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The propagation of pulsed wave fields in a homogeneous medium or in a homogeneous line with known

dispersion law and damping can be regarded from the ray, wave, and energy points of view. The review

describes the most significant theoretical results on one-dimensional pulse propagation, using all three

approaches. Greatest attention is paid to the principal part of a high-frequency pulse, the part governed by

frequencies closest to the pulse carrier frequency. Paradoxes pertaining to superluminal and negative

"group velocities" are resolved, and questions connected with amplification or attenuation of waves in wave

beams and active media are discussed.
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"What beasts and birds haven't I seen there [in the museum]. What
flies, butterflies, cockroaches, little bits of beetlesl—some like em-
eralds, others like corals. And what tiny cochineal insects\ Why,
really some of them are smaller than a pin's head."

"But did you see the elephant ? What did you think it looked like ?
I'll be bound you felt as if you were looking at a mountain."

"Are you sure it's there ?"

"Quite sure."

"Well brother, you mustn't be hard on me; but to tell the truth, I
didn't remark the elephant."

Krylov's fable "The Inquisitive Man"
[Transl. by W. R. S. Ralston, London, 1869].

INTRODUCTION

This review is devoted to the propagation of pulses—
principally narrow-band high-frequency pulses—in
homogeneous media or homogeneous lines. We have in
mind linear electromagnetic waves, for which the nat-
ural velocity limit is the velocity c of light in vacuum,
although a number of results can be extended to waves
of other type, and some results can also be used for
nonlinear waves.

We confine ourselves to one-dimensional wave fields
that depend on one coordinate ζ and on the time, and

thus consider the simplest kinematics of fields. The
refinement and systematic exposition of this kinematics
is at present of particular interest for the following
reasons:

1. In many problems pertaining to diffraction and
propagation of waves, the waves cannot be regarded as
monochromatic and it is necessary to take into account
their pulsed character. It is easiest to show how this
is done by using one-dimensional waves as an example.

2. A number of new devices have been developed in
recent years , t i : in which transmission lines with dis-
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persion give rise to transformation (particularly,
compression) of pulses, and this makes it possible to
increase the resolution of radar stations and to carry
out more effectively a spectral analysis of the signals.
More extensive use is made of short (including nano-
second) pulses, which become strongly deformed even
after propagation over relatively short distances.

3. A number of questions (sometimes paradoxical)
have recently been raised, pertaining to the propagation
of waves in active (that is, unstable, non-equilibrium)
systems, including masers and lasers, and also in sys-
tems with electron beams. Many of these questions are
easy to answer if one considers not the propagation of
monochromatic waves but the propagation of pulses,
and some of the paradoxes are common to active and
passive media.

We shall attempt to formulate the difference between
our exposition and the one that can be found in the clas-
sical works of Sommerfeldm and Brillouin131 and in the
later papers that elaborate on them (see, e.g., u " e l ) .
In these papers, accurate results were obtained for the
front and for the per cursor (due to the very high fre-
quencies in the pulse spectrum, ω » ω0, where ω0 is the
carrier frequency), other field bursts (due, generally
speaking, to frequencies different from ω0) were in-
vestigated, and some data were obtained concerning the
slow "trail" or "tail" of the pulse (due as a rule to the
very low frequencies, ω«ωο). However, a detailed
investigation of the principal part of the pulse, due to
the frequencies ω « ω0, was initiated relatively recently
(by Bliokh"1 and by others"·9 1), mainly in the absence
of attenuation and amplification. On the other hand, if
frequency-dependent attenuation is present (and strictly
speaking it is always present), then the behavior of the
principal part becomes, as we shall show, far from
trivial, and additional complications arise in active
(amplifying) systems. We recall in this connection
Krylov's fable given in the epigraph. Our principal at-
tention will be to the "elephant"—the principal part of
the pulse, and the minute details that arise in pulse
propagation will be dealt with only briefly (see Chaps.
2 and 3).

By virtue of the linearity of the problem, the propa-
gation of the pulses is usually investigated with the aid
of an ordinary (Chap. 1) or modified (Chap. 6) Fourier
integral; in this way we obtain the wave kinematics of
the propagating fields, while the simpler ray kinematics
(or the space-time geometrical optics), as shown in a
number of papers, c i o ~ l i ] can be obtained from the equa-
tion

4r+"§" = 0 · G*1)

which connect the two quantities τ and ζ, between
which a functional relation exists: T = r(g) or ξ=ζ(τ).
Equation (1.1) has as solutions

(1.2)

where F and G are differentiate functions, and ν (the
propagation velocity) depends in the general case on ζ.

The first solution determines the evolution of the quan-
tity ζ, which is specified at i = 0 and at all z by the ex-
pression ζ = F(z); the second solution corresponds to a
specified ζ = G(t) at z = 0 and at all t. (We shall hence-
forth be interested only in solutions of the second type,
since we seek the field at z >0 and specify the field at
2=0.)

The solutions (1.2), with τ and ζ properly interpreted,
determine the bunching of the electrons in a klystron1-131

and the formation of shock waves in a gas t l0~131 and in
transport streams.C l 0 1 We shall apply them to a har-
monic wave (frequency ω0) modulated in amplitude or in
frequency in a sufficiently slow manner, so that the
width Α ω of its spectrum can be regarded as infinitesi-
mally small. In the case of amplitude modulation we
can put τ = W and ζ =S,, where W is the energy density
and S,is the component of the Umov-Poynting vector,
whichwe can represent intheformS£ = Wi)e, where ve is the
energy transport velocity at the frequency ω0. In the
absence of losses, W andS£ satisfy Eq. (I.I), which
represents in this case the energy-conservation law in
differential form, and in formulas (1.2) the velocity
ν = ve turns out to be constant. In the case of frequency
modulation, we can put T = ft = 8*/8z and £ = ω = -8Ψ/8ί,
where Φ is the total phase of the wave, h is the instan-
taneous wave number of the wave, ω is the instantaneous
frequency (if h and ω is constant we have Φ = hz - ωί).
Equation (1.1) is satisfied, since 8**/8ζ8ί
and the second solution in (1.2) takes the form

ω = U U — (1.3)

and as Δω— 0 we can replace υ(ω) under the sign of the
function G by V(.<J>^, which will be the constant propaga-
tion velocity in this case (the velocities ve and υ(ω0)
coincide, see Chaps. 3 and 5).

On the other hand, if Δω is constant, then (1.3) is an
equation that defines111 ] ω as a function of ζ and i; it is
easiest to investigate this equation graphically, break-
ing it up into two relations

CD = G ( 6 ) , (1.4)

and plotting on the (z, t) plane the straight lines θ = const
(space-time rays). In Fig. 1 they are plotted under the
assumption that

G (θ) = ω0 + 6Θ at - θ 0 < θ < θ 0 (1.5)

FIG. 1. Ray kinematics: for-
mation of focus and contrac-
tion of the pulse.
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and The third example

( - Θ Ο < Θ < Θ Ο ) ,

when the second relation of (1.4) takes the form
(1.6)

(1.7)

(ω,, = const>0, v = const>0) (1.3)

and shows that in this case all the rays intersect at the
point2=20, t = zjvr Thus, in the ray approximation,
the pulse, which has at 2 =0 a finite duration 2θ0, is
contracted to zero duration at ζ =ζ0: a space-time focus
is produced (see Fig. 1).

Formulas (I. 4) can be supplementedcin by an ex-
pression for the field energy density W= W(z, t), which
is expressed in terms of the energy density W0(B) and
2 =0 as follows:

w= H.- (9)JL| (1.8)

This is the energy-conservation law in the space-time
ray tubes: as they become narrower the energy density
should increase.

The ray approach, as always, gives only the "skele-
ton" of the wave field and should be supplemented by the
wave approach, to which we now proceed.

I. DISPERSION LAW AND FOURIER INTEGRAL

In investigations of plane waves in an infinite homo-
geneous medium it is customary to consider first mono-
chromatic waves, the dependence of the field compo-
nents for which (i.e., for the electromagnetic wave
components Ex, Ev, Hx, or Hy) on the coordinate ζ and
on the time t takes the form (in complex notation)

βίΐΛ(ω)»-ω(:ΐ β w e n a v e a waveguide that is homogeneous
in the direction of the ζ axis, then for each monochro-
matic wave in the waveguide the dependence on 2 and on
t is the same, but is supplemented with a dependence
on the transverse coordinates χ and y, which usually
does not influence the dependence on ζ and t.

The function fc(w) determines the law of dispersion
and attenuation of the waves in a given medium or a
line; we shall call this function simply the dispersion
law. The properties of the function h(u>) can be most
readily explained with examples. The first example is

--^-, a = const>0, c = const>0 (1.1)

and corresponds to a conducting medium with conduc-
tivity σ = α/2π that does not depend on the frequency, or
else to a long line in vacuum, with conductors whose
resistance does not depend on the frequency. The sec-
ond example

ω-Η'α (α>β>0) (1.2)

corresponds to a long line with losses in both the con-
ductors and in the medium between the conductors;
at α=β formula (1.2) goes over into formula (1.1).

corresponds to a cold plasma with plasma frequency
ίΰρ and collision frequency ν or else (at ν = 0) to an
ideal waveguide with cutoff frequency ωρ; at v>0 the
same formula accounts approximately for the proper-
ties of a wave in a waveguide with losses, at least in
a sufficiently narrow frequency band. The fourth
example

h(a: \ ω Ι / Λ (ωΓ = const ~z> 0) (1.4)

corresponds to a medium with elastically bound elec-
trons, having a natural frequency ωΓ and a bandwidth
ωΓ< ω< Va>2+ ω | (also referred to as the anomalous dis-
persion band); the same formula corresponds approxi-
mately to transmission lines near an isolated rejection
band or in this band. If there is a set of resonant fre-
quencies u)rj, then

The sixth example

(1.5)

(1.6)

is due to Ehrenfest1-143 and corresponds to an unstable
(active) system. The dispersion law (1.6) is obtained
from (1.2) at α =0 when one form of losses is negative
and cancels out the losses of the other form.

In the first five examples, corresponding to passive
systems, the function h(u) at real ω has a positive
imaginary part (the wave attenuates with increasing 2),
admits of analytic continuation to complex values of ω,
and is aholomorphic (analytic)function of ω in the upper
half-plane Ima)»0; i ts asymptotic expansion (as ΙωΙ-») is

Α(ω) = -Η. + 60 ^ _ + . . . , (1.7)

where 60 and bx are constants, and i- = 0 in the examples
(1.1) and (1.6). In all the examples, c is the positive
velocity limit

U
Γ

(1.8)

for electromagnetic waves this is as a rule the velocity
of light in vacuum, which in general is the velocity limit
of signal propagation and of material-particle motion.
Of course, for waves of other type the velocity of light
in vacuum is also the limiting velocity, but usually the
dispersion law for these waves is chosen in such a form
that the velocity limit (1.8) for these waves exists and
is less than that of light.

The transition to pulses is obtained with the aid of the
Fourier integral

f(z, f)= f Α (ω) eW*-"» da. (1.0)
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which can be regarded as superposition of the mono-
chromatic waves referred to above. The function A(u>)
is the spectral amplitude of the corresponding wave,
and is complex in the general case; for high-frequency
pulses with a carrier frequency a>0 the function Λ (ω)
has the largest value at ω = ω0, and when ω moves away
from ω0 its absolute value decreases. The function
f(z, t) in (1.9) is in the general case complex, and a
physical meaning (for example, that of the electric-field
component at certain ζ and t) is possessed by the quan-
tity Re/tz, t) or Imf{z, t).

The integral (1.9) corresponds to the following for-
mulation of the problem; we are given the function / at
ζ = 0 and - °° < t < °°. In other words, a certain radiator
is located in the initial section ζ = 0 and thus determines

/(0, i)= f Α (ω) e-w'db) and Α (ω) = -^ f /(0, t)eiatdt. (1.10)
— OO — OO

We assume that the function fe(u>) has the properties
listed above. It follows then from the integral (1.9)
that the wave front moves with the limiting velocity c:
in other words,

|if/(0, () = 0 at i < 0 , then/(z, i) = 0 at ^-· ( l .H)

The proof of relation (1.11) and the general analysis
of the propagation of pulses become easier if we intro-
duce the function

— oo

which satisfies the initial condition

g (0, t) = δ (f),

(1.12)

(1.13)

where δ(<) is the Dirac delta function, formally repre-
sented in the form of the Fourier integral

oo

6(<)=-4j- f «-<ωΙ&ι>. (1.14)
— oo

With the aid of the function g(z, t), we can transform
(1.9) into

f(z, i)= j g(z, t-T)/(O, 7)d?, (1.15)

this being done by substituting the second expression of
(1.10) in the integral (1.9) and changing the order of the
integration. The function g can be called the space-
time Green's function, and if ζ is given it can be called
the reaction or the response of the given system to a
delta pulse (1.13). Inasmuch as any function/(O, t) can
be represented as a superposition of delta pulses, ex-
pression (1.15) becomes self-evident.

2. PROPERTIES OF THE FUNCTION g(z,t)

Even in the first studies[2>3] the integral investigated
differed from (1.12) by an additional factor 1/(ω - ω0)
under the integral sign (its appearance was due to the
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fact that a semi-infinite sinusoid was used instead of a
delta function). The integral (1.12) was investigated
analogously; in particular we have

g(z, at (2.1)

and expression (1.15) yields immediately relation (1.11).
As to the relation (2.1) itself, it follows from the holo-
morphism of the function Λ(ω) above the integration con-
tour (1.9), and from the asymptotic expansion (1.7),
owing to which the integrand of (1.12) tends to zero as
Ima>-«>and a t t<z/c; we shift the integration contour
upwards and prove (2.1).

At ί ^ z/c, the function g{z, t) differs from zero and
in some cases can be calculated in explicit form. For
the dispersion law (1.2) we have

(2.2)

whence, putting α = β and a=0, we obtain g(z, t) for the
dispersion laws (1.1) and (1.6); /̂ (x) is a modified
Bessel function that increases exponentially as χ — °°,
so that for a = 0 and <- °° we have g(z, <)- °°, indicating
that a system with dispersion law (1.6) is unstable. At
β = 0 we have

and then

/(*,«) = /(0. t - f )«-<«">·,

(2.3)

(2.4)

that is, a pulse of any waveform propagates without
distortion with velocity c, and experiences at the same
time an attenuation that does not depend on the pulse
waveform. At /3>0 the pulse propagates over long line
in a more complicated manner, as seen from formula
(2.2), namely, a "tail" or "trail" is superimposed on
the undistorted pulse (2.4) and attenuates, as seen
from (2.2), more slowly than e'at. When signals are
transmitted over the line, this leads to a distortion
superposition of the signals, and it was therefore con-
cluded even in the past century that losses in telegraph
cables are least harmful at j3 = 0.

For the dispersion law (1.3) we obtain at ν = 0, put-
ting β = -ίωρ and a = 0 in (2.2),

(2.5)

The trail determined by the Bessel function Jt has an
oscillating character in this case.

In other cases the integral (1.12) cannot be expressed
in terms of known functions, but can be approximately
calculated at large ζ and at different ratios z/t« c.
Thus, from the asymptotic expansion of (1.7) we can
obtain the approximate expression

g{z, t)

L. A. Vainshtein

(2.6)
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which can be used at small nonnegative t - z/c such
that the argument of the Bessel function Jt is small or
finite. At ζ =0 expression (2. 6) agrees with the initial
condition (1.13), and at arbitrary ζ it agrees with the
exact expressions (2.2) and (2.5).

It is easiest to derive (2. 2), (2. 5), and (2.6) by intro-
ducing the functions

Γ»(«,')=-Λ- f «
2π J

•σ-οο
ίσ+οο

Γ (ζ ί ) = - ί - [ ,«Μ)'-ω11 άω

2π J lh (ω) '

where κ = 0, 1, 2, . . . and σ> 0 (see Chap. 6). It is
easily shown that we have the identities

) = -ί-Γ(ζ, t). (2.7)

The last identity yields immediately expression (2.2) at
ζ <ct: for this purpose the integration contour must be
shifted downward and this leads to an integral over a
cut and we obtain

Differentiation with respect to ζ together with the func-
tion Ix yields a delta function, since V(z, t) =0 at ζ > ct
and there is a discontinuity at ζ = ct. The functions
Γη(ζ, t) at ζ > ct are also equal to zero, and at ζ < ct they
can be reduced to an integral along a circle

ω + ίν-ϊΩί-**, -π<φ<π, Q-J/ t-WQ '

on which the function h(u>) can be replaced at large ζ
and small t - z/c by the written-out terms of the ex-
pansion (1.7). We obtain

(2.8)

for which follows immediately at w = 0 the expression
(2.6), for that part of the field which is excited by the
delta pulse and moves with the limiting velocity c.

The remaining parts of the field, with velocity less
than c, move behind the field whose velocity is c. They
can be calculated by the saddle-point method, by de-
forming the initial integration contour (the real axis)
into a contour passing in the upper half-plane Ιηιω» 0
through one or several saddle points ω defined by the
equation

Α'(ω) = 4- (0<v<c), (2.9)

where the prime denotes differentiation with respect to
ω. In the vicinity of each point ω we can write down
the Taylor expansion

Λ(ω) = Λ(ω) + Α ' ( ω ) ( ω - ω ) + γ Α " ( ω ) ( ω — ω)2 + - i ft" (ω) (ω - ω)3 + . . .

(2.10)

The asymptotic expression for the Green's function

g(z, I). t, ω (2.11)

breaks up into a sum of contributions of each point ω.
If we confine ourselves near the point ω to the first
three terms of the expansion (2.10), then we obtain for
G the expression

G (z, t, o>) =
V -2i*(.)!

ί —(z/i>)

ν
(2.12)

h"

which is valid at ta ζ/υ, and more accurately at τ~ 1.
If only h"(u>) is not too small, then this expression is a
good approximation of G(z, t, a>) at large z, more accu-
rately at ζ »[>"'(ω)]2/|>"(ω)]3 (this is the condition for
the smallness of the first discarded term on the prin-
cipal section of the integration path). On the other hand
if h"(u>) is small, then we can easily shift ω in such a
way that we get exactly h"(u) = 0, and take into account
the next (cubic) term in the expansion (2.10). We thus
arrive at the equation

4,
(oi) z/2

t-(zlv)
]/rh" (ω) ζ/2

where

v^w^

(2.13)

(2.14)

is an Airy function1151 which decreases exponentially at
s>0 and oscillates at s<0.

It can be easily shown that for the dispersion laws
(1.1) and (1. 2) there will be only one saddle point ω on
the imaginary axis, and this leads to a single-term
asymptotic expression for G, which agrees with (2.2)
at βτ/t* - (zz/c*) » 1. For the dispersion law (1. 3) there
will be two points ω, symmetrical relative to the real
axis and giving an oscillatory dependence of G, which
agrees with (2. 5) at ωρ^Ιίζ - (zz/c*) »1. For dispersion
laws (1.4) and (1.5) there exists a large number of
points ω, and the corresponding saddle contours and
contributions were considered in detail in Baerwald's
article. M 1 We present here only a general analysis of
the function g(z, t). Whereas at ζ = 0 there is a delta
pulse (1.13), at z> 0 a complicated pulse g(z, t) is ob-
served. Considering g(z, t) at ζ = 0, we again have g = 0
(the shaded sector in Fig. 2). At the instant t = z/c and
at the succeeding instant (that is, above the limiting
line t=z/c in Fig. 2), expression (2.6) is valid; if the

FIG. 2. The function g on
the Cz,i) plane.

193 Sov. Phys. Usp., Vol. 19, No. 2, February 1976 L. A. VaTnshtein 193



argument of the function «7Ί in this expression is large,
then it is necessary to go over to expressions (2.11)
and (2.12). If furthermore h"(w) vanishes in one of the
points ω at a certain value of v, this means"-1 that two
points ω appear at smaller values of v. In this situa-
tion, expression (2.13) is valid and must be used at
τ~ 1: the corresponding line at t=h'{<j))z is the space-
time caustic at Λ"(ω)=0.

Comparing Fig. 2 with Fig. 1, we see that the delta
pulse, which contains in accordance with (1.14) all the
frequencies in equal measure, generates a bundle of
rays, whereas slow frequency modulation generates at
ζ = 0 only one ray at each instant. It should be noted,
however, that in the wave approximation the field be-
comes deformed as it propagates, and this deformation
is taken into account by expressions (2.6), (2.11),
(2.12), and (2.13). We consider first a pulse for which
/(0, t) = 0 at t < 0, and the function f(0, t) and all its de-
rivatives with respect to t are continuous for all t with
the exception of f = 0. Then the field f(z, t) immediately
behind the front—the so-called precursor—can be ob-
tained from (1.15) and from the first identity of (2.7)
by integrating by parts, in the form

/(ι, 0=2 Γ η(«. '>|?f (0, +0), (2.15)

in which the functions Γη(ζ, t) are determined by for-
mula (2.8). They determined the law of propagation of
the discontinuities of the function/(0, t) and its deriv-
atives. We see that these discontinuities propagate
with the limiting velocity (1.8), and in the absence of
losses (at Imi>0 = 0) the absolute values of these discon-
tinuities are conserved.

However, the structure of the field that follows the
discontinuity is entirely different as ζ =0 and ζ — °°.
We take by way of example a semi-infinite harmonic
oscillation

/(o, i)=e-i<0»' at oo,/(o,()=o at <<o,

for which series (2.15) takes the form

/(«. *)==ΐΌ(». ο-ι », t)-oir,(«,

(2.16)

(2.17)

and there is nothing that looks like (2.16); the principal
part of the field, which leads to establishment of the
harmonic oscillation, moves with velocity vf<c (see
Chap. 3).

In the field moving behind the precursor (2.15) there
exists, besides the principal part of the field, also
parts moving at all possible velocities v(0<v<c); notice
should be taken, among them, of field bursts due to
the "caustic" values of ν (see above). They are some-
times also called precursors (second, third, etc.),
although their velocity in some cases may be lower than
the velocity vt of the principal parts; they can be cal-
culated with the aid of expression (2.13), as shown at
the end of Chap. 3.

3. PRINCIPAL PART OF HIGH-FREQUENCY
PULSE IN THE ABSENCE OF DAMPING AND
AMPLIFICATION

What is usually of interest is not the propagation of a
delta pulse, but the propagation of a high-frequency
pulse with carrier frequency ω0, for which the function
Α (ω) in the integral (1.9) has a sharp maximum at the
point ω = ω0, with \Α(ω)\~\Α(ωο)\ at Ι ω - ω 0 Ι £ Δ ω . The
law of propagation of the principal part of the high-fre-
quency pulse (at sufficiently small Δω) is obtained by
expanding the function h(u>) and the integral (1.9) in a
Taylor series analogous to the series (2.10). Assum-
ing the wave number h(u>) to be real in the vicinity of
the point ω0 and representing f(0, t) in the form

/(0, t) = F(0, t) «-<·*', (3.1)

where F(0, t) is a slowly varying function of t (the com-
plex envelope of the pulse at ζ = 0) we obtain, confining
ourselves to the first two terms in the Taylor expan-
sion, the following form for f{z, t)

f (z, t) = F (z, f) «№«*>>•-»<,(), ( 3 . 2 )

where the complex envelope F(z, t) is expressed in
terms of F(0, t) in the following manner:

F (z, t) =- F(0, t - k' (ω0) z). (3.3)

Thus, in this approximation the complex envelope F
(that is, the usual envelope IF I due to the amplitude
modulation, and the additional phase argF connected
with the frequency or phase modulation), move at the so-
called group velocity

" ' h' (ω0) ~~ ah. (3.4)

whereas the high-frequency carrier of the pulse moves,
as seen from (3.2) at the phase velocity u>0/ft(a>0): it
is determined by the same factor β'

[»(ωο)*-ωο« as for the
monochromatic wave with frequency ω0.

With the aid of the Fourier integral it is easy to re-
fine formula (3.3) and to determine the limits of its
applicability. To this end it suffices to take into ac-
count in the Taylor expansion one more (third) term,
and at h"(u>0) =0 the fourth term. The resultant ex-
pressions, as well as the simple formula (3.3), can be
written in a unified form

F (z, t) = C G (z, t —7, ωό) F (0,7) dT, (3.5)

which connects directly the complex envelopes F(0, t)
and F(z, t). Formula (3. 3) is then obtained by putting

G (z, t - t, ω0) = δ (t - t + ft' (ω0) ζ); (3.6)

if the third form in the Taylor expansion is taken into
account we have

G(z,t-U ω») =Υ — 2ίπΔ
P L 2 Ι, Δ

= Yh"(u,ll)z, (3.7)
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and at Λ"(ω0) =0 we get with allowance for the fourth

term

Formula (3.5) determines the propagation of the
principal part of the high-frequency pulse—more ac-
curately, the propagation of its complex envelope F.
We note that expressions (3.7) and (3.8) are exact
analogs of expressions (2.12) and (2.13): however,
expressions (2.12) and (2.13) are asymptotic (they are
suitable only at sufficiently large z), whereas expres-
sions (3.7) and (3.8) are suitable for any z, including
ζ — 0, when they go over into the delta function (3. 6),
which for our purpose can be defined by the relations

v
\ fi(t)dt = O at <i<0, i 2 <0 and i,>0, «2>0,
li

f 6(i)di = 1 at t, <0, (2>0,

and then it leads to expression (3.3).

The function G determines the deformation of the
complex envelope F with increasing z. This deforma-
tion is determined by the second derivative h"(u)0), and
at /ϊ"(ω0) = 0 it is determined by the third derivative
h'"(tea), that is, by the variability of the group velocity
v(u>) = l/h'(w) within the frequency band Ι ω-ω,,ΙίΔω
occupied by the pulse. If the following condition is sat-
isfied

and at ft"(u>0) =0 the condition

-(r h" (ω0) Δ ω 3 ζ

(3.9)

(3.10)

then the deformation of F can be neglected and formula
(3.3) can be used. Thus, the narrower the frequency
band occupied by the pulse, the larger the distance
covered by it without a noticeable distortion. In other
words, the slower the time variation of the complex
envelope, the slower its deformation in space.

It should be notedC7-8] that the law governing the de-
formation of the complex envelope coincides, according
to formulas (3.6) and (3.7), with the law of propagation
of two-dimensional wave beams of paraxial type. As-
sume that we have a monochromatic wave field (fre-
quency ω0, time dependence θχρ[-ίωο<]), the complex
amplitude of which u(z,x) satisfies the two-dimensional
Helmholtz equation

^ + f^ + Ku = 0 (*, = ^ ) . (3.11)

In the case when the wave field has the character of a
quasi-plane wave propagating in the direction of the ζ
axis (that is, we have a paraxial wave beam), the func-
tion Μ can be represented in the form

ii = U(z, x)e«">*, (3.12)
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where the slowly varying function U(z,x) is connected

with U(0, x) in the same manner as F(z,t) is connected

with F(0, t), if t - /i'(u>0)2 is replaced by x/c and fe"(o>0)

is replaced by - l/feoc
2. In other words, F(z, t) satis-

fies the parabolic equation

UF cT-l- (3.13)

and when (3.7) is replaced by (3.8) it satisfies the more

complicated equation

ί=-^ί· (3.14)

These equations determine F on the (z, i) plane near the

"principal ray" t = z/ve (Fig. 2).

The analogy between the paraxial beams and the high-
frequency pulses enables us to distinguish for the latter
between the near, far, and intermediate zones. In the
near zone, formula (3. 3) is valid and is determined by
the condition (3. 9) and (3.10). If these conditions are
reversed, then we deal with the far zone, in which

F (z, t) = 2nA (<o0) G (z, t, ω 0). ( 3 . 15)

In the far zone, the pulse is so deformed that its field
is proportional to l/Vz or l/z 1 / 3, and is determined by
the spectral amplitude Α (ω), just as the field of an
antenna is determined not by the distribution of the field
at the radiating aperture, but by the Fourier transform
of this distribution. In the intermediate zone, which
joins the near and far zones, a gradual deformation of
the pulse takes place and, in particular, the pulse be-
comes compressed (focused).

If the initial pulse is a semi-infinite harmonic os-
cillation (2.16), then expression (3.7) for the function
G yields in this caseC4]

Δ = ]A" («„) z,

and expression (3.8) yields

(3.16)

(3.17)

while in both expressions we have θ -1 - h'(o)0)z. Fig-
ure 3 shows the values of \F\ calculated from these
formulas. We see that the wave front, which at first is
infinitely steep, becomes more gently sloping with in-
creasing z. In this case we deal not with the front of
the pulse, the structure of the field near which was
investigated at the end of Chap. 3, but with the front
of its principal part, moving with velocity ve<c. For-
mulas (3.16) and (3.17) remain in force also at ωο = 0,
that is, for a pulse without a high-frequency carrier.
They then determine the establishment of a constant
field applied at the instant t = 0 to the point ζ =0. After
the front of the principal part has passed through this
point with velocity vg = v(0), a constant field is estab-
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FIG. 3. Front of principal part of semi-infinite harmonic
oscillation in accordance with formulas (3.16) (1) and (3.17)
(2),

lished at this point, in accordance with Fig. 3.

As a second example, we take a Gaussian pulse with
quadratic phase modulation [or linear frequency mod-
ulation, see formula (1.5)], when

F(0, t) = e-«

(3.18)
For such a pulse we obtain simple expressions. In
particular, instead of formula (3.16) we have the ex-
pression

+a)|t-V(Mo)i]« ιι
V"l — i (o + tb) h' ( 2 [1 — i (q-i-Λ)*'(coo) J

(3.19)
which makes it easy to trace the deformation of the
principal part of the pulse as it emerges to the near
zone (where (a + ib)h"(o)0)z« 1). We see, in particular,
that the duration of the pulse is minimal at the point

z o = — - (3.20)

with

If zo> 0, then at 0<z <z0 the pulse becomes compressed,
and at z>z0 it expands. It is easily seen that at a
«161 the values of z0 given by formulas (1.6) and (3.20)
coincide, and the effective pulse duration A£ = Va/(oz + &2)
at the point z0 is much less than the initial duration,
equal to 1/Ve". Thus, with the aid of the wave treatment
we determine more precisely the pulse contraction
process shown in Fig. 1.

At sufficiently large z, the lateral part of the pulse,
which moves with velocity v, can be calculated with the
aid of expression (2.11) for the function g. We obtain
the formula

/ (z, i) = 2 F (ζ, ί, ω) eHHS)z-ant (3.21)
ω

where the slowly varying function

F (z. t, ω) = \G (Z, t —7, ω) F (0, 7) e^-'^dt (3. 22)

is transformed into F(z, t) at ω = ω0. If ω differs
strongly from ω0, then, owing to the oscillating factor

e " " - V we obtain \F(z,t,u>)\«\F(z,t)\. In the far
zone, the integral (3.22) leads to the expression

F (z, t, ω) = ϊπ,Α (ω) G (ζ, ί, ω), (3.23)

which also proves the relative smallness of the side-
bands at real ω that differ greatly from ω0. In the case
of complex ω, the smallness of the sidebands follows
from the smallness of the exponentials in (3.21).

The foregoing can be supplemented in some respects.
First, formula (3. 5) was used by many authors without
taking into account the dispersion deformation, Cl«ie>17]

and also in more complicated cases, for example, for
reflection of pulses from an inhomogeneous iono-
sphere, t l e l so that the number of examples could be
increased. Second, in some papers"· 1 9 3 formula (3.5)
is made more accurate by taking into account additional
terms in the Taylor expansion for the function Α(ω) at
ω~ω0. This makes it possible not so much to refine the
function G, as to estimate the limits of applicability of
the simple expressions (3.7) and (3.8). The situation
here is the same as in paraxial physical optics, where
use is made of the Huygens-Fresnel principle, which
leads to Fresnel integrals of the type (3.16) and cor-
responds in the differential formulation to a parabolic
equation of the type (3.13); if this principle is not con-
venient, then it is usually expressed more precisely,
and one resorts to more rigorous methods.

Third, the saddle-point method can be used1201 not
only for the integral (1.12) but also for the integral
(1.9), after first specifying concretely the form of the
function Λ(ω), for example by means of formula (3.18);
then the saddle point ω is determined by the equivalent
equations

(3.24)

which yield ω— ω0 at a + ib~ 0 and go over into (2.9) at
a + ib~ °°. Equation (2.9) turns out to be valid also for
large t—for the tail of the pulse, which is well ac-
counted for®113 by formula (3.23). At α =0 the saddle
point turns out to be real, the saddle-point method
leads®0*3 to the ray kinematics (see the Introduction)
as refined by the wave treatment. At a> 0, the point
ω is complex, and the results are interpreted12011·1 with
the aid of complex rays (see below).

In addition, for the semi-infinite harmonic oscillation
(2.16) expression (3.23) determines, at sufficiently
large values of z, the so-called Brillouin precursor1 3 3

/ ( * • « ) =
V n f »·(φ/2(«-ω0)

t —Α'(ω)ζ (3.25)

which corresponds to caustic values of the frequency ω
and to a velocity v = l / № ) ; 0< ν <c, ft"(w)=0. These
precursors (second, third, etc.) were referred to at the
end of Chap. 2. The same result is obtained by inte-
grating by parts formula (3. 22) and discarding the inte-
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gral proportional to z"2 / 3, or else by asymptotic calcu-
lation of the initial integral (1.9). The first precursor
determined by formula (2.17) is also called the Som-
merfeld precursor. t 2 1

According to (3.25), the field at large negative r is
exponentially small, since

ν (») = •£-1 2 )

at τ~ 1 the field increases, and at large positive τ the
function V ( - T ) oscillates and decreases slowly, since

This behavior is similar (albeit qualitatively) to the be-
havior of the first precursor.

Precursors were investigated experimentally1223 at
the dispersion law (1.4) and at carrier frequencies in
the decimeter and centimeter bands. Such investiga-
tions enable us to evaluate'23·1 the dispersion law for
frequencies that differ strongly from the carrier; how-
ever, the larger Ι ω- ωο1, the more accurately should
the envelope realized in experiment coincide with the
theoretical one.

4. PRINCIPAL PART OF A PROPAGATING
DAMPED PULSE

Formulas (3.1) to (3. 3) are valid under condition
(3.9) or (3.10) and whenever Imft(w)>0 within the fre-
quency band occupied by the high-frequency pulse. In
this case, however, the group velocity (3.4) turns out
to be complex—this means that the envelope moves
without distortion only if

i=A' (ωο)ζ + θ, (4.1)

where θ is a real quantity. If Η'(ω0) is complex, rela-
tion (2.1) can be satisfied only for complex ζ or t, that
is, on a complex ray. What is the result in the case of
real ζ and t ? It can be shown that a complex νf causes
a strong additional deformation of the pulse, t 1 7 · 2 4 3 and
the deformation is different for different complex en-
velopes F(0, t).

By way of example we take the pulse (3.18) and, put-
ting

(4.2)

we write down

f (0, ί-ν(ωο)ζ) = ε-(ΐ/2)

χ β-([(1/2)№-(ίΐη+6ξ)ζ(]_

(4.3)

At a given z, the first factor in the right-hand part is
constant, the second shows that the maximum of the
amplitude (the amplitude center of the pulse) moves
with velocity

and the third is the point at which the instantaneous ve-
locity is equal to ω0 (the phase center) and moves with
velocity

b (4.5)

The velocities vy and vz are different (this is how the
deformation of the given pulse manifests itself) and de-
pend on the parameters a and b. Only at η =0 do they
coincide with each other and with the group velocity 1/ξ,
but then we return to propagation without attenuation or
else with attenuation that does not depend on the fre-
quency. The velocities vx and vz can be arbitrarily
large or negative; in particular, values wt> c and vl<0
are possible even without frequency modulation, that is,
at δ =0 (examples based on the dispersion laws (1.1)
and (1. 3) were considered in our papers [ 2 U). There are
published1125-1 examples of calculations by formulas
(3.5), (3.19), and (4. 3) in the presence of damping,
and a comparison of the results with those obtained by
exact calculation of the integral (1.9). The agreement
is satisfactory for moderate values of ζ and becomes
worse with increasing z. Such a comparison was car-
ried outC21] for the "exotic" values vy =ΐ/ξ (at 6 = 0) that
is, for vt> c and v1<0, with the following conclusion:
the more exotic the velocity vif the less stable it is,
that is, the shorter the distance over which the pulse
moves with this velocity. Further propagation either
changes vx to "normal" values {0<vl<c), or distorts
the pulse until it becomes unrecognizable.

In the absence of attenuation, as we have seen in
Chap. 3, the main cause of the deformation of the pulse
is the phase distortion due to variability of the group
velocity where then the frequency band Ι ω - ω0Ιί»Δω
occupied by the pulse. In the presence of frequency-
dependent attenuation Imh(u)), a new phenomenon arises,
namely distortion of the energy spectrum of the pulse as
it propagates. Indeed, at ζ =0 the spectrum is propor-
tional to ΐΑ(ω)Ι2, and at z>0 we already have lA(w)l2

Xg-2imMw)«. the pulse, first, undergoes attenuation de-
termined by the factor e-*i'">*("o>*> and second, experi-
ences a change in shape, as determined by the formula

S (ω, ζ) = \Α №>) ρ«-2·ΐ»>№«»>-* (4.6)

and, in particular, the effective carrier frequency wm,
corresponding to the maximum of δ(ω, ζ) changes,
namely, wm shifts from ω0 towards larger values of the
exponential, that is, towards a smaller attenuation co-
efficient. Inasmuch as wm determines the carrier fre-
quency, a change takes place in the pulse velocity and,
as can be readily seen, its attenuation decreases (in
comparison with a monochromatic wave of frequency
ω0). The start of this process can be traced with for-
mula (4.3). Let, for example, 6 = 0, and then at ζ =0
the pulse with carrier frequency ω0 is modulated only
in amplitude. At z> 0 the carrier frequency is equal to

— ω 0 — ατ)ζ, η = Im h' (ω 0), (4.7)

• αξ — 6η ' (4.4)
that is, it is smaller than ω0 at η>0 and larger at η <0,
in accordance with the statements made above. The

197 Sov. Phys. Usp., Vol. 19, No. 2, February 1976 L. A. Vainshtein 197



ο t
FIG. 4. Propagation of cosinusoidal pulse with negative veloc-
ity v\\ i"(0,f)=cos (2T/n) at U U T, F(0,t)=0at \t\ *T,
dispersion law (1.3) j ω0=0.2ωρ, ι ι=0.1βΐ^,,ιι 1 = - 1 . 7 ο Ι

ω0Γ=2π.

subsequent shift of the carrier is no longer linear as in
formula (4.7); it can cause the high-frequency pulse to
be transformed into a pulse without a carrier" 1 3—this
will be the case if the minimum attenuation corresponds
to the frequency ω = 0.

Of course, in the case of an appreciable displacement
of the carrier, the pulse itself, propagating with at-
tenuation, is strongly attenuated and greatly deformed.
However, following an attenuation of 40-70 dB the pulse
can be received and somehow utilized (to be sure, this
is difficult at too large a deformation, see below).

As a result of the change of the form of the spectrum
with distance, formulas (3. 5) and (3.19) actually give
us that part of the pulse which has a frequency ω0, but
this part is principal only for moderate z, at which the
shape of the spectrum still differs little from the initial
form S(u>, 0) = \A(u>)\2, and, in particular, the effective
carrier differs little from ω0 (say I wm - ω0ΐ5«Δω).
From the practical point of view, the only important
values of ζ are those at which the pulse is similar to
the initial one and is detected by a receiver operating
in the frequency band of the initial pulse. As we ob-
serve (with the aid of a broadband receiver) our pulse
at large distances z, where the form of its spectrum
is entirely different, we encounter the following phe-
nomenon: what we receive is not at all similar to what
was transmitted, since the received pulse is deter-
mined by those properties of the radiation pulse (its
spectrum at Ι ω - ωο | »Δω) which are not controlled in
the course of the radiation.

The change in the form of the spectrum and the de-
formation of the pulse occur with increasing ζ slower
the smaller Δω (this is seen, in particular, from for-
mula (4.7), where α~Δω8), that is, the slower the
change in the complex envelope F(0, t) with time (see
Chap. 3). However, even beyond the limit of the band
Ι ω - ωο15ί Δα?, there is always present a certain power
that initiates the sideband parts of the field (Chap. 3).
If the attenuation depends on the frequency, then these
sideband parts can become predominant. Using our
epigraph, we can state that the "elephant" can become
smaller than the "fly," and in amplifying systems
(Chap. 6) the "fly" can become larger than the "ele-
phant. " We note that variability of the pulse velocity
is due to the change of the effective carrier frequency:
each elementary spectral interval ω, ω + άω is charac^
terized by a different velocity, and at a given, ζ there
is realized a velocity (the ratio of ζ to the propagation

time) which corresponds to the dominant frequency wm.

In connection with the statements made above, it is
natural to raise the question: what is the signal and
what is its velocity? So far we did not use the word
signal (the transporter of the information!); this word
is not appropriate for the pulse (3.18), for it has nei-
ther beginning nor end, in analogy to an infinite harmon-
ic wave. It is not surprising that the velocities vt and
vz for such a pulse can be superluminal or negative, in
analogy with the phase velocity u>u/Re/z(a>0) of a har-
monic wave. In general, one should not assume that a
pulse with a holomorphic (analytic) complex envelope
F(0, t) is not a signal in the proper sense of this word,
since such a pulse is infinite in time and lacks the ele-
ment of suddenness: if we observe it in a small interval
Δί, then everything is uniquely defined. The signal,
for example, can be a rectangular pulse or else a pulse
whose envelope is defined by formula (3.18) at -T<t<T
and is equal to zero at t< - Τ and t> T; no matter how
large Τ and how small e'{1/i)aT , such a pulse is not a
holomorphic function of t and up to the instant t = -T one
cannot predict whether a pulse will exist or not. Thus,
expression (3.3) with a group velocity (3.4) has no
meaning for a signal, and of fundamental significance
for it is the velocity limit c with which the front of the
pulse moves (or any sudden change of the pulse, see
the end of Chap. 2). The remaining parts of the pulse
move behind the front, each with its own velocity. The
principal part of the pulse is calculated from (3.5) and
(3.7), which determine the wave field in the vicinity of
the principal complex ray (4.1). Over a finite interval
of distances, certain characteristic attributes, for
example the maximum of the envelope \F(z, t)\, can
move with superluminal or even negative velocity, but
this does not contradict relativistic causality or com-
mon sense.1 ' Thus, if the maximum velocity is Vi>c,
this means that the maximum approaches the front
(which is similar to the process of contraction of the
pulse), but an unlimited approach is impossible, since
the spectrum (4.6) changes and with it the velocity vi·
It is more difficult to visualize the case vi < 0, and
therefore Fig. 4 shows results obtained by calculat-
ingC81c:I the integral (1.9) for a pulse with a cosine en-
velope: with increasing z, the front arrives later and
the maximum earlier, but the pulse collapses com-
pletely already at small z.

We note that it is meaningful to speak of holomorphy
or nonholomorphy of the envelope only if the noise in
the system and in the receiver is neglected; allowance
for the noise, however, is a complicated statistical
problem that calls for a separate analysis.

In the Introduction, the propagation of the pulses was

" i t must be stated that transmission of information with phase
velocity is impossible principally because this is the velocity
of the internal motion in a pulse whose front moves with
velocity c, and the principal part moves with velocity vt<c
(if there is no attenuation). As to the velocity of the maximum
in the presence of attenuation, this is also the velocity of in-
ternal motion, which furthermore is of more or less short
duration.
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investigated within the framework of the ray kinematics,
which was then supplemented by complex rays. The
subsequent analysis was within the framework of the
wave kinematics, and a distinction must be made be-
tween the rigorous wave treatment (for example for-
mulas (1.9), (1.12), (1.15), and(2.1)-(2.5), on the
one hand, and the approximate relations (3. l)-(3.8) for
the principal part of the pulse, analogous to the paraxial
wave optics, on the other. A third approach is also
possible, which can be naturally called energetic kine-
matics; it makes it possible to compare a more exact
physical representation of pulse propagation with ampli-
tude modulation.

5. ENERGETIC KINEMATICS

Brillouin1283 was the first to point out the connection
between the propagation of electromagnetic pulses and
the rate of energy transport at the carrier frequency

ν,— -φ\. (5.1)

As shown above (see the Introduction), in the ray ap-
proximation this velocity is the velocity of the pulses
(in the case of pure amplitude modulation and a suffi-
ciently narrow bandwidth Α ω), and must therefore coin-
cide with the group velocity (3.4). A direct proof of the
equality vt =ve for non-absorbing media was given by
RytovU7] (see also'283). It is interesting, that in hydro-
dynamics the equality of the velocity of a group of waves
to the energy-transport velocity was noticed already in
1877.C29]

On the other hand, if we consider systems with losses,
then it turns out that for real media or lines we always
obtain'26·28-1 ve in the range 0 * ve « c; it is therefore nat-
ural to assume that the "true velocity of motion of the
pulse is equal to ve." The present author has previously
adhered1283 to this point of view, which seems to be re-
inforced by the fact that the pulse is a bundle of energy,
the energy is equivalent to mass, and mass cannot move
with superluminal velocity. This point of view, how-
ever, is incorrect for the following reasons:

a) It was shown in Chap. 4 that a pulse velocity vx

(3.18) can be arbitrary (vx> c and UI<0); therefore
Vi*ve, and the relation between wj and ve is more com-
plicated (see below). In particular, in active systems
a case is possible when vt < 0 for a pulse propagating in
the positive direction (Chap. 6). All this shows that in
presence of attenuation or amplification it is impossible
to compare a pulse to a material body. If that attenua-
tion has a pure reactive character and h(w) is pure
imaginary at ω κ ω0, then at 6 = 0, in accordance with
(4.4), we obtain i>j = 1/ξ =°°, and in accordance with

(5.1) we get ve = 0, since there is no energy flux.

b) To calculate the energy density W in the presence
of losses it is not sufficient to know the macroscopic
characteristics of the medium, for example the complex
dielectric constant ε(ω) and permeability μ (ω), but it

is necessary to have some information on its micro-
scopic properties, namely, it is necessary to know the
"equation of motion" for it130-1 or to have additional ex-
perimental information. Thus, different values of W

and ve can be obtained for a given dispersion law fc(co)

that defines uniquely the propagation of the pulse.

c) In general, the question of pulse velocity cannot be
answered with a mere definition. Thus, a velocity was
recently introduced"0·1 in accordance with formula (5.1),
where W denotes the vacuum part of the electromag-
netic energy: this velocity has a definite meaning, but
has no bearing whatever on the propagation of pulses.2'

Let us explain the statements made in Sec. (b). The

energy density W, the energy flux density S, (the com-

ponent of the Poynting vector), and the loss power den-

sity Ρ are connected by the relation

*Lj.*iiP-n (5.2)

If W, Se, and Ρ are taken to mean quantities averaged
over the time (for example, over the period 2π/ω0 of
the carrier frequency), then for passive media we have
W>0, S,*0, and P » 0 , while for active media W, St,
and Ρ can be negative. On the other hand, if we con-
sider not a plane wave in a homogeneous medium, but
a wave in a transmission line, then the relation (5.2) is
valid for the quantities W, Sz, and Ρ averaged also over
the cross section of the line.

For an ideal medium, P = 0 and the energy density W
is calculated from the macroscopic characteristics
without additional information. In electric circuit the-
ory1-31·321 this corresponds to the fact that the energy of
a reactive two-terminal network having at a time de-
pendence e'iat an impedance Ζ(ω) = -ϊΧ(ω), is defined
uniquely, mainly, it is proportional to the derivative
Χ'(ω). This yields immediately expressions for the
electric and magnetic energy in a lossless medium,
assuming this medium to be filled with a capacitance C
or an inductance L, and obtaining in the former case
Χ(ω) = - 1/ωε(ω)ϋ, and in the latter Χ(ω) = ωμ(ω)£.

The formula for the energy is easiest to derive by
considering oscillations with frequencies ω±Δω, when
the current and the voltage of the two-terminal network
are given by

) J _

= Ιΐη(Χ(ω)/ο«"'ω<οο8Δωί)— AmPe(X' (ω) V" '" ' s in Δ«ί) at Δω—»0.

The energy of the two-terminal network at the instant
t = 0 is obviously

π/2Δω

ΗΊ,= — lim f / («) U (ι) dt,
Δω-O J

0

that is, the energy delivered at 0<ί<π/2^ω to an ex-
ternal load (at t~ ν/2Δω and Δ ω - 0 we have practically
I(t) = 0 and U(t) = 0). Assuming Jo = liol e'" and averaging
also over the phase φ, we obtain the sought formula

2)The same can be said concerning the definitions given in
earlier papers^'4-1 (see also the reviewt6]).
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FIG. 5. Two-terminal networks having one and the same imped-
ance Ζ (ω) =R = const.

then t0 will determine the instant at which the center of
the pulsed energy flux arrives at the point z, while £,
determines the analogous instant corresponding to the
loss power. From (5. 2) follows the identity

where

(5.4)

The same result is obtained by considering a slightly
damped harmonic oscillation, that is, an oscillation
with a complex frequency ω - iy.

In the presence of losses it is difficult to distinguish
between the energy that still preserves its electromag-
netic nature and the energy contained in different forms,
that is, to distinguish between the terms BW/dt and Ρ
in (5.2). In circuit theory this corresponds to the fact
that the energy of an arbitrary two-terminal network
with impedance Z(u>)=R(u>) -iX(u) is not determined by
the functions R{u) and ΑΓ(ω): to calculate this energy it
is necessary to know the internal structure of the two-
terminal network. The foregoing is illustrated by the
classical example1333 of a two-terminal network with
Ζ(ω) =R =const; this can be either a pure resistor R
(Fig. 5a) with W = 0, or a more complicated network
(Fig. 5b), in which the energy is stored in elements C
and L and dissipated after the terminal voltage is turned
off in the elements R within a time on the order of τ;
the longer τ, the higher the energy stored in the net-
work. Formulas that determine the minimum value of
Wand the maximum value of v, have been derived in the
literature 1 1 7 ·2 8 '8 8 ·3 0 1 for the dispersion laws (1.1)-(1.7).

From Fig. 5 we can draw two additional conclu-
sions. t 3 3 3 First, it is seen that the Joule-Lenz law,
according to which the heat power produced in the re-
sistor R by the current / is equal to KJ2 is not a trivial
consequence of Ohm's law, but is a meaningful experi-
mental result, since Ohm's law admits also of the cir-
cuit of Fig. 5b, in which this power is not equal to RI.2

Second, the elements R in Fig. 5b can be replaced by
similar complicated circuits, and in these circuits it is
possible to carry out in turn a similar replacement,
that is, we obtain in this manner an infinite purely re-
active system having dissipative properties—just as in
kinetic theory of gases a conservative system has dis-
sipative properties.

We turn to the pulse propagation. We formulate the
problem in the same manner as before: at a certain
2>0 we observe a pulse transmitted from the point z = 0.
The pulse brings with it an energy flux St and releases
in the vicinity of the point ζ a power proportional to Ρ
and having a pulsed character. If we introduce /„ and t^
with the aid of the relations 1 2 8 ·3"

J tStdt

s.dt

J tPdt
— C O

CO '•

J pi'

J Stdt
— OB

J Wdl
y=-

J Pit
— OO

J Wit
(5.5)

At sufficiently slow amplitude modulation, ve coincides
with (5.1), and γ is equal to the ratio P/W at ω= ω0.

Formula (5i 4) shows once more that in the absence of
damping v, coincides with the group velocity (3.4). In-
deed, in this case P = 0 and y = 0, and consequently dtj
dz=l/ve, in accordance with Chap. 3 we have in the
near zone dto/dz= l/vt> therefore v,= vt. But formula
(5.4) with y = 0 tells us something more than (3.4): in
the intermediate and far zones, where the pulse is de-
formed, its center continues to move with the same ve-
locity as in the near zone.

We proceed now to propagation with damping due to
losses, and consider a pulse determined in the near
zone by formula (4. 3) at b = 0. We obviously have dt0/
dz = l/i>i, and therefore

(5.6)

and we see that at γ Φ 0 the energy center of the pulse
can move with a velocity different from v, and dependent
on the shape of the pulse (since it determines the dif-
ference tg-ti): Vi> v, at 0<yiti -ta)<l and ί>, < 0 at
y(h ~ k^ 1· *n a n absorbing medium we have γ> 0 and
both inequalities mean that the energy-flux pulse leads
the loss-power pulse (Fig. 6a); the losses "eat away"
predominantly the trailing part of the pulse, which ei-
ther increases the velocity of its maximum, pushing the
pulse, as it were, or else (at larger values of y{t^ - t0))
again cause the pulse to move in a negative direction.

A similar process occurs" 5 · 3 8 3 when a light pulse
propagates in an amplifying (laser) medium: the leading
part of the high-power pulse passes through the medium
with the largest population inversion and is amplified,
whereas the trailing part passes through a depleted
medium and is therefore hardly amplified (y<0, t^< f0;
see Fig. 6b), consequently the maximum of the pulse

(5.3)
FIG. 6. Energy-flux pulse and loss-power pulse at Vi>ve in a
passive (absorbing) medium (a) and in an active medium (b).
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moves with superluminal velocity. Formula (5. 4) re-
mains in force for this superluminal process: super-
luminal propagation of a pulse in an absorbing linear
medium and in an amplifying nonlinear medium is due
to similar causes.

The energy interpretation of the superluminal propa-
gation of pulses shows once more that it is due the de-
formation of the pulses and cannot be used to transmit
a signal with a velocity exceeding the velocity of light
in vacuum, just as negative values of v^ cannot be used
to get around the causality principle.

6. LINEAR RELATIONS FOR ACTIVE SYSTEMS

It was shown in Chaps. 4 and 5 that the presence of
damping greatly complicates the pulse-propagation pro-
cess. Even more complicated phenomena occur when
we consider active (unstable, amplifying) systems or
media. For such media ImJz(o>) <0 at certain real ω or
else /ζ(ω) is not a holomorphic function of ω at Imw» 0,
as for example h(u)) in accordance with formula (1.6).

However, the principle of relativistic causality (1.11)
must be satisfied also for amplifying systems, by vir-
ture of which the Fourier integral (1. 9) must be modi-
fied in the following manner:

ϊα-t-oo

1(z, t)= f Λ (ω) e< 1*<">'-«"Idea, (6.1)

where the positive parameter σ is chosen such that at
Imuis σ the function fe(w) is holomorphic, and in partic-
ular, it is necessary to choose σ> β for the dispersion
law (1. 6). Since we are interested in the principal part
of the pulse, we can deform the integration contour and
make it pass through the point ω0 on the real axis. In
the vicinity of this point we can again apply formulas
(3. l)-(3. 4) and we obtain for the dispersion law (1. 6)
the group velocity

(6.2)

whereas the phase velocity is smaller than c.

This result was noted by Ehrenfest as a paradox, but
it can be properly explained on the basis of Chap. 4.
Of course, the principal part corresponding to the fre-
quency ω0 moves with superluminal velocity (6. 2), but
for a pulse with a front—and only such a front can be a
signal—it cannot overtake the front and, in addition, it
gradually vanishes, being lost in the exponentially
growing sideband part which is obtained from formula
(2.2) at a = 0.

In the theory of active systems it is sometimes dif-
ficult to distinguish between damped waves and ampli-
fied ones. When as a result of a theoretical analysis
one obtains a wave for which Ιΐϊΐ/ζ(ω0)<0, then the ques-
tion arises: does this correspond to amplification of a
wave traveling in the direction of increasing z, or to
the damping of a wave traveling in a direction of de-
creasing 2? In passive systems there are no such dif-
ficulties, at Im/z(co0)>0 we always have a wave propa-

gating in a positive direction, at Imft(a>)<0 it propagates
in a negative direction, and at Im/i(co0) = 0 everything is
determined by the sign of the group velocity (3. 4) or the
limiting velocity (1.8). For active systems there were
proposed"7"3 9 1 a number of criteria which make it pos-
sible to answer this question, but the simplest and the
physically most natural answer is connected with con-
sideration of the integral (6. 1) for a high-frequency
pulse with carrier frequency ω0. This procedure seems
all the more natural, since a monochromatic wave is
an abstraction, and in practice we always deal with
pulses that are more or less long. We shall consider
below concrete examples in which the determination of
the propagation direction is not so simple.

For active systems, just as for passive systems, the
wave propagation is determined by the function Λ(ω),
and it is meaningless to develop a theory for an arbi-
trary function ft(o>), but one must bear in mind real me-
dia and lines as well as those limitations that are nat-
urally superimposed on the dispersion ft(co). If we have
a plane wave in a homogeneous medium with a complex
dielectric constant e(u>), then at μ = 1 the function h(u>)
is given by

) = — Vt (ω) (6.3)

and for a passive medium ε(ω) is a function that is ho-
lomorphic in the upper half-plane Imco» 0 and tends to
unity as Ι ω I — °°. It is easily seen that for linear active
media this property of the function ε(ω) remains in
force if the upper half-plane is taken to mean the half-
plane Ιηιω» σ, where σ is a positive parameter that en-
ters in the integral (6.1).

In fact, let us denote by Α(ω) the complex spectral
amplitude of the electric field at a given point, and by
E(t) and D(t) the electric field itself and the correspond-
ing electric induction3' at the same point (we do not dis-
tinguish between the displacement currents and the con-
duction current, which we include in D). Then, repre-
senting E(t) and D(t) in the form

ΐσ+ο

E(t)= f

fo-f-o

D(t)= f ε(ω) Α (ω ο, (6.4)

we cannot use the ordinary Fourier integrals but must,
as in (6.1), shift the integration contour, since the usu-
al Fourier integrals taken on the real ω axis can repre-
sent only functions E{t) and D(t) that vanish as t — ±°°,
while the modified Fourier integrals (6.4), as can be
readily shown with the aid of the change of variable
ω = ω' + ίσ, require only the vanishing of the products
E(t)e""* and D(f)e'at as t~ ±°°. In the active medium,
the perturbations can increase in time after the cessa-
tion of the external actions, therefore by choosing σ
sufficiently large we can write down the expressions in
(6. 4); the inverse of the first of these expressions is

3>By Ε and D we mean here one of the Cartesian components of
the intensity and of the induction.
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Ιηαι

FIG. 7. Calculation of the princi-
pal part in the case when the point
ω0 lies under the cut L.

Re ω

) = -^ j Ε (t) eX" dt, (6.5)

The causality principle calls for satisfaction of the
condition

if Ε (i) = 0 at t < 0, then D (t) = 0 at ί < 0, (6.6)

and then expression (6. 5) leads to holomorphy of the
function Α(ω) in the half-plane Imo;» σ, while the con-
dition (6.6) is satisfied only if ε(ω) is holomorphic in
this half-plane.

The dispersion laws (1.4) and (1.5) correspond to the
dielectric constant

e (ω) = ε — (6.7)

in which the term ε at ω» ± ωΓ can be regarded as a con-
stant positive number, and all the other resonant fre^
quencies are far enough from u>r. Population inversion
leads" 0 ] to the negative value ω\= - β* and to a function
ε(α>) that is holomorphic in the half-plane Ιηιω* 0; only
in the limiting case v= ωτ = 0 do we arrive at the dis-
persion law (1.6), for which holomorphy is obtained
only at Imw>/3. From the point of view of condition
(6.6), it will be possible to have an active medium with
dielectric constant (6. 7), in which u£>0, but then v<0.
Such media are unknown, and probably do not exist, but
the dispersion laws (1.3) and (1.4) at a£>0 and v<0
correspond approximately1·413 to a traveling-wave para-
metric quantum amplifier (maser) consisting of a trans-
mission line with a rejection band 0< ω< ωρ or ωτ< ω
c / « | + ωΐ, and active elements in which the negative
losses exceed the positive losses in the line. At ^
and v<0 the function h(u)) is holomorphic only at
Ιτηω^σ> \v\/2 and the cut of the function /ζ(ω) lies
above the real axis.

On the other hand, in the first case, that is, at
and v>0, the cut of the function Α(ω) lies below the real
axis, the integral (6.1) is taken along the real axis, and
the principal part of the pulse is amplified. In the sec-
ond case the integral (6.1) is taken along a contour lo-
cated above the cut and joining the points

point u>0 only by moving the cut L to the position V'.
Therefore in formula (3.2) for the principal part we
have ImA(a>0)>0, inasmuch as between the curves L and
V the value of h(u0) is taken with a different sign than
at the point ω0 under the cut L. In other words, what
takes place at i><0 is the same as at v = 0, when the
wave attenuates, if its frequency falls in the rejection
band, and the active elements cannot "revive" it and
convert it into a growing wave.

Thus, the distribution of the field in the system will
be determined by the damped exponential both at ν » 0
and at i/<0. The sign of ν determines only the sign of
the energy flux in the direction of the ζ axis: at v> 0
this flux is positive and at v<0 negative, that is, the
energy is supplied by the source of the field to the sys-
tem at v> 0 and is delivered from the active system to
the field source at v<0, so that S,<0 and in accordance
with (5.1) we have ve<0 inasmuch as W>0.

Nonetheless a pulse propagates in such a system, as
expected, in a positive direction (v^c) although it loses
rapidly its shape because of the enhancement of the
sideband parts and attenuation of the principal part.
According to (5. 4), the reason is that the negative-loss
pulse travels very far in advance of the pulse of the
negative (to the fiel'd source) energy flux (see Fig. 8).

This example shows that the sign of ve or S, (as the
sign of Vi before) still does not determine the wave
propagation direction. There exist two attributes that
make it possible to distinguish the positive direction
from the negative one. The first is absolute: the way
it propagates in a positive direction at a positive limit-
ing velocity (1.8), that is, the integral (6.1) can contain
the function Λ(ω) only with a positive limiting velocity.
Sometimes (see Chap. 7) it is impossible to go to the
limit Ι ω\ — °°, and it becomes necessary to use a sec-
ond and relative attribute: if at some finite value of ω
the given value of h{u>) corresponds to a wave with posi -
tive direction, then analytic continuation yields a simi-
lar wave.

7. AMPLIATION IN TRANSMISSION OR
AMPLIFICATION IN REFLECTION?

We consider the following problem1·42·1: a plane wave
is incident at an angle φ on the interface between two
media with dielectric constants e0 (at z<0) and ε (at
z>0); the electric field of the wave is parallel to the
interface (Fig. 9). The reflection coefficient of such a
wave is

(7.1)

, = ωΓ — i-j- and (v<0,

and amplification will occur only if ωβ does not lie un-
der the cut: it is then possible to draw the integration
contour through the point ω0, to calculate the principal
part, and to verify that for this part lmh(o)o)>0. On
the other hand, if the point ω0 lies under the cut (Fig.
7), the situation is different: we can deform the initial
integration contour and the contour passing through the

FIG. 8. Energy-flux pulse and loss-power pulse in an active
system for an exponentially damped field.
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FIG. 9. Incidence of a plane wave
on a plane boundary between a
passive (z<0) medium and an ac-
tive (z > 0) medium.

We assume that e0 is a real positive number with
eo>Ree. If Ime>0, then the sign of ρ is chosen such
that the quantity

τ G) CO -if : — ; —

h = — p = — y e — e0sin2<p, (7.2)

which determines the «-dependence of the wave passing
into the second medium (z>0) had a positive imaginary
part. On the other hand, if Imc <0, that is, the second
medium is active, then, generally speaking, it is nec-
essary to choose Imp<0 and Imft<0, since the trans-
mitted wave should become amplified in the active me-
dium. However, at

' φ >
Re ε (7.3)

doubts arise. On the one hand, it can be assumed that
small negative losses (usually - I m e « 1) cannot alter
strongly the damped field distribution in the second me-
dium, and one can choose ρ in this case such that
Imp>0. We then obtain

(]/e0cosq>— Re

" (γ ε» cos φ + Re p) 2 + (Ιηι ρ)2

• 4|^8oCos(pRep (7.4)

and since

Ρ —Ree + Im ε

φ —Ree
(7.5)

it follows that Rep<0 and |Λ|*> 1, that is, if the trans-
mission is not accompanied by amplification, then there
will be amplification upon reflection, due to the energy
flux from the active medium towards the interface (cf.
Fig. 8).

On the other hand, the preceding approach leads to a
jumplike change of ρ and \R\Z on going to the angle
φ0 = arcsin VReε/εθ. This jump calls for a verification.

It is clear from Chap. 6 above that the choice of a
sign of ρ or, equivalently, the choice of the sign of h,
cannot be made correctly by confining oneself only to
monochromatic oscillations, and it is necessary to take
a pulse and to ascertain whether it becomes amplified
or attenuated, depending on the behavior of the function
(7. 2) in the complex ω plane. For the active media
used in quantum electronics, expression (6.7) is usually
simplified to the form"0 3

and then

(7.6)

(7.7)

where ε can assume either small values, comparable
with the second term of the right-hand side of (7.7), or
else finite (positive or negative) values. So long as
e>0 we have Imfe(w)<0, and the wave in the active me-
dium is amplified. The sign of ε changes on going
through the critical angle φχ = arcsin V ε"/'ε0, which dif-
fers slightly from φ0 (incidentally, ψχ-ψα at ω = ωΓ).

Thus, on going through the angle <pu the properties
of the function h(u>) change jumpwise: it is to this angle
that the jumps of ρ and \R\Z must correspond, and not
to the angle φα. The correctness of the choice of the
value Imfc(a>)> 0 at φ>φ1 can be verified (see the end of
Chap. 3) by taking values of | ω - ω Γ | such that ε(ω) = t:
we then have total internal reflection from the boundary
of two ordinary dielectrics, and a damped field distri-
bution should be produced in the second medium.

It is sometimes stated142·43*1 that the sign of ρ can be
determined by choosing the active medium in the form
of a layer of thickness d, solving the problem for the
layer, and then taking the limit as d— °°. This proce-
dure is illusory, since at Imp<0 the waves produced
by successive reflections from the boundaries of the
layer form, at sufficiently large d, a diverging series
and there is simply no solution. Nonetheless, the main
results ofc423 are correct (there are only inaccuracies
with respect to the angle φ0 and the value of IRΙ Μ Ι ) ,
but [ 4 3 a l is in error. In : 4 1 ] there is an incorrect con-
clusion (with which the present writer unfortunately
agreed) that in the case shown in Fig. 7 the value Imfe(o>o)
<0 corresponds to a wave traveling in a positive direc-
tion. This conclusion was based on positiveness of St and
ve, and the error of this argument was demonstrated by
Sturrockc44]; in fact, as shown in Chap. 6, the value
Imfe(co0) <0 for a wave propagating in the position direc-
tion is not realized, and for a final solution of the equa-
tion it is necessary to consider a pulse, that is, a
transient process.

The maximum gain in the direction of the ζ axis, ac-
cording to formulas (7.2) and (7.7), equal to

-imh=—y—=Ty—, (7.8)

is realized at φ = φι - 0 and ω= wr. It greatly exceeds
the gain for normal incidence: the reason is that at
φ = φ ι - 0 the transmitted wave propagates almost per-
pendicular to the ζ axis, that is, it moves along the ζ
axis and covers a much larger path in the active me-
dium. At φ = </?! + 0 and ω = ωΓ we have ImA> 0, and the
power reflection coefficient, equal to

c = (7.9)

assumes a maximum valuec4s:l
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at E = (7.10)

In the experiments,C45·463 however, much larger re-
flection coefficients are observed. In view of the ad-
vanced opinion"3"3 that this is due to the finite width of
the light beam, we shall analyze this question in great-
er detail. Reflection of a monochromatic (time depen-
dence e'iut) wave beam is calculated in the same man-
ner as the propagation of pulses, except that in place
of the integral (1. 9) over the monochromatic waves,
the solution of (3.11) with wave number ko = (<j)/c)JTQ is
represented in the form of an integral over plane
waves. If the wave beam is narrow enough and is in-
cident on the interface at an angle φ, then the most im-
portant role in the integrals for the incident wave beam
w((z, x) and the reflected wave beam ur(z, x) is played
by plane waves whose incidence angles are close to ψ,
and these integrals can be calculated in the same man-
ner as at the beginning of Chap. 3. The details are
given in the work of Brekhovskikh. C4'3 If we denote the
reflection coefficient (7.1) by R(<p) = e~iaiv), then we
obtain the relation

•V(0, i) = Λ (<p) u, (0, χ— Δ),
* 0 cos φ '

(7.11)

which is analogous to expression (3. 3) and shows that a
beam incident on the interface at an angle φ is reflected
with the same reflection coefficient Λ(<ρ) as a plane
wave, and experiences a shift Δ upon reflection. In the
usual case of total internal reflection ΙΛ(<ρ)Ι = 1 and the
shift Δ is rea l , " 7 3 but at R{ip)+ 1 the quantity Δ is com-
plex. If, for example,

"<'and Δ = (7.12)

then this means (see the start of Chap. 4) a shift of the
amplitude center of the beam by a distance ^ along the
χ axis, and a shift of the phase center of the beam by
Δ8, where

a\—6η . δξ + ΛΪ1 (η * n\
Δ, = — - — a n d Δ2 = — ^ — , V ι. ΐύ)

and, in addition, at x=A1 we have

I u,(0, Δ,-Δ I «i (0,0)|,
2a

(7.14)

that is, the complex shift Δ leads to an increase of the
amplitude of the beam by a factor K. Since at φ^ψι
(and φ>ψχ) we obtain from (7.1)

Ω(φ) = 2·!
o cos φ

Ω'(φ) = -

it follows that according to (7.11), at φ = ψχ + 0 and
ω = ωΓ, the complex shift Δ is equal to

and the gain of the beam is equal to

(7.15)

(7.16)

that is, it is larger the smaller δε. This, however,
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does not mean at all that as δε — 0 we can obtain an ar-
bitrarily large gain Κ and an arbitrarily large complex
shift Δ: the point is that formula (7.11), which is anal-
ogous to (3.3), is not always valid. For formula (3.3)
it is necessary to satisfy the condition (3.9), and the
analogous condition for (7.11) is

(7. 17)

where Δψ determines the angle width of the beam (7.12)
just as Δω = i/cf+b* determines the width of the fre-
quency band occupied by the pulse with complex enve-
lope (3.18). If account is taken of the condition (7.17)
and of the smallness of δε, then it turns out that with-
in the limits of applicability of formula (7.16) we al-
ways have K~ 1. This result could be predicted without
calculations: after all, an unbounded plane wave can
always be subdivided mentally into a number of parallel
beams, which undergo a shift upon reflection and which
add up to form the reflected plane wave. It is there-
fore clear that reflection of each beam should occur
with the same gain as the reflection of a plane wave.

Thus, the large gain in reflection cannot be attributed
to the finite width of the beam (see1*361). It appears that
in fact we have not amplification in reflection, but am-
plification in transmission: part of the beam goes over
into the active medium, becomes amplified there with
a gain on the order of (7.8), and then returns to the
first medium by reflection from inhomogeneities. The
amplification of part of the beam is due to the fact that
its expansion in plane waves always contains waves that
go over into the active medium and are amplified there.
The situation is the same as in the case shown in Fig.
7: whereas the frequency ω0 corresponds to damping,
the frequencies ω lying to the right of the cut corre-
spond to amplification, and they give rise to the grow-
ing sideband parts referred to in Chap. 6.

The examples given above pertain to quantum elec-
tronics. In "classical" electronics, that is, for elec-
tron beams and for a plasma, analogous problems arise
and are considered in the previously cited pa-
pers, C37~39>44) and are at first glance more difficult, in-
asmuch as the complex wave numbers h have no explicit
expressions, and only a characteristic equation is de-
rived for them; if η waves interact in a given system,
then this is an algebraic equation of degree n. How-
ever, if a small parameter is introduced, " β ' 4 β ] this
equation simplifies and becomes quadratic, that is, the
situation reduces to pairwise interaction. It is now
possible to apply in explicit form the general theory de-
veloped above to each wave that results from the inter-
action and has a function M,u>), and, in particular, to
find the propagation direction. We do not report here
this investigation,"'3 because it has not yielded so far
any new results (compared with the article1383).

CONCLUSION

The questions considered in this article have a long
history. The principles of wave kinematics were
founded by Hamilton (1839), Stokes (1876), and Ray-
leigh (1877), while the principles of energetic kinemat-
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ics were founded by N. A. Umov (1874). The number
of subsequent works on these questions is truly im-
mense and cannot be listed here. The large number is
due to the fact that pulse propagation is constantly of
interest in a variety of branches of physics and engi-
neering, but it is impossible to present a complete
analytic solution of this problem unless the solution is
in terms of the Fourier integrals (1.9) or (6.1) together
with a recommendation of calculating them with com-
puters. Unfortunately, the number of such calculations
is still very small. Even in recent years, most au-
thors place unjustifiably large trust in the analytic for-
malism, and if numerical calculations are made the re-
sults are frequently not evaluated in the proper manner.

It should be noted in this connection that the relations
derived above make it possible, as a rule, only to un-
derstand the main phenomena that occur in pulse prop-
agation, and to estimate them in limiting cases, with-
out replacing the complete calculation referred to
above. A special position is occupied by the "ele-
phant"—the principal part of the narrow-band pulse,
for which the simpler expressions (3. 5)-(3. 8) were ob-
tained, and the applicability limits of which were re-
fined, particularly in Chaps. 4 and 6.

I am grateful to V. L. Ginzburg for interest in this
review and for valuable advice. I recall with gratitude
the criticism of V. A. Fock concerning the confusion of
the concepts "pulse" and "signal" in our first paper
with E. S. Birger. [ 2 1 a ]
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