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The possibility is discussed of detecting P-odd weak interaction of the electrons with the nucleus from
effects of interaction of atoms with resonance radiation. The requirements of accuracy of three types of
experiments are discussed: 1) directly measuring the difference of absorption cross sections for right-hand-
and left-hand-polarized light; 2) measuring rotation of the plane of polarization; and 3) measuring the
splitting of the intrinsic frequencies of an optical resonator. The calculated values of the expected effect are
tabulated for the atoms that are most promising from the experimental standpoint, together with other
spectroscopic characteristics of the transition.
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1. INTRODUCTION

The first attempts to detect manifestation of the weak
interaction of electrons with nucleons in atomic physics
date back to the middle thirties. Thus, they suggested
in c i > z ] the existence of a weak contact interaction
V=f6(r), where 5(r) is the delta function, and they tried
to estimate the possible value of the constant / from ex-
perimental data on scattering of slow neutrons and on
the isotopic shift. They showed that an interaction
with a constant / of the order of the Fermi constant
f~GF~ 10"49 erg · cm3 might lead only to slight correc-
tions on the background of the rather large theoretical
and experimental uncertainties of the measured quanti-
ties. Hence it proved possible to give from neutron-
scattering data and from the isotropic shift only a very
crude upper estimate/< 10"43 erg · cm3, which is 10e

times the size of the Fermi constant GF.

After a universal theory of the weak interaction as ef-
fected by charged currents had been created, the pos-
sibility of detecting effects of the weak interaction in
atoms began to seem quite unrealistic. According to
this theory, effects that are first-order in GF are quite
impossible, since the matrix elements of interaction
for states having a fixed number of electrons are zero.

Only in 1959 was attention called t 3 ] to certain new
aspects of the problem. If we assume an interaction of
the electrons with the nucleons of the nucleus that is ef-
fected by neutral currents and does not conserve parity,
in addition to the weak interaction that causes beta de-
cay, then qualitatively new effects arise that involve
mixing of even and odd atomic states. Consequently,
the emission that corresponds to a series of atomic
transitions, in particular the 2s-ls transition of the
hydrogen atom, must be partially circularly polarized.
Moreover, this study showed that rotation of the plane

of polarized light in isotropic media must occur for the
same reason. Effects of non-conservation of parity
with regard to the hydrogen atom were treated some-
what later.C 4 :

Interest in the possibility of observing such effects
has recently risen considerably, C5~lo:l both in connection
with the progress of the general theory of weak interac-
tions that predicts the existence of neutral currents,
and owing to the detection of neutral currents in neu-
trino experiments. In addition, the development of a
new experimental technology based on laser light
sources has substantially expanded the possibilities of
observing various subtle effects in atomic physics.

The first sufficiently realistic variant of a laser ex-
periment has been treated inC5:l. If one excites a Cs
atom with a circularly polarized light beam to the 7s
state (6s 1 / 2 -7s 1 / 2 transition), and then records the pho-
tons emitted in the allowed 7s-6p transition, then in
principle one can detect the difference between the ab-
sorption cross sections σ, and σ. for right-hand and
left-hand circular polarization that arises from mixing
of s- and p-states. From the estimates ofC5:, the ex-
pected size of the effect is Δσ/σ~ 10"4.

The possibility was treated inC93 of another experi-
ment to detect rotation of the plane of polarization ii\
thallium vapor at a frequency ω close to the resonance
ω0 that corresponds to the magnetic-dipole transition
δΡζΡ\/ζ, 6/>2iJ

3/2. Under favorable conditions (pressure
~ 100 Torr and ω - ωο~ ΔωΒ, where Δωΰ is the Doppler
width), the expected effect can amount to ~ 10"7 radians/
cm. While the discussed effects of non-conservation of
parity are small, both of these estimates show that
quite realistic hopes yet exist of detecting them.

It seems highly important to the success of the perti-
nent experiments to choose the optimal objects of study
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and experimental scheme. We are considering both the
atomic transitions themselves and their amenability to
existing lasers, the necessary parameters of the lasers
for concrete experimental schemes, etc. This article
is specifically concerned with discussing these prob-
lems.

Chapter 2 briefly discusses the effect of odd interac-
tion of atomic electrons with the nucleus on the optical
characteristics of atomic systems.

Chapter 3 is concerned with choosing optical objects
of study, i. e., choosing concrete atomic transitions
for which the expected effects are maximal, and which
can satisfy a number of demands made by the experi-
mental possibilities. The necessary calculations and
estimates are performed, with the details of the calcu-
lations deferred to Appendices Ι-ΙΠ.

Chapter 4 discusses concrete possible experimental
schemes and the parameters and characteristics of
lasers that are needed for each of these schemes.

The entire treatment is restricted to optical effects
in neutral atoms. Other possible manifestations of
non-conservation of parity due to neutral currents, in
particular in multiply-charged atoms and in mesonic
atoms, are discussed in detail in the review111].

In making concrete estimates, we shall start with the
same expression for the P-odd and Γ-invariant Hamil-
tonian V as was used, e.g., inC5'M:

Gh?
-Z?[(orp)6(r (1.1)

Here G is the Fermi constant, G = 10"5/w|, where m,
is the mass of a proton, c is the speed of light, m is
the mass of an electron, Ζ is the charge of the nucleus,
σ/2, ρ, and r are the spin, momentum, and coordinate
of the electron, and the factor q» - 0.9 (see Appendix I).

2. OBSERVABLE EFFECTS

Let us consider the effect of the odd interaction V of
the atomic electrons with the nucleus on radiative tran-
sitions. Of greatest interest are the optically forbidden
transitions between states having the same parity i-f,
for which the matrix elements of the electric dipole mo-
ment are zero. Here the corrections arising from the
potential V will be greatest. Let V and V be the op-
erators for electric and magnetic dipole transitions.
To the level of first-order terms in V, the matrix ele-
ment of the radiative transition »— / has the form

(2.1)

Here b-Eab = Ea-Eb is the energy difference between
atomic levels, and the summation over k is taken over
all states of parity opposite to that of the states * and /.

The circular components of the electric and magnetic
field intensities Et and Ht are connected by the relation-
ship Ef = - ΐξΗ(, where I adopts the values +1 and - 1
for right-hand and left-hand polarizations. Therefore,
for the case of emission or absorption of circularly-
polarized photons, V\~DtE*t, and Vm~M(H*t = + i£M(E(,

where D and Μ are the operators for the electric and
magnetic dipole moments. Upon considering that the
matrix V is diagonal in the overall moment J of the
atom and in its z-component m, we easily obtain

Here
(2.2)

I
—mi ξ

is the 3j-symbol, and (a II Mil 6) and (a IIDII 6) are the
reduced matrix elements of Μ and D. Let us write
(2.2) in the form

x = 2 χ*,
k

jPC *)(*ΙΙΡ|Ι/)-(Ί|Ρ|Ι*)β(*, /)

(2.3)

(2.4)

(2.5)

Here Sm(if)= I (til Μ H/)l2 is the strength of the magnetic
dipole-transition line, and β(α, b) is the mixing coeffi-
cient of the states a and b that arises from the interac-
tion V. To the level of terms linear in χ, we have

ξ=±1. (2.6)

As we show in Appendix L the parameter χ is purely
real. Therefore we shall omit the symbol Re hence-
forth. One can show that the fact that χ is real involves
the T-invariance of the Hamiltonian of (1.1), i.e., in-
variance with respect to time inversion. For a P- and
T-odd interaction, the parameter χ would be purely
imaginary, and the effects to be discussed in this arti-
cle would be lacking. Let us denote by σ{ and Wt the
absorption cross section and the probability of emission
of a circularly polarized photon, Δσ = σ. - σ., and Δ W
= W.-W_. Then

i ! = - ^ - = 4X . (2.7a)

Here σ and W correspond to V = 0, i. e., to the first
term in (2.1). Often one introduces the degree of cir-
cular polarization P:

W.-W. (2.7b)

However, we shall use the quantities of (2.7a).

Owing to the difference in the absorption cross sec-
tions σ* and σ., a difference also arises in the values
of the dielectric constant for right-hand and left-hand
circularly polarized waves: Δε = ε,-ε_. Let us denote
by ε0 the fraction of the dielectric constant that arises
from all the other atomic transitions except for the
transition t — / . Since ε(ω)- εο(ω)~σ, we easily obtain

Δε = (ε—ε0)—=(ε—8ο)·4Χ. \Δ· °)

Thus one can detect the existence of a weak interaction
V that violates the law of conservation of parity, either
from the difference of absorption cross sections and
emission probabilities of circulary-polarized photons,
or from the difference between the real parts of ε+

and ε..
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3. CHOICE OF ATOMIC TRANSITIONS

The values of Λσ/σ and Α ε from (2. 7) and (2. 8) de-
pend substantially on the choice of concrete atomic
transitions. According to (2.4) and (2. 7), Δσ/σ^ΑβΒ/
Μ. Hence it is desirable to achieve the largest values
of β and of D, and the lowest possible values of Μ at
which the studied transition could yet be observable.
As for the quantities Re(e, - ε_), transitions are advan-
tageous here that have relatively large values of Μ
(seeC9:l). However, as we show in Chap. 4, for large
enough Μ £2x ΙΟ"8 μΒ , where μΒ is the Bohr magneton,
the observable effects under optimal conditions are
proportional to βΰ, and hardly depend on M.

A. The mixing coefficients β

Let us first examine what are the atomic parameters
on which depend the coefficients β from (2. 5) for mix-
ing of states of different parity. The calculations of the
matrix elements of V are contained in Appendices I and
Π. Let us use the results of these calculations. In the
simplest case of a one-electron atom (one electron out-
side the filled shells), the operator of (1.1) mixes only
s and/) states. Here (s 1 / 2 ! V\p1/z)~R*(Q)(Rp/r)^0,
where Rs and Rp are the radial functions of the s and p
states. The simplest and most reliable way to deter-
mine Rs(0) and (,Rp/r)r,a is that adopted in the theory of
experimental values of the binding energy of an s-elec-
tron and {Rp/r\. 0 in terms of the fine splitting of the
levels pin and />3/2 (see, e. g . , t l a ] ) . Consequently we
can derive (see (1.26))

ι Pm)--
Pi/2>

ι (Ζ)7
Ry

(3.1)

Here Ζ is the charge of the atomic nucleus, a = 1/137,
n£ is the effective principal quantum number in the s-
state; 3^/2 is the fine splitting of the p1/2 and p3/z lev-
els; \el(Z) is the relativistic factor of (1.21); and Ry is
the Rydberg energy unit.

For polyelectronic atoms, the matrix element of the
Hamiltonian of (1.1) differs from zero only for mixing
of configurations a and b that contain s and p electrons,
respectively. Here

{a \V\b) = (si/21VI p m ) Q (a, b), (3. 2)

where Q is a factor of the order of unity that depends
on the angular momenta. Formulas for the factors Q
are given in Appendix Π.

It is interesting to discuss the dependence of the mix-
ing coefficient β on the nuclear charge Z. The fine-
splitting parameter of the />-level £,<* Ζ2(Μ£)"3. Hence
the coefficient β<χΖ3λη1(Ζ)(η> ηί)-3/ζ(ΔΕ (ε,ρ))-1. For
ZS30, λΓβ1(Ζ)*1, while for Ζ£ 40, \el(Z) increases
rapidly with increasing Ζ and reaches a value λΓβΙ = 6 at
Ζ = 80. We can assume that the principal quantum num-
bers nj·* and the energy differences AE(s, p) do not de-
pend on Z.v Therefore the mixing coefficients β in-
crease with increasing Ζ as Z3 for Ζ5 30, and some-
what more rapidly than Z3 for Zi> 30. Thus the greatest

values of β are realized in the heavy atoms. This im-
portant circumstance was first noted inC51.

B. Matrix elements of the magnetic dipole Μ

In the non-relativistic approximation, the matrix ele-
ments of the magnetic dipole differ from zero only for
transitions between the fine-structure components of a
single term or the hyperfine-structure components of
a single level. All the matrix elements of this type are
equal in order of magnitude to the Bohr magneton μΒ.
For transitions between levels of differing electronic
configurations or between different LS terms, the ma-
trix elements of Μ in the non-relativistic approximation
are zero. Mixing of electronic configurations caused
by electrostatic interaction of electrons does not relax
this rule. The rule is relaxed only by relativistic ef-
fects. Two types of such effects can occur: relativistic
corrections to the magnetic-moment operator1133 and
either spin-orbit interaction or a joint influence of mix-
ing of configurations and spin-orbit interaction.

Let us start with the first of these effects. When we
take account of the higher terms in the expansion in
terms of v/c (v is the velocity of the electron) in the
operator M, additional terms M' arise that are of the
order of α2: M= μΒ(σ + 1) + Μ'. For nsl/z-n's1/z transi-
tions in the hydrogen atom,

For ns.,~-n's.,, transitions in alkali atoms.C8]

Μ'=-μΒσ·-ί-^7

(3.3)

(3.4)

Here u(r) is the effective potential for the valence electron.
The second term in (3.4) is substantial only when r<,ra

where r 0 is the radius of the atomic residue, since
when t/ocl/r, d(rU)/dr=0. We can easily show that the
relative contribution of this term to the matrix element
of the transition is small. It may prove necessary to
take this term into account in treating transitions be-
tween levels for which one of the principal quantum
numbers η or n' is large, when the contribution of the
first term to (3.4) may prove to be anomalously small.
However, we must also take account here of the ex-
change interaction of the valence electron with the elec-
trons of the filled shells, which gives a contribution of
the same order of magnitude as the second term in
(3.4). Hence we shall use the expression (3.3) in the
estimates below.2)

The matrix elements of the operator of (3.3) depend

''Whenever ΑΕώ is anomalously small for any reason (e.g.,
AEnSim in the hydrogen atom), the mixing coefficient/3 becomes
very large. However, here the studied transition falls on the
tail of a strong, optically allowed transition. This makes an
experiment to measure the absorption cross-section practically
impossible. Experiments of the other types for hydrogen are
apparently also unrealistic; see c i l ] .

2)A detailed derivation of the expression for the magnetic-di-
pole operator for helium and helium-like ions can be found
in c l 3 > 1 4 ] . However, a generalization of this expression to the
alkaline-earth atoms requires that we should also take account
of exchange interaction with the inner filled shells.

209 Sov. Phys. Usp., Vol. 19, No. 3, March 1976 V. A. Alekseev et al. 209



weakly on Ζ, and they amount to ~ 0.1 α2 μΒ for many
transitions between ground and lower excited levels,
e.g., ns-(n + l)s transitions in alkali atoms. Thus,
numerical calculations performed with semiempirical
wave functions"53 give the following values of the square
of the matrix element I (ns\pz/2m |n ' s ) | 2 : potassium,
4s-5s—0.1 Ry2; rubidium, 5s-6s—0.15 Ry2; cesium,
6s-7s—0.2 Ry2. As we see, the Z-dependence is ac-
tually very weak, at any rate as compared with the β(Ζ)
relationship.

Now let us proceed to spin-orbit interaction and mix-
ing of configurations. These effects depend very strong-
ly on Z, while this relationship differs for atoms having
the ground configurations ns, ns2, and npk.

For atoms haying the ground electronic configura-
tion npk, the transitions of interest are either those be-
tween the fine-structure components of the ground term,
e.g., ηρ*Ριη-ηρ*Ρ3η,ηρ"Ρ3/!!-ηρ™Ρν2, np*3P0-
np*3Pj, etc., or those between the terms of the ground
electronic configuration, e.g., np3*S3/2-np3ZD3/ZiS/z.
M~ μΒ for transitions of the first type. In the case of
transitions of the second type for Z £ 40, M~ (0 .1-
1)MB Ι C i e ] owing to strong spin-orbital interaction that
mixes different SL terms (S is the total spin, and L is
the total orbital angular momentum). This is precise-
ly the situation for the bismuth atom that we shall treat
below.

For alkaline-earth and alkali elements, the transi-
tions of interest are forbidden s- s transitions that change
the principal quantum number: ws2 'S,,— nsn' s 3Sl and
w s i / 2 ~ ( n + D si/a-

For the alkaline-earth atoms (ns? ̂ -nsn' s3Sl transi-
tions), the selection rule is relaxed by the joint influ-
ence of interaction of the configurations ns2, ws, n's
with the pp configuration and spin-orbit interaction.
The configuration interaction mixes atomic states of
the type

>S0) = αΨ ̂  'So) + 6Ψ (niPn\p 'So),

1) = α'Ψ(η5«'ί35,) + ί''ψ(' ϊιΡη;Ρ3^ι)· (3 .5)

As before, the matrix element Μ of the transition as
taken over these functions is zero, since a magnetic-
dipole transition can occur only between states of like
spin, even with identical principal quantum numbers.
In turn, the spin-orbital interaction in the PP configura-
tion mixes the terms lS0 and 3P0,

 SS1 and *ΡΧ:

Ψ (nlPnlP »S0) = γΨ (niPn\P '£„) + δΨ (niPn\p 3/>0),

Ψ {niPn\p »S.) = γ'Ψ (niPn\p»St) + δ'Ψ (nlPniP »i\). ( 3 . 6)

Consequently,

M = bb'&&' (3P0 || Μ || '/>,) » δδ'δδ'μβ. ( 3 . 7)

The coefficient δ rapidly (<* Z2) increases with increas-
ing Ζ. At Z« 40-50, it attains value - 0 . 1 - 0 . 3 . m ' l n

A sufficiently reliable estimate of the coefficients b and
b' in (3.6) requires special numerical calculations,
since actually it is not a single close-lying pp state that
is effectively admixed in (3.5), but a large number of
such states from both the discrete and the continuous
spectrum. According to c i 8 ] , throughout the series of
atoms having the ground configuration ns2 from beryl-

lium to mercury, the overall mixing coefficient of all
the pp and pz states is 0.2-0.35, without any regular
dependence on Z. We can naturally assume that the
contribution of the close-lying pp configurations for
which δ is largest is no less than 0.1. Hence the factor
bb' δδ' rapidly grows from 10"4 at Ζ κ 40 to 10"2 for the
largest Ζ values.

The situation is about the same for the alkali atoms,
i.e., for atoms having the ground configuration ns.
However, here the configurations p5npn's (seece]),
which correspond to excitation of the closed p* shell,
are admixed into the configuration p*ns. Therefore the
coefficients b can be somewhat smaller than in the case
of mixing of the configurations n^-npn'p. Figure 1
shows the approximate form of the M(Z) relationship
for «s 1 / 8 — (n + l)s 1 / 2 transitions in alkali atoms and
nsilS0"ns(n + l)s3S1 transitions in the alkaline-earth
atoms.

C. Z-dependence of the quantities Δσ/Δ and Re(e+-e_)

The matrix elements of D for neutral atoms are prac-
tically independent of Z. Hence Z-dependence of the
quantity Δσ/σ~ βϋ/Μ is determined by the form of ${Z)
and M(Z). Figure lb shows the approximate Z-depen-
dence of Δσ/σ for ns1/2-(w + l)s 1 / 2 transitions in alkali
atoms and ws21S0-ns(n + l)s 3S 1 transitions in alkaline-
earth atoms. At first, Δσ/σ rises rapidly with increas-
ing Z, just like /3(Z>, then this growth becomes satu-
rated, since the dependence M<^Z* begins to be mani-
fested at large Z.

All the above-said implies that the largest values of
Δσ/σ in the studied strongly forbidden transitions are
realized at Ζ > 30-40. Yet the matrix elements Μ for
these transitions that determine the absorption cross
sections σ themselves are very small, ~ ΙΟ'4 μΒ. There-
fore it is hardly expedient to try to increase Δσ/σ by
further decrease in M. In principle one can point out
transitions for which M< ΙΟ"5 μΒ, e.g., transitions
from an ws1/2 ground state to a strongly excited M'S 1 / 2

state. Yet it is practically impossible to detect the ab-
sorption from such transitions because it will overlap
the absorption in the tail of the allowed absorption

i

to-

7010 SB SO 70 Ζ 10 30 50

a b

FIG. 1. (a) relationship between the matrix element Μ of the
magnetic-dipole transition and the nuclear charge Ζ (solid
line—ns2 iSi -~ ns(n+ DszSl transition in alkali-earth atoms,
dotted line—ns2S!/2 —(n+l)s2Sj/2 transition in alkali atoms);
(b) relationship between the relative difference in cross sec-
tions Δσ/σ and the nuclear charge Ζ (as in Fig. l(a), the solid
and dotted lines correspond to ns2iStl—ns(n + l)s3Si and to
ns2Si/2~'(n+l)s2Sl/2 transitions, respectively).
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Element

Cs'|3

Si !

Bag,

HrfSo

IB,

T1I5.

Bi!S,

Transition

6s1 / 2->-5s1 / 2

7s 1 / 2 —6s 1 / 2

5,6r>S, -• 5s2 'S o

6s7s3S,-*.6s2i5o

6s7s3S,-»6i2iS0

5p»i> i / 2 -*5p5 2P 3 / 2

6p2 3 P , - 6 p 2 3i>0

6 p " i > 1 / 2 - * 6 p 3 4S 3 / 2

6p'2p 3 / 2 -»6p3.»S 3 / 2

6 P 3 2 D 3 / 2 ^ 6 P 3 ' 5 3 / 2

6 ρ " β 5 / 2 - » 6 p " S 3 / 2

v, cnT1

20133.6

18 535.51

29 038.795

26160.284

62 350.456

7603.15

7 792.7

7 819.85

21661.0

33164.84

H 419.03

15 437.66

λ,μηι sm

Configuration m

0.496 682 10-8

0.539 505 10-8

Configuration m2

0.344366 10-8

0.382259 10-5

0.160 384 10-»

Configuration npk

1.315 244 4/3

1.283 26 4/3

1.278879 2

0.461659 0.4

0.30152414 0.035

0.875 7311 1.65

0.Θ47 766 0.35

W, sec"1

1.1.10-·

8.6-10-»

2.22-10-»

1.6-10-3

6.7-10-2

8

4.33

8.6

56

8.74

16.7

5.8

a, cm2

6.9·10-2»

9.6-10-26

1.41-10-25

1.74-10-22

6.5-10-22

5.6-10-1»

1.4-10-·'

4.3-10-1'

2.25-10-18

0.2-10-18

9.0-10-18

1.3-10-18

Δσ/σ = AW/W

65

1.13-10-4

5.7-10-1

3.0-10"4

1.8-10-5

1.7-10-5

1-10-8

2.6.10-'

io-«

1-10-6

The most suitable atoms for experiments to measure
Re(e+ - ε.) are the heaviest of the atoms having npk con-
figurations, for which there is an entire series of tran-
sitions in the visible and the near infrared having Μ
-(ΙΟ^-Ιίμ^, as was first noted in" 1 .

D. Results of calculations

The table gives the characteristics of a series of
transitions in atoms having the ground-state configura-
tions ns, ns2, np, npz, and nps, as well as the results of
the performed calculations of the parameter Δσ/σ
= Δ W/W. The conduct of these calculations is based on
highly varied spectroscopic information on the atoms
and on concrete transitions. The corresponding infor-
mation is given in Appendix ΙΠ, together with a discus-
sion of the applied approximations. The probability W
of magnetic-dipole transition that is given in the table
is calculated by the formula

W = — — — (-^~ \2 s

Here gf is the statistical weight of the upper state, and
sm is the strength of the line, which is also given in the
table, as expressed in Bohr magnetons: I (t II ΛίΊΐ/)|2

= Sm = sm(eR/2mcf. This probability corresponds to the
overall probability of transition from an arbitrary hy-
perfine sublevel of the upper state to all the hyperfine
sublevels of the lower state. The absorption cross-
section of interest to us for a magnetic-dipole transi-
tion with an electric dipole admixture at the frequency
ω is:

σ ± (ω)=(ΐ± |-^-)σ(ω) . (3.8)

Here σ(ω) is the cross section for the magnetic-dipole
transition with account taken of the hyperfine and iso-
topic structure of the line, as well as of Doppler and
collision broadening. Thus the ratio Δσ(ω)/σ(ω) = Δ W/

W does not depend on the factors that broaden and split
the line.3 '

The hyperfine and isotopic structure were not taken
into account in calculating the cross-section σ given in
the table. This elevates of the calculated cross section
as compared with that at the maximum of the most in-
tense hyperfine component by a factor of 1. 5-2. The
value of σ given in the table is calculated for the center
of the Doppler-broadened line by the formula

1 8πΐΛ5ί ν3 V hT g,

(where Μ is the mass of the atom) at a temperature
T=1000°K. For iodine, thallium, lead, and bismuth,
the magnetic-dipole transition is allowed, and the
strength sm of the line is calculated exactly.4) In the
atoms of rubidium, strontium, cesium, barium, and
mercury, the strength sm of the line was estimated very
approximately with account taken of configuration-in-
teraction effects. Experimental measurements would
be very desirable for the line strengths of these transi-
tions, which could alter the size of the effect Δσ/σ given
in the table by a factor equal to Vs|£Vs"P·

4. POSSIBLE EXPERIMENTAL SCHEMES

A. Measurement of the difference of absorption
cross-sections σ+ - σ_

As we see from the table, the maximum values of
Δσ/σ correspond to very small σ~ 10"85 cm2 at which
direct observation of absorption is difficult: the frac-
tion of absorbed photons at a density N~ 1018 cm'3 and

3)Whenever an electric quadrupole transition exists simultane-
ously with the magnetic-dipole transition, Eq. (3.8) loses
force.

4 ) See t l 8 l l 7 : l on the calculation of sm for bismuth.
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cuvette length L - 10 cm is NaL ~ 10"4. In£S] they pro-
posed measuring the quantities σ+ and σ. by recording
the number of absorption events via the emission from
the excited atoms in an allowed transition to a low-lying
level of opposite parity. For the alkali atoms, this
would be absorption in an ws — n's transition and subse-
quent emission in an n's — np transition; for the alkaline
earths, absorption in an n& lS0 — nsn'n 3S1 transition and
emission in an nsn's^- nsnp3P1 transition. Let us
examine the requirements imposed on the accuracy of
the measurements in this experiment. Let / t and /2 be
the photon fluxes for preferential right-hand and left-
hand polarization, respectively, the polarization states
being fixed with accuracies xt and xz. That is, let the
first beam contain a small admixture xl of levo-polar-
ized light, and the second an admixture of % of dextro-
polarized light, with xx, ^ « 1. If we denote by /( and
4 the measured photon fluxes for the allowed transi-
tion; I[=I1NatL, and l'z=lzNo.L, we obtain for the ef-
fect of interest to us:

^ i 1 1 - ^ ) (*-*'-**)"'· (4.D
We see from (4.1) that the requirements imposed on the
purity of polarization of the beams are not large: it
quite suffices to have xlt %$ 10"2, which causes no dif-
ficulties. Hence the sensitivity of the method with re-
spect to measuring the small quantities (σ., - σ.)/σ is
determined to the same accuracy as that to which one
can measure (It -/2)A t and (I[ -%)/![.

Two variants of the experiment are possible: 1) suc-
cessively turning on the beams / t and Iz, and 2) simul-
taneously exposing two portions of the volume of the
cuvette.

In the former case, we must monitor the frequency of
the exciting radiation, since deviations of the frequency
by δω from the center of the line will diminish the ab-
sorption cross-section by the amount Δσ = (δω/Δω£,)

2σ,
where ΔωΒ is the Doppler width of the line. Hence we
must have δ ω « ΔωΒ νΔσ/σ. The splitting by the mag-
netic field also must not exceed ΔωονΔσ/σ. This leads
to the requirement that H« ΙΟ2 νΔσ/σ Oe.

In the latter case, large fluctuations δω are admissi-
ble. If these fluctuations are actually large, then the
requirements for eliminating magnetic fields become
stricter: Η « 1(?(ΔωΒ/δω)(Δσ/σ) Oe.

The requirements on the admissible stray electric
fields make no serious difficulties (seeC5:).

Let us estimate typical values of the measured fluxes
4 and I'z. We shall assume that the collision width does
not exceed Δω 0 for the chosen N. Then the probability
of quenching of the excited state is substantially smaller
than that of the allowed optical transition. Hence the
yield of luminescence photons is Q*IaN, and V -IoNL,
where L is the linear dimension of the exposed volume.
For N~ 1018 cm"3, σ« 10"25 cm2, which corresponds to
the minimum value of σ in the table, Q= 10"7/. If we
use a cw laser as the excitation source, then we must
orient ourselves to fluxes /~ 1017 cm"2 sec"1 (laser pow-
e r - 10"2 W with beam diameter ~ 1 cm). Here Q~ 1010

photons/cm3 sec. With a pulsed laser, we can expect

pulses of exciting light of the order of 101β-1018 photons
(energy 10"3-10'1 J) and luminescence pulses of the or-
der of ΙΟ'-ΙΟ11 photons. The luminescence yield is
large enough in both cases.

A concentration of vapors of alkali and alkaline-earth
atoms of N~ 1018 cm"3 can be obtained only at relatively
high temperatures T~ 700-1500 °K. One must consider
at such temperatures the possible onset of thermal
emission at the luminescence frequency from the gas
being studied. In order to estimate the role of this ef-
fect, it suffices to compare the thermal population of
the excited level Nz=NeJi"'"'T with the population ΔΝ
=ΙστΝ that is produced by the steady-state absorption
of quanta from the incident flux of / quanta/cm8 sec; τ
is the radiation lifetime of the excited level, where τ
~ 10"7 sec. Let us give estimates of ΔΝ/ΝΖ for the tem-
perature at which the saturated vapor density reaches
N~ 10" cm"3: rubidium-T» 800 °K, ΔΝ/Ν2 = 5X 10"16/;
cesium-T« 670 "Κ, Δ^/ΛΓ2 = 2 Χ 1 0 " 1 5 / ; strontium-T
«1370°K, ΔΛΓ/ΛΓ8 = 3Χ1Ο19/; barium-Γ«1570°Κ, AN/
Nj,= 5xl0-1 9/; mercury-Γ» 530°K, ΔΝ/Ν2« 104β/.
Thus, with a continuous laser giving /~ 1017 quanta/cm2

sec, the thermal background does not exceed the useful
signal for mercury, cesium, and apparently rubidium.
With a pulsed laser having /~ 1023 quanta/cm2 sec, the
useful signal is larger than or of the order of the ther-
mal background for all the studied elements having a
forbidden magnetic-dipole transition. Thermal emis-
sion from the walls and windows of the cuvette can also
cause substantial difficulties.

One need not use the emission of the excited atoms in
an allowed transition in order to detect the difference
between the numbers of excitation events by dextro- and
levo-polarized light. In principle, other methods are
possible. For example, a difference between σ+ and σ.
leads to a difference between the populations JV+ and Nm

of the ± m components of the excited level, and hence, to
a difference between the magnetic moments Ν.μΒ 3ιχιάΝ_μΒ

created by irradiating the gas with the light fluxes /+

and /. . In detecting Nt μΒ and Ν. μΒ, it is most conve-
nient to use an n^ 1S0-nsn'siS1 transition. This is be-
cause the moment of the atom is zero in the ground
state, and the thermal fluctuations of the magnetic mo-
ment are small. They are determined only by the ther-
mal fluctuations of the populations of the m -components
of the excited level.

B. Rotation of the plane of polarization

As we have mentioned in Chap. 2, a difference be-
tween the absorption cross sections σ, and σ. leads to a
difference between the real parts: Re(e t - ε.) * 0, owing
to the Kramers-Kronig relationships. This difference
can be measured from the angle of rotation of the plane
of polarization θ as the light passes through a cuvette
of length L containing the studied gas:

As has been shown in" 3, transitions having M~ μΒ are
most suitable for this, i. e., elements having the ground
configuration npk. In frequency regions close to the fre-
quency of the studied magnetic-dipole transition, ε (ω)
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is determined by the convolution of the Doppler and

Lorentz contours

(4.3)
where γ is the collision width. There is no rotation at

the center of the line. When γ « A.u>D, the maximum of

the quantity Re(e, - ε.) is attained when Ι ω - ωο | = 0. 93

Δω^ (see the table in c i 9 : ). At this point of the contour,

the angle θ and the beam attenuation exp(-xL) are

/. „ . , „ , Ο+— σ_ ω —ωο (Α Λα\
Q= — υ.ο1Λ(Τ0Λί — τ— ^-τ , \ *· * Λ /

exp (-Y.L) = exp (-0 .41№J 0 £), (4. 4b)

where Η = (ω/c) Im ε is the absorption coefficient. We
see from Eq. (4.4) that the rotation angle for a given
value of (σ+ - σ.)/σ0 is proportional to Na^L, which also
determines the absorption in the distance L. It seems
unrealistic to make measurements at an absorption
greater than e"10= 4. 5X 10'5. For atoms having the con-
figuration np\ Ασ/aS 10"e (see the table), and \6\S 7(σ+

-σ_)σο~ 7 x 10"β. It seems to be an extremely hard
problem to detect such a small rotation angle. An ab-
sorption of e"10 corresponds to NagL = 25. With a cross
section of σο« 10"17 cm2 (see the table), this is easily at-
tained at a concentration N= 1018 cm'3 and L = 2.5 cm.
Since the length L =2.5 cm can be considerably in-
creased (up to £« 102 cm), one can try to increase the
rotation angle by increasing the parameter'Na^L, while
eliminating absorption by frequency detuning in the tail
of the line, since the absorption declines more rapidly
than the dispersion in the tail.

The absorption and the rotation of the plane of polar-
ization in the tail are determined by the dispersion con-
tour of the line at uniform width y. The size of y in
neutral gases arises from the collision mechanism of
broadening caused by the van der Waals interaction,
and it is proportional to the density. The van der Waals
broadening depends weakly on the concrete type of atoms
and the temperature of the gas; usually the width y is
comparable with the Doppler width ΔωΒ of the line when
N~ 1018 cm'3. Hence, in rough estimates we can as-
sume γχΔωηΝ- 10"18.

In the dispersion tail of the line,

(4.5)

(4.6)

If we set again the limiting absorption exp(- κΖ,) = β"10,
we can select an optimal detuning from resonance

| ω — ω01 = /

With this choice of Ι ω - ω ο | , if the condition is satis-

fied that

which ensures the inequality Ι ω - ωο | »Δωο, we get for
the angle Θ:

-^a±-S.m (4.9)

Since γ is proportional to the density, the angle θ from

(4. 9) does not depend on N. Moreover, since (σ+ - σ.)/

σο~ βΌ/Μ, while ao~Nfi, the angle θ also does not de-

pend on M. We recall that we are speaking of rather

large M~ μΒ, for which NOgL » 1 (σ0 > ΙΟ"20, Μ > 2

x 10"2 μΒ). Thus, we must achieve the maximum possi-

ble values of βΰ in choosing the concrete transitions.

If we substitute into (4. 9) typical values of the parame-

ters (see the table): σ=10'1 7 cm2, Δσ/σ = 2χΐΟ"β, Ν

= 1018 cm3 (here γ« Δωο), and L = 100 cm, we get θ

~ 0.25x 10"4. The necessary frequency detuning in this

case is Ι ω - ωο | = 10y = 10 ΔωΒ.

The studied example shows the scale of the effect of
rotation of the plane of polarization that we might ex-
pect under optimal experimental conditions. Generally
the angle θ measured in an actual experiment contains
also a contribution from the uneliminated magnetic
field. The sought effect can be isolated by its depen-
dence on the magnitude and sign of (ω - ω0). In this
case the thermal emission of the gas and the cuvette are
not substantial. The emission brilliance of a single-
mode laser is so great that the effective temperature of
the beam greatly exceeds the temperature of the gas,
even after considerable attenuation in the cuvette.

C. Mode splitting of an optical resonator

One can propose yet another possible way of detecting
a difference between Ree+ and Ree.. The development
of laser technology has currently created an actual pos-
sibility of monitoring the intrinsic frequency of a mode
of an optical resonator with an accuracy δω~ ΙΟ^Γ and
even better (see, e.g.c a o ]), where Γ is the width of the
mode. Introduction of a cuvette containing the gas to
be studied inside the resonator should lead to splitting
of the frequencies of dextro- and levo-polarized modes:

fflf-lo_ = i<oi-Re(e,.-e.), (4.10)

where ω is the intrinsic frequency of the mode of the
resonator without the cuvette. Here L is the length of
the cuvette, and Lp is the total path length of the light
in the resonator. If we use again a frequency detuning
Ι ω - ωο | » ΔωΒ to diminish absorption, we get

ω —ω = _ ! L A O i — At°D (4.H)
2 ~\/x Lp ° σ 0 ω—ωο "

The width Γ of the mode of the resonator without the
cuvette is determined by the losses at the mirrors, and
it is

Σ (4.12)

where the Rt are the reflection coefficients of the mir-
rors. The concrete choice of the frequency detuning is
set so that the losses due to absorption in the cuvette
do not exceed the losses at the mirrors:

1/π (ω—ίΐ

The optimal frequency detuning is

| ω— ωο| =

(4.13)

(4.14)

213 Sov. Phys. Usp., Vol. 19, No. 3, March 1976 V. A. Alekseev et at. 213



If we substitute (4.14) into (4.11), we find

Ύ
(4.15)

Here we have taken account of the fact that the width Γ
is twice as large as in (4.12), assuming equal losses in
the cuvette and at the mirrors. We note that the size
of the effect in (4.15) does not depend on N. If we as-
sume again that σ = 10"17 cm8, Δσ/σ = 2x 1<Τβ. Ν= 1018

cm'3, L = 200 cm (double passage through a meter cu-
vette), and Σι(1 -Rt) = 0.02, we obtain from (4.14) and
(4.15): Ιω-ω 0 Ι=2.4Χΐ0 8 γ«2.4Χ10 2 Δω ζ ) , and (ω,
-ω.)/Γ«2.4χΐΟ' 4 .

The sign of circular polarization is reversed upon
reflection of the light wave from a mirror. On the
other hand, the effect of non-conservation of parity
must accumulate upon successive passages through the
cuvette. Hence one must use either a traveling-wave
ring resonator in which the wave undergoes an even
number of reflections between successive passages, or
a Fabry-Perot resonator in which quarter-wave plates
are placed between the cuvette and the mirrors. In the
latter case, the wave also retains its polarization, ow-
ing to double passage through the quarter-wave plate
and reflection from the mirrors.

The scheme of the discussed experiment consists in
the following (Fig. 2). Radiation from the laser Lj with
left-hand circular polarization and radiation from the
laser L2 with right-hand circular polarization are simul-
taneously passed through an interferometer within
which a cuvette containing the studied gas is placed.
An automatic-frequency-control system processes the
feedback signals, which are applied to the piezoceramic
laser resonators to adjust the lengths of the resonators
so that the frequencies of the lasers correspond to the
maxima of the transmission bands of the interferome-
ters. Simultaneously, the beating signal from the pho-
todetector at the frequency ω+ - ω_ is applied to the fre-
quency meter. The requirements on the purity of the
polarization state are not great—about the same as in
the experiments to measure Δσ/σ.

We can somewhat modify the scheme of the experi-
ment by introducing into the resonator an additional
cuvette containing an optically active substance, and
thus creating an additional splitting of the frequencies

Φ η s

FIG. 2. Diagram of an experiment to determine the splitting
of (he intrinsic frequencies of an interferometer. Lj and L2—
frequency-tunable lasers; 1—interferometer mirror, 2—cu-
vette containing the studied atomic gas, 3—cuvette containing an
optically-active substance that produces an additional splitting
of the modes of the interferometer, 4—λ/4 plates, 5—photo-
jdetector, 6—frequency meter, 7—tracking system that processes
the feedback signal for tuning the frequency of the lasers.

ω«. and ω . that exceeds Γ. Then there is no need to
ensure the polarization of the laser radiation with great
accuracy. The modes ω, and ω . will be excited sepa-
rately when the laser frequency matches each of these
frequencies, practically independently of the polariza-
tion state of the laser radiation. The studied gas will
now give rise to a small frequency shift δω, ,δω. of the
order of the splitting that was formerly determined by
Eq. (4.15). One can isolate these shifts by using their
dependence on the gas density.

Which of the two studied ways of detecting a difference
between Rett and Res. (from the angle of rotation of the
plane of polarization or the interferometric method) has
the advantage will depend on the concrete experimental
conditions. The difficulties of measuring rotation angles
θ~ 10'4-10"5 and matching of the intrinsic frequencies of
a resonator ω+ and ω. to an accuracy of the order of
(10"*-10"5)Γ are apparently about the same, although
they have somewhat different characteristics.

We see from the above discussion that the fundamen-
tal obstacle to attaining large effects involving Re(e,
-ε.) is the large absorption in the studied gas. There
is currently a theoretical possibility of overcoming this
difficulty. It is based on the so-called phenomenon of
self-induced transparency (2;r-pulses), and it consists
in the following (see, e.g.,C 8 7 ]). A pulse of resonance
radiation whose duration τ is much smaller than all the
relaxation times of the medium, while the amplitude
H{t) of the wave satisfies the condition

(4.16)

where Μ is the matrix element of the transition, can
propagate in a two-level absorbing medium without
losses. As we know, the reactive resonance interac-
tion that in linear optics involves the real part of ε (ω)
is conserved here. Thus, for example, one observes
here an anomalously large Faraday rotation of the plane
of polarization in a magnetic field that is described by
practically the same formulas as in linear optics. At
low intensities of the light fluxes, such a strong rotation
has not been observed, owing to the strong absorption
near the center of the line. One can easily show that
mixing of states of different parity rotates the plane of
polarization of the 2ff-pulse, just like the presence of a
magnetic field. In principle, the angle of rotation can
be made large enough here, since the length of the cu-
vette can be taken to be far greater than the reciprocal
of the linear absorption coefficient. However, we note
that as yet the phenomenon of self-induced transparency
has been observed only with not very great cuvette
lengths that are less than or of the order of a tenth of
the reciprocal absorption coefficient. We also note that
one requires a frequency detuning of Δω~ ΔωD from the
center of the line for rotation of the plane of polariza-
tion caused by non-conservation of parity. Moreover,
fulfillment of the condition (4.16) requires using an ex-
tremely powerful laser pulse, since the matrix element
Μ of the magnetic-dipole transition is about 137 times
smaller than the matrix element ea0 of the electric-di-
pole transition. Hence it is currently hard to make any
prognoses on the 2ff-pulse experiment.
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5. CONCLUSION conductor laser.

The requirements imposed on the laser source sub-
stantially differ for the above-discussed three possible
schemes for measuring effects of non-conservation of
parity: 1) direct measurement of Δσ/σ, 2) measure-
ment of the angle θ of rotation of the plane of polariza-
tion, and 3) measurement of the splitting of the intrinsic
frequencies ω, and ω. of an interferometer. Let us list
again these requirements.

In the first experiment, one needs exact tuning of the
laser frequency (within limits of ΔωΒ) to the frequency
of the working transition. The requirements on the
polarization state of the laser beam are not severe.
There are fundamental difficulties involving the need
for controlling the intensity of the light fluxes with high
accuracy.

In the second and third cases, one needs only consid-
erably cruder tuning of the laser to the defined frequen-
cy (~ 10-100 ΛωΒ).

In the third, interferometric experiment, one need
not maintain with high accuracy either the intensity or
the polarization state of the laser. The center of gravity
is shifted to the frequency measurements. The frequen-
cy of the laser must be smoothly tunable, though indeed
over a rather narrow range of the order of Γ.

In an experiment of the first type, one can use in
principle either cw or pulsed lasers. In measuring the
angle of rotation one can use either a cw or a pulsed
laser, though it seems considerably more convenient
to work with a cw laser. Finally, one can use only a
cw laser for matching to the intrinsic frequencies of an
interferometer.

Common to all the discussed experiments is the re-
quirement for matching of the laser frequency to the
frequency of the working transition. Currently, the fre-
quency of laser radiation in the visible is tuned by laser
action in dyes. In these generators, a dye having a
broad amplification band (Δω/ω-i) is pumped by another
laser, which is cw or pulsed. The retuning of the gen-
eration frequency by the dye is carried out by changing the
the parameters of the resonator.

The only continuous source for pumping a dye laser
is an ionized-argon laser (several lines in the range
λ= 0.46-0. 51 Mm). Here the dye laser frequency to be
tuned overlaps the region λ = 0. 5-0. 8 Mm. Among the
elements listed in the table, transitions in cesium,
rubidium, and bismuth fall in this wavelength region.
As for the rest of the studied transitions in the visible,
we can currently hope to tune to them only by using
pulsed lasers that are retuned with dyes, and perhaps
with subsequent frequency-doubling by second-harmonic
generation. As pumping sources here, one can suggest
the nitrogen laser, λ = 0.3371 μτα (see, e.g. : 2 1 ]) and
the copper-vapor laser, λ = 0.5105 μΐη. Ι 2 ί 1

In the infrared, tuning to the frequency of a transition
currently seems to be a somewhat more complicated
problem; in principle, one can hope to get stable, fre-
quency-tunable radiation in this region by using a semi-

The treatment given above shows that observation in
atoms of effects of non-conservation of parity caused by
neutral currents in the weak interaction is a very allur-
ing, though difficult problem. The contemporary state
of quantum electronics permits us to hope for success
in this very important experiment.

In conclusion, the authors express deep gratitude to
I. L. Beigman and E. A. Yokov for useful discussions
and help in the calculations, and to I. B. Khriplovich
for valuable remarks.

APPENDIX I: CALCULATION OF THE MATRIX
ELEMENT OF A /'-ODD INTERACTION

We shall take the part of the Hamiltonian for weak in-
teraction of the electrons with the nucleus that does not
conserve parity to be

(I.Dv= —

Here the integration of the bispinor electronic functions
ψ and φ is performed over the spherical volume of the
nucleus of radius r 0. Here the density of weak charge
is assumed to be uniformly distributed over the volume
(4/3Vrg of the nucleus. Ζ is the charge of the atomic
nucleus. Following"3, the factor q is assumed to be

? = 1 _ _ l _ 2 s i n 2 e , (1.2)

A is the atomic weight of the element, sin2e = 0.35, and
q ~ - 0. 9. In (1.1) we neglect the electron-electron part
of the interaction, since the interaction of the electrons
with the nucleus leads to substantially greater effects.

In the non-relativistic approximation for a point nu-
cleus (r0 = 0), the interaction (1.1) takes on the form
(1.1) given in the Introduction:

(1.3)v=--^zq^- Γ) (σρ)1 ·

Let us first study the mixing of an s 1 / 2 state into a/> l / 2

state caused by the non-relativistic P-odd interaction
of (1.3). The spinor wave functions of the s 1 / 2 and p1/z

states having the projection of the angular momentum
j t = j have the form

φ, φ) (1.4)

Here the RStP{r) are the radial parts of the wave func-
tions, and Y10= \/3/4π cos0 and F 1 1 = - /37δϊτ sinSe'"
are spherical functions.5)

Only the second term in (I. 3) contributes to the ma-
trix element (sUi\V\p1/t) of the interaction. Conse-
quently we get

(1.5)

Let us proceed to calculate the matrix element of the
relativistic perturbation Hamiltonian of (1.1). Upon in-
troducing the upper and lower components of the bispinor
Ψ = (£), we shall write the functions ip(sl/z) and ψ(ριη) in

s )The phases of the spherical functions are taken as in c l 2 ] .
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the form

Upon substituting
account, we get

(1.6)
p = (·) into (1.1) and taking (1.6) into

= — iTyT

1/2)1

r) gp (r) -«,· (r) /„ (r)).

(I. 7)
Thus, in order to calculate the matrix element of

(1.7), we must find the relativistic radial functions with-
in the nucleus (r^ r0). The Dirac equation for the func-
tions / and g takes on the form

(1.8a)

(1.8b)

Here e is the eigenvalue of the energy (apart from the
energy me2), U(r) is the interaction potential of the
electrons with the nucleus and with the self-consistent
field of the rest of the electrons of the atom, κ = - 1 for
the s 1 / 2 state and κ = 1 for the puz state. Analogously
to what is done in the problem of the isotopic shift of
atomic terms, "2· 2 8 · 2 Μ one can express the values of the
functions /« and gx within the nucleus in terms of the
parameters Rs(0) and (Rp(r)/r)r.o of the formal solution
of the non-relativistic problem. Let us give the corre-
sponding calculations.

For r<r0, the potential I U(r) I ~ Z^/r0 » we2. The
coefficient U(r)/Kc on the right-hand side of Eqs. (1.8)
is less than the centrifugal coefficient v./r-. \rU(r)/Kc\
^Za<\. Hence, in solving the system (1.8) in the re-
gion r< r0, we can treat the right-hand side as a per-
turbation. Upon introducing the new functions

(I. 9)) = F* Μ < (r)

we can formally integrate the system (1.8):

Gx(0) — 1 -

(I. 10a)

(I. 10b)

We see from these formulas that G,(0) = 0 for the s 1 / 8

state (κ= - 1), since otherwise the integral on the right-
hand side of (1.10a) diverges. We have Fp(0) = 0 for the
p1/z state by analogous arguments. Consequently, we
have the following for the wave functions, to an accuracy
of first-order terms in the small parameter aZ inclu-
sive:

— lp(r), rgp = Gp{0)r. (1.11)

The positive functions I4(r) and £p(r), which have values
~ 1, are determined by the equations

IT

(1.12)

The matrix element of interest to us is equal to

>= - i - 5 ^ - zqf ο β ο - i - \\*ά ~
'Y2c q" ( ° ) G p ( 0 ) 4trS Γ d

(1.13)
In writing the second of the equations of (1.13), we ne-
glected the terms ~ (Zaf as compared with the terms
~ 1. In the language of wave functions, this approxima-
tion corresponds to substituting the values g, = 0 and
fp = 0 for r< r0 into the formulas of (1.11). We note that
the size of the terms that are kept in the formula (1.13)
does not depend on the type of electrostatic potential
within the nucleus.

Thus we must determine the constants Fs(0) and Gp(0)
in order to calculate the matrix element. To do this,
we must find the solution of the Dirac equation outside
the nucleus (for r>r0) that transforms as r-°° into the
non-relativistic solutions having the needed energies
and normalization, while at r = r 0 they satisfy the bound-
ary conditions

/. (r.) = F, (0),
tp Μ = 0,

g, (ι·,) ·
gp (r0) . (0). (1.14)

Near the nucleus, there is a rather large region in
which we can neglect the shielding effect of the atomic
core and the binding energy ε. In this region, the gen-
eral solution of the system (1.8) has the form

(1.15a)

-). (1.15b)

Here CK and DK are constants, y = ̂ κ2 - (aZf, αο /
we2 is the Bohr radius for hydrogen, and Jv is the Bes-
sel function. By equating the wave functions (1.15) and
(1.14) at r=r0, we can find expressions for Cx and DK

in terms of .F,(0) and Gp(0), in particular

£ ( ^ r 0 , . (I· 16b)

In finding the coefficients Cx and B<, we have used
the smallness of the argument of the Bessel function
(2Zro/ao)

1/z £ 0.14 for Ζ S 80 and r0 = 6x 10"13 cm, and
have kept only the first terms of the expansion in this
parameter. The smallness of this parameter also im-
plies that D / C ~ (2Zro/aof

r« 0.01.

In finding C, and Cp, we note that there is a region of
rvalues, a*Zao£ rSa^-1/3 in which, first, the solu-
tion becomes non-relativistic, and second, we can still
neglect the binding energy and the shielding effect of
the atomic core. The general solution of the Schrodinger
equation with an orbital angular momentum I in this re-
gion has the form ip = R,(r)Ytm(e, φ), where

? ' - (/?) +»' V%*- (/?) · CL17)
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The functions /„ from (1.15) must transform into the
solution of (1.17). The arguments of the Bessel func-
tion in (1.15) and (1.17) coincide, and in the region r
£ a 2 a^Z, this argument is much larger than unity.
Hence, we can use the asymptotic expansion of all the
Bessel functions that figure in (1.15a) and in (1.17).
Here we can keep in (1.15a) only the term proportional
to J^. j (since Dx/C** 0. 01). Matching of the ampli-
tudes and phases of the sinusoidal oscillations of the
solutions of (1.15a) and (1.17) gives

C,= —Cxcos[n(I—γ+1)|, B,wC»sin[n(i —v + l)l. (1.18)

The formal non-relativistic solution of the problem hav-
ing a point nucleus corresponds to the case B, = 0. We
can convince ourselves of this by letting aZ — 0 in (1.17).
Here the parameters C,= -C, and Cp = Cp determine the
behavior of the non-relativistic wave functions at the
coordinate origin:

c n = (1.19)

As we see from (1.17) and (1.18), the ratio -8,/C,
= - tan[rr(I -y + 1)] determines the phase of the sinusoidal
oscillations of the wave function, and it does not depend
on the general normalization of the wave function.
Matching of the logarithmic derivative of the function
(1.17) (which depends only on the ratio B,/Ct) with the
same derivative of the solution of the Schr'odinger equa-
tion in the shielding region permits one in principle to
determine the_position of the energy levels. The am-
plitude i/cf + sf of the sinusoidal oscillations is deter-
mined by the normalization of the wave function. The
major contribution to the normalizing integral of the
wave function of an optical electron comes from the re-
gion of non-relativistic motion in the shielded Coulombic
potential. Hence the amplitude I CJ of the oscillations
of the wave function is practically independent of the
relativistic corrections and of the corrections for the
finite size of the nucleus, and we can calculate CK by
the formulas (1.19), which were written under the as-
sumption that B, = 0.

Combination of the formulas (1.13), (1.16a), (1.16b),
and (1.19) permits us to represent the exact matrix ele-
ment of the interaction of (1.1) in the form of the prod-
uct of the non-relativistic matrix element of (I. 5) by
the correction factor Xrei:

rel Γ2

(1.20)

(1.21a)

We recall that this result for the relativistic correction
\ e l has been derived by neglecting the small additive
terms of the order of (aZ'f. In order to get an expres-
sion for \ e l with a relative accuracy including terms of
the order of (oiZft we must continue the iteration in the
powers of aZ in the formulas (1.11), and use the ob-
tained wave functions in the formulas (1.13), (1.14), and
(1.16). These calculations now depend on the electronic
charge distribution within the nucleus, and for a constant
density they give

It is interesting to compare this expression with the
formula for \ n l obtained by Bouchiat.C5] There they
calculated the relativistic correction for a (formally
chosen) model of the nucleus in which the entire elec-
tric charge was concentrated at the center of the nu-
cleus, while the entire weak charge was on the surface
of the spherical nucleus of radius r0. The calculational
procedure in this model is simplified, since one uses
the relativistic functions for a point Coulomb center,
though it is rather hard to estimate in advance the ac-
curacy of the calculation. The expression fromC5] for
λ,,ΐ has the form

Γ2 (2γ) V2 V 2Zr 0

(1.21c)

We can estimate the error of the formula (1.21c) by
comparing it with the more exact expression (1.21b):

= 1+0.17 (aZ)2. (1.21d)

The last equation has been written with terms of the
order of (aZ)* and higher neglected.

Let us proceed to discuss the parameters of the non-
relativistic ψ-functions RS(Q) and (Rp/r)r,0. For an s-
state having the principal quantum number n, we havec l 2 :

Here Δ is the quantum defect, Ι 8Δ/8Μ| « 1 , n^ = VRy/£s

is the effective principal quantum number, Ry = me*/
2H 2; for neutral atoms Za = 1. For a hydrogen-like ion
of charge Z, we should assume that Za =Z, n+=n, 8Δ/
8w = 0, and the formula (1.22) transforms into the exact
formula. The applicability of this formula for polyelec-
tronic atoms has been tested on a vast experimental
material on hyperfine splitting of atomic levels.

Let us proceed as follows to determine (Rp/r)r^0

(cf.c i 2 : l). The fine splitting of the P 1 / E and P 3 / E states
arising from the spin-orbit interaction V, 0 = (ΖαΗ3/
2mzc)r-3(l.B)is

r. 23)

Here we assume that the major contribution to the split-
ting comes from the region of the unshielded Coulomb
potential of the nucleus, for which the expression for
Vs.o was written. In this region, the non-relativistic
solution for Rp(r) has the form (1.17) for Bp= 0. There-
fore,

(1.24)
From (1.24), (1.23), and (1.19), we find

The performed calculations permit us to find the mixing
coefficient β of the n'sin state with the npl/z state:

ψ = ψ (iPi/2) + βψ (n'sl/2).

(I. 26)

[1 + 0.577 («Ζ,»] \2-2v (I. 21b)

•I Ry -./ Λ'Ρ
Δε(ηρ1 / 2, n's,/2) \ 2 Ry -
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APPENDIX I I : ATOMS HAVING SEVERAL
OPTICAL ELECTRONS

The operator V is an operator that is symmetrical
with respect to the atomic electrons, and is of the type
Σ ν. Here the one-electron operator is a scalar prod-
uct of first-order spherical tensor operators that act,
respectively, on the coordinates and the spin of the
electron. By using the method of genealogical coeffi-
cients and the formulas for the matrix elements of the
tensor operators (see c l 8 ]), we can get

x / i « S . -M | l , i , i l l fl/2 5 o i l l
X S b L b 1 / \ L b lb 1 } \ S b 1/2 1 / "

(Π.1)

Here the Gfjfj are the genealogical coefficients, the
formulas for the G- and 6j{*y

 y

x \} are contained ln t B ] ,
and

ι? (ο; b) = Q(b;a).

For the configurations s8, ss, and ps,

(Π.2)

,; sp >P,)= - ] / | - ,

Q (pi V 3 / 2 ; p* [I

The reduced matrix elements (ell Dn 6) are expressed
in terms of the one-electron matrix elements by using
the following formulasc l 2 ]:

/a || D || q~

β i l i a Sri·} «.•*•«·
(II. 3)

(»« 'So || D || sp Φ,) = 1/2 (« || D || ρ),

(«ι » || «ρ 3i>0) = _ L . (, || β || p ) i

[/ 3

(p5 V3/2IIβ II Ρ 4 I ' 5 ! s 2 S i / 2 > = | · (Ρ I I β II ')<

(Ρ5 V3/2 II D II ρ« ['Ρ] s V 1 / 2 ) = | / . . 1 (p || Z) || .),

'•J>3/2)-l/f 0ΊΙΒΙΙ·).

(ρ || 2) || « ) _ - ( , || Β || p ) = _ , J R,Rpr>dr. (Π. 4)

Here e > 0 is the charge of the electron, and Rs and Rp

are the radial functions. The formulas that relate the
parameter ζ to the experimental fine-splitting values
are contained in1 1 2 3. They imply that:

configuration p: lP=\[El?P3/l)-E(!P1/2)],

configuration pi, ζ ρ = — | [ £ ( V 3 / 2 )

configuration sp: Jp = 2 [£ (3P,)—£(3P0)].

APPENDIX II I: EXPLANATIONS FOR THE TABLE

The signs of the mixing coefficients β and of the ma-
trix elements of the dipole moments depend on the choice
of signs of the radial wave functions Ra\r) and Rp(r).
The sign of the contribution of the corresponding transi-
tions to the observed quantity Wt - W. naturally does not
depend on this choice. However, in order to find the
sign of this contribution, we must arbitrarily fix the
signs of the radial functions Rs and Rp, and calculate
from these quantities both β and (a IIDII 6). For deter-
mining the signs, we have used the tables of Bates and
DamgaardC22] (these tables are given in the bookcl2]),
which have the signs of the matrix elements of the di-
pole moments, while we took the functions Rs to be posi-
tive a s r - « . Here, for states of principal quantum
number n, we have, according to the theorem on the
number of zeroes of the radial function:

Rn, (0) _ • , Rnp Μ I _ , _ , , „
|Λη.(0) |~ ( ' ' |Λ»,ΜΙ | ~ ο ~ ι ' ·

The value of the reduced matrix element I (j H DII k)\
= I (ft H D Ν j) I was recalculated from the oscillator
strength f(j, k) of the corresponding radiative transi-
tion by the formula

3 e'H ,,, ,.

where the oscillator strength f(j, k) is defined in such
a way that E3> Ek, and the probability of spontaneous
emission is:

We shall also give the oscillator strengths of the transi-
tions and the results of the intermediate calculations
that were used in obtaining the final values given in the
table.

Rubidium Rb|jf. λ ^ ^ Ι . 5 5 . The lower state is admixed
with the terms: 5p1/z, 1/81 =0.225x 10"", f(6sin, 5/>1/2)
= 0.19, C22]4x = -1.0X10-*; 6pin, 1/31 =0. 64X 10"12,
/(6/Ί/2, 6si/z) = 0. 52,C22] 4χ = 0. 74x 10"4. The upper state
is admixed with the terms: 1/31 =0.19x 10"", f(5pUi,
5s1 / 2) = 0.33,C 2 i ! ' 2 ' ]4x=-0.92xl0- 4; 6pin, 101=0.225

ι, 5s1 / 2) = 0.015,C22] 4X = 0.50xl0-5.

Cesium Csf|3, Xrei = 2. 5. The lower state is admixed
with the terms: 6pUi, 1/31=0.117X10"10, /(7s 1 / 2 , 6pin)
= 0.17,C 2 2 ] 4χ = -4.92X10-*; lpuz, 101=0.346X10-",

2, 7s1 / 2) = 0.48,C 2 2 ] 4χ = + 3. 76X 10"*. The upper
state is admixed with the terms: 6pin, \β\= 10"",
/(βίι/ι, 6s1 / 2) = 0.33, [ 2 "4x = -4.78Xl0-4; ipuz, 1/31
= 1.35X10"", /(7/>1/2, 6s1 / 2) = 10-3,C2a] 4χ = 0.26Χΐ0"4.

Strontium S r | | . λ,.,, = 1. 55. The lower state is ad-
mixed with the term 5s5p3P0, \β]=0. 555Χ 10"",
/(5s6s 3Sj, 5s5p 3P0) = 0. 06, : 2 3 : 4χ= - 2. OX 10"4. The up-
per state is admixed with the term: 5s5plPv \β\ = 2.0
x ΙΟ'11, /(5s5/> ^ , 5s2 %) = 0. 51, [ 2 S ] 4χ = - 1.05X 10"4.

Barium Baf,,. XTtl = 2.5. The lower state is admixed
with the term: 6s6/> 3 P 0 , Ι β I = 2.82 x 10"", /(6s 7s 3SV

6s6/>3P0) = 0.17,C23: 4χ = 3.66x 10"5. The upper state is
admixed with the term: 6s6/> XP u Ι β I = 1.03 x 10"",

6s21S0) = 0.47,C 2 3 : 4χ = -1.86Χ10-5.
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Mercury Hgfjj,,. \ . β 1 = 6.1. The lower state is ad-
mixed with the term: Qs6p3P0, Ι β\ = 1.28x 1CT10,
/(6s7s 3S t, 6s6/> 3P0) = 0.07,C23: 4χ = 4.3x 10"5. The upper
state is admixed with the term: Qs6p lP 1 ; Ι β I = 1.16
x 10"10, f(6s6p ip» 6s2 %) = 0.4,c23] 4χ = - 6. OX 10"5.

Iodine lf|7, λΓβ1 = 2. 36. The lower state is admixed
with the terms: e ) 5/>[3P]6s 2 P 3 / 2 , I (31 = 0.18 · 10"11;
5pYD]6s 2Z>3/2 1/31=1.1- 10"u. The upper state is ad-
mixed with the terms 5£4[3P]6s 2 P 1 / 2 , 1/31 =0.36· 10"11,
5pVs]6s" 2S 1 / 2, 1/31 =0.45- 10"u. The oscillator
strengths of the admixed transitions were estimated1·241:
/~ 0.15. The relative signs of the contributions of the
corresponding transitions could not be established.
Hence the value of 4χ given in the table corresponds to
the contribution of the only admixed 5/»4[1X)]6s2D3/2.
tor strengths of the admixed transitions were estimated
inC24]: /~0.15. The relative signs of the contributions
of the corresponding transitions could not be established.
Hence the value of 4χ given in the table corresponds to
the contribution of the only admixed state 5pi[1D]6s

Thallium λΓβ1 = 6.1. The lower state is ad-
β\ = 0. 86x 10"10, /(7s 1 / 2,

1 / 2 ,
mixed with the term: 7s

6p3/2) = 0. 28,C 2 3 3 4χ = - 2. 63X 10"

Lead Pb£f,7. λΓ,ΐ = 6 . 1 . The lower state is admixed
with the term: 6/>7s3F0, \β\ = 0 . 9 x l 0 - 1 0 , f(6pls3P0,

The upper state is
- l .OXlO" 1 0 ,

^ 4x~1.3xlO"6.
admixed with the term: 6/>7s3P,

P^, 6£ 2 3 Ρ 0 )~5.10-ν 2 4 ] 4χ~1.0Χΐ0"β. An in-
termediate type of coupling occurs in this element.
Hence ξρ from (1.26) was taken to be £#=7290 cm"1 ac-
cording to c i 7 ] . The values of β and the oscillator
strengths were estimated very crudely without account-
ing for the Q-factors.

Β ismuth Bifĵ . XreI = 6.1. An intermediate type of
coupling occurs, ζρ= 10.100 cm" 1. 1 1 7 1 Reliable calcula-
tion of the oscillator strengths and Q-factors is diffi-
cult. Hence we took for all the admixed terms the av-
eraged estimate Ι β\ ~ 2x 10"10, / ~ 10"1.

In conclusion, we note that a more exact calculation
of the parameter χ is a rather unwieldy procedure;
such a calculation can be expediently undertaken only
in connection with experiments performed on a concrete
element.

8)The notation of the terms and their energies are taken
fromC25].
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