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The drift-dissipative instability is one of the main instabilities of a plasma in a magnetic field. It is due to
the density gradient of the plasma and can develop in the plasma in thermonuclear devices, in the
magnetospheric plasma, in a gas-discharge plasma in a magnetic field, etc. The theory of the drift-
dissipative instability was developed about ten years ago. In the subsequent years this theory has been
convincingly confirmed in experiments with gas discharges in a magnetic field and also in experiments with
Q machines. In the present review, the main theoretical and experimental results obtained in the
investigation of the drift-dissipative instability are presented.
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INTRODUCTION

Instability of a plasma in a magnetic field has now
become a common phenomenon. One of the first ex-
periments that forced one to speak about instability of
a plasma was described by Bohm et al.C1] In this ex-
periment, they discovered an anomalously fast escape
of plasma through a magnetic field to the wall of the
vessel. To explain this phenomenon it was suggested
in [ 1 ] that random electric fields are spontaneously
excited in the plasma. In these fields, the charged par-
ticles move in a disordered manner, which leads to en-
hanced diffusion of the plasma through the magnetic
field. For the diffusion coefficient, Bohm gave the
empirical expression D= (l/l6)cTe/eB, which is called
the Bohm diffusion coefficient; in it, Te is the electron
temperature and Β the magnetic field. Later, anoma-
lous diffusion of plasma with diffusion coefficient of the
order of the Bohm coefficient was discovered in sys-
tems very different from the one described in [ 1 ]. Bohm
diffusion is now attributed to the spontaneous excitation
of so-called drift oscillations; see, for example, B ] .

In this review we consider one of the possible mecha-
nisms of excitation of drift oscillations in which an es-

1 (From the frequency and wave vector one can form a single
combination, ω/k , which has the dimensions of a diffusion
coefficient. The frequency of the unstable oscillations is ω
« (cTe/efl2)B· (kxx) (see t 2"4 :), where x=-(l/n0)V«0, and «Q
is the initial plasma density unperturbed by the oscillations.
If we take the smallest possible value ft « κ for the wave vec-
tor, we really do obtain the required dependence ui/J^cJ 1,/
eB.

sential destabilizing (!) role is played by collisions of
charged particles.C 3 ] In" 1, on the basis of analysis of
the dimensions of the quantities that characterize the
unstable oscillations, an attempt was made to derive
the Bohm diffusion coefficient. u

The origin of this instability is the fact that the
plasma is not in thermodynamic equilibrium—there is
a pressure gradient in the direction at right angles to
the magnetic field. This disequilibrium is unavoidable
in all systems that use magnetic plasma containment,
and therefore the instability was called universal inC51.
It should be noted however that for an instability to de-
velop the pressure gradient must exceed a certain
critical value, which is determined by the length of the
plasma along the magnetic field, the concentration of
neutral particles, and other factors. Therefore, the
instability will not develop in all devices by any means.
In c e ] the term inertial-dissipative instability was used
for the phenomenon. This name reflects the circum-
stance that although the electrons move as in a viscous
medium as the instability develops because of their
frequent collisions with heavy particles (ions in a fully
ionized plasma and neutral atoms in a weakly ionized
plasma8') while the motion of the ions must be free—in-
ertial. At the present time, a third name is the one that

'Ά plasma is said to be weakly ionized if the frequency of
collisions of the charged particles with neutral particles ex-
ceeds the frequency of Coulomb collisions. Note that it would
be more correct to speak of a weakly ionized and fully ionized
gas (see, for example,1·71), though we shall not depart from
the established tradition.
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is the most widely used: the drift-dissipative instability,
which was proposed inre:i by one of the authors. This
name emphasizes the important role of drift motions in
the excitation of the oscillations. Originally, the term
drift-dissipative instability was used in a generalized
sense, so that collisionless Landau damping was also
included in the dissipative processes. Accordingly, the
class of drift-dissipative instabilities included those of
an inhomogeneous low-density plasma in a magnetic
field (see, for example, Μιβ3). However, with the course
of time the term drift-dissipative instability has come
to be used only to designate the instabilities of a col-
lisional plasma. It is in this narrower sense that we
shall use the name.

The main results of the theory of the drift-dissipative
instability were established in the first analyses made
of it. Subsequent investigations added little new to these
results. This very rapid development of the theory was
due in large part to the use of the so-called local quasi-
classical approximation. In this approximation the in-
homogeneity of the plasma is taken into account para-
metrically, which enables one to obtain a local algebraic
equation determining the frequency of the plasma oscil-
lations. Originally, doubts were expressed about the
validity of this method (see, for example,C1O]). How-
ever, further investigations (see, for example, to>in)
established its adequacy for a large class of oscillations
of an inhomogeneous plasma in a magnetic field in which
drift motions of charged particles play an important
role. This class includes the drift-dissipative instabil-
ity.

The drift-dissipative instability is a fairly "weak"
instability. If other instabilities develop simultaneously
in the plasma, it is difficult to distinguish it on their
background. It is therefore desirable to carry out an
experimental investigation of the instability under con-
ditions that most closely approach equilibrium. Fre-
quently, disequilibrium of the plasma is due to the very
method by which it is created (passage of a strong cur-
rent through a gas, injection of beams of charged par-
ticles, etc). In this sense, the most "quiescent" are
systems of two types: currentless gas discharges and
Q machines. The term currentless gas discharge is
sometimes used (see, for example, i l2)) to designate
the types of discharge which can be sustained without
passing a direct current through the gas. This class
includes high-frequency discharges, afterglow dis-
charges, Penning discharges, etc. A direct current
gas discharge in a magnetic field is subject to a
"stronger" instability known as the current-convective
instability. The discovery of this instability"3·141 and
its successful identification inc l 5 ] very greatly stimu-
lated, in conjunction with"3, the investigations of oscil-
lations of all types of gas discharge in a magnetic field.
It should be noted that although a current-convective
instability can develop in a direct current discharge
in a magnetic field this does not present insuperable
obstacles for observing the drift-dissipative instability
(see below).

From the very start Q machines were conceived as
systems for studying a quiescent plasma. In them the

plasma is created by the thermal ionization of a beam
of neutral atoms that impinges on a heated slab.

One can distinguish two stages in the investigation
into the oscillations of plasmas in Q machines and cur-
rentless gas discharges in a magnetic field. In the
first stage there was a tendency to attribute all in-
stabilities observed in collisional regimes to the drift-
dissipative mechanism of excitation of oscillations.
However, a more careful examination of the problem
showed that other mechanisms can operate as well.
Gradually, the conviction grew that only a direct veri-
fication of the dispersion relation would settle the ques-
tion of the nature of the observed oscillations (the dis-
persion relation determines the oscillation frequency
as a function of the components of the wave vector of
the oscillations and the plasma parameters). This veri-
fication has now been carried out for the majority of
forms of the drift-dissipative instability. The positive
results of the verification now justify the assertion that
the drift-dissipative instability is a firmly established
physical phenomenon.

1. GENERAL CHARACTERIZATION OF THE
DRIFT-DISSIPATIVE INSTABILITY

A. Basic equations

The processes leading to the development of the drift-
dissipative instability can be analyzed in the approxi-
mation of two-fluid hydrodynamics. When this approxi-
mation is used, the electron and ion components of the
plasma are represented in the form of two fluids, or,
more precisely, gases, which penetrate each other.
For isothermal processes, which will be considered
below, the system of hydrodynamic equations reduces
to the continuity equations and the equations of motion
of each of the plasma components. The continuity
equations have the standard form

-§jr + V(nvy) = 0, (1.1)

where the subscript j takes the two values j = e, i for
electrons and ions, respectively. The plasma is as-
sumed to be quasineutral: n, = nf=n.

The equations of motion must be discussed in more
detail. We shall be interested in comparatively slow
processes whose frequency ω is low compared with ν,,
the frequency of collisions of the electrons with the
heavy particles (neutral atoms in a weakly ionized
plasma and ions in a fully ionized plasma). In the study
of these processes, the force of inertia can be omitted
in the equation of motion of the electrons:

0 = _ 7 (1.2)

here, the magnetic field is assumed to be constant and
homogeneous and the electric field to be electrostatic,
Ε = - νφ, which is valid for a low-pressure plasma:
BimT/Bz«1. In what follows we shall consider the
oscillations of a plasma with magnetized electrons,
when the electron cyclotron frequency ω, appreciably
exceeds ve. It can be shown that in this case the re-
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quirement affects only the motion of the electrons along
the magnetic field. Therefore, we set F l e = 0, jFllf

= - menvne ve, where here and in what follows the longi-
tudinal and transverse symbols are appended to the di-
rections relative to the magnetic field. Generally
speaking, instead of vne in the expression for the force
of friction one should have the difference vna — vnn in the
case of a weakly ionized plasma or vne- vnl in the case
of fully ionized plasma. However, in the former the
charged particles are a small fraction < 10'4 of the total
number of particles. Therefore, the charged particles
cannot bring the neutral component of the plasma into
motion, and one can assume that the plasma is at rest
and set vnn = 0. Since the longitudinal electron velocity
vne appreciably exceeds the ion velocity vnt, the same
expression for the force of friction remains approxi-
mately true in the case of a fully ionized plasma as
well.

We write the ion equation of motion in the form

(1.3)

here, in the case of a weakly ionized plasma F, = - m{

x«v, vt, where v( is the frequency of ion-neutral col-
lisions. In a fully ionized plasma the friction of the
ions on the electrons is unimportant on account of the
small electron mass, and a more important role is
played by the viscosity due to the collisions of the ions
with one another: FUa = - (9/8*e)ir,l(ie . In what follows,
we shall require the following values of the components
of the viscosity tensor: πχτ-*νν = - Ήι(WXT- Wyy)
- 2η3 W l y, rrxy =*„ = - ηχ W^ - η3/2 (Wxx - Wj, where

(see, for example,c i e ]). Here and in what follows we
use a Cartesian coordinate system whose Oz axis is
directed along the magnetic field and Ox axis along the
density gradient of the plasma.

Although the behavior of a fully ionized and a weakly
ionized plasma is described by the same equations,
their physical meaning is not entirely the same. The
hydrodynamic system of equations for a fully ionized
plasma is derived by a regular procedure from the
kinetic equation (see, for example, mz). This proce-
dure is based on the fact that the form of the distribu-
tion function of each of the components of the plasma is
essentially determined by collisions between identical
particles (electron-electron and ion-ion). Under the
influence of collisions a Maxwellian distribution is
established and the parameters of this distribution are
the density, velocity, and temperature. The hydro-
dynamic equations determine the evolution of these
parameters. In a weakly ionized plasma the distribu-
tion function of the charged particles is determined by
external electric fields that sustain the discharge and
by collisions with neutrals. Therefore, the energy and
velocity of each of the components are uniquely deter-
mined, and accordingly the hydrodynamic system of
equations reduces to a single equation for the

density.C 1 7·1 8 3 The region of applicability of this modi-
fied hydrodynamics is fairly restricted, and one must
therefore use the moments of the kinetic equation, which
have the meaning of balance equations. Truncation of
the system of moments can lead to appreciable errors
if one is considering processes in which the higher mo-
ments play an important role. Fortunately, the drift -
dissipative instability is due to a deviation from a state
of thermodynamic equilibrium as crude as a density
gradient. Therefore, its development can be described
with adequate accuracy by the first two moments of the
kinetic equation (see however Sec. 4 of this review).

Using (1.2), let us consider the motion of electrons
perpendicular to the magnetic field in the absence of
oscillations. We assume that in the initial state there
is no electric field. Assuming also that F i e = 0 (see
above), we obtain the following expression for the elec-
tron velocity perpendicular to the magnetic field:

It follows from (1.4) that if the plasma density changes
in the direction perpendicular to the magnetic field
then the electron component of the plasma is in a state
of motion. This motion is called gradient or Larmor
drift. It is interesting in that the hydrodynamic macro-
scopic velocity is not associated with displacements of
individual electrons, each of which is at rest on the
average revolving around a fixed Larmor circle.C 1 5 i l 9 : l

B. Drift oscillations

We now consider the oscillations of an inhomogeneous
plasma in a magnetic field. Let us first analyze their
spatial dependence. It is determined by the geometry
of the system. Usually, drift oscillations are studied
in systems that have the form of a long cylinder with
length one or two orders of magnitude greater than its
diameter. The magnetic field is generated by coaxial
coils and is parallel to the axis of the system. A typical
experimental arrangement used to study the oscillations
of a gas-discharge plasma in a magnetic field is shown
in Fig. 1.

Since the plasma parameters vary weakly along the
axis, the system can be assumed to be approximately
homogeneous in this direction. The greatest difficulty
is in the analysis of the radial dependence since this
requires one to solve a system of differential equations
with variable coefficients. It can however be shown that
in the oscillations in which we are interested the most

FIG. 1. Arrangement of experimental apparatus. 1) Solenoid:
2) lines of force of the magnetic field; 3) glass tube; 4) exter-
nal ring electrodes.
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important role among all the radial motions of the plas-
ma is played by drift in crossed fields: the constant
axial magnetic field and the azimuthal electric field of
the oscillations. This drift leads to displacements of
the plasma in the radial direction, i. e., in the direction
of the density gradient, which gives rise to the oscil-
lations of the density. To take into account this effect,
it is sufficient to consider perturbation traveling
azimuthally and independently of the radius. Detailed
analysis of the problem confirms the validity of this
approach (see, for example, [ 3 - β · 8 - 1 1 ] ) . since the radial
dependence of the perturbations is unimportant, in-
stead of an axisymmetric system one can consider a
system with planar symmetry. (The direction along
Ox is equivalent to the radial direction and that along
Oy to the azimuthal direction.) With allowance for all
we have said, the expressions for the perturbations of
the density and the potential in the oscillations take the
form " 3

Let us also make the following simplifications: we
set X, = 0; we ignore the motion of the ions along the
magnetic field (see above), and we shall assume that
their transverse motion is collisionless, F, = 0. As-
suming also that the frequency of the oscillations is not
too high, in the ion equation of motion we omit the force
of inertia. Under these assumptions we find from (1.2)
and (1.3)

- X
η dt '

CTt

(1.5)

(1.6)

(1.7)

(1.8)

where b, = e/m,vt and De=T,/mtvt are the mobility and
diffusion coefficients of the electrons, respectively.

Substituting (1. 5)-(l. 8) into the continuity equations
and linearizing them with respect to the small per-
turbations, «, « n 0 , of the density and the potential φχ,
we obtain

— ίωη, — ikf -g- - r r φι — be k] «,φι + Dek\ nt . = 0,

ik, -£• 4 r <Pi = 0.

(1.9)

(1.10)

Besides analyzing Eqs. (1.9) and (1.10), let us at-
tempt, followingΒϊ1, to present a clear explanation of
the mechanism of propagation of the oscillations. For
this, we consider Fig. 2. it shows the instantaneous

8)In a number of investigations (see, for example, ta)~221) an
attempt was also made to take into account the dependence
of the perturbations on the coordinate χ (the radius) by choos-
ing the perturbations in the form exp(- ίωί+ ih^c + ikyy + ik,z).
If characteristic oscillations are studied, this choice can lead
to misunderstanding. The point is that in bounded systems
characteristic oscillations must be more like standing waves.
But if the dependence on the χ coordinate is taken in the form
exptefegx), then, because of the inhomogeneity of the plasma,
the dispersion relation between the frequency of the oscilla-
tions and the components of the wave vector is found to con-
tain imaginary terms proportional to odd powers of ikx, and
this, depending on their sign, will be equivalent to the intro-
duction of additional damping or excitation.

FIG. 2. Propagation mechanism of drift oscillations. The
regions of enhanced and depleted concentration in the wave are
denoted by the plus and minus signs, respectively. The sinu-
soids represent the instantaneous distributions of the plasma
density n((ji) in the wave. The direction of the drift of the
charged particles in the wave is indicated by the long arrows
and that of the electric field of the wave is indicated by the
short arrows.

distribution of the density in the wave ~exp(- ta><+ ikyy
+ iktz), the regions of enhanced density being distin-
guished by the plus sign. Equations (1.9) and (1.10)
are compatible if the last two terms in (1.9) cancel
each other. This means that the pressure gradient of
the electron component is compensated by the electric
field φχ = {Ώ, /&,)«! /n0 = (Γ, /ejwj /n 0 . Therefore, the
regions of enhanced concentration must be positively
charged. In Fig. 2, the direction of the electric field is
indicated by short arrows. Since the electric field has
a y component, the plasma drifts along Ox (long
arrows). In the region to the right of the maximum,
plasma arrives from deeper levels, where its density
is higher (in Fig. 2 the density decreases along Ox).
In the region to the left of the maximum, plasma arrives
from layers situated nearer the surface, where the
plasma density is lower. As a result, the complete
picture is shifted to the right (dashed curve). The
continuous repetition of this process means that a
density and potential wave travels through the plasma.
This wave neither grows nor decays (Imci> = 0). The
real part, as follows from (1.9) and (1.10), is equal to
ω* = ky*.cT, /eB, where κ = - (l/«,,)<in0 /dx. This is called
the drift frequency and the oscillations are therefore
called drift oscillations. They were first considered
i n B 4 ] for a fully ionized plasma. The further develop-
ment of the theory of drift oscillations is reflected in
the reviews'2·β > β·1 1 1.

Let us dwell on two interesting features.

1) The drift oscillations are not damped although
ω«νβ. The reason for this is clear. Since the elec-
trons are distributed in accordance with Boltzmann's
law, their mean macroscopic velocity is zero, and
the force of friction therefore disappears as well.

2) The phase velbcity of the drift oscillations in the
OY direction has been found to be equal to the unper-
turbed velocity of the electron Larmor drift (1.4). At
the first glance one therefore gets the impression that
we are here dealing with the transfer of perturbations
by an electron stream. However, since each individual
electron in its Larmor drift is at rest on the average,
such transfer is obviously impossible. Larmor drift
cannot at all lead to a change in the density, and there-
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fore the corresponding term V(nVe*) drops out of the
resulting continuity equation (1.9). Evidently, the
phase velocity of the oscillations is equal to the velocity
of Larmor drift because the latter is the simplest
quantity with the dimensions of a velocity characterizing
the inhomogeneous plasma in the magnetic field. Indeed,
since the macroscopic velocity can be regarded as a
measure of the disequilibrium of the plasma, it is
natural to assume that it must be proportional to *T.
The simplest combination of κΤ, e, B, c, mt, and me

with4' the dimensions of velocity is evidently equal to
the Larmor drift velocity (cT/eB)x [cf. (1.4)].

C. Drift-dissipative instability

Drift oscillations neither decay nor grow (Imco = O).
In a certain sense one can say that a plasma with drift
oscillations is a new type of equilibrium state. Since
the "crude" forces (the pressure and the force exerted
by the electric field) are in equilibrium in drift oscilla-
tions, more subtle effects can be decisive. It is for
this reason that the correct treatment of drift oscilla-
tions in a fully ionized plasma may in a number of
cases require an extension of the scheme of ordinary
hydrodynamics to take into account higher moments of
the distribution function.cel At this point we shall take
into account the ion inertia. Its influence is very im-
portant even at a low oscillation frequency ω « ω,.

Using Eqs. (1.3) we determine the ion velocity in the
direction perpendicular to the magnetic field:

Β ω,
(1.11)

As before, we ignore the motion of ions along the mag-
netic field. Substituting (1.11) into the continuity equa-
tion and taking into account the expression for the fre-
quency of drift oscillations (see the previous subsec-
tion), we find that allowance for the force of inertia
decreases the second term in (1.10) by the factor
(1 - &,Ρ|β); here pie = 'x>"{

l^/Te/mi is the ion Larmor
radius calculated with the electron temperature. Thus,
the inertia of the ions effectively decelerates the drift
in the crossed fields, and as a result the drift displace-
ment of the ions is less than the electron displacement
and the amplitude of the oscillations of the electron
density is greater than that of the ion density. The
quasineutrality of the plasma can be maintained by
redistribution of the electrons along the magnetic field.
The excess electrons, going over from the regions with
higher density to those with lower density, must do work
against the electric field (see' Fig. 2). As a result, the
amplitude of the oscillations increases. Since energy
is taken from the electrons, they are cooled. Ulti-
mately the energy is expended on bringing the heavy ions
into motion. These processes do not contradict the
second law of thermodynamics since the oscillations of
the plasma in the direction of the density gradient
smooth out the gradient (the mean value over the oscil-

lations), taking the system nearer to equilibrium.

What is the role of the friction of the electrons on the
heavy particles in this oscillation excitation mechanism ?
If the electrons were to have a free inertial motion along
the magnetic field, then, as is readily seen, the change
of their density as they move under the influence of the
excess pressure would be shifted in phase relative to
that of the original perturbation by π/2. We should then
obtain a purely oscillatory regime without growth of the
original perturbations. If we examine the matter more
deeply, we find that the role of friction consists of in-
troducing an element of irreversibliity. As a result,
the process of smoothing the density profile of the
plasma in the oscillations acquires an irreversible
nature. Ultimately, it is this that allows the oscilla-
tions to take thermal energy from the electrons without
contradicting the second law of thermodynamics.

We shall show that the conclusion that the plasma is
unstable also follows from a formal analysis. Allow-
ance for the inertia of the ions leads to the appearance
in (1.10) of the additional term - ikl(c/B^/u3t}no<Pi.
As a result, the dispersion relation for determing the
frequency of the characteristic oscillations of the plas-
ma—it is obtained from the consistency condition of
Eqs. (1.9) and (1.10)—takes the form

" ω - ω · = i - ρ?. - ofcj ρ?β. (1.12)

This list does not contain the plasma density since a depen-
dence on the density must disappear in the limiting case of a
dense quasineutral plasma («ο — °°).

Ignoring first the small right-hand side of (1.12),
which is due to the allowance for the force of inertia,
we obtain ω = ω* = (cTe/eB)ky*-) (see above). In the fol-
lowing approximation we find that the oscillations are
unstable (Imw>0).

2. DRIFT INSTABILITY IN A WEAKLY IONIZED
GAS-DISCHARGE PLASMA IN A MAGNETIC FIELD

A. Detection of the instability

The investigations into the oscillations of currentless
gas discharges in a magnetic field began with the ex-
periments described by Bohm (see the introduction).
These experiments were continued in 1 2 5" 2 8 3. It was
found that anomalies in the behavior of the plasma oc-
cur only if the magnetic field exceeds a certain critical
value 8,;,.. When this happens, one or several plasma
"faculae" are drawn out of the region occupied by the
beam of primary electrons and rotate around it. As
the magnetic field is further increased, faculae of dif-
ferent spatial scales appear and they rotate with dif-
ferent velocities. The simultaneous presence in the dis-
charge of several faculae leads to a disordered random
picture, i. e., to turbulence.

In t 2 9 ], Schluter investigated a high-frequency discharge
in a magnetic field. He found that the load on the gene-
rator had an anomalous dependence on the magnetic
field. Much earlier, inc301, Davies had noted that in
such a discharge an anomaly is observed in the behavior
of the electron temperature in a magnetic field, the
anomaly increasing with increasing field. A more de-
tailed studyC3n of a high-frequency discharge revealed
that when the magnetic field is increased above the
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critical value the flux of positive ions across the mag-
netic field increases and simultaneously high-frequency
electric oscillations of noise type begin to be generated
in the plasma. All these results indicated indirectly
that an instability occurs and the diffusion coefficient
increases.

It would be natural to expect to find the most quies-
cent conditions in the decaying plasma that remains in
the discharge after the ionization source has been
switched off; this is the so-called afterflow plasma.
And, indeed, in these plasmas, unlike high-frequency
plasmas, the electron temperature is near that of the
neutral gas, and the stationary electric field that usual-
ly arises spontaneously in a gas discharge (ambipolar
field) is fairly weak. However, investigations showed
that in an afterflow plasma the diffusion coefficient has
an anomalously large value. C 3 8 · 3 3 1 Attempts were made
to attribute the anomaly to the influence of impurities,
misalignment of the axis of the discharge tube relative
to the magnetic field, recombination, etc. (see, for
example, Ι 3 4 · ' 5 : ι). These effects were analyzed in' 3 6" 3 8 1

(see a l s o m ) . The conclusion reached was that only
the development of unstable oscillations could explain
the increase in the diffusion coefficient.

Anomalous diffusion accompanied by the excitation of
electric noise was also observed in PIG reflex dis-
charges. C M · 4 0 3

B. First attempts of identify the instability

Since similar phenomena were observed in dis-
charges of different types, it was natural to assume
that we are confronted here with some universal in-
stability mechanism that is not associated with the de-
tails of a particular discharge. To establish whether
it is the drift-dissipative mechanism, it was first of
all necessary to find the conditions of the instability
and compare them with the experimental conditions.
For this, it is necessary to augment the idealized
scheme used in the previous section by various factors
manifested in real systems. For a weakly ionized gas-
discharge plasma these are ion collisions with neutrals,
the finite ion temperature (Γ, Φ 0), the boundedness of
the system in the direction of the magnetic field, and
various others. I n M n , only one of these factors (ion
collisions with neutrals) was taken into account. This
factor was found to be the most important. In order to
include ion collisions with neutrals in the treatment, it
is necessary to make the substitution ω — ω + iv{ in
(1.11). Then the dispersion relation for the frequency
takes the form

ω* + (ω (v, + DM (i + VPT.')) + o.Af (- ico·*;1??? - v,) = 0. (2.1)

If v, = 0, it is readily seen that this goes over into
(1.12).

Analysis of (2.1) gives the following approximate con-
ditions of instability:

It is readily seen from (2. 2) that individual modes
with fixed values of k9 and k, can be excited only in
definite ranges of magnetic field values:

(2.3)

The instability region becomes larger with increasing
ξ (decreasing pressure or increasing gradient of the
plasma density) and decreasing longitudinal wave num-
ber. The instability regions of modes with different
ky values can overlap, a stronger magnetic field being
required to excite oscillations with larger ky.

In 1" 1, the relation (2.2) was used to determine the
instability region of a plasma on the plane of ξ and η
= (ω, /ν{)ξ~ι = ΐ Α ρ ί # . It is convenient to use these co-
ordinates to characterize the state of the plasma since
they are related in a simple manner to the pressure of
the neutral gas, ξ~ρ~\ and the magnetic field, η~Β,
i. e., they are the quantities that can be most readily
varied in an experiment. It was found that instability
requires fairly large values of ξ(ξ£ΐ). This is a
natural restriction since the instability is due to the
plasma disequilibrium, which is characterized by the
gradient, ξ~κ. More accurate calculations (see"·4 2 ])
give

•• 2 . (2.4)

In Fig. 3 this boundary is indicated by the numbers (4)-
(5). The boundary section (3)-(4) {Ζη = ω{/ν(*1) is de-
termined by the condition of excitation of oscillations
with the smallest possible value fey=.x (see the left in-
equality in (2.3)). With further increase in the mag-
netic field, the critical values of ξ continue to in-
crease. On the section (2)-(3) we have ξ α > r { e

Finally, for r\<^mi/mt the plasma is stabilized since
the electrons cease to be affected by the magnetic
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FIG. 3. The continuous and the dashed lines are the boundaries
of the regions of the drift and ion-acoustic instabilities, re-
spectively ( s e e " " ) . l ) A r ( : n ) ; 2 ) H 2 ( " ' ] ) ; 3) He("");
4) H2(

C50])j 5) He(C82])i 6) He(C 2 2 ]) ; 7) H2( [ 2 2 ]): 8) He(" I ] );
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14) Ar([59]); 15) Ar( : 5 9 >" ]).
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field (xp, > 1).

InC41], Timofeev also determined the boundaries of the
region of the drift-dissipative instability of high-fre-
quency oscillations with ω » ω,; this is the so-called
ion-acoustic instability (see Sec. 5 of this review). In
Fig. 3 the boundaries are distinguished by the dashed
line.

It can be seen in Fig. 3 that the values of the param-
eters ξ and η at which anomalies were observed in the
behavior of the plasma in the experiment lie in the
region of the drift-dissipative instability or near it.
(So as not to clutter the figure, we have indicated the
data of only some typical experiments.) This led
Timofeev in M 1 ] to assert that it is the drift-dissipative
instability that was excited in the above experiments.
Originally, this conclusion was not doubted. However,
data gradually accumulated that could not be fitted into
the scheme considered in C 3 | 4 t 4 U . For example, fre-
quency analysis of the unstable oscillations t43] showed
that their spectrum extends from very high frequen-
cies—above the ion cyclotron frequency—to very low
ones, below the frequency of ion collisions with neu-
trals. Since the frequency of drift oscillations is less
than ω,, in C43] the high-frequency part of the spectrum
was attributed to the excitation of the ion-acoustic
branch of the drift-dissipative instability (see Sec. 5).
But the appearance of the low-frequency oscillations
remained a puzzle since the drift-dissipative mechanism
can lead to excitation only if ω> vi. (The conclusion
drawn in" 4 1 that oscillations with ω « ν{ are unstable
was the result of erroneous calculations.) Low-fre-
quency oscillations with ω « ν, were also discovered
inC 4 5 > 4 e ]. In the majority of cases, the values of the
plasma parameters at which excitation of low-frequency
oscillations was observed lie in the region of the drift-
dissipative instability. But at the same time it was
found (for example, inH 7 3) that the instability condition
has the form c s /V* = η> 1, where c, = •<JTi/rn( is the
velocity of ion sound. Since at the same time ξ satis-
fies the inequality ξ < 1, the region of this instability on
the ξη plane must have lain outside the region of the
drift-dissipative instability. Thus, it follows from the
experiments oft43>4S~49] that in a weakly ionized gas-
discharge plasma the drift-dissipative mechanism is
not the only one operative. And one can then ask
whether the additional mechanisms are not stronger in
the frequency region ω>ν{ as well.

On top of this, in t l 0 l 4 7 : i, doubt was expressed in the
validity of the local quasiclassical approximation, in
which, despite the inhomogeneity of the system, the
perturbations are chosen in the form of plane waves.
A convincing answer to all these problems can be given
only by a direct experimental verification of the dis-
persion relation (2.1).

C. Separation of individual modes of unstable

oscillations

It is obvious that the dispersion relation can be veri-
fied only if the plasma is in a laminar regime, i. e.,
only a few—preferably only one—modes are excited in
it. At the same time the amplitude of the oscillations

FIG. 4. Spectrum of drift
oscillations.1501

must be sufficiently small for the linear approximation
used in the derivation of (2.1) to be valid.

Individual modes of drift oscillations in a collisional
plasma were apparently observed for the first time incso:l,
in which a study was made of unstable oscillations of
the hydrogen plasma of a high-frequency discharge in a
magnetic field. The results obtained from analysis of
the oscillation spectrum are shown schematically in
Fig. 4. Besides the fundamental frequency ω1 = 9.4
• 104 sec'1, the harmonics ωη = ηωι up to n= 5 also appear.
Essentially, the spectrogram is the Fourier expansion
of nonlinear oscillations that are well correlated in time
and space. These oscillations propagated both azimuth-
ally and along the magnetic field. Since the system had
a finite length along the magnetic field, one might ex-
pect standing waves to be formed. However, in these
experiments the plasma was formed at one end of the
discharge tube. As the plasma moved along the mag-
netic field it was lost on the tube walls, and only a
small fraction of the charged particles reached the
other end of the tube. It was apparently the pronounced
inhomogeneity of the plasma which was responsible for
the oscillations propagating along the magnetic field.
The phase velocity of the oscillations was measured.
Its projections onto the azimuthal direction and along the
magnetic field, at gas pressure 2.10"3 mm Hg, were
2 · 105 and 2 · 10e cm/sec, respectively. The longitudinal
wavelength was approximately 100 cm, while the struc-
ture of the oscillations perpendicular to the magnetic
field was 'not investigated.

Inc503, the oscillation frequency was investigated as a
function of the magnetic field. It was found that, in
accordance with (1.2), the frequency decreases with in-
creasing magnetic field, ωαω* = kyvt.cTt/eB. It was al-
so found that the frequency decreases when the pressure
of the neutral gas is increased.

Although interesting results were obtained inC50], they
cannot be regarded as a complete vindication of the dis-
persion relation for the following reasons. 1) The
azimuthal wave number m was not measured. 2) The
comparison was made with the asymptotic value ω* of
the frequency of drift oscillations; this value is ap-
proximately valid only if one is far from the boundary of
the instability region. 3) The influence of the inhomo-
geneity of the plasma column in the direction along the
magnetic field was not analyzed. 4) The data correspond
to the nonlinear regime, as is indicated by the presence
in the spectrum of oscillations with a large number of
harmonics of the fundamental frequency.

In [ 5 1 ], individual oscillation modes were investigated
in the plasma column of a high-frequency discharge that
was homogeneous in the direction along the magnetic
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FIG. 5. Frequency ω and growth rate y of drift oscillations
as functions of the magnetic field Bo (

t63]). Ar, /> = 4 · 10'3 mm
Hg, λ,=140 cm. The black and open circles correspond to the
azimuthal wave numbers m = 2 and 3, respectively. The heavy
solid curves are the calculated values of the frequencies with
allowance for the Doppler effect; the thin curves, are without
allowance for the effect. The dashed curves are the calculated
values of the growth rates.

field. It was found that the oscillations, as required by
theory, traveled azimuthally in the electron direction,
and that their frequency was of the order of the drift
frequency. On the ξη plane (see Fig. 3) the unstable
state of the plasma corresponded to the region lying
within the drift instability region bounded by the lines
1-5.

Individual oscillation modes were also observed in a
reflex-discharge plasma in a magnetic field. The col-
lisional regime was studied inC 5 i ] . 5 > it was shown that
the oscillation frequency is of the order of the frequency
calculated in accordance with (2.1).

Attempts were also made to observe drift oscillations
in a direct current discharge in a magnetic field. C 5 e-M J

However, because of the comparatively low frequencies
of the drift oscillations their characteristics could have
been significantly modified by the directed motion of the
electrons. (A direct current discharge is more favor-
able for investigating ion-acoustic oscillations with
ω » ω{; see Sec. 5.) It may have been for this reason
that the oscillations discovered in c s e : traveled azimuth-
ally in the ion direction, while the oscillations investi-
gated inC58], in which they were called pseudoion-cyclo-
tron oscillations, formed a wave traveling along the
magnetic field.

D. Verification of the dispersion relation

A detailed study of drift oscillations in a high-fre-
quency discharge plasma in a magnetic field was made
i n 1 " - · " . In K 3 J , the frequencies of oscillations with
azimuthal wave numbers m= 2, 3 were investigated as
functions of the magnetic field. In Fig. 5, the experi-

5'it should be noted that a PIG discharge is distinguished among
other types of gas discharge by the complexity of the physical
processes occurring in it. Besides the electrode effects that
make' it difficult to establish the general features character-
izing the drift-dissipative instability, it is also necessary to
take into account the "short-circuit effect"1533 and "reversed-
field" instability154-553.

mental data are plotted in the form of black and open
circles. Figure 5 also shows the results of calculations
in accordance with Eq. (2.1) of the real part (continuous
curves) and imaginary part (dashed curves) of the fre-
quency. Only the part of ω as a function of Β that cor-
responds to instability of the plasma (y>0) is shown.
The range of variation of the magnetic field in Fig. 5
is bounded above by 2. 5 kG, the maximal value achieved
in the experiments ofW3Z.

It can be seen from Fig. 5 that in the plasma, as ex-
pected from theory, the instability region has bound-
aries at both low and high magnetic fields, the oscil-
lations in the experiment being found within the cal-
culated region. As the magnetic field is increased,
oscillations with smaller m are the ones first excited.
In higher magnetic fields, also in agreement with theory,
oscillations with different m values (m = 2 and 3) are
simultaneously excited in a certain range of variation of
the magnetic field Β in the plasma. In K 3 ] the real part
of the frequency was calculated both with and without al-
lowance for a radial electric field (heavy and thin
curves, respectively). A radial field causes the plasma
to rotate and the Doppler effect then shifts the frequency
of the drift oscillations. The values of the radial field
used in the experiment lead, as can be seen from Fig.
5, to fairly good agreement between theory and experi-
ment (compare the thick continuous curves and the
curves with black and open circles).

In t M ] , the oscillation frequency was studied as a func-
tion of the projection k, of the wave vector onto the di-
rection of the magnetic field. The characteristic de-
pendence of ω on k, is shown in Fig. 6. It can be seen
from the figure that the experimental data, which are
indicated by the open circles, agree well with the cal-
culated values obtained with allowance for the radial
electric field. In the same figure, the dashed curve
shows the growth rate γ calculated as a function of k,
(the part of the curve with γ>0 is shown). The instabili-
ty region has boundaries at both short and long wave-
lengths, as was found in the experiment. Since not less
than half the wavelength fits into the plasma along the
magnetic field (k,> w/L), it follows from Fig. 6 that
drift oscillations can be excited in a plasma only if its
extension exceeds a certain minimal value determined
by the parameters of the discharge and the tube radius.

0.02 0.04

FIG. 6. Frequency ω and growth rate y of drift oscillations
as functions of the wave vector projection onto the direction of
the magnetic Held (k, = 2it/\M) ( tM1). Ar, £ = 4·10"3 mm Hg,
m = 2, B=1.9 kG. The dashed curve gives the calculated growth
rates.
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FIG. 7. Region of drift instability. t u : The open and black
circles correspond to the azimuthal wave numbers m = 2 and 3,
respectively. The dashed curves are the calculated regions of
excitation of oscillations with m = l, 2, and 3. The dot-dash-
dot lines bound the region investigated in this paper.

In c e 3 3 the excitation regions for drift oscillations on
the ξη plane calculated inC 4 l ] were tested. In Fig. 7,
the open and black circles show the experimentally ob-
tained boundaries of the instability regions for the in-
dividual oscillation modes. The excitation regions of
oscillations with m = 2 (open circles) are shown by
horizontal hatching and those for m = 3 (black circles)
by vertical hatching. The dot-dash-dot lines in Fig. 7
bound the region of values of the parameters ξ and η
investigated in t M ] . It can be seen from Fig. 7 that the
instability region of the individual oscillation modes
lies within the range of ξ and η parameters predicted by
the theory, although it does occupy only part of the
region. In the calculations i n H U it was assumed that
the ions in the plasma have zero temperature, Tt = 0.
It was shown inCSB] that allowance for T{ Φ0 can reduce
the instability region. In fact, drift oscillations are
possible if the ion Larmor radius satisfies p | < v r l , and
if T{ = 0.01Γ, this leads to the condition η> 0.1. If this
condition is used, the instability region is restricted
on the side of low magnetic fields. However, even after
this correction a discrepancy between theory and ex-
periment remains, as can be seen from Fig. 7. A
discrepancy is also found in the corresponding bound-
aries at small ξ (high gas pressures). The best agree-
ment between the experimental and the calculated values
is obtained with allowance for the finite length of the
system along the magnetic field, which leads to a re-
striction on k, (k,^ π/L). The instability regions for
the oscillations of the three first azimuthal modes cal-
culated for a concrete value of k, are shown in Fig. 7
by the dashed curves. (The complete instability region
is the sum of the regions of the individual oscillation
modes as mmtx— «>.) It can be seen from Fig. 7 that the
boundaries at small ξ and η of the instability regions of
the individual oscillation modes agree fairly well with
those established experimentally. At the same time,
it should be noted that the first oscillation mode, which
should be excited at the smallest values of the magnetic
field in accordance with theory, was not observed ex-
perimentally.

The characteristics of individual modes of drift oscil-
lations were also investigated in a reflex-discharge
plasma in a magnetic field. Κ 5 : In the interpretation of
the experimental data it was assumed that the oscilla-
tions with maximal growth rate must be established in
the plasma. It follows from (2.1) that for this the com-
ponents k, and ky of the wave vector must satisfy the

relation ω* = ω,, where ω, = Dt k\ (ky pit)~*. In the drift
instability, as a rule, long-wave modes with few nodes
are excited. Therefore, with varying magnetic field,
pressure of the neutral gas, etc, the modes must be
rearranged discretely at fairly large intervals of varia-
tion of these parameters. Under these conditions, the
simplified equivalent of the dispersion relation in the
form ω* = u>, can be verified only at individual points.
At the same time, interesting data were obtainedCM] on
the rearrangement of the azimuthal modes (Fig. 8). It
follows from Fig. 8 that an increase of the magnetic
field increases the azimuthal wave number of the un-
stable oscillations, and, in accordance with the left-
hand approximate inequality (2.3), mode m is unstable
for

It is necessary to dwell in detail on the experiments
of Ε 2 2 · β β ' β 7 ] , in which a study was made of the oscillations
of a high-frequency discharge plasma and an afterglow
plasma in a magnetic field. Individual modes were ob-
served, and these were identified as drift modes, and
the dispersion law was verified. Good agreement with
the theoretical calculations was obtained. However, it
was found that the oscillation frequency could take val-
ues appreciably lower (by an order of magnitude) than
the frequency of ion collisions with neutrals. The re-
sult contradicts the basic assumptions of the theory of
the drift instability.

In the experiments of^2·66·1 with an afterglow plasma
the late stage of the discharge, when the plasma densi-
ty is fairly low, was studied. One can therefore sup-
pose that in these experiments a low-frequency variant
of the drift-dissipative instability of a low-density
plasma was actually observed (see Sec. 4 of this re-
view). One can attempt to explain the agreement with
the theory of the drift instability by the circumstance
that in 0 2 · 6 * 1 in the theoretical calculations an additional
dependence of the perturbations on the χ coordinate in
accordance with the law e^x* was introduced. Then,
as we noted in the third footnote in this paper, an ad-
ditional excitation effect can be artificially introduced,
and this evidently led to the conclusion that there was
instability of drift oscillations with ω « vi.

3. DRIFT INSTABILITY IN THE FULLY IONIZED
PLASMA OF Q MACHINES

Usually, electric fields or bunches of fast particles
are used to ionize a gas. The plasma obtained in this
way is in a state that is very far from thermodynamic
equilibrium, and it is therefore electrostatically un-

FIG. 8. Azimuthal mode m of unstable oscillations as a func-
tion of the magnetic field."5 3 He, ρ = 2.2· 10"2 mm Hg.
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stable. The Q machines were conceived as a means
to study a quiescent fully ionized plasma. In them,
the plasma is produced by the thermal ionization of a
beam of neutral atoms that impinge on a heated metal-
lic slab. After it has been formed, the plasma flows
freely from the plate along the magnetic field. How-
ever, even this "quiescent" plasma sprang a fair num-
ber of surprises. Inparticular, the development of
several types of instability was established. Some
time was required to analyze the observed phenomena
and distinguish the drift-dissipative instability from the
others. We shall not dwell on this original stage of the
investigations, which has been fairly well covered

incee,e93_ W e t u r n directly to the derivation and verifica-
tion of the dispersion relation of the drift-dissipative
instability (see1 7 0"7 2 3).

In the plasma of Q machines, the ions have a tem-
perature near that of the electrons. In considering the
oscillations in such a plasma, one must take into ac-
count pressure and viscosity in the ion equation of mo-
tion. The components of the viscous stress tensor
given in Sec. 2 contain the two viscosity coefficients
»?, = 0.ZnT, v, /u>5 and η3 = 0.5ηΓ, /ω,. The terms pro-
portional to η3 take into account the so-called collision-
less viscosity, which is due to the effects of the finite
Larmor radius, while the terms proportional to jjt take
into account the collisional viscosity. Use of the hy-
drodynamic approximation presupposes that the fre-
quency of the processes is low compared with the fre-
quency of ion collisions: ω«ν{. We shall see below
that these oscillations may be unstable. In this respect
we have a radical difference between a fully ionized and
a weakly ionized plasma. The reason for this is that in
a weakly ionized plasma ion collisions with neutral
atoms do not equalize the velocity gradients (viscosity)
but rather decelerate the ion component (friction).
Friction is a much more effective stabilizing factor.
It is for this reason that oscillations with ω « ν{ in a
weakly ionized plasma are stable (see the previous
section).

In the derivation of the dispersion relation of the
drift oscillations we shall, as in Sec. 1, ignore the
displacements of the ions along the magnetic field.
Using the ion equation of motion (1.3) and the continuity
equation, we obtain

- ίωη, + iky* ·|- ηοφ, + -J- -3- [ - «„ + 0.3ν, (Λ,,ρ,)4] ( η»φ, + -f η,) = 0.

(3.1)
The dispersion relation, which is determined from the
condition of compatibility of (1.9) and (3.1), can be con-
veniently represented in the form

(3.2)

Here, for brevity, we have introduced the notation
iie = Dekl, fy = 0. βι/,^,ρ,)4. If collisional viscosity is
ignored in (3. 2) by setting Ω, = 0, the difference be-
tween (1.12) and (3.2) will be due solely to the effects
of the finite Larmor radius (collisionless viscosity).
For (kyp,)*«l, the right-hand side of (3.2), as in
Subsection C of Sec. 1, can be taken into account as a

small correction. In the zeroth approximation in kyp,,
we have ω = ω*. Substituting this value of the frequency
into the right-hand side of (3.2), we find that it is twice
the right-hand side of (1.12),· so that the growth rate of
the oscillations is doubled. This means that in an iso-
thermal plasma the effects of the finite Larmor radius
influence the drift oscillations in exactly the same way
as inertial effects. Inertia leads to an effective de-
celeration of the ions in the oscillations (see Sec. 1),
and according to133 the finite Larmor radius must have
the same effect. The point is that charged particles re-
volving around a Larmor circle of finite radius are
subjected on the average to a weaker electric field
E,tl - E(i - k\p\) (see'733). Because of the equivalence
of inertial effects and the effects of a finite Larmor
radius in a plasma with hot ions, even oscillations with
a very low frequency, whose development is quite unaf-
fected by inertial effects, may be unstable.

Let us now take into account collisional viscosity. It
follows from (3.2) that the oscillations are stable at
both very small and very large values of Ω,. The range
of values in which the plasma is unstable is determined
by the inequalities (w**,p,)lBj1 > Ωβ> Ω,. The last in-
equality can be represented conveniently for what fol-
lows in the form (see"1 1)

£ > (1.2)1/41 (-^)'/2 (rm.W* ~ (^)mmW\ (3. 3)

The dependence of the critical magnetic field on the
ion mass can be conveniently verified by using a plasma
which is a mixture of two elements. The mean mass in
the expression for the critical magnetic field can vary
continuously with the relative fractions (mt)='ZanOcimta/
Σαηοα °f *he elements. In the experiments ofC71] a mix-
ture of Cs and Κ was used. Figure 9 shows that the re-
quired dependence B~{mt ) 3 / e was indeed obtained. At
the same time, the coefficient of proportionality exceeds
the calculated value by a factor of about 1. 5. InC7i:,
the dependence of the critical magnetic field on the plas-
ma density calculated from (3.3) was also confirmed,
and it was found that only the first mode with the small-

: est wave number m = 1 exhibited any significant devia-
tion from the theory. This circumstance unambiguously
indicates that the local quaisclassical approximation is
a possible source of the discrepancies. Another source

FIG. 9. Critical value of B/ky as a function of the mean ion
mass expressed in mass units for different mixtures of potas-
sium and cesium. The theory gives B/ky= 1.5 · 102(m<)3'8

G-cmfor \ = 2L; T=2800°K. no = 1 ° U cm"3, ( c n ]). The
dashed line is the calculation for \ = 4L.
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FIG. 10. Growth rate γ as a function of B/ky for two different
values of the ratio λ,Λ,.β· (B/feia. = S/*ifor λ ^ ) . η0 = 5χΐ0 1 0

cm'3, fei=2.5fey, m = X, T=2650°K, x=2.3cm" i . The continuous
curves are calculated.C72:

could be the use of the hydrodynamic equations to de-
scribe the oscillations despite the fact that the wave-
length at right angles to the magnetic field is of the
same order of magnitude as the ion Larmor radius.

The stabilization at sufficiently small values of the
magnetic field is due to the influence of viscosity. If
the length of the system in the direction along the mag-
netic field is not too great or the magnetic field itself
is sufficiently strong, so that the condition ((ιΐ/ω,Ι^Α,
<, 1 is satisfied, it may be necessary to take into ac-
count another important stabilizing factor—the longitu-
dinal motion of the ions (see1 7 1·7 2 3).8 ' We note in par-
ticular that, to eliminate the influence of the last fac-
tor, all theoretical studies of the drift-dissipative in-
stability were made for oscillations with pronounced
extension along the magnetic field. In" 8 3, the growth
rate of the drift-dissipative instability was calculated
with allowance for the longitudinal motion of the ions
(Fig. 10). It can be seen from Fig. 10 that oscilla-
tions with λ Ι<λ ι > ( : Γ are stable for all values of the mag-

netic field. If λ,> λ. then in a certain range of the
magnetic field the oscillations become unstable. Usual-
ly, in the experiments on the drift-dissipative instabili-
ty data are given only for the real part of the oscilla-
tion frequency. InC731, their growth rate was also mea-
sured. As follows from Fig. 10, the results of the
measurements agree well with the theoretical calcula-
tions i f i t i s borne in mind that kx * 0 and one assumes

In Fig. 10, (B/ki)/(B/kicT) is plotted along the
abscissa. On the basis of this figure, we can conclude
that for oscillations with large azimuthal wave number
m the instability region must be shifted to higher mag-
netic fields. This feature is reflected in Fig. 11. We
recall that the same effect is observed in a weakly
ionized plasma; see the previous subsection. In : 7 2 ] it
was found that the frequency of unstable oscillations is
approximately equal to ω*/2. This theoretical result
agrees satisfactorily with the experimental data (see

6)In a number of papers (see, for example,C751) experimental
results have been interpreted by introducing an effect of damp-
ing of the oscillations at the ends of the Q machine. However,
the analysis of this question in174·76·1 showed that the conditions
at the ends affect only the longitudinal wavelength of the os-
cillations, while the stabilizing effect due to the drift of parti-
cles to the ends out of the volume occupied by the plasma is
insignificant.

I'

ο e ?
P, kG

FIG. 11. Comparison of the frequency of unstable oscillations
with the drift frequency in a potassium plasma.1 7 1 1 The Dopp-
ler shift has been taken into account.

Fig. 11).

To get an idea about the conditions under which the
various stabilizing mechanisms can be manifested, it
is helpful to consider the phenomena on the plane of λ,
and B/kL (Fig. 12). In Fig. 12, the instability region
is bounded on three sides. Below, i. e., in the region
of weak magnetic fields, the stabilization is due to
viscosity; above, to the influence of the longitudinal
motion of the ions; finally, on the left, i .e . , in the re-
gion of short wavelengths, diffusion of the electrons
leads to stabilization. Indeed, as is shown inC723 (see
also the foregoing subsection) the drift-dissipative in-
stability at a sufficiently short wavelength is stabilized
even without allowance for the longitudinal motion of the
ions.

In this review we have discussed only those of the
results obtained i n " 1 · 7 2 3 that appear to us the most
important and interesting, i n " 1 · 7 2 3 investigations were
also made of the longitudinal wavelength, the critical
magnetic field on the plasma density, the oscillation
frequency on the plasma temperature, the transverse
wavelength on the magnetic field; the plasma flux out-
ward due to the unstable oscillations was also mea-
sured. The complete set of results ofC71>723 leave no
doubt that the observed instability really is the drift-
dissipative instability and that its properties are de-
scribed perfectly satisfactorily in the framework of the
above theoretical model. It appears to us that it is the
experiments in Q machines that provide the fullest and
most comprehensive verification of the theory of the
drift-dissipative instability. At the same time, we can-
not ignore the numerical discrepancies between the
theory and the experiment (see Figs, 9 and 10). We
have already discussed the possible origins of these
discrepancies.

4. LOW-FREQUENCY DRIFT INSTABILITY OF A
WEAKLY IONIZED PLASMA IN A MAGNETIC FIELD

A. Instability of a not fully magnetized plasma

As we have already mentioned, in a number of ex-
periments low-frequency (ω « v{) oscillations were ob-

FIG. 12. Critical value of B/kx

as a function of \(lm). kx=2.5ky,
" 3

0.2
iuo

A-, cm

x=1.8 cm"1. The continuous
curve is calculated.
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FIG. 13. Frequency ω of unstable oscillations as a function of
the magnetic field B(C 5 W). Ar, ρ = 1 · 10"2 mm Hg. The straight
line through the origin is the ion cyclotron frequency ω<. The
dashed line is the frequency ν ι of ion-neutral collisions.

served whose excitation could not be attributed to the
instability mechanism considered in the first section.
So far, it has been possible to interpret only some of
these experiments. The greatest clarity has been
achieved in understanding the nature of the instability
observed in"7·781. As the magnetic field is varied,
oscillations of two types are excited successively. The
frequency of the oscillations excited at comparatively
large magnetic fields exceeded v{ (Fig. 13). The cor-
responding instability was identified as the drift in-
stability. In the region of weak magnetic fields, low-
frequency oscillations with ω < v{ were observed. These
like the drift oscillations, had the form of a standing
wave in the direction along the magnetic field (Oz) and
of a traveling wave along the azimuthal direction. It is
characteristic that at a certain magnetic field the sign
of the azimuthal phase velocity was reversed. On the
left-hand (decreasing) section in the curve of the fre-
quency as a function of the magnetic field the oscilla-
tions traveled in the electron direction, while on the
right-hand (increasing) section they traveled in the ion
direction. The wavelength in the direction along the
magnetic field was twice the length of the solenoid, so
that half a wavelength was fitted into the plasma. The
low-frequency oscillations were observed only in
plasma with heavy ions (Ar, Kr, Xe), and then for mag-
netic field values for which the ion Larmor radius (p,
~ Vml) was comparable with the radius of the discharge
tube. This circumstance suggested that the finite
Larmor radius plays an important role in the excitation
mechanism.crel The influence of the effects of the
finite Larmor radius on drift oscillations was considered
in the previous section, but we cannot use these results
because they were obtained in the hydrodynamic ap-
proximation, and in the case of a weakly ionized plasma
the system of hydrodynamic equations is a collection of
moments of the kinetic equation (see Sec. 1). Its use to
describe effects as subtle as those due to the finite
Larmor radius would require the additional introduction
of many moments. In this case, it is simpler to have
direct recourse to the kinetic equation:

(4.1)

Here, / is the ion distribution function. In"93, the
collision term was taken in a model form which allows
for the conservation of the ion number in collisions with
neutral atoms (seet801):

In (4.2) it is assumed that the collisions carry the ions
component into thermal equilibrium with the neutral
component: f~fo = no{mt /2irTf)

3/z.exp(- mvz/2Tt),
where T{ is taken equal to the temperature of the neu-
tral gas.

We assume as before that in the oscillations all the
perturbed quantities vary in accordance with the law
exp(-ib)t+ikvy + iktz). To determine the perturbed
distribution function fx, we linearize the kinetic equa-
tion (4.1) with respect to the small perturbations. In-
tegrating the expression for/! with respect to the veloc-
ities, we find the perturbation of the ion density n,.
By analogy with (1.9), it is convenient to represent the
expression for », in the form

> 3 )~ Λ 2 ) ] τ m < = 0 :

where u = c/Bd<po/dx, in which <pa is the unperturbed
electric potential, which is usually present in a gas-
discharge plasma and which, generally speaking, must
be taken into account in the analysis of stability.

Accordingly, Eq. (1.9) must be augmented by the
term —ikytml. The effects of the finite Larmor radius
are taken into account in (4.3) by means of

1 At ' * Ί At ' *

where

η» (*!) = / » ( * ! ) « * ' . *i = ( Μ ι ) 2 ·

and /„ is a Bessel function of imaginary argument.

As usual, we find the dispersion relation for the fre-
quency from the condition of solvability of the system
(1.9) and (4,3). Analysis leads to the instability con-
dition

+ ο,-0,0,- ,0,(1

„·(!_«,_.£«.) (1 + 8,-=}-). (4.4)

where

St(/)= -v f (/-/„)+ v, (/-/„). (4.2)
Note that although ax, az, a3 cannot exceed unity,

they do become comparable to it when kyp,«1.
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FIG. 14. Radial electric field AVr(l) and frequency of unstable
oscillations ω(2) as a function of the magnetic field £( [ 8 1 ] ) . Ar,
ρ = 8 · 10"3 mm Hg, ^ = 120 0111, m = 2.

It follows from (4.4) that oscillations traveling
azimuthally in the ion direction (ky < 0) can be unstable
even in the absence of an electric field (u = 0). This
conclusion is confirmed by the measurements of the
radial electric field made in C 8 n (Fig. 14), from which
it can be seen that when the electric field is zero the
unstable oscillations are the ones traveling in the ion
direction, whose frequency increases with increasing B.

Let us now consider the question of the direction of
rotation of the oscillations. Simple estimates show that
in a weakly ionized plasma the sign of the phase velocity
of the drift oscillations depends on the ratio of Ω̂
= £ . [ * ; + * > ; / « ! ) ] and ηί=Β,{*; + ̂ [^/(μ» + ω;)]}. If
electron diffusion is predominant (Ω^>Ω{), the oscilla-
tions travel in the electron direction, but if the ion dif-
fusion is predominant (Ω{> Ω'β) then they travel in the
ion direction. If the wavelength of the oscillations in
the direction of the magnetic field is sufficiently great
and the ion temperature is not too low it may be that at
very small and very large values of the magnetic field
the condition Ω£>Ω{ is satisfied, while Ω{>Ω£ in the in-
termediate region. In this case, the dependence of the
phase velocity on the magnetic field must have the form
shown in Fig. 15. Of course, the experiment establishes
only the part of the curve to which positive growth rates
correspond. In Fig. 15 they are indicated by the thicker
curves (cf. Fig. 13).

Low-frequency oscillations were studied in detail
in c e l 1 . Figure 16 shows typical results of measurements
of the frequency of low-frequency drift oscillations as
a function of the magnetic field obtained in an experiment
with a weakly ionized argon plasma at different pres-
sures (curves with the open circles). In the same figure,
the dashed curves are the dependences of the frequency
on the magnetic field calculated by means of (1.9) and

a)

b)

FIG. 15. Diffusion frequencies of electrons and ions, Ω, and
n|(a), and phase velocity ω/Λ, of drift oscillations (b) as func-
tions of the magnetic field. The heavy curves are the sections
corresponding to instability <,y>0).
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FIG. 16. Frequency of unstable oscillations ω as a function of
the magnetic field B(C e n). Ar, λ, = 180 cm, m = 1\ pressures
(mm Hg): 5 · 10*3 (a), 8 · 10"3 (b), and 1.5 · 1(T2 (c). The dashed
lines are the calculated dependences.

(4.3). It can be seen that there is good agreement be-
tween the calculations and the experiment.

The theory also reproduces satisfactorily the experi-
mentally observed dependence of the oscillation fre-
quency on the projection k, of the wave vector onto the
direction of the magnetic field B. This can be seen from
Fig. 17, in which we have plotted the calculated and
measured dispersion characteristics of the low-fre-
quency drift oscillations with decreasing dependence of
ω on Β for two values of the magnetic field. The theory
also enables one to determine the interval of unstable
wavelengths as a function of the magnetic field. Fig-
ure 18 shows the experimentally determined (a) and cal-
culated (6) regions of excitation of oscillations with
different longitudinal wavelengths for three different
pressures. Comparison of the data in this figure shows
that, as predicted by theory, low-frequency drift oscil-
lations are excited in the plasma only in a restricted
range of longitudinal wavelengths.

In 1 7 9 · 8 1 3 the experimentally measured and calculated

no

/σο

feo

mo

1

//
ί y

/

[
L

/

/ > •

/

/ /

''2

1
L

a)

b)

0,25 0.5 0,75
3,]tG

FIG. 17. Longitudinal wavelength \ of unstable oscillations
as a function of the magnetic field B(C81)). Ar, m = 2. a) Ex-
periment, pressures (mm Hg): 8·10"3(1), 1.5·10"2(2), and
3·10"2 (3); b) calculation, pressures (mm Hg): 5·10"3 (1),
8·10"3 (2), and 1 · 10"2 (3).
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FIG. 18. Frequency ω of unstable oscillations as a function of
*, = 2n/y t e i I ) . Ar, ρ = 8Ί0Γ3 mm Hg, m = 2; magnetic fields
(G): 300 (1) and 200 (2). The dashed curves are the calculated
dependences.

instability regions of low-frequency drift oscillations in
the magnetic field and the pressure were compared.
The results of these comparisons are shown in Fig. 19.
It can be seen that the regions overlap only partly.
However, they both lie near the line ω, /e, = 1. The
fulfillment of the last condition is important for the ex-
citation of low-frequency drift oscillations, " " since the
difference between the drift velocities of the electrons
and ions in the crossed fields £ y and Β needed for the
occurrence of this instability is especially large when
ω, /ν,«1. Note that from the condition ω{ /vt * 1 one
can estimate the smallest pressure at which instability
is still possible; for with decreasing pressure of the
gas the minimal magnetic fields needed for the instabili-
ty to occur decrease (the critical magnetic field de-
creases). This, in its turn, leads to an increase of the
ion Larmor radius, and when it exceeds the radius of
the discharge tube the instability ceases. Estimates of
the lower limiting pressure for the existence of the
low-frequency drift instability1813 confirm the correct-
ness of this approach.

B. Instability of a low-density plasma

Comparatively long ago it was noted theoretically
that a low-density plasma may be more unstable than a
dense one (see, for example"1·1). Let us demonstrate
this. If one is considering oscillations in a low-density
plasma, one must replace the condition ne = nt of quasi-
neutrality by the Poisson equation

Δφ = 4ne (n, — n(). (4.5)

Assuming that the perturbations of the electron density
in (1.9) and the ion density in (1.10) are related through
(4.5), we find the following dispersion relation for the

/ •

IS·

«s

O.5

a)

Ζ
plO1, mmHg

; 2
fl-/t/fmm Hg

b)

FIG. 19. Regions of excitation of oscillations with respect to
the magnetic field Β and the pressurep(m i). Ar, λ, = 120 cm,
m = 2. (a) Calculation; b) experiment.

0.5-103 Wa

FIG. 20. Relative magnitude of the oscillations of the plasma
density in the perturbations, njn^, as a function of the density
η/8 3 1)· 2fl = 1.2 cm, /> = 0.15 mm Hg. Magnetic fields (kG):
0.7 (1), 1 (2), 1.6 (3), 3 (4), and 5 <5).

oscillation frequency:

ω — ω* = - (4.6)

This equation differs from(l. 12) by the substitution
pte--de, where de = ̂ Te/4nezn0 is the electron Debye
radius. Therefore, the effects due to the plasma's
being nonquasineutral play the same role as ion inertia,
and low-frequency oscillations with ω « u, can be ex-
cited. in" 8 · 8" these ideas were invoked to explain the
experiments in an afterglow plasma. The anomalously
fast decay of such a plasma had been noted earlier
inC32>33J. It was found later that the increase in the
diffusion coefficient is accompanied by the occurrence
of oscillations. c«·*" This circumstance forced one to
look for the origin of the anomalies in an instability of
the plasma. To establish its nature, it is necessary to
take into account the following circumstances. 1) When
the instability occurs, the dimensionless parameters
ξ and η lie outside the region of the drift instability in
Fig. 3 (ω, <ν(, ξ<1). 2) Because the electron tempera-
ture in the afterglow plasma is near the ion tempera-
ture, ion-acoustic oscillations cannot be excited. 3)
The instability develops only in the later afterglow,
when the plasma density is fairly low. This is illustrated
in Fig. 20, which is taken fromC83], and in which the
relative magnitude of the fluctuations in the plasma
density, nl/n0, is plotted against the density «0. Simi-
lar results were also obtained for other values of the
pressure of the neutral gas and the discharge tube
radius.

The dispersion relation (2.4) cannot be used to de-
scribe these experiments since it was obtained under
the assumptions Te»Tit <j)(»vlt whereas the after-
glow plasma is almost isothermal (Te » T,) and the
instability region is characterized in fact by the op-
posite relation between the frequencies ω{ and ν,(ω{

<<vt). In this case, simple calculations give

ω (1 -|_ S) _ to· = -±- (m _ αίω·) (ω« - ίω·) - №,\

here we have denoted s = &d\, t=T,/Te,

(4.7)
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5. ION-ACOUSTIC INSTABILITY

Ωί = β,*2, Ω; = De I kl + k> (ν|/ωί) ].

In deriving (4.7), we have used the condition Ω,'» Q,'e.
Since Te"Tt in an afterglow plasma, for oscillations
with ky» kt this condition is satisfied at comparatively
small values of the magnetic field. We have also borne
in mind that in a plasma there exists a stationary
ambipolar electric field under the influence of which
the electrons drift azimuthally (in the equivalent sys-
tem which we consider, from the symmetry plane
along OY).

From (4. 7) we find that the plasma is unstable when

(4.8)
-

The value of a is positive if ω β ω,/v e v ( >T e /T t . This
necessary condition of instability agrees in order of
magnitude with the one found experimentally: ωβ ω, /
vev{"5-9 (seeC83]). Note that when a>0 the plasma
is positively charged relative to the walls.

Analysis of (4.8) shows that oscillations are excited
only at a fairly low plasma density, when (nd,)2? (me/
mt)ve/vl. The most unstable oscillations are the ones
with s*{*di?

l*(mivl/m,v.)ii*axAkM$kyvt/<j>t. In c e ",
however, it was noted that the experimentally deter-
mined critical density is about two orders of magnitude
less. Subsequent comparison of theory and experiment
revealed agreement in some respects as well as some
discrepancies. For example, in agreement with
theory'8 3 1 [see also (4. 7)] the frequency decreased with
decreasing plasma density, while the noise intensity
increased with the magnetic field, length of the dis-
charge tube, and density gradient. At the same time,
the phase velocity of the oscillations exceeded the cal-
culated value by 1 to 2 orders of magnitude. InC83],
the discrepancies between theory and experiment were
attributed to the inaccuracy of the local quasiclassical
approximation. But it then remains unclear why this
approximation, which can be used successfully to de-
scribe other forms of the drift-dissipative instability,
is unsatisfactory in the present case.

This discussion shows that the study of the instability
observed in an afterglow plasma cannot be regarded as
completed. However, the point of view expressed

inC82,e33 already enables us to understand the charac-
teristic features of the instability such as the low fre-
quency of the unstable oscillations (ω < vt) and also the
occurrence of the instability in the later afterglow,
when the plasma density has fallen below a certain
critical level. At the same time, the possibility can-
not be excluded that the physical phenomena that de-
velop in the afterglow plasma have a more complicated
nature. For example, in c 8 4 ] the excitation of os-
cillations was observed even in the absence of a
magnetic field in the later afterglow. This result
was interpreted as the excitation of acoustic oscilla-
tions in which the neutral component of the plasma par-
ticipated.

A. Theory

In the preceding subsections we have analyzed the
drift instability of an inhomogeneous plasma in a mag-
netic field. The frequency of drift oscillations is pro-
portional to the density gradient ω « ω* = (cTe/eB)ky *
and, therefore, in a homogeneous plasma the branch of
drift oscillations itself is absent. However, inhomo-
geneity of the plasma may lead to the excitation of
oscillations that are characteristic of a homogeneous
plasma. For example, in a nonisothermal plasma with
Te» Tt the branch of ion-acoustic oscillations exists.
(We recall that, usually, in a gas discharge the elec-
tron temperature is appreciably higher than the ion
temperature: Te /T{»102. Only an afterglow plasma, in
which Te~Tt, is an exception.) In the absence of a
magnetic field, ion-acoustic oscillations propagate with
velocity c s = ̂ Te/m( (ω = kcs). Κ the wavelength of
the oscillations is sufficiently short, so that the condi-
tion ω » ω( is satisfied, a magnetic field does not af-
fect the oscillations. In this case, even in the presence
of a magnetic field, we can use the same expression
ω/ft = άω/dk = c, for the phase (and group) velocity of the
ion-acoustic oscillations. In terms of the velocity, a
measure of the plasma inhomogeneity is the Larmor
drift velocity ω*Α,= (cTe/eB)x . It is natural to as-
sume that the inhomogeneity of the plasma has more
influence on the ion-acoustic oscillations for V*>ca.
We shall show that it is this condition which is the con-
dition of instability of the ion-acoustic oscillations.
Using the continuity equation and also the equations of
motion, in which we ignore the influence of the mag-
netic field, we obtain

ωη,—
ω-j-iVj

ι = 0. (5.1)

The condition of solvability of the system (1.9) and (5.1)
leads to the dispersion relation

- * τ π τ ) " = 0· (5.2)

To simplify the calculations, we have gone over in (5.1)
and (5.2) to a coordinate system in which the ions are
at rest: ω = ω' - ky VOi, where ω' is the frequency of the
oscillations in the laboratory system,

is the ion drift velocity in the stationary ambipolar
electric field. In (5.2), we have also denoted ΔΚ0

Let us consider short-wave high-frequency oscilla-
tions with kv» Max(fe,, v( /c3) for cs » AV0. To de-
termine the boundaries of the instability region, we
equate to zero, assuming Imw = 0, the real and the
imaginary part of (5.2) separately. We then find ω
= ky

cs> V* = cs· For V*>cs, the plasma is unstable.
This condition was obtained in I 4 1 ] (see also t 4 2 ]). It can
be conveniently represented in the form xp(e=rfl<\.
In Fig. 21 (see also Fig. 3) it restricts the instability
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FIG. 21. Boundaries of the region of the ion-acoustic instabili-
ty in an argon plasma.C 2 l 4 1 ] The open circles are the results
of the experiments i n C M ] . The dashed curve is the boundary
of the instability region obtained from (5.2) for m = l; the dot-
dash-dot curve is the boundary found from the condition (5.4).

region of the ion-acoustic oscillations at large values
of the magnetic field. I n t 4 n however it was shown that
short-wave oscillations with k,s-ve/^Te/m, can be
unstable even when η > 1. In the analysis of these os-
cillations, the behavior of the electron component
must be described kinetically.

Hie region of the ion-acoustic instability is also
bounded at low magnetic fields; for, first, the electron
Larmor radius must be less than the tube radius:
*p,< 1. This condition can be represented in the form
η > <m,lmK and it corresponds to the section 1-2 of
the boundary of the instability region. Second, it was
noted i n B 3 that in the study of ion-acoustic oscillations
in narrow tubes it is necessary to take into account the
loss of the plasma to the tube walls. At comparatively
low values of the magnetic field, the loss rate is ap-
proximately equal to DLevt, where DLe = Dt<x>\/v\. If it
exceeds the group velocity of the oscillations, the in-
stability has the form of a convective instability. This
means that because of the drift of the plasma regular
characteristic oscillations cannot be established in the
system and the instability will be observed in the form
of random noise. Estimates of the growth rate show
that over the loss time the fluctuations do not succeed
in growing at all appreciably, and therefore the plasma
will be almost stable. Assuming that the group velocity
of the oscillations is equal to the velocity of ion sound,
we obtain an instability condition in the form123

(5.3)

This condition determines the section 2-3 of the bound-
ary of the ion-acoustic instability region.

Finally, drift of the electrons in the ambipolar elec-
tric field has a stabilizing influence. Calculations lead
to the instability condition ω,/ν,= ξη> %t/b,"(seeM1J).
In Fig. 21, the corresponding section of the boundary is
designated by 3-4.

We have analyzed the ion-acoustic instability of a
weakly ionized plasma. In a fully ionized plasma the
excitation of ion-acoustic oscillations in the collisional
regime can occur in only a very restricted range of

variation ol'Tt/T(; for in order to eliminate Landau
damping on ions it is necessary to require fulfilment of
the condition Vr e /r , » 1 , whereas the inequalities v,
« ω « ν, entail Ame/mt)(Tt/Ti)

i«1. It is interesting
to note that in an unmagnetized plasma the analogous
inequalities are mutually exclusive. ttS3

We have used the name ion-acoustic oscillations since
the dispersion law of these oscillations when D,k\
»Max(&>, ω*), ω»ν(, has the form <f = &c\ [see (5.2)].
At the same time, when D,feJ«Min(w, ω*), ω»ν , , we
obtain from (5.2) the relation ω = ω,**/*,*. Since the
density gradient then appears in the denominator, these
oscillations have been called antidrift oscillations on a
number of occasions (see, for example, tee]) to dis-
tinguish them from drift oscillations.

B. Experiment

Originally, any instability with excitation region on
the ξη plane within the region of the ion-acoustic in-
stability was taken as an ion-acoustic instability. For
example, i n t 4 n the anomalies observed in a high-fre-
quency discharge in a magnetic fieldC31] were explained
by excitation of ion-acoustic oscillations. Later, Η 5 > 7 β · β τ ]

an instability with boundary coinciding on the ξη plane
with the section 2-3 of the boundary of the ion-acoustic
instability region was found and called an ion-acoustic
instability. In a more detailed study it was however
found that the frequency of the unstable oscillations can
be lower than the frequency of ion collisions with the
neutrals. »2.«,ββ-9ΐ] T h i s circumstance alone is suffi-
cient to cast doubt on the identification of the instability
with the ion-acoustic instability. At the same time, we
have no reason to doubt the conclusions ofΒ2], in which
a study was made of a direct current discharge in a mag-
netic field at comparatively low pressures of the neutral
gas. It was found that in a magnetic field somewhat
greater than a critical value noise is excited in the dis-
charge and the diffusion coefficient of the plasma in-
creases. The critical value of the magnetic field was
found to be appreciably less than that required for the
excitation of the current-convective instability (Fig. 22).
Since the characteristic frequency of the noise exceeded
the frequency of ion-neutral collisions, and the critical

Pressure
tSmXon

zoo 4CO cm mo

FIG. 22. Longitudinal gradient of the potential, E,, as a func-
tion of the magnetic field B(C 8 n). B, is the critical magnetic
field for the excitation of the ion-acoustic instability, and B2

is the one for the current-convective instability.
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FIG. 23. Azimuthal wavelength λ, as a function of the ion mass
expressed in mass units.C 9 3 ]

values of the dimensionless parameters ξ and r\ lay with-
in the instability region of the ion-acoustic oscillations,
the instability was identified inC92] as of the ion-acoustic
type.

However, as in the case of the drift instability, a
final conclusion about the nature of the oscillations can
be drawn only after verification of the dispersion rela-
tion. For unstable ion-acoustic oscillations the approxi-
mate dispersion relation (which is true only in order of
magnitude) has the form ω ~ kcs. If it were satisfied ex-
actly, then in experiments with different gases and dif-
ferent electron temperatures but the same azimuthal
wave number m and radius of the apparatus, we should
obtain Xy = 2ir/ky = 2itcs /ω = const (ky = m/r, ky » k,).
Figure 23 gives the results of the experiments of1933,
which were made in an apparatus of the same type as
is described in : 5 0 1. It follows from the figure that,
despite the large differences between the oscillation
frequencies in the different gases, c, /ω for modes with
the same azimuthal wave number m is approximately
constant. In accordance with the theory, the oscilla-
tions investigated in 1 8 " traveled azimuthally in the elec-
tron direction and formed a standing wave in the direc-
tion along the magnetic field. Their frequency satisfied
the relation ω » ω,, vt. At the same time it should be
noted that in these experiments the condition D, k*
»Max(ti), ω*), which theory suggests guarantees proxi-
mity of the frequency of the unstable oscillations to the
ion-acoustic frequency, was not satisfied.

ΙηΒ2.β4] i t w a s n o t t h e v e r y approximate relation wkc,
that was verified but the much more accurate dispersion
relation (5. 2). Figure 24 shows the experimental and
calculated [in accordance with (5. 2)] frequencies of
oscillations with m = 1 (ky = κ) as a function of the mag-
netic field for three different pressures of the neutral
gas. It can be seen from the figure that the general na-
ture of the experimental dependence ω = ω(Β, ρ) cor-
responds to the results of the theoretical calculations.
However, the plasma is more stable than predicted by
theory: The range of magnetic fields in which the in-
stability was observed experimentally is appreciably
narrower than the region in which the growth rate cal-
culated by (5.2) (dashed curves in Fig. 24) is positive.
This discrepancy can be partly removed by bearing in
mind that because of the movement of the charged parti-
cles to the wall of the discharge tube one can in reality
observe only those oscillations whose growth rate is
greater than the reciprocal time (DL κ *)ml of this motion:

large-scale oscillations with &,«κ the condition (5.3)
used above is less stringent than (5.4). If (5.4) is taken
as the instability condition, then the interval of magnetic
fields to the left of the vertical dashed arrows is elimi-
nated from the instability region in Fig. 24. As a result,
for weak magnetic fields (left-hand boundary) we obtain
better agreement with theory, although the discrepancy
remains on the right-hand boundary.

It is helpful to represent the results of the experi-
ments in [ e 4 : l on the ξη plane (see Fig. 21). To each
value of the pressure (p~ ξ"1) in this figure there cor-
responds a segment of a horizontal straight line whose
length and position is determined by the range of varia-
tion of the magnetic field (η~Β). We have plotted only
the part of the segment that corresponds to instability of
the plasma. As a result, we obtain three segments
parallel to the η axis. At the same time, in Fig. 21 the
dashed curve shows the instability region of the first
oscillation mode found by solving (5. 2) and the dot-
dash-dot curve shows the region found with allowance
for the condition (5.4). In the calculations, in agree-
ment with the experiment, the longitudinal wavelength
was taken equal to twice the length of the plasma. If
the longitudinal wavelength is increased, the instability
region is enlarged. Note that the total volume of the
ion-acoustic instability, which is bounded in Fig. 21 by
the continuous curve, is obtained by superimposing the
instability regions of the individual modes in a system
that is unbounded along the magnetic field (« s k, & 0)
for ky^H.

The frequency of the ion-acoustic oscillations was al-
so investigated as a function of the magnetic field in a
direct current discharge in a longitudinal magnetic
field. 15*Ί Approximately the same results as in the
plasma of the high-frequency discharge were obtained.

An investigation of the frequency of unstable oscilla-
tions as a function of the pressure of the neutral gas
and the wave vector was made in t M ] . Figure 25 shows
the experimental and calculated dependences of the
oscillation frequency ω as a function of the gas pres-
sure ρ obtained in' 6 4 3 in an argon plasma. Here, as in
the earlier figures, the dashed curve is the instability

Ar, R = 1.5 cm, λ ζ = 70 cm
,p=2-l0>mmHg

Imo> (5.4)

Since one usually has Reaj > Ιτηω (see Fig. 24), for

100 tUU .

FIG. 24. Frequency ω and growth rite y of oscillations with
m = 0 as a function of the magnetic field B(C641). Pressures
(mm Hg), temperatures (°K): 1) 2·1(Γ3, 6 · 104; 2) 4 · 10"3,
5.2· 103; 3) 8 · 10"3, 4.2 · 104. The continuous curves are the
calculated frequencies and the dashed curves are the calculated
growth rates.
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FIG. 25. Frequency ω of unstable oscillations with m = \ as a
function of the gas pressure />(C64]). The longitudinal wave-
lengths (cm): 90 (1), 80 (2), 70 (3), and 60 (4). The dashed curve
gives the boundary of the instability region calculated by (5.2);
the dot-dash-dot curve the boundary found from the condition
(5.4). The continuous curves for \ = 60—90 cm are the calcu-
lated frequencies.

boundary calculated from the dispersion relation (5.2),
while the dot-dash-dot curve is the boundary found from
condition (5.4). It can be seen from the figure that at
all pressures the conditions ω>ν,, ω, are satisfied.
With decreasing longitudinal wavelength and gas pres-
sure, an increase in the oscillation frequency is ob-
served, in agreement with theory. Note that under the
conditions ofce4] the longitudinal wavelength decreased
from λ, m u = 9 0 cm to λ, = 60 cm, this being governed by
the possibilities of the experimental apparatus that was
used. The frequency of the oscillations with λ, = 60 cm
at low gas pressure was close in magnitude to ky cs.
In t e 4 ] , the oscillation frequency ω was also studied as
a function of the wave vector k. The oscillation fre-
quency ω as a function of k, (k, is the projection of the
wave vector onto the direction of the magnetic field) is
shown in Fig. 26, from which it can be seen that, as
follows from (5.2), the frequency increases with in-
creasing magnetic field Β and decreasing gas pressure
p. The frequency is less than ky c3, approaching this
value with decreasing longitudinal wavelength λ, = (λ.

As can be seen from Fig. 26a, the maximal pressure
above which the plasma becomes stable was near 8 · 10"3

mm Hg and comparable with the value obtained from the
calculations (the dashed and the dot-dash-dot curves).

. s •

ν
2 -

. Αι, K = 1.5cm, S=20OG

P-2101-

x - J

3

10'3

2

\t,R=l.5 cm,p=2-10"! mm Hg

0.05 O.IO *ζ,αΐί* 0,05 0.10 *,,cm"'

a) b)
FIG. 26. Frequency ω of unstable oscillations with m = l as
a function of the wave vector projection k, onto the direction
of the magnetic field.CM] a) Pressures (mm Hg): 2· 10"3 (1),
4 · 10"3 (2), and 8 · 10"3 (3); b) magnetic fields (G): 200 (1) and
300 (2). The notation is the same as in Fig. 25.

3

Ar,/>-2-/iT3mmHg

a

" 4

>tvcm~'1 Ζ Avcnf1 /

a) b)
FIG. 27. Frequency ω of unstable oscillations as a function of
the wave vector projection ft, onto the azimuthal direction.K4:l

a) Magnetic fields (G): 120 (1), 200 (2), and 300 (3); (b) pres-
sures (mm Hg): 1·Χ0"3 (1), 2·10"3 (2), and 5-10'3 (3). The
notation is the same as in Fig. 25.

Note that at low pressures the theory does not predict
a restriction on the instability. In M 4 ] the gas pressure
was reduced to values < 10"3 mm Hg and at these pres-
sures unstable oscillations were still observed in the
plasma. From Eq. (5.2) one cannot obtain restrictions
on the instability region at weak magnetic fields (the
dashed curve in Fig. 26b is open downward). A re-
striction is given by the condition (5.4); it is the dot-
dash-dot curve.

Figure 27 shows ω as a function of ky. It can be
seen from this figure, as also from Fig. 26, that the
experimental data in it agree fairly well with the cal-
culated values.

CONCLUSIONS

Thus, the conditions have now been established under
which the drift-dissipative instability must arise, and
the dispersion properties of unstable oscillations of
small amplitude have been analyzed. In these matters,
theory and experiment agree perfectly satisfactorily.
It is hoped that certain numerical discrepancies will be
eliminated by a more complete allowance for the ef-
fects associated with inhomogeneity of the plasma and
nonlinearity of the oscillations. It is possible that for
this one must go over from the hydrodynamic to the
kinetic description.

It must however be borne in mind that the physical
origin of a number of oscillations that develop in a
gas-discharge plasma in a magnetic field has not been
established. It is possible that the investigation of these
oscillations will reveal new aspects of the influence of
inhomogeneity of a magnetized plasma on its oscilla-
tions that are not included in the drift-dissipative in-
stability mechanism.
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