6.12)

Figure 8 shows a graph of the probability of this pro-
cess for different mesic atoms. The probability of the
two-photon transition increases with increasing Ζ more
slowly than the probability of the single-photon transi-
tion which is proportional to Z.C103 The relative role of
the two-photon transition will therefore fall with in-
creasing Z.

3) E\ transition 2S- 2Ρ+γ. In mesic atoms with Ζ
>4, the 2S1 / 8 level lies below the ZPl/z and 2P 3 / a levels
and, therefore, the £1 transitions 2S— 2P+y are pos-
sible. The probability WSP of this process is a very
rapidly varying function of Ζ (roughly speaking, it is
proportional to Zi0A2, where A is the atomic number);
numerical estimates of WSP

a^ are shown in Fig. 8.
For mesic atoms with Ζ >12, this transition is the
dominant one.

4) Muon decay and muon capture by the nucleus. The

22)Unfortunately, In the hydrogen mesic atom, there is a soe-
ciflc mechanism for transitions from the 2S state. Because
of the small size of the mesic hydrogen (the absence of elec-
tron shells in this atom), the metastability of the 2S level is
violated mainly by collisions between the mesic hydrogen and
other a t o m s . c m
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probability of muon decay is approximately 4. 5X 10s

sec"1. The probability of direct capture of a muon by
the nucleus from the 2S state is very dependent on the
nuclear structure. However, the order of magnitude
of this probability can be estimated with the aid of the
probability Wo for capture from the IS state in mesic
hydrogen, using the formula

rr c a p , /**-' " Q " •" ' ' 0 / " v / <->*JZJ S C \ .
0

Consequently, these processes have a low probability
as compared with the other competitors to the 2S — IS
+ y transition.

The above estimates indicate that the main processes
which impede the observation of the single-photon
transition 2S — IS are Auger transitions (for mesic
atoms with Z< 12) and electromagnetic 2S~2P transi-
tions (for mesic atoms with Z>\2). The most favorable
relationship between the 2S— lS + y transition and the
competing processes is obtained for mesic atoms with
a nuclear charge of about 10. In this case, the ratio
W(2S-lS + y)/W(2S-all)is ΙΟ^-ΙΟ"3, and parity non-
conservation effects are expected at a level of about
10"3. Further increase in Ζ is inconvenient mainly
because of the reduction in the magnitude of the effects.

D. Allowance for hyperfine structure

So far, in our discussion of parity nonconservation
effects in mesic atoms, we have neglected the hyperfine
interaction between the muon and the nucleus. This
approximation enables us to find the main, and nuclear-
spin independent, contribution of the weak interaction,
which is proportional to the constants H U and κ^. When
the nucleus has nonzero spin, the hyperfine interaction
leads to a splitting of the 2S1 / 2 level (just as in the case
of the l S 1 / 2 level) into two sublevels with total angular
momentum of the mesic atom F=I+l/2. Because of
the weak interaction (2.10), in each of these 2S states
there is an admixture of the 2Pl / 2 state (and, in gen-
eral, the 2P 3 / 2 state) with the same total angular
momentum F. The contribution of terms in the weak
potential, which contain the nucleon spin, to the mag-
nitude of the admixture of states with different F is
different. This in turn, leads to a dependence of the
P-odd correlations in the 2S — IS transition on the
constants κ2 and κ3. Experimental studies of this de-
pendence are of major interest because they should be
able to establish the spin structure of the weak interac-
tion between neutral currents. In particular, there is
considerable interest in the verification of the result
yt.w = _ nw (see Chap. 2). 2 3 ) We shall confine our atten-
tion to a qualitative description of effects associated
with hyperfine interactions. These questions are dis-
cussed in greater detail inC 9 0 ' e i 1 .

23)If this result is valid, then the admixture of the 2P3/2 state
to the 2Sj/2 state is absent even when the hyperfine interac-
tion is taken into account. The most convenient mesic atoms
in this connection are B10 and B11 in which the separation be-
tween the 2P 3 / 2 and 2S1/2 levels is relatively small, so that
the role of the possible 2P3/2 admixture is relatively impor-
tant.

The influence of the hyperfine interaction on parity
nonconservation effects is particularly important in
the light mesic atoms such as Li, Be, and B. This is
so for two reasons.

Firstly, by Pauli's principle, the nucleon spins in
the nucleus have a tendency to cancel each other out.
In the case of nuclei with large Z, therefore, the terms
in the weak interaction potential which depend on the
nucleon spins lead to small corrections (of the order of
Ζ — 1) in comparison with terms containing only the spin
of the muon. Secondly, as indicated above, for mesic
atoms such as lithium and beryllium, the energy dif-
ference between the 2S and 2P levels is anomalously
low (because of the mutual cancellation of the contribu-
tion due to the vacuum polarization and the finite size
of the nucleus) and is comparable with the hyperfine
splitting of these levels.

The maximum information on the spin structure of
the weak interaction can be obtained by measuring the
circular polarization, the angular asymmetry of the
emitted gamma rays, and so on, in transitions between
individual hyperfine components of the 2St /2 and lS t /2

levels. These effects are the most sensitive to the
constants κ 2 and κ3. However, such measurements
necessitate the energy separation of gamma rays cor-
responding to different hyperfine transitions. In the
case of light mesic atoms, this requires an energy
resolution Δω/ω~ ΙΟ^-ΙΟ"5.

In simpler experiments, the gamma-ray energies
need not be separated, and P-odd correlations averaged
over all the hyperfine transitions can be determined.
Different results are then obtained for the circular po-
larization of photons and the correlations between the
muon spin and the direction of emission of the gamma
rays. The mean circular polarization is practically
independent of % and κ Μ . This can be expected
simply on the basis that the statistical averaging over
hyperfine transitions is equivalent to averaging the ef-
fect over the nucleon spins.

At the same time, the asymmetry coefficient de-
scribing the angular distribution of the gamma rays re-
tains the dependence on xw and H W even after summa-
tion over the hyperfine transitions. The point is that
the hyperfine interaction has an important effect on the
degree of polarization of the muon in the 2St / 2 state
because of the considerable lifetime of this state1·923

(the 2S level width is much smaller than its hyperfine
splitting). As a result, the main contribution to the
asymmetry is provided by transitions from the 2S state
with total angular momentum F=I+1/2, in which the
degree of polarization is a maximum, i .e . , there is
no statistical averaging.

The different dependence of the circular polarization
and the asymmetry coefficients on the weak interaction
constants κ 1 ; κΕ, κ 3 can, in principle, be used to de-
termine the spin structure of the weak interaction by
comparing these correlations, even without separating
the individual hyperfine transitions. However, this
requires a knowledge of the degree of polarization of the
mesic atoms m different hyperfine 2S states. This
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quantity is not well known at present.

7. CONCLUSIONS

The current situation thus seems to be that optical
methods of investigation can be used to obtain answers
to a number of topical and urgent questions in elemen-
tary-particle physics. Experiments of this kind are
relatively cheap and can serve as an important addition
to the methods that are traditional in high-energy
physics.

We will have achieved our aim if we succeed in draw-
ing the attention of physicists to this circle of problems.

We are greatly indebted to Ya. L Azimov, A. A.
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