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The contemporary theoretical ideas on quantum diffusion of impurity particles and point defects in
crystals of solid helium are reviewed. Results are given of experimental studies on diffusion of isotopic
impurities and ions in solid helium in which quantum diffusion was actually found. The energy spectrum of
a quantum crystal in the presence of impurities or point defects is discussed. Owing to the specific
dynamics of impurity particles, excitations of the crystal exist that behave like one- or two-dimensional
quasiparticles within the volume of the three-dimensional crystal. Experimental nuclear magnetic resonance
data in solid solutions of helium isotopes confirm the existence of two-dimensional quasiparticles. The
features of behavior of dislocations in quantum crystals are elucidated. Experiments are discussed in which
these features should be manifested.
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1. INTRODUCTION

The ordinary "quantum" theory of solids is based on
assuming a quasiclassical crystal lattice. On the one
hand, the quantum effects in this theory play an im-
portant role for the phonons of the crystal (namely, at
temperatures below the Debye temperature). On the
other hand, the particles that form the crystal are
viewed as being localized near definite equilibrium
positions. The latter property is purely classical.
Actually, the mutually identical particles that form the
crystal prove here to be individualized by belonging to
definite lattice sites. Yet, in quantum mechanics iden-
tical particles must be indistinguishable. Although the
quasiclassical picture of a crystal is therefore approxi-
mate, its accuracy for the vast majority of crystals is
very high, and it considerably exceeds the possibilities
of experiment.

However, there is a small group of so-called quantum
crystals in which the deviations from the usual picture
are quite appreciable. The most clearly marked quan-
tum crystals are those of the isotopes of helium ^He,
4He, and their solutions). This is evident even from
simply examining their phase diagrams. As we know,
the picture of quantum-mechanically indistinguishable
particles plays the decisive role at low temperatures in
the properties of liquid helium (a quantum liquid).
Liquid helium crystallizes upon a slight increase in
pressure (25—30 atm) with a relatively small change
in density (~ 5%). Evidently the crystals that arise here
must to a substantial degree retain their quantum na-
ture.

This article aims to review the set of phenomena in-
volved with the behavior of impurities and defects in
solid helium. As will be evident below, it is precisely
these phenomena that manifest most clearly the quantum
nature of helium crystals, which gives rise to qualita-
tively new effects such as quantum diffusion.

2. QUANTUM CRYSTALS

Let us examine the problem of quantitatively char-
acterizing the region of applicability of the ordinary
quasiclassical theory, and that of the cases in which
one can expect the maximum deviations from this theory.
In order to do this, we must elucidate the relationship
between two types of quantum effects in crystals, of
which certain ones are taken into account in the quasi-
classical theory, while others give deviations from this
theory, i .e. , a quantum type of crystal. Let us study
the temperature dependence of the mean-square ampli-
tude M2 of the vibrations of an atom of the crystal about
an equilibrium position. At temperature Τ considerably
above the Debye temperature Θ, the classical linear
relation uz~c?T/U holds. Here a is the interatomic dis-
tance, and U is the interaction energy of adjacent atoms
in the crystal. The ordinary quantum effects, which
are accounted for in the quasiclassical theory, have the
effect that the uz(T) curve reaches a plateau at tem-
peratures Γ~Θ that determines the amplitude u% of the
zero-point vibrations of the atom. Evidently the quanti-
ty u\ can be found from the classical formula for UZ(T)
by the substitution Τ~Θ. That is, u\~azQ/U. The re-
stricted applicability of the quasiclassical theory in-
volves the possible delocalization of an atom by its
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migration to an adjacent crystal lattice site, or in other
words, it involves the probability w(a) of finding an atom
at the distance u~a from the equilibrium position. At
low temperatures Where the zero-point vibrations play
the major role, the probabilities w(u) of different values
of u are determined by the square of the modulus of the
wave function of the ground state of the oscillator, and
they obey a Gaussian law: w(u)ozexp(-u

z/2ti\). Hence
the probability w(a) of quantum tunneling of an atom to
an adjacent lattice site is w(a)ecexp(- 1/Λ), where
Λ ~ θ/U. The condition for applicability of the quasi-
classical theory is that w(a) should be small, as hap-
pens with small values of the dimensionless parameter
Λ. However, an essential point is that the ordinary
quantum effects in a crystal involve the finiteness of the
Debye temperature, which is proportional to Λ :θ~Λ£/.
Hence these effects are governed by the same parame-
ter Λ. The difference between the ordinary quantum
theory of crystals and the theory of quantum crystals
consists in the idea that the former takes account only
of the quantum effects that are proportional to some
power of the parameter Λ, while it neglects the ex-
ponentially small effect of delocalization of particles.
The parameter Λ is very small for most crystals (it is
equal to the ratio of the Debye temperature to the tem-
perature T~ U at which strong anharmonicity of the
vibrations of the crystal sets in), and the quasiclassical
theory is highly accurate. In quantum crystals, Λ-1,
and the effect of delocalization of particles is quite con-
siderable. We stress that even the zero-point vibra-
tions of quantum crystals are strongly anharmonic.

We can easily express the parameter Λ in terms of
the characteristics of the atoms of the crystal. Upon
taking account of the fact that θ~Κω, where u>~^v./m
is the characteristic vibration frequency of the atoms,
m is their mass, and x~ U/c? is the stiffness of the
"spring" that holds the atoms in the equilibrium posi-
tions, we find that A~(K/a)(mU)ml/i. In this form, the
parameter Λ is known as the quantum parameter of
de Boer. Its value is greatest for crystals consisting
of the lightest and most weakly interacting atoms.
The highest values of Λ are attained by 3He (Λ = 0.49),
by 4He (Λ = 0.43), by hydrogen H2 (Λ = 0. 28), and by
neon (Λ = 0.07). The parameter Λ is infinitesimally
small in all other pure substances. There are other
important cases in which the delocalization effect is
important for a fraction, rather than all of the constit-
uent particles of a crystal. For example, this per-
tains to admixtures of hydrogen in the lattices of cer-
tain metals (niobium, zirconium). Owing to their small
mass and relatively weak interaction with the atoms of
the matrix, the hydrogen atoms can be delocalized in
the crystal, while the atoms of the matrix themselves
behave quite classically.

Now let us turn our attention to the following situa-
tion. The interaction energy U of adjacent atoms de-
pends on the distance a between them. The interatomic
distance a decreases with increasing pressure, while
the interaction energy U increases. Here the quantum
parameter Λ declines or increases, depending on
whether the product I/a8 increases or decreases. In-
asmuch as the interaction energy of neutral atoms

changes with varying distance considerably faster
than I/a2, the parameter Λ declines rather quickly with
increasing pressure. Thus the most characteristic
quantum crystal is solid helium at minimal pressures.

3. DIFFUSION IN AN IMPURITON GAS

There is the following very simple way of detecting
the effect of delocalization of particles in a crystal.
Let us consider a helium crystal containing one impuri-
ty atom, e.g., a 3He impurity in a crystal of 4He.
Even at absolute zero, this impurity atom can migrate
in the crystal by the above-mentioned quantum tunnel-
ing, in which it changes places with an adjacent atom of
the matrix. Owing to the periodic potential in which
the impurity atom moves, the good quantum number in
this case is not the coordinate, but the quasimomentum
p. The energy of the system is some periodic function
E(p) of the quasimomentum. The situation here is
quite analogous to the well-known case of electrons in a
metal. The impurity atoms behave like quasiparticles
that freely migrate through the crystal with constant
velocity. These quasiparticles were introduced by I.
M. Lifshitz and me1 1 1 and by Guyer and Zane, a i and
are called impuritons or mass-fluctuation waves.
[Translator's note: The currently-accepted term in
English is "impuriton" and is due t o B : , whereas the
Russian authors use the term "primeson."] Their most
important characteristics are the width Δ of the energy
band (or the tunneling frequency J~A/K) and the veloci-
ty of motion v = dE/Bp~aJ. Typical values for a 3He
impurity in a 4He lattice are: Δ < 10"4 °K K, J < 1 MHz,
ι>£ 10"1 cm/sec. Significantly, the band width Δ is con-
siderably smaller than all the other energies that char-
acterize the helium crystal. We shall see below that
the dynamics of impuritons is thereby very distinctive.

If the concentration of the impurities is small enough,
then they constitute a rarefied impuriton gas. Thus the
simple arguments given above imply a very important
conclusion on the nature of the diffusion of impurities in
quantum crystals. ί 1 Ί Namely, a so-called quantum dif-
fusion must take place that has the same characteristic
features as for diffusion of particles in a gas. We can
use the ordinary formula D ~ vl of gas-kinetic theory to
calculate the diffusion coefficient, where I is the free
flight path of the impuritions. We can neglect phonons
at low temperatures, and the scattering of impuritons
by one another plays the major role. The free flight
path is I ~ (m)'1 ~ α 3/σχ. Here η is the number of im-
purities per unit volume, *· is the concentration, and σ
is the scattering cross-section of an impuriton by an
impuriton. The diffusion coefficient

Ja*
(1)

is inversely proportional to the concentration, and it
does not depend on the temperature. °-14:ΐ

Quantum diffusion has been detected experimentally
by Richards, Pope, and WidomC3] and by Grigor'ev,
Esel'son, Mikheev, andShul'man.C5~7] Figure 1 shows the
concentration dependence of the diffusion coefficient of
3He impurities in an h. c.p. crystal of 4He with a molar
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FIG. I . The concentration dependence of the diffusion coeffi-
cient of 3He impurities in an h.c.p. crystal of 4He at a molar
volume of 21 cm3 at T< 1.2 °K. 1—data of135; 2—data of151.

volume of 21 cm3, as obtained by NMR, The experi-
mental data fit well the solid straight line corresponding
to the law £>* = 1.2χ10"η cm2/sec. Moreover, Grigor'ev
et al. C5~7] have studied in detail the temperature depen-
dence of diffusion, and they showed it to be tempera-
ture-independent in the low-temperature region. We
find by comparing Eq. (1) with the experimental data
for J-l MHz the scattering cross-section σ-100 α2.
Such a large cross section amazes at first glance, yet
it can be easily explained by the features of the dynamics
of impuritons that arise from their very narrow energy
band. Indeed, let us examine the mutual interaction of
two impuritons. The total energy of the system is

Ε (Pl) + Ε (ρ2) + £/(rlss ). (2)

Here p t and p2 are the quasimomenta of the impuritons,
E(p) is the energy of an isolated impuriton as a func-
tion of its quasimomentum, tf(r12) is the interaction en-
ergy, and r 1 2 = r t - r 2, where r t and r a are the coordi-
nates of the impuritons. The sum of kinetic energies
E(pj)+ E(p2) cannot vary by an amount greater than 2Δ,
since Δ is the total width of the energy band. Since
the total energy is conserved, the potential energy
C(r12) also cannot vary by more than 2Δ. Hence the
colliding impuritons cannot approach to a distance less
than the interaction radius that is defined by the rela-
tionship U(R0) ~ Δ. since Δ is small in comparison with
all the other characteristic energies, Ro considerably
exceeds the interatomic distance. At large distances,
the interaction of impuritons arises mainly from elas-.
tic interaction. An impuriton creates a lattice deforma-
tion about it, with which another impurition interacts.
Elasticity theory05·1 gives the following expression for
the elastic-interaction energy of any sort of point de-
fects:

(3)

Here Vo is a certain characteristic energy that depends
on the mutual orientation of the defects, with n = r 1 2 /
lr 1 2 l . Thus we find the interaction radius R0~a(V0/
Δ) 1 / 3 and the impuriton-impuriton scattering cross
section

The experimental value of the cross-section σ~100 α8

makes it possible to determine a characteristic inter-
action energy Vo ~ ΙΟ3 Δ, which agrees with the result
of direct calculation'16·1 based on the formulas of elastic-
ity theory.

Thus the experimental data completely fit a descrip-
tion of the impurities as being a gas of impuritons. Yet
the following question arises. The region of applicabili-
ty of the gas model is determined by the requirement
that the mean distance between the impuritons is large
in comparison with the interaction radius. That is,
a/xl/3»R0, or x«A/V0~10'3. Moreover, experiment
shows (see Fig. 1) that the diffusion coefficient is ap-
proximately inversely proportional to the concentration
in the broader concentration range 10"4<ΛΓ<10*2. Hence
we must consider the region of higher concentrations
10"3<*r<10"2, in which the mean distance between im-
purity atoms is less than Ro, and the system of impuri-
tons is not a gas.

4. DIFFUSION OF STRONGLY-INTERACTING
IMPURITONS

Let two impurity atoms lie at a mutual distance less
than the interaction radius. That is, r 1 2 <i? 0 . Let us
find the distance range r 1 2 in which these atoms can be
treated as interacting impuritons with a total energy
defined by Eq. (2). This formula holds whenever the
change in the interaction energy

6U (rls) = U (r,, -f a) - U (r1:) ~ a-^ , (4)

that arises in the tunnel transition of one of the atoms to
an adjacent lattice site is small in comparison with the
band width Δ. This condition is more than satisfied at
rlz~R0, since

It breaks down in the distance range rit<Rit when Rl

~α(νο/Δ)1'*. Thus, in the intermediate range Ri<rn

<R0, the interaction between the impurity atoms is al-
ready strong, but these atoms still behave like interact-
ing impuritons.

The concentration range in which the picture of
strongly-interacting impuritons is valid is determined
by the requirement that the mean distance between the
3He atoms is smaller than Ra but larger than u t . That
is,

This is precisely the region that we must treat in order
to explain the experimental data. In order to elucidate
the nature of the motion of the strongly interacting im-
puritons, it is convenient to treat first the simplified
problem of the motion of an isolated impuriton when
acted on by the constant force F. We find from the
ordinary equation of motion p=Fthe time-dependence
of the quasimomentum ρ = p0 + Ff, where p0 is the initial
value of the quasimomentum. If F lies along one of the
crystallographic axes, then the energy E(p) and the ve-
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(8)

FIG. 2. Trajectory of movement of an impuriton when acted on
by a constant force.

locity v = 8E/8p vary periodically with varying ρ with a
period of the order of H/a. Since ρ is a linear function
of the time, Ε and ν are periodic functions of the time
with a period of the order of K/aF. Here the mean
velocity is zero. Thus, when acted on by a constant
force, an impuriton oscillates about some mean posi-
tion with a frequency of the order of aF/K and an am-
plitude of the order of v/(aF/H)~ A/F. Yet there is a
substantial difference between the special case dis-
cussed here and the general case in which the direction
of the force is arbitrary. Since there ,is no periodicity
in momentum space along an arbitrary direction, all
three components of the velocity of the impuriton in
the general case vary in time in a rather random way.
The trajectory of the impuriton is a random curve like
that shown in Fig. 2. Since the potential energy - Ρ · r
cannot vary by more than Δ, the trajectory is confined
within a layer perpendicular to the direction of the force
having a thickness of the order of L ~ A/F. The char-
acteristic radius of curvature of the trajectory matches
in order of magnitude the thickness L of the layer. The
impuriton moves along the trajectory with a velocity of
the order of aJ. Hence it diffuses in a plane perpendic-
ular to the direction of the force. In order of magni-
tude, the diffusion coefficient is D - vL, or

D~^. (5)

In principle, such a pattern of motion has been known for
a long time in the theory of electrons in metals. How-
ever, the discussed diffusional movement is unobserv-
able for electrons, owing to the vast width of their en-
ergy band, whereby the characteristic distance L always
considerably exceeds the free flight path.

The arguments given here clarify the nature of the
movement of strongly interacting impuritons. The
force F caused by their interaction is

dU
(6)

When acted on by this force, each of the impuritions
diffuses with a diffusion coefficient determined by Eqs.
(5) and (6):

In order to calculate the diffusion coefficient of a s He-
4He solution in the the concentration range 10"3<#<10~2,
it suffices to substitute for r 1 2 in Eq. (7) the mean dis-
tance between the sHe atoms, i .e . , rlt~a/xlft. Con-
sequently we find

This formula agrees with the experimental data, since
it gives the same result when ΛΓ~Δ/7 0 ~10" 3 as Eq. (1)
does, while the experimental accuracy is not great
enough in the range 10" 3 <Λ:<10- 8 to distinguish the simi-
lar ΛΓ1 and x-t/3 laws. The dotted straight line in Fig. 1
corresponds to the #" 4 / 3 law. Thus the experimental
data in the region of substantial concentrations are ex-
plained naturally by the specifics of the diffusion of im-
puritons when acted on by the interaction force. α τ : ΐ

Landesman and Winter a i and Huang et al.cl4] have
treated the problem of diffusion of impurities in the
region of substantial concentrations. Although these
authors have especially stressed that their approach
is an alternative to the description using the impuriton
concept, Eq. (8) agrees with the result of Landesman
and Winter. Hung et al. got a numerically similar re-
sult. We should note that inC8] they gave the inequality
x» (A/VQ^-IO-· as the region of applicability of Eq. (8),
from which the authors concluded that one can't observe
impuritons in the experimentally studied concentration
range.

5. TEMPERATURE DEPENDENCE OF DIFFUSION

Thus far we have been studying the region of low
enough temperatures in which quantum diffusion is
governed by the mutual interaction of impuritons. With
increasing temperature, the interaction of impuritons
with phonons also begins to play an important role.
This diminishes the free flight path. Thus the diffusion
coefficient of the impuritons must decline with increas-
ing temperature. However, for this reason, thermally
activated diffusion, which rises exponentially with in-
creasing temperature, must begin to play a more sub-
stantial role than quantum diffusion at a high enough
temperature. Hence there are three characteristic
temperature ranges (Fig. 3). In region I, diffusion
is limited by impuriton-impuriton scattering, and it
is independent of the temperature. In region II, dif-
fusion is limited by scattering of impuritons by phonons,
and it declines with increasing temperature. Finally,
in region III, the thermally activated diffusion mecha-
nism plays the major role. Since evidently diffusion is
concentration-dependent only in region I, increasing
concentration will narrow region II, and finally make
it vanish completely. The dotted curves in Fig. 3
demonstrate the changing nature of the temperature de-

ΙΠ

FIG. 3. Temperature dependence
of the diffusion coefficient of im-
purities.
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FIG. 4. Temperature dependence of the diffusion coefficient
of 3He impurities in an h.c.p. crystal of 4He at a molar volume
of 21 cm 3 C 6 ] at different concentrations. 1—0.75%; 2—0.25%;
3—0.092%. The vertical arrows indicate the transition tem-
perature to the b .c .c . phase for pure 4He and for a solution of
concentration 0.75% 3He.

pendence with larger concentrations, with x3>xs>xl.

Let Us examine the phonon region Π in greater detail.
The time between collisions of an impuriton with
phonons is τ ~ (Atax,,,)"1, where N~ (Γ/θα)3 is the number
of phonons per unit volume, c is the velocity of sound,
and aph is the scattering cross section of a phonon by
an impuriton. If the temperature is small in compari-
son with the Debye temperature, then long-wavelength
acoustic phonons play the major role. As we know,
their cross section for scattering by point defects is
proportional to the fourth power of the wave vector of
the phonons q~ Τ/θα. Thus, σ,,,-α^α^-α^Γ/θ)4, and
the time between collisions proves to be τ~ (α/ο)(θ/Τ)Ί

~(Κ/θ)(θ/Τ)Ί. However, rather than τ, it is the trans-
port time between collisions, which strongly differs
from τ, that enters into the expression for the diffusion
coefficient of impuritons D ~ «*Ttr. The point is that the
width of the impuriton energy band is smaller than the
temperature at all attainable temperatures. Hence
the quasimomenta of the impuritons are equal in order
of magnitude of ti/a. However, the momenta of the
phonons are considerably smaller. In this case, as
usual, the transport time differs from τ by the addi-
tional factor (θ/Γ)2. The diffusion coefficient

— Θ — ( τ )
(9)

is therefore inversely proportional to the ninth power of
the temperature in the phonon region.C1:

The problem of the region of applicability of Eq. (9)
is of interest. The free flight path of an impuriton is
Ζ ~ ζ/τ ~ «(Δ/θ) (θ/Γ)7.

At temperatures Γ « Γ 0 , where Γ0~Θ(Δ/Θ)1/7, the
free flight path is large in comparison with the inter-
atomic distance, and the derivation given above for
Eq. (9) gives no grounds for doubt. Yet, interestingly
as Kagan and Maksimovc u : and Kagan and Klinger[12]

have shown, Eq. (9) holds without any changes over a
considerably larger temperature range up to tempera-
tures of the order of the Debye temperature. One can
get this result most simply with the following arguments
that show likewise that the impuriton concept keeps its
meaning to a substantial degree, even under conditions
in which their free flight path is much smaller than the

interatomic distance. t l7]

The problem is that of the motion of quasiparticles
that interact with phonons, and which have the spectrum

Ε (ρ) = Eo + e (p),

Here £ 0 is a constant, and e (p) is a function of the
quasimomentum that is equal to Δ in order of magnitude.
Hence it is small in comparison with the temperature.
The kinetic equation for the classical distribution func-
tion of the quasiparticle/(r, p, t) has the following
form:

dp (10)

where Ρ is the external force acting on the impuriton,
and / is the collision integral with phonons:

/ = - j <Pp' j rf3? <l'-,/'\y (q, q') {« (q) [1 -\- η (q')l / (p)

— )( (q') [1 -!- n (q)l / (ρ')} δ (q + ρ — q' — ρ') δ [ω (q) — ω (q')l.

(ID
Here »(q) is the distribution function of the phonons,
a>(q) is their energy spectrum, and Wis the probability
of collision of the impuriton with a phonon. We have
neglected the quantity e(p) in the argument of the δ-func-
tion that expresses the law of conservation of energy
as compared with the phonon energy, since the latter
coincides in order of magnitude with the temperature.

We can easily see that the kinetic equation in this
form holds whenever Κ/τ « Γ. We don't require the
more rigid condition Κ/τ « Δ, which is equivalent to
saying that the interatomic distance should be small in
comparison with the free flight path of an impuriton.
Actually, if/ and F vary slowly in space and in time
and the force F is small enough, then Eq. (10) holds
also in the general quantum case, although generally
the quantity / that describes the collisions is not even
expressed in terms of the distribution function. Yet if
we neglect e(p) in the expression for the impuriton spec-
trum, then the condition that K/r « ω ~ Γ guarantees the
possibility of using Eq. (11), since the energy uncer-
tainty K/r is small in comparison with the energy of the
phonons. Here the energy β(ρ)~Δ does not figure at all
in the problem. The difference between the cases Η/τ
« Δ (or I» a) and Κ/τ » Δ (or I« a) consists only in the
fact that one would be able to take account of e(p) in the
former case in the argument of the δ-function in (11),
while in the latter it would be an exaggeration of the ac-
curacy. In both cases, we should use the gas-kinetic
equations (10) and (11) to determine the diffusion coef-
ficient, whence we get Eq. (9). Here the condition
Η/τ « Τ is evidently equivalent to the inequality Γ « Θ.
However, we should emphasize that the cited arguments
do not prove the applicability of Eq. (9) for Γ « Θ for
the actually observable diffusion coefficient. The dis-
cussions have assumed tacitly that we should neglect
the thermally activated mechanism of diffusion. Yet it
can become the fundamental mechanism of diffusion
at temperatures considerably below the Debye tempera-
ture. This is just what actually happens in solutions
of the helium isotopes.

Figure 4 shows the experimental data of Grigor'ev et
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FIG. 5. Relationship of the diffusion coefficient of 3He im-
purities in an h.c.p. crystal of 4He at a molar volume of 20.7
cm3 to the reciprocal of the temperature. 1—concentration
0.25%; 2-0.75%; 3-2.17%. m

al.C6: on the temperature-dependence of the diffusion
coefficient of admixtures of 3He in an h. c.p. crystal of
4He at different concentrations. Here we can see the
temperature region I and the beginning of the region II.
One cannot make measurements at higher temperatures,
since a phase transition occurs at 1.3-1.4 °K to a
b. c. c. crystalline modification. The solid curves in
Fig. 4 have been drawn according to the formula LT1

= 6.2x 1010*+ 4.6 x 10βΓ9, which corresponds to taking
account simultaneously of scattering of impuritons by
one another and by phonons.

Figure 5 shows the experimental data of Grigor'ev et
al.ίΊ1 for the molar volume 20.7 cm3 and the concentra-
tions x = 0.25%, 0.75%, and 2.17%. We can see the
temperature regions I and ΠΙ here. The intermediate
phonon region Π is absent.

6. DIFFUSION INDUCED BY VACANCIONS

Let us study the temperature region ΠΙ. Two mecha-
nisms of movement of an impurity can occur in it.
First, there is the classical thermally activated dif-
fusion in which the impurity atom migrates to an ad-
jacent lattice site by overcoming some energy barrier.
Second, there is diffusion caused by the presence of
thermally activated vacancies. In the former case, the
activation energy that characterizes the temperature-
dependence of diffusion equals the height of the energy
barrier. In the latter case, it is the energy of forma-
tion of a vacancy. The movement of the impurity here
results from the following process (Fig. 6). While
moving in the crystal, a vacancy can occupy a lattice
site nearest to the impurity atom (see Fig. 6a). Then
the vacancy can migrate to a site that is occupied either
by an atom of the matrix (see Fig. 6b) or an impurity
atom (see Fig. 6c). Then the vacancy travels away
from the site of the impurity. In the case of Fig. 6c,
the process involves displacing the impurity.

Diffusion of impurities induced by vacancies is of
especial interest to us. The point is that vacancies
are transformed into delocalized quasiparticles in
quantum crystals, which are the so-called vacancions
or vacancy waves. They are considerably more mobile
than impuritons. According to the calculations of
Hetherington, i m who first treated this problem, and
those of other authors, Β· 1 " ·» 9 - 2 » the width of the energy

band of a vacancion \ is of the order of 1 °K. That is,
it considerably exceeds the width of an impuriton band.
Hence we can neglect the intrinsic tunneling of the im-
purity, and treat the process depicted in Fig. 6 as the
quantum-mechanical scattering of a delocalized va-
cancion by a localized impurity atom.C 1 3 1 The process
shown in Fig. 6b corresponds to elastic scattering,
since here the final state of the target (i. e., the impuri-
ty atom) coincides with the initial state. The case of
Fig. 6c corresponds to inelastic scattering accompanied
by a displacement of the impurity atom. Hence dif-
fusion induced by vacancions is determined by the
probability of inelastic scattering. The diffusion coef-
ficient is D~a*p, where ν is the frequency of inelastic-
scattering events, as determined by the relationship
v~Nvvau. Here σ1α is the cross-section for inelastic
scattering of a vacancion by an impurity, Nv is the
number of vacancions per unit volume, and υ is their
velocity. At high temperatures where Γ>ΔΒ, we have

Here e0 is the energy of formation of a vacancy. Hence
we find

(12)

In order to answer what is the nature of the thermally
activated diffusion of the 3He impurities, we must com-
pare the diffusion coefficients of the 3He atoms and of
any other impurities in the very same crystal. If the
activation energies match, then this will be a strong
argument in favor of the vacancion mechanism of dif-
fusion. Apart from isotopic admixtures, one can in-
troduce in a controllable way and study only ions in
helium crystals. We can easily calculate the diffusion
coefficient of the ions from the experimentally mea-
surable mobility in an external electric field. These
measurements have been made by Shal'nikovB2] and
thenbyasetof other authors.Ci3~27:l Figure 7 shows the
temperature-dependence of the diffusion coefficient
of positive ions in solid 4He at a molar volume of 20.7
cm3 as found by Keshishev and Shal'nikov. a t l The same
diagram shows the corresponding data of Grigor'ev et
al. m for the diffusion of isotopic impurities. In the
temperature range ΠΙ where diffusion is thermally
activated, not only the activation energy but also the
absolute value of the diffusion of 3He atoms coincide
with the corresponding values for the positive charges . a n

The experimental data are described by the equation
D = 6.6 x 10"7 exp(- 9. 5/Γ). This corresponds to the
straight line drawn in Fig. 7. If we assume that Δο

~1 "K, and compare the experimental data with Eq. (12),
we get ε0 = 9. 5 ° Κ and σ1η ~ 5 χ 10"3 a 2 . We can qualitative-
ly explain such a small inelastic scattering cross-sec-
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FIG. 7. Temperature dependence of the diffusion coefficient
of impurities in an h. c.p. crystal of 4He at a molar volume of
20.7 cm3. 1—positive ions t 2 6 ]; 2—0.75% 3He, 3-2.17% 3 H e . m

tion as follows. The situation here is analogous with the
case that we treated above of impuriton-impuriton
scattering. The interaction energy of a vacancion with
an impurity has the analogous form U(r) ~ V(a/r)s,
where V is some characteristic interaction energy. If
V> \ , then the vacancion cannot penetrate into the re-
gion r<a(V/&v)

lfi. More exactly, the probability of
such a penetration is very small. As we have seen
above, this leads to a large total scattering cross sec-
tion. However, the inelastic process can occur only
whenever the vacancion and the impurity are nearest
neighbors in the lattice. Thus, when V> \ , the in-
elastic scattering cross-section is less than a2 while
the total cross section considerably exceeds a 2 . Yet
it is essential to note that the interactions of a vacan-
cion with a 3He impurity and with an ion differ. There is
no reason why the inelastic cross sections must agree
when they are both considerably smaller than a 2 . Only
more detailed simultaneous measurements of diffusion
of 3He and of ion mobility might help in clearing up this
question.

The above-presented approach to the problem of
vacancion diffusion of ions (or of the equivalent quanti-
ty of the ion mobility) permits one to elucidate the rela-
tion of the mobility to the temperature and the electric
field for low enough temperatures in general form with-
out going into the details of the concrete structure of the
ions.C 1 3 ] Let σΒ(ρ) be the inelastic cross section for
scattering of a vacancion having the quasimomentum ρ
that involves displacement of the ion by the vector aB

that joins the original lattice site to its n-th nearest
neighbor. The energy of the ion, and hence that of the
vacancion, varies here by the amount eE · aB, where e
is the charge of the ion, and Ε is the applied electric
field. The mean drift velocity of the ion is expressed
in terms of the cross-section by the formula

»=Σ< : + e E · (13)

the equilibrium energy distribution function of the va-
cancions ,ε= ε (ρ). Here and hereinafter, the summa-
tion over η is performed over those nearest neighbors
an for which eE · aB> 0. The displacements of the ions
by the vectors (- aB) are accounted for in Eq. (13) as
backward processes.

We can write the expression (13) in the form

where the last integral is taken over a constant-energy
surface. In the simplest case in which all the vectors
aB are crystallographically equivalent (in the b. c. c. but
not the h. c. p. crystal of helium), this integral is inde-
pendent of the index n, owing to lattice symmetry. Let
the temperature be small in comparison with the width
of the energy band of the vacancions. Then they will
practically all lie near the bottom of the band, where
their spectrum is quadratic, while their velocity of
movement is small. According to a well-known result
of quantum mechanics, the inelastic scattering cross-
section of slow particles is inversely proportional to
their velocity. Hence,

\ a^

where ε0 is the energy at the bottom of the vacancion
band, and a is some constant.

We can consider the distribution function η(ε) to be
a Boltzmann distribution, since as we have seen above,
e0 is about 10 °K, and hence, it is much larger than the
temperature.

Finally we obtain

(14)

In weak fields where eEa « T, the drift velocity is
proportional to the field:

«i •= eB,kEtl,

where the mobility tensor Bik according to (14) is equal
to

Here v(p) is the velocity of the vacancion, and «(ε) is

A peculiar situation arises in strong fields where eEa
» T. In practically all field directions, the drift ve-
locity reaches saturation, and it does not depend on
\E\:

"^(τΓ'-^Σ·.- as)
However, it is essential to sum here only over the val-
ues of η for which eE · aB> 0. Therefore, as one varies
the field direction, the direction of the velocity varies
almost jumpwise when the vector Ε passes through a
plane perpendicular to one of the vectors aB. The an-
gular width of the transition region is of the order of
T/eEa« 1. In such a transition region, the velocity
varies not only in direction, but also in absolute magni-
tude. For illustration, Fig. 8 shows the relationship
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FIG. 8. Relationship of the absolute value and of the direction
of the drift velocity of ions to the orientation of the electric
field. 0—angle between u and ai; φ—angle between Ε and a^

of the absolute value of the velocity and its direction to
the orientation of the vector Ε in a plane square lattice
that has two elementary translation vectors at and ag
that are perpendicular and equal in absolute magnitude.
In this case, the maximum drift velocity uma is, ac-
cording to (15):

The angular dependence of the drift velocity directly
reflects the geometry of the crystal lattice.

7. TWO- AND ONE-DIMENSIONAL QUASIPARTICLES

Each of the quasiparticles treated above (impuritons,
vacancions) is a direct quantum analog of a correspond-
ing point defect or impurity in a classical crystal. Yet
it turns out that the energy spectrum of a quantum crys-
tal is by no means exhausted by these simplest quasi-
particles. We shall show below that a quantum crystal
must contain peculiar secondary quasiparticles that
arise when several impurities or defects of some par-
ticular type are simultaneously present. A unique fea-
ture of these quasiparticles is that they move freely,
but only along certain definite planes or axes of the
crystal lattice. That is, they are two- or one-dimen-
sional quasiparticles within the volume of the three-
dimensional crystal. We have seen above that two im-
purity atoms lying at a mutual distance r12 smaller than
the interaction radius R0~a(V0/A)1/3 but larger than
Rl~a(V0/&)i'i diffuse under the action of the interaction
force. In particular, their coefficient of diffusion char-
acterizes the movement of the pair of impurities as a
unit, as defined by Eq. (7). Since the interaction en-
ergy is larger than 2Δ when rlz<R0, the impurities can-
not henceforth separate to an infinite distance. Hence
they will behave as though bound by their interaction
potential, and this conclusion will hold regardless of the
sign of the interaction (attractive or repulsive).

It is interesting to trace the varying nature of the
possible types of movement of two impurities upon
further decrease in the relative distance r1 2.

t 1 7 3 When
rlz<R1, tunneling of one of the impurity atoms across
an interatomic distance is accompanied by a change in
the interaction energy δ υ (see (4)) that exceeds the
width Δ of the band. Under these conditions, the prob-
ability of tunneling is proprotional to Δ2. That is, it
is negligibly small. The probability of simultaneous
tunneling of both atoms with conservation of energy is
just as small. Thus, the possibility of movement of
the impurities practically vanishes. Yet there are
important exceptions to this result. Let us assume
that the straight line joining the impurity atoms is al-
most parallel to a crystallographic axis of high enough
order. The hexagonal axis in an h. c.p. helium crystal
is an example. The function V0(n) that defines the in-
teraction energy according to Eq. (3) evidently has an
extremum for η parallel to the hexagonal axis. Hence,
displacement of one of the impurity atoms by a small
distance ρ in a direction perpendicular to η alters the
interaction energy by an amount of the order of

(16)

ttru>Rt, where ^-«(Γο/Δ) 1 ' 5, then when ρ~α, δυρ

is smaller than the band width Δ. Thus, under the
studied conditions, motion of the impurities along η
is practically impossible, but a situation arises for
motion in a plane perpendicular to η that is analogous
to that treated above in Sec. 4. The trajectories of the
impurity atoms are random curves that lie in planes
perpendicular to the hexagonal axis. The radius of cur-
vature of the trajectories ρ is determined by the condi-
tion that δϋ,-Δ when p~p". That is, p~a(^/U0)

l/t(ru/
a)s/i. Therefore, two impurity atoms lying at a distance
r18 such that Rl>rli>Rz in a direction η near the hex-
agonal axis will perform a peculiar two-dimensional
movement in a hexagonal plane of the crystal. The dif-
fusion coefficient is equal in order of magnitude to

D ~ vp •

We stress that an extremum of the function V0(n) does
not suffice to permit such a movement. It is also neces-
sary that the crystal should be periodic in the perpendic-
ular plane.

Finally, let rl2<Rz. Then a displacement of one of the
impurity atoms to an adjacent lattice site, even in a
direction perpendicular to the hexagonal axis, will gen-
erally change the interaction energy by more than Δ.
However, there are important exceptions here also.
Let one of the impurity atoms lie at a certain point
A (Fig. 9) in the hexagonal plane IIj. The h. c. p. crys-
tal is built of a family of parallel hexagonal planes
(n t, Π2, TI3 in Fig. 9). Let us assume that the second
impurity atom lies at some point Β of another, generally
speaking, hexagonal plane (Π3 in Fig. 9), but in such a
way that its projection C on the plane Ilj is a nearest
neighbor of the point A. Figure 9 shows the plane Π!
separately, along with the points A and C. Displace-
ment of the second atom in its own hexagonal plane from
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FIG. 9. A two-dimensional quasiparticle consisting of two
impurity atoms.

the point Β to the point Bt or B2, whose projections on
the plane Ti1 are the points Cl and C2, respectively, is
generally not accompanied by a change in the interac-
tion energy, since the pairs of points AB, ABX, and
ABZ are crystallographically equivalent. The same
is true for displacement of the first atom in the plane
IIj from A to Cl to C 2. We can easily understand that
this type of system can move as a whole over the en-
tire hexagonal plane by displacements of this type.
Since the studied displacements do not alter the interac-
tion energy, the motion here is fully coherent. The
pair of impurity atoms behaves like a single peculiar
two-dimensional quasiparticle that moves as a free par-
ticle, but only in a hexagonal plane of the crystal.C l 7 3

Since a given coordinate of one of the atoms involves
six possible positions of the other atom, the energy
spectrum of these quasiparticles contains six branches.

Meierovich1283 has carried out a detailed analysis of
all the possible types of such binary quasiparticles.
In particular, he showed that one-dimensional quasi-
particles also exist in addition to the two-dimensional
ones. Figure 10 shows a configuration of two impurity
atoms that can move one-dimensionally. The point A
is the position of the first impurity atom, and the point
C is the projection of the second on the same hexag-
onal plane. Here the first atom can tunnel without
change of interaction energy from A to A1. Then the
second atom can tunnel in its own hexagonal plane from
a position projected at C to a position projected at C,,
etc. The pair of impurity atoms behaves like a one-
dimensional quasiparticle that freely moves along a
straight line parallel to the direction AAj. The energy
spectrum of these quasiparticles contains two branches.

Figure 11 shows an interesting example of acomplexof
three impurity atoms that constitutes a one-dimensional
quasiparticle. t 2 8 ] By a displacement each time of one
of the atoms to an adjacent lattice site, the initial con-
figuration ABC can be transformed via the equivalent

FIG. 10. A one-dimensional quasi-
particle consisting of two impurity
atoms.

\

FIG. 11. A one-dimensional
quasiparticle consisting of
three impurity atoms.

I 1

I *
• ι OS ·

V V

configurations AB^C, AB^C^, AB2Ci to the configuration
Ax BZC1, that differs from the original configuration by
a translation along a. straight line parallel to AAt.

Prior to the studies"7·2 8 3, Richards et al. B 9 ] had ad-
vanced the idea of possible coherent motion of impurity
atoms that form a pair of nearest neighbors. They
did this in connection with the experimental data obtained
in1 2 9 3 on the dependence of the spin-lattice relaxation
time 7\ on the nuclear magnetic resonance frequency for
3He impurities in h. c. p. crystals of 4He. The most
interesting feature of these data is the presence of
sharply marked resonance anomalies at frequencies
near 1. 5 and 3.0 MHz. Later Mullin et al. t 3 0 3 found that
pairs of impurity atoms that are nearest neighbors be-
have like two-dimensional quasiparticles. There are
two types of such pairs. The first type is a special
case of Fig. 9, and it corresponds to the situation in
which the two atoms lie in a single hexagonal plane (the
point Β coincides with the point C). The second type
is shown in Fig. 12. In this case the impurity atoms
lie in adjacent hexagonal planes. The dots in Fig. 12
correspond to lattice sites lying in one of these planes,
and the crosses to the projections of the sites of the
second upon the first hexagonal plane. The point A is
the position of the first atom, and the point C is the
projection of the second one. Here the first atom can
tunnel without change of energy to At and A2, and the
second to a state with the projections Ct and C 2. Mullin
et al.C30] calculated the contribution of the two-dimen-
sional quasiparticles to the relaxation rate Γ,"1. The
calculations indicate resonance features whose nature
and position agree with the experimental da ta . α β ] Thus
experiment0 9 3 confirms the existence of two-dimen-
sional quasiparticles.

One might get a more direct confirmation by studying
the fine structure of the wings of the nuclear magnetic
resonance line. As we know, C 3 1 ] dipole-dipole interac-
tion causes a system of two spins to have resonance
frequencies ω that are somewhat shifted with respect to
the frequency γΗ (γ is the gyromagnetic ratio, and Η is

FIG. 12. A two-dimensional
quasiparticle consisting of two
atoms that are nearest neigh-
bors.
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the external magnetic field) of the resonance for an
isolated spin:

Here θ is the angle between the magnetic field and the
axis joining the nuclei. A dilute solution contains such
pairs of atoms as well as isolated 3He atoms. We can
neglect complexes of a large number of impurities. As
we can see from (17), the pairs having rlt~a give the
greatest frequency shift. These pairs can be of three
types: immobile pairs (Eq. (17) is literally applicable
to them), and pairs that amount to two- and one-di-
mensional quasiparticles. In the latter two cases, the
state of the system is defined by assigning the quasi-
momentum ρ (two- or one-dimensional) and the number
ν of the energy band. Such a state is a superposition
of all possible localized states, which we shall number
with the index i, and which possess certain coefficients
A'(p). Generally the resonance frequencies depend on
ρ and v, and they are equal to

ω» (ρ) = Vfl ± 4-Ώ1 (1 _ 3 (cos'-θ»,

Mjhere

(18)

(19)

Here 0, is the angle between the magnetic field and the
straight line joining the atoms in the localized state i.
The coefficients A*(p) satisfy the normalization condi-
tion

Σ|^(Ρ)Ρ = 1. (20)

Pairs of atoms that are nearest neighbors give the
largest frequency shift. They behave like two-di-
mensional quasiparticles, and as we have seen, they
can exist in two types that correspond to Fig. 9 and Fig.
12. In both cases, the index i takes on three values,
since the two pairs have three orientations (which cor-
respond to the configurations AC, AC^, and ACZ in Fig.
9 and Fig. 12). Let the magnetic field lie along the
hexagonal axis. Then cose, = 0 for all i for pairs of the
first type, and cose, = V2/3 for pairs of the second type.
Then, owing to the condition (20), the expressions in
parentheses in Eq. (18) for the two types of pairs are
equal in absolute magnitude and opposite in sign, so that
the frequency spectrum is discrete, and it consists of
only two lines

frequencies depend on the quasimomentum, and the spec-
trum becomes continuous. However, the form of the
spectrum can be exactly calculated, since the coeffi-
cients A"((p) satisfy a simple system of linear algebraic
equations.

For one-dimensional quasiparticles, the spectrum is
discrete for any direction of the magntic field, since
here there are only two different orientations of a pair,
and the equality holds for any value of the quasimomen-
tum that \A"(p) I = I Aj(p) I. Each of the one-dimensional
particles gives two lines

We emphasize that a discrete fine structure of the wings
of the NMR lines can be observed only in monocrystal-
line specimens.

Finally let us discuss the processes that make pos-
sible the movement of impurity atoms under conditions
in which tunneling of one of them across an interatomic
distance involves a change in interaction energy con-
siderably exceeding the band width Δ. in particular,
the probability w of these processes (per unit time) is
determined by the lifetime of the above-discussed
binary quasiparticles. The simplest example here is
thermally activated diffusion. However, the corre-
sponding probability w declines exponentially with fall-
ing temperature. Therefore, the fundamental role is
played in the low-temperature region by processes of
quantum tunneling involving phonons that permit energy
balance as the impurity migrates to the adjacent lat-
tice site. Two types of such processes can occur. The
first of them is tunneling of an impurity accompanied
by scattering of a phonon. We can easily estimate the
probability ivt of this process by using the results
OfCll.12].

The second process is tunneling of an impurity with
simultaneous spontaneous emission of a phonon.C133 The
energy of the phonon Κω equals the change in interaction
energy Hu~6U~Fa~ V0(a/rn)

A. As usual, the probability
w2 of spontaneous emission is proportional to the cube of
the phonon frequency and to the square of the overlap in-
tegral of the wave functions of impurities at adjacent
sites, i. e., to the square of the band width Δ;

Δ* / ίω\« Δ* / ¥ογ ι α \«

of equal intensity. We would have obtained the same
result in a rigid lattice as well, but in this case the
quasiparticles easily move in the hexagonal plane, and
hence they react to the magnetic field gradient, though
only to the gradient parallel to the hexagonal plane.
An essential point is that the frequency shift considera-
bly exceeds the line width. The size of the shift is of the
order of Κγ2/α3~10* sec*1. Yet the relaxation time Tz

observed experimentallyC3l32] in dilute solutions of 3He
in solid 4He attains values of 10"1-! sec. If the magnetic
field lies at an angle to the hexagonal axis, then the

For the most important case of quasiparticles having
r12 ~ a, the second process becomes predominant at Τ
< VQO/VO)*'1. In this low-temperature region, the life-
time of most of the quasiparticles does not depend on
the temperature.

8. DISLOCATIONS IN QUANTUM CRYSTALS

Let us study a linear dislocation in a quantum crystal
that lies in a slip plane at some angle to the crystal-
lographic directions.C17] As we know, the dislocation
line is not a straight line here. It consists of individual
rectilinear regions that lie along a direction in which
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FIG. 13. A dislocation with kinks.

the energy of the dislocation is minimal (this direction
coincides with one of the crystallographic axes), and
of a certain number of kinks in whose vicinity the dis-
location passes from one valley to another (Fig. 13).
We can treat each such kink as being a point defect on
the dislocation. Since the crystal is periodic along the
crystallographic axis, such a point defect in a quantum
crystal is converted into a quasiparticle whose state is
classified in terms of values of the one-dimensional
quasimomentum. Let one kink exist on the dislocation
that has a definite quasimomentum. Then the kink lies
at all points of the dislocation with equal probability,
and this means that the dislocation is uniformly dis-
tributed between two adjacent valleys. When there are
a large number of kinks, the dislocation is distributed
over a large number of valleys. Thus the quantum-
mechanical delocalization of kinks leads to delocaliza-
tion of the dislocation in the slip plane.

If the width of the energy band of the kinks is small,
i. e., the probability J is small of its quantum sub-
barrier jumping by one lattice period a in the direction
of the dislocation, then we can apply the well-known
close-coupling approximation to calculate the energy
spectrum. Consequently we get the following relation-
ship of the energy £ of a kink to the quasimomentum p:

Ε (p) = Ea-'r2hJ cos (-^-) ,

where Eo is the energy of a localized kink in the clas-
sical limit.

Let η be the number of kinks per unit length of the
dislocation. If the mean distance n"1 between them is
large in comparison with the interaction radius r 0 , then
the kinks can be treated as a rarefied gas of quasi-
particles. The radius of interaction is determined by
the condition U(ro)~HJ, where ΙΙ(τ)~β/τ is the inter-
action energy of two kinks, which is inversely propor-
tional"3·1 to the first power of the distance r between
them. Here β is a certain constant which is equal in
order of magnitude to /3~μα4, where μ is the shear
modulus.

An important, experimentally-observable characteris-
tic of a gas of kinks is their diffusion coefficient. In the
high-temperature region, it is determined by collisions
of kinks with phonons and by oscillations of the disloca-
tion. With falling temperature, the number of phonons
and oscillations declines, and the diffusion coefficient
rapidly rises until it reaches a limiting value that is
determined by the mutual collisions between kinks. It
is important to note the following situation in estimating
this limiting value. In the one-dimensional case, the
momenta acquired by the quasiparticles owing to pair
collision are unequivocally determined by the conserva-
tion laws. There are two unknown momenta and two
equations to determine them (the laws of conservation
of energy and momentum). The only solution here is the

trivial one that corresponds to exchange of momenta
by the quasiparticles owing to collision. The momentum
distribution function of the quasiparticles is not altered
here at all. In other words the pair collision integral
is zero, and all the kinetic phenomena are determined
by triple collisions. The corresponding free flight path
l3 differs from the free flight path lt~n~l that character-
izes pair collisions by the large factor («τ0)*'. Thus the
diffusion coefficient is

That is, instead of the usual D^w"1 law, one should ob-
serve here an inverse proportionality of the diffusion
to the square of the density of quasiparticles.

Movement of the kinks existing on a dislocation can-
not bring about continuous motion of the dislocation it-
self when acted on by an external force. Such a motion
results from creation of pairs of oppositely-directed
kinks, whereby part of the dislocation line migrates to
an adjacent valley. In ordinary crystals, this process
is thermally activated, and it corresponds to classical
super-barrier migration to the next valley. The mean
velocity of a dislocation when acted on by a given force
declines exponentially with decreasing temperature.
Petukhov and PokrovskiiC34] have shown that in quantum
crystals the creation of pairs of kinks is a quantum-
mechanical tunneling process whose probability does not
depend on the temperature.

Apparently the most convenient method that permits
observing the discussed features of the behavior of
dislocations is to measure the internal friction. These
measurements make it possible to study the diffusion
of defects that cannot be observed by other methods.
There are additional possibilities here in quantum crys-
tals. C 3 5 ] Recently performed experiments on internal
friction in solid helium t3e3 and in niobium containing a
hydrogen impurity i371 have demonstrated the quantum
nature of the relaxation processes responsible for inter-
nal friction. Further development of these experiments
can lead to observing the features of the dynamics of
dislocations in quantum crystals.

9. CONCLUSION

Thus we can consider it now firmly established that at
low temperatures impurity atoms in quantum crystals
behave like delocalized quasiparticles (impuritons) that
move freely through the crystal. This must hold all
the more for vacancies (and generally for any sort of
point defects in the crystal), which are considerably
more mobile than impurity atoms. Although this fact
has not yet been directly confirmed experimentally for
vacancies, owing to the substantial experimental dif-
ficulties of observing vacancies, we can hardly doubt
it. In this regard, it is important to note that there is
a theoretical possibility in quantum crystals for the
existence of the so-called zero-point vacancions, C l ]

i .e . , quasiparticles corresponding to vacancies that
exist in a crystal at absolute zero like zero-point vibra-
tions. A crystal that contains zero-point vacancions
must constitute a unique object. c n It is not in general
a solid. It can have two types of motion, one of which
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has the properties of motion in a solid, and the other,
that in a liquid. Interestingly, indications have recent-
ly appeared Β β > 3 β : that zero-point vacancions exist in
solid helium-3. A final elucidation of this problem
would be of substantial theoretical interest.
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