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This article reviews theoretical and experimental studies on fundamental problems of ecology. Theoretical

study of the dynamics of ecosystems was initiated by the studies of V. Volterra, A. Lotka, A. N.

Kolmogorov, and A. A. Lyapunov. These have been primarily models of point systems of the predator-

prey type and models of competitive interrelationships between populations. The conclusions of the theory

are illustrated by the experimental data of G. F. Gause, Nicholson, et al. It is shown how one might

introduce the Lagrangian and Hamiltonian formalism to describe multispecies ecosystems. Considerable

space is given to describing closed ecosystems whose development is limited by a biogenic element that

constitutes the ecological minimum. It is shown that auto-oscillations can arise in such systems, while the

stability of such ecosystems is determined by the diversity of species and some other factors, in particular,

the specialization of species. Since real ecosystems consist of a large number of species, it becomes

necessary to apply the methods of statistical mechanics to study these systems. Yet one cannot use the

Gibbs method, owing to lack of ergodicity. The possibility is discussed of selecting macroparameters for

describing ecosystems and constructing a Fokker-Planck equation for the populations.
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INTRODUCTION

Interest is now rising in fundamental problems of
ecology in connection with the intensive effect of the
productive activity of humans on the environment, and
these problems can be solved only by the combined ef-
forts of scientists of different specialties: physicists,
biologists, chemists, etc.

The famous American theoretical physicist F. Dyson
has spoken quite definitely of the need for participation
of physicists in solving problems involving protection of
the environment in his article "The Future of Phy-
ics. " c l ] Academician P. L. Kapitza calls the ecological
problem one of the most important among the global
problems of the immediate future. a i

The global nature of disturbed equilibria existing in
nature is already evident. The amount of energy that
humans produce every year in the form of heat from
burning various types of fuels already amounts to 0. 01%
of all the radiant energy that falls on the Earth from
the Sun. m The central problem of climatology is be-
coming that of determining the limiting admissible
amount of heat that can be produced on Earth. This lim-
it would seem to be several percent of the energy coming
from the Sun, and it can be reached in the first half of
the 21st Century.

Pollution of the environment by industrial, agricul-
tural, and domestic effluents is also acquiring a global
character. The sharp disproportion between the chemi-

cal composition of living organisms (which predomi-
nantly consist of the light chemical elements at the top
of the periodic table: H, O, N, S, P, and C) and that of
manufactured goods (in which mainly the elements in
the middle and the bottom of the periodic table are used)
causes the biosphere to become polluted with heavy met-
als. That is, the natural relationship of the chemical
elements in the biosphere is upset.

Tens of thousands of new chemical compounds have
been synthesized in recent years, and they have entered
the biosphere in enormous amounts in the form of fungi-
cides, insecticides, industrial and domestic wastes.
Many of them, e. g., DDT, are concentrated in organ-
isms, following the food chains.

The development of nuclear power poses its own prob-
lems that involve the protection of the environment.
Water, soil, and air become polluted with radioactive
elements through the operation of nuclear industrial en-
terprises and accidents in nuclear-powered ships. As
we know, many chemical elements, including the radio-
active isotopes, are concentrated by organisms with ac-
cumulation coefficients that reach tens and hundreds of
thousands.C4:I This threatens radioactive contamination
of humans through their food.

Communities of living organisms (or biocenoses) are
most sensitive toward anthropogenic factors. The bio-
cenoses, along with the environmental non-living mat-
ter that they use, constitute ecosystems or biogeoceno-
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FIG. 1. Fundamental pathways of return of nutritive sub-
stances into the cycle.

ses. Study of the structures of the biogeocenoses that
have been formed during billions of years of evolution
has shown that in nature the problem of purifying the
environment of the wastes of living organisms is suc-
cessfully solved by the almost closed recycling of mat-
ter.

Figure 1 shows a diagram of the circulation of mat-
ter in a biogeocenosis. l5 i We can distinguish two very
important pathways of return of food materials into the
cycle: 1) primary excretion by organisms, and 2) de-
composition of detritus by micro-organisms. The first
way predominates in planktonic communities, and the
latter in the steppes and forests of the temperate zone.
Finally, there can be a third and a fourth way: direct
transfer of matter from plant to plant by symbiotic mi-
cro-organisms, and autolysis.

Anthropogenic disturbance of the equilibria in the
biosphere changes the character of natural biological
evolution, both on the molecular and on higher levels.
Yet the problem of physical interpretation of the pro-
cess of evolution still remains a riddle, in spite of the
attention of many important physicists1·6"8·1 that has been
attracted to it. "The fundamental phenomenon that de-
mands physical interpretation is natural selection. The
problem arises of interpreting it in exact molecular
terms, i. e., in the final analysis, in the language of
quantum mechanics."1·9·1

Here it is important to note that the molecular pro-
cesses that occur in an individual cell are under natural
conditions a part of the cycling of matter in a biogeo-
cenosis. Therefore the selection processes that are
dictated by this cycling determine the chemical struc-
ture of the biological molecules and their evolution.
Therefore biophysicists will generally come to under-
stand the cell and its components only when they under-
stand ecological processes.

In a biogeocenosis, the separate individuals interact
both with representatives of their own species and with

individuals of other species. The transport of matter
among the elements of the system that is shown in Fig.
1 is carried out by the feeding of some organisms on
other organisms. This is the so-called trophic rela-
tion, or predator-prey interaction. The first models of
this interaction were constructed in the studies of Lot-
k a a o ] and Volterra. t u 3

Let a system exist that consists of two species, one
of which eats the other. Let the population growth of
the prey in the absence of the predator be limited by
nothing. Then the rate of increase in the number of in-
dividuals of the prey dNjdt will be proportional to the
total number Λ̂  of prey. If we assume the growth co-
efficient e t of the numbers of prey to be constant, then
the number of prey will increase exponentially with time.

If we assume that the death rate dNz/dt of the preda-
tors in the absence of prey is proportional to the num-
ber JV2 of predators with a certain mortality coefficient
ε2, we get an exponential decline in the numbers of
predators with time of AT2(0)exp(-e2i), where iV2(0) is
the number of predators at the initial instant of time.

When the two populations coexist, then the dynamics
of their populations sharply changes. In the first ap-
proximation, we can consider that the rate of predation
of the predators on the prey is proportional to the num-
ber of prey-predator encounters with a certain constant
coefficient yu i .e . , γ^Ν^. The increase in the num-
bers of predators is also proportional to the quantity
^Nz, but with the smaller coefficient y2. Thus we get
the system of equations"·111:

(1)

Interestingly, the nature of the nonlinearity likens these
equations to those of dynamic meteorology.c123

The prey-predator system described by Eqs. (1) un-
dergoes periodic oscillations when removed from a
state of equilibrium. Here the oscillations in the num-
ber of predators lag in phase behind those of the prey.

The phase trajectories of the system (1) have the
shape of closed curves that satisfy the equations

γ2ΛΊ — ε 2 In Nt + yiNi — ε χ In JV, = const = G,

They lie concentrically about a stationary point of the
center type (JV1=e.2/y2, Ν2=ζ1/γι). Near the stationary
point, the solutions of the system (1) consist in harmon-
ic oscillations having a period that does not depend on
the amplitude, and which equals 2ir/i/e1e2 . As we go
away from the point {t-z/y2, ε\/Ύι), the period of the
oscillations begins to depend on the amplitude, owing
to the nonlinearity of the equations, while the shape of
the oscillations differs appreciably from sinusoidal.

G. F. Gause was the first to study experimentally a
predator-prey system. It has turned out that real sys-
tems behave in a considerably more complicated way.
For example, the prey can poison the predators with
its metabolites, and then the oscillations prove to be
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FIG. 2. Cyclic oscillations of the predator-prey type with
the example of two types of infusoria.

unstable. However, if one introduces predators at
equal intervals into the environment containing the prey
in a nutritive substrate, then periodic oscillations are
observed in the system. Figure 2 shows the results of
G. F. Gause's experiments with two types of infusoria
Paramecium caudatum (prey) and Didinium nasutum
(predator). A nutritive broth in an amount that did not
limit the system was used as the nutritive medium for
the prey. c l 3 3

1. VOLTERRA'S MODEL AND OTHER NONLINEAR
MODELS OF BIOLOGICAL COMMUNITIES

A. The Lagrangian and Hamiltonian formalism for
describing multispecies systems

Above we have treated the simplest system that con-
sists of only two species, whereas natural biocenoses
are composed of many hundreds and thousands of spe-
cies. V. Volterra was able to generalize the equa-
tions (1) to the case of η biological species that inter-
act with one another1-143:

Here Nr is the population of the r-th species. The co-
efficients er determine the behavior of the populations
of the organisms in the absence of the other species,
and they can be positive or negative. However, not all
the e r can have the same sign in actually existing sys-
tems, since then all the species would either vanish in
time (with a negative sign in front of the e's), or the
populations would grow infinitely (positive signs of the
e's). The summation on the right-hand side of Eq. (2)
reflects the interaction of the r-th species with the rest
of the species. Volterra assumed that a,. = - ars. If
we should have βτ = 1, then a decline in the biomass of
one species would be compensated exactly by the same
increase in the biomass of another species. The posi-
tive number l//3r is the Volterra equivalence number.
Thus, in the case of pair encounters between the spe-
cies, the ratio of the number of individuals lost (or
gained) per unit time by the s-th species to the number
gained (or lost) by the r-th species during the same
time is β'/Ζβ?. The system of equations (1.1) converts
into (1) for the case of two species.

Also V. Volterra paid attention to the analogy of the
equations (1.1) to the equations of classical mechan-
ics. C153 Yet this analogy is not traced clearly enough

in the form in which they are written, since physically
reasonable values of the variables Nr can only be posi-
tive. However, in mechanics both the coordinates and
the velocities take on both positive and negative values.
V. Volterra tried to correct this defect of the equations
(1.1) by introducing new phase variables Χ, instead of
the populations Nr of the species. They are related to
the latter by the relationships

However, the situation becomes complicated in this
case by the appearance of nonphysical integrals of mo-
tion. E. Kerner found an ingenious way out of this sit-
uation by introducing the variables1163

i;, = l a - ^ . (1.3)

Here the qr are the solutions of the stationary equations
(1.1). The quantities vr vary in the physical region
from -°° to + °°.

The equations (1.1) are rewritten in terms of the new
variables in the form

ΡΛ=ΝΜ,(ί·.-ΐ (1.4)

If we multiply (1. 4) by qr(e"r - 1), and sum over r from
1 to n, owing to the antisymmetry of the &„, we get

or after integration:

G= i ] Xr(e"' — Vr) = const,
r = l

where rr=firqr.

(1.5)

(1.6)

The quantity G is analogous to the Hamiltonian func-
tion in mechanics. Therefore Eqs. (1. 4) can be re-
written in a form analogous to Hamilton's equations:

dt ΖΛ β 8 ρ Γ dvs (1.7/

By analogy with mechanics, it proves possible to in-
troduce also the Lagrangian:

2 ΖΔ \ pspr ; "'"' " · ( 1 . 8)

We should note the limitation of a theory constructed
by analogy with mechanics, since here the essential role
is played by the antisymmetry of the matrix a^, which
is nonsingular when of even order. This means that
there must be an even number of species in the system
in a steady state, which contradicts the observations.

B. Limiting factors. The Liebig principle

In the initial stage of population of a new environ-
ment, the rate of growth of the population depends only
on the population itself at the given instant of time.
Here, if Ν is the number of individuals in the popula-
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FIG. 3. Growth curve of
the biomass of yeast.

tion, t is the time, b is the birth rate, and d is the
death rate, the equation of growth of the population has
the form

1Γ (1.9)

If b>d, then when the population has lived in the new
environment for a certain time, its density reaches a
high enough level that the aggravated struggle for exis-
tence will depress the growth rate. Verhulst proposed
that, if Κ is the maximum number that the population
can reach in the given environment, then the rate of
growth of the population will decline according to the
law (b-d)(K- N), and one can write the population
growth equation in the form

ih-=lf, — d)N(K — N). (1.10)

Upon integrating this equation, we get an expression for
the sigmoid logistic curve. There are now many ex-
perimental data that confirm this relationship.

G. F. Gause was one of the first to show the validity
of the logistic law for populations of yeast cells. c l 7 ]

Figure 3 shows the growth curve of the yeast Saccha-
romyces cerevisiae. If the medium is renewed at short
intervals of time, then the multiplication is exponential
(dotted curve). Yet if the yeast cells are left alone,
then density factors begin to take effect in a certain
time, and the exponential curve goes over into a logis-
tic curve (solid line). The points on the curve corre-
spond to the experimental results.

Monodci8] has given a description of the slowing
growth rate as a function of the concentration of the
substrate that limits the growth of bacteria. He used
the equation for the specific growth rate {l/N)dN/dt
that is known in enzymology:

(1.11)

Here S is the concentration of the substrate, and Ks is
a constant that is numerically equal to the concentra-
tion of substrate at which the growth rate reaches half
the maximum. The quantity bmai corresponds to the val-
ue of the specific growth rate of the population in the
exponential phase. Figure 4 shows the specific growth
rate of the population of the yeast Candida tropicalis as
a function of the substrate paraffin.tl91 The solid curve
corresponds to Eq. (1.11).

Volterra's model, which was constructed to de-
scribe the population changes in a predator-prey sys-
tem, proves to hold only at low enough concentrations
of the interacting populations. This is because this

model assumes the consumption of prey by predators
to be proportional to the population of prey at any prey
concentrations, however high. We cannot consider this
to be physilogically justified. Ivlev:203 was the first to
pay serious attention to this defect at the theory in
studies on feeding of fishes. N. Rashevskyt2l:l devised
a theory to explain Ivlev's law, which determines the
rate of consumption of food particles as a function of
their concentration in a steady-state feeding regime.
Quite recently, V. S. Ten has derived some refined
equations for the dynamics of feeding.c22]

In 1840, Liebig established the "law of the minimum,"
according to which the growth of plants is limited by
the biogenic element having the least concentration. In
soils, these limiting elements are very often nitrogen
or potassium. In seawater, the abundance of plankton
is determined by the phosphate content. The so-called
microelements that are used by living organisms in
small quantities, but whose supplies in the environ-
ment are small and insufficient, can also be limiting.
For example, a low copper content in peaty soils
causes fragility of stems of wheat and hinders its ripen-
ing.

An ecological factor plays the role of the limiting
factor also when it exceeds the maximum permissible
level. For example, as is well known, copper com-
pounds in large amounts are toxic for organisms.

If any limiting biogenic element is deficient, and it
limits the processes that occur in the biological sys-
tem throughout the entire period of measurement, then
it is convenient to use the values of the biomasses nor-
malized to the corresponding biogenic element instead
of the population numbers or their biomasses.

A very simple biogeocenosis in which the decompo-
sition of organic matter occurs by autolysis or excre-
tion must consist of at least one species of alga and one
species of animal that feeds on it. If the system is
closed with respect to matter, then it obeys the equa-
tion

Mt + M% + Mo = const == M, (1.12)

Here Mx and Mz are respectively the biomass of the
plants and that of the animals normalized to the mass
of the biogenic factor that constitutes the ecological
minimum. We shall denote the mass of this biogenic
factor in the environment as Mo, Upon taking account
of Ivlev's law, the system of predator-prey equations
for this simple system can be written in the form1231

dM2

dt

(1.13)

(1.14)

FIG. 4. Relationship of the
specific growth rate of yeast
to the concentration of the
growth-limiting substrate
paraffin.
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FIG. 5. Nature of the variation in the phase curves in a
predator-prey system with increasing concentration of the
limiting biogenic element.

^ - τ Σ Ρ Λ ^ + ^η^)- (1.17)

0 when ε, < 0,

where

1
-s-ε.

2 >

We can easily see that dG/dt = Q when all the N{ =qi·
Thus (1.17) implies stability of the steady states
throughout the positive quadrant.

Volterrac l 4 1 elucidated the conditions in which the
steady states are stable throughout the positive quad-
rant in the general case of bilinear and quadratic inter-
actions between the species.

Let the following system of equations hold:

(1.18)

Here dx and dz are respectively the death rates of the
plants and of the animals; bxma and bZm>I are the spe-
cific growth rates of the plants and animals, respec-
tively, in the exponential phase; Κχ and Kz are con-
stants that are equal to the concentrations Mo and Mx

at which the growth rate reaches half maximum; and μ
is a constant greater than unity. Figure 5 shows on
the MXMZ plane the variation in the phase curves of Eqs.
(1.13) and (1.14) with increasing M. The fact is ex-
tremely important that the limit cycle passes ever clos-
er to the coordinate axes with increasing M. The de-
rived equations (1.13) and (1.14) cease to hold at small
enough Mt or Mz, since the discrete structure of the
populations begins to play a role, and the probability of
their extinction increases sharply.

We note that Eqs. (1.13) and (1.14) for large Kx are
a special case of the equations studied by Kolmogorov[243

and Waltman. E e ]

It is interesting here to note the cycle of studies per-
formed by I. A. Poletaev for a predator-prey model in
which the limiting factor changes during the process of
evolution of the system. [ 2 5 · 2 6 ]

In multispecies systems of the type of (1.1), taking
account of a limiting factor also leads to certain new
properties. Here we shall study the Verhulst limiting
factor, and other cases in the next chapter. When we
take account of the Verhulst term, the system of equa-
tions (1.1) takes on the form1273

(1-15)

Equations (1.15) can be written in terms of the variables
v} as follows:

ΡΛ = - y ε, (1 + sgn ε,·) i (e*'-i) β; + 2 αιΛι (e"< - 1). (1.16)
' i = l

In contrast to (1. 5), we get the following expression for
dG/dt:

where er and prs are constant coefficients. Here we as-
sume that at least one of the εΓ > 0, since then not all of
the species can disappear in the course of time. Then,
if one finds positive coefficients at such that the qua-
dratic form

Σ Σ arpr,NrNs

is positive definite, and if all the qt are positive, the
steady state is stable, and the system tends to approach
this state from any point of phase space.

C. Taking account of time lag

Thus far the studied models have assumed that the
consumed food is immediately spent on creating prog-
eny. Yet these processes are separated in a number
of cases by a time interval. That is, the one process
lags in time behind the other.

This phenomenon is especially easy to observe in
populations of insects. They have a high rate of multi-
plication, while the time separation between multiplica-
tion and the initiation of the density-dependent regula-
tion is determined by the multistep nature of the process
of development: egg-larva-pupa-adult (imago).

HutchinsonC29] first described a competition for food
between adults and larvae. She considers the coef-
ficient Κ - Ν to be the regulating factor in the equation
for the logistic curve. Since there is a time separation
that is equal to the development cycle Τ between the
density increase and the corresponding reaction, we ob-
tain the following expression in place of the logistic
curve:

(1.19)

The solution of this equation for small enough Τ oscil-
lates about a level that corresponds to the capacity Κ of
the environment, and the amplitude of the oscillations
declines with time (Fig. 6).

Nicholson (see1303) has observed cyclic oscillations in
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FIG. 6. Population dynamics
with account taken of time lag.

population caused by the lag factor in experiments with
the green carrion fly Lucilia cuprina. In a series of
experiments in which the adults received food in unlim-
ited amount, while the food of the larvae was limited,
he observed periodic oscillations in the populations.
When there came to be too many larvae, they intensely
competed with one another, the death rate rose, and the
population density fell to a level where the normal
growth of larvae was restored. Then the population in-
creased anew (Fig. 7). He also observed an analogous
pattern in the case in which the larvae had an excess of
food, while the adults received food in unlimited amount.

Volterra studied the lag factor with the example of a
predator-prey sys tem. l M He showed that if the species
do not exist in steady states, and the lag is limited, then
the population numbers oscillate for an unlimited num-
ber of times about the steady states.

A set of interesting new results has recently been ob-
tained in a whole series of studies on population equa-
tions involving lag. Β 1 ~ 3 5 ]

May136·1 has studied the effect of lag on the stability of
ecosystems. He concluded from the example of models
of communities having two trophic levels that inclusion
into a system that is stabilized by a limited-resource
mechanism of a time lag exceeding the characteristic
time of the system destroys its stability. Yet one can
lengthen the characteristic time of the entire system by
adding another trophic level, and can render it again
stable.

D. Behavior of ecosystems in space

One of the first studies on the behavior of populations
in space was the article of Kolmogorov, Petrovskii, and
Piskunov, Κ 7 3 which treated the displacement of one
genotype by another. They assumed in the problem
that individuals having a certain trait have an advantage
in the struggle for existence over those that lack it. If
ρ is the concentration of individuals that possess the
useful dominant trait, then the equation describing the
variation of this concentration in space will have the
form

<(l-p)2 (1.20)

(we assume that each individual moves in a random di-
rection in the interval between birth and death). Here D
is the diffusion coefficient of the useful gene. We as-
sume that the ratio of the probability of survival of an
individual that has the useful trait to the same probabil-
ity for an individual that lacks it is 1 + a, where 0 < a
« 1 .

If at the initial instant of time the individuals having
the useful trait exist at x< x0 with a probability density
of unity, while those that lack it exist in the region χ
>x0 with a probability density of unity, we can naturally
expect the region of densities having ρ = 1 to propagate in
time from left to right. An asymptotic density profile
will also be established in time. The development of
this study has permitted study of an entire series of
chemical reactions involving diffusion, in particular
combustion reactions. B e l

Equations can analogously be constructed with account
taken of diffusion for different species that interact with
one another. Let p((x, t) be the density of the t-th spe-
cies, and jj(x, t) be the flux density of the i-th species.
Then, if Volterra's hypothesis holds for the predator-
prey system, we can write

' "

. t),

+ div j 2 (x, i) = e2p2 (x, t) + v2 P l (x, t) p, (x, t).
(1.21)

As for the fluxes ]t and j 2 , we can write then in the fol-
lowing form by analogy with the case of multicomponent
diffusion"63:

Ji = — U

+
(1.22)

Here D1 and D2 are the self-diffusion coefficients of the
prey p1 and the predator p2, d1 is the speed of flight of
the prey from the predators, and dz is the speed of pur-
suit of the predators after the prey.

Near the steady state e2/y2, ζ1/γι, the equation for
the small perturbations (?x and Qz (pj = (e2/y2) + Qu p2

= (EJ/VJ) + Q2) satisfies the equations

(1.23)

If we neglect self-diffusion, so that the motive force for
migration is the pursuit and flight of the predators and
prey, then the solution of Eq. (1. 23) is a superposition
of undamped plane waves. Yet when the self-diffusion
differs from zero, then the waves decay with the coef-
ficient

where k is the wavenumber. That is, oscillations hav-
ing short wavelengths decay most quickly.

We assumed in (1. 22) that the flight and pursuit

250

FIG. 7. Oscillations in the population of flies whose density
is regulated by the amount of food given to the larvae.
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FIG. 8. A calculation of the dynamics of the depth distribu-
tion of phyto- and zooplankton in an upwelling zone.

fluxes are equal, apart from a constant factor, to the
density gradients of the predators and the prey, re -
spectively. This approach allows spontaneous creation
of predators and prey to occur, even in the case in
which the corresponding population densities equal zero
throughout space at the initial instant. Therefore it
proves more natural to write the fluxes in the formC39:l

J.(*. 0 = -« * . *£ -C-g j - .

Further complication of the studied systems permits
one to proceed to mathematical modeling of biogeoce-
noses. In a series of studies, A. A. Lyapunov has con-
structed a mathematical model of a biogeocenosis of
pelagic speices in tropical ocean waters. uo~*zi

In this system, the primary production of phytoplank-
ton is restricted by the illumination, by the concentra-
tion of biogenic elements (nigrogen and phosphorus),
and by the maximum rate of multiplication of the phyto-
plankton. The phytoplankton is used as food by the zoo-
plankton. The organic residues that are formed upon
death of the phyto- and zooplankton, and also the excre-
ment of the animals, are subject to gravitational set-
tling. Thereby the zone of active photosynthesis in the
ocean is continually depleted of biogenic elements.
Hence the productivity of the open regions of the ocean
is extremely low (less than the productivity of a desert).

The biogenic elements are replenished in the upper
200-meter photosynthetic zone in the regions of the so-
called upwellings, or zones of rising deep waters rich
in nutritive salts.

On the basis of the modified equations of A. A. Ly-
apunov with account taken of the law of limiting rations
of V. S. Ivlev, the associates of the Institute of Ocean-
ology have devised a numerical model of an ecosystem
of pelagic species in a region of rising deep waters in
the western part of the equatorial zone of the Pacific
Ocean.C43] The coefficients were obtained by using the
method proposed by LyapunovC4l] from the data of the
observations of the 50th cruise of the scientific re -
search ship "Vityaz'."

In this model,li31 the zooplankton was divided into a
number of groups: filterers, small predators (cyclo-
poids), intermediate predators (calanoids), and large

predators (chaetognaths and polychaetes). The larger
species feed on the smaller.

The biomasses of the species that constitute the bio-
cenosis vary as one follows the current away from the
upwelling. These changes are determined both by the
depletion of the photosynthetic layer in biogenic factors,
and by interspecies interactions. If one were to drift
with the current from the upwelling zone, one would ob-
serve a maximum biomass of phytoplankton in 5—10
days. The filterers reach a maximum on the 30th day,
and the predatory species on the 35-50th day.

One also observes a variation in time of the vertical
concentration profiles of the biomasses of phyto- and
zooplankton (Fig. 8). On the 10th day, the supply of
biogenic factors in the upper layer has been almost
completely exhausted. Yet at a depth of 10-20 m,
where the optimal light intensity for photosynthesis
occurs in tropical regions, a maximum mass of phyto-
plankton is maintained. At the same time, a lower
maximum in the phytoplankton begins to be formed, ow-
ing to the biogenic factors that enter from the upper
layer and the influx of biogenic factors through the
thermocline. As the upper layer becomes depleted,
vertical transport of biogenic elements from below the
thermocline via turbulent exchange begins to play a
role. The upper maximum in the phytoplankton com-
pletely vanishes.

The dynamics of biological productivity arising from
the intensity of turbulent exchange in the photosynthetic
layer of the sea has been studied in:44]. A system was
treated that consists of phyto- and zooplankton. The
development of the phytoplankton was limited by the il-
lumination and by the nitrogen concentration. The bio-
logical coefficients of the model were calculated from
data on the dynamics of the biomasses for the pelagic
species of the White Sea, as obtained by the Department
of Hydrobiology of Moscow State University in April-
October, 1971. The solid lines in Fig. 9 show the dy-
namics of the biomass of the phytoplankton for a coef-
ficient of turbulent exchange of 5 mVday as calculated
from the temperature trend with depth in the White Sea
in 1971. The circles show the results of the observa-
tions. The dotted line is the calculation from the model
in the absence of exchange.

We can easily see that the existence of the coefficient
of turbulent exchange synchronizes the maxima through-
out the depth. The total bioproductivity declines, owing
to turbulent diffusion of the phytoplankton into the lower
horizons.

2. KINETICS OF BIOGEOCENOSES HAVING A FIXED
MASS OF A LIMITING BIOGENIC ELEMENT

A. The Volterra-Gause theorem

If species belong to the same trophic level, then
competition arises among them, owing to the limitation
of the substances that they use, energy, space, and
poisoning by metabolites. Competition between species
was first studied theoretically by Volterra.cl4] Let Mt

be the biomass of the i-th species of the community that
we are studying. When the food is unlimited, the coef-
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FIG. 9. Dynamics of the biomass of phytoplankton as a func-
tion of the depth and of the coefficient of turbulent exchange.

ficients of natural-increase ε{ are positive constants. In
the actual case, the coefficients of increase will decline
monotonically as the food is consumed:

e,- - y,F (ΛίΊ, Μ3 Mn),

where F is a symmetric positive function that increases
monotonically with increasing Mit and which character-
izes the exhaustion of the resource, with y, > 0. In the
very simple case of a closed cycle, in which the same
biogenic factor fixes the limitation all the time, the
function F in units of the mass of this biogenic factor
has the form £"=1Λίο while ε, =My{ - e , , where ε, is the
death rate, while Μ is the total concentration of the lim-
iting biogenic factor in the system.

When all the M, are zero, then there is no competi-
tion, and F = 0. Thus, the system of differential equa-
tions that describes the competition among the species
has the form

1 , Ms

M2, .. . , .!

(2.1)

We can easily verify that the positive solutions of this '
system of equations always remain bounded. In fact,

if F proves to be larger than any of the εί/γ{> then the
corresponding dMf/dtbecome negative, and owing to the
monotonic growth of the function F with increasing M{,
the given Aij cannot increase further.

If we eliminate the function F(Mlt M2, . . . , Mn) from
the r-th and s-th equations of (2.1) and integrate the ob-
tained equation, we get

uily. ~ ( j t fOji/v. e x p \yr y.) £- (2.2)

Here M° and Jli° are the initial values of the biomasses
of the r-th and s-th species.

Let ζχ/γχ > e3/y2> . . . > εη/γη. Then we have:

,1/ϊ.

lim -

This implies that all the M{{i^ 2)— 0. Thus we have
derived the famous theorem of Volterra: If species in-
habit a single ecological niche, then one of them always
supplants the others.

GauseC45] performed the first experimental test of
Volterra's theorem. He cultivated two similar species
of infusoria: Paramecium caudatum and P. aurelia, in
a closed volume into which he regularly introduced as
food the bacterium Bacillus pyocyaneus, which does not
multiply in a single culture with the infusoria. Figure
10 shows the results of the experiment. When culti-
vated individually, the population of each of the infusoria
gives a typical logistic curve whose asymptote is deter-
mined by the amount of food introduced. Yet when both
species are cultivated together, they intensively com-
pete with one another, and in two weeks P. aurelia has
completely supplanted P. caudatum. That is, the spe-
cies survives that consumes the food more intensively,
and which has a lower death rate.

An analogous pattern of selection is also observed on
lower levels in the catalytic replication of protein
molecules. One can understand why enzymes arose in
the process of evolution: they accelerate the reactions
of biosynthesis by a factor of many thousands. m i

To supplement what we have said, we note that the
Volterra-Gause theorem is also obeyed in the case in
which the nutrition of the competing species is regen-
erated within the studied system. u n Figure 11 shows
a diagram of the material cycle in a system that con-
sists of plants (producers), detritus, reducers, miner-
alizing detritus, and non-living nutritive material that

60

P. caudatum in single culture P. aurelia in
single culture Δ

%

/ P. aurelia in mixed culture

« S 12 20 Ί 8 12 16 Days

FIG. 10. Competition between two similar species that have
a common ecological niche.
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FIG. 11. Diagram of the circulation of matter in an ecosys-
tem: producers, detritus, reducers, and biogenic material.

is used by the plants. The crossed arrows denote the
fluxes of matter that arise from processes of death of
living organisms. We can naturally assume the rate
of these processes to be proportional to the biomasses
of the corresponding populations. The plain arrows
denote the fluxes of matter caused by active interac-
tions of living organisms with one another and with
non-living nature. If we assume that the limiting fac-
tor is not altered in the interaction process, then the
equations for the dynamics of the biomass of the in-
dividual species of plants have the form

άΜψ

The given system of equations lacks steady states when
more than one M\l) differs from zero. Without com-
plication, we can convince ourselves that the only stable
state among them proves to be a steady state of the
species for which the quantity Κ[ι)/[{γ[η/* J") - l] is
least.

B. Stability of ecosystems and diversity of species

Ecological niches can be created in the most varied
ways. First of all, they can arise in the spatial sepa-
ration of the competing species. If one cultures jointly
Paramecium caudatum and P. bursaria, thenboth species
can live together to attain equilibrium,C17] in spite of
having a single source of food for both species, since
P. bursaria concentrates at the bottom and the sides of
the test tube, while P. caudatum remains in the free
space. In this case, the ecological niches prove to be
so different that they permit the organisms to avoid
competing. Under natural conditions, spatial separa-
tion also permits many species to avoid competing for
food. For example, in the forest one distinguishes the
arboreal, shrub, and grass layers, which are populated
by different species of organisms.

An analogous zonality also exists in aquatic ecosys-
tems. The important vertical zonality is determined
by penetration of light into the depth of the water. More-
over, aquatic organisms are distinguished in terms of
their habitat as bottom species (benthos) and pelagic
species that inhabit the thickness of the water.

It is interesting to note in this regard that several
stable ecological niches cannot arise from a compli-
cated chemical composition of the nutritive mixture on
which different species of plants can be cultivated, with

an associated alternating limitation by different biogenic
factors during the growth process.C 4 8 3

In addition to separation in space, the physiological
activity of different organisms can be separated in time.
This is brought about by the so-called seasonal biologi-
cal rhythms, which cause, e.g., the period of multipli-
cation to coincide with a favorable season. Thus, as
the theorem of G. F. Gause shows, the possibilities of
formation of ecological niches owing to physical factors
of the environment are very limited.

However, if each of the species of producers that are
nourished by a single substrate has its own feeding con-
sumer that is specialized to it, i .e . , the diagram of the
material cycle has the form depicted in Fig. 12, then as
many producer-consumer pairs exist stably in such a
system as the presence of the biogenic elements will
allow. : 4 7 : It is not hard to understand why. The con-
sumers regulate the biomass of the producers without
allowing any of them to increase so greatly as to sup-
plant the others.

We saw in the second section of the last chapter that
the dimensions of the limit cycle in the plane of "pro-
ducer-consumer" biomasses enlarge with increasing
total concentration of biogenic factors in the system,
and the system becomes less stable toward discrete
perturbations. Yet if the number of producer-consum-
er pairs increases, then the stability of the system in-
creases correspondingly, since each of the pairs of
species selects for itself a fraction of the total mass
of biogenic factors, and thus it correspondingly dimin-
ishes the mass of biogenic factors that can be used by
the other species. Thus, one can advance the hypoth-
esis that species arise in pairs under constant external
conditions.

It is of interest to analyze all these conclusions of
the theory with the example of biogeocenoses that lie
in regions of the Earth where the climatic oscillations
are small. For example, one can treat as such a bio-
geocenosis a tropical rain forest, the flora and fauna
of which are infinitely rich in species. One can count
20, 000 species of insects in = 15 km2 in the Panama
Canal Zone, whereas there are only several hundred
of them in the whole territory of France. c 5 ] In this

Μ (biogenic material of reservoirs)

FIG. 12. Diagram of circulation of material in an ecosystem
having specialized consumers.
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FIG. 13. Relative age of deep-water fauna of the different
vertical zones of the ocean bottom.

forest, symbiosis between insects and epiphytes (aerial
plants having no roots in the soil) is widespread, and
this can give evidence of the generality of their appear-
ance.

Many scientists consider a high rate of evolution and
of species formation to be characteristic of a tropical
forest. Perhaps this is why precisely these regions
have served as the site of origin of new species that
entered into the composition of the communities of the
moderate and polar zones. Thus, one of the major
Soviet botanists, An. A. Fedorov, states that the path
of development of the tropical rain forest "has been
strictly autochthonous, and has been a phytocenotypical
expression, as well as being the background of the gran-
diose process of formation of the fundamental nucleus
of the angiosperms, the homeland of which, of course,
lies in the tropics. With respect to the tropical flora,
the holarctic and antarctic flora are a secondary phe-
nomenon that has arisen as a result of adaptation to
less favorable conditions in the process of singling out
and migration from the flora of the tropics. " [ 4 9 :

In aquatic biogeocenoses, in particular, oceanic, the
qualitative diversity of the biota also increases as we
go from the polar to the tropical region. κ ω Just as on
land, species formation in the ocean mainly occurs in
regions where biological factors create favorable con-
ditions for it, i .e . , in the tropics in the littoral zone,
which is rich in light and biogenic elements, whence the
species migrate into regions less favorable for life.
Figure 13 shows the growth of the ocean fauna for dif-
ferent vertical zones of the ocean bottom. The forma-
tion of the bottom fauna of the ocean shelves should be
assigned to the remote Precambrian. The formation
of the fundamental abyssal fauna perhaps should be as-
signed to the Cambrian and the Mesozoic, and the ultra-
abyssal to the Cenozoic. l 5 m

It might seem at first glance that the increased spe-
cies formation will lead to increased stability of the
ecosystem. In fact, the relation is more complicated,
as we can see from the following example. If we add
to the system shown in Fig. 12 a third level of special-
ized species, then the biogeocenosis will be unstable,
since these species will weaken the regulating action of
the species that exist on the second level. Consequent-
ly species will be crowded out. That is, the system
with the large number of species is less stable in this
case.

C. Stability of ecosystems toward colonization by new

species

Similar ecosystems develop in all sites having the
the same physical environment. Equivalent functional
niches come to be occupied by the biological groups
that exist in the flora and fauna of the given region.
Here the ecologically equivalent species may not be
taxonomically related. Thus, for example, the cacti,
which are widespread in America, are completely lack-
ing in the Old World, yet the milkworts of the African
deserts look just like cacti. l 5 i

Deliberately or not, man changes the geographical
distribution of plants, animals, and micro-organisms.
He continually experiments with introductions, though
many of them prove to fail; he bears great losses from
pests, which often prove to be displaced species. Al-
most complete replacement of the local species by colo-
nizers has occurred on remote islands and continents.
Thus, most of the songbirds found in the Hawaiian Is-
lands have been introduced. [ 5 i :

In order to make a prognosis of the development of
the flora and fauna in a given region, one must take ac-
count not only of its climatic characteristics and not
only of the species that inhabit it, but also of the pos-
sible introduction of species from different biogeoce-
noses, even remote ones. Generally we know rather
well the list of species that can migrate into a given
concrete biogeocenosis. If, moreover, we know the
nature of the trophic relations among the species, then
we can construct a diagram of cycling of matter in a
certain abstract limiting ecosystem that contains these
species.

For the sake of simplicity, let us assume that our
limiting ecosystem consists of only three species: one
consumer and two producers. The material cycle dia-
gram in this system is shown in Fig. 14c.

We can naturally expect that the number of species
that can exist in a certain biogeocenosis depends strong-
ly on the total concentration of biogenic elements, i .e . ,
on

r~
1

-

FIG. 14. Examples of trigger and auto-oscillatory states In a
biogeocenosis.
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Μ = Μα + Μ1 + TV, + N2.

The system of equations that corresponds to Fig. 14 has
the form

dt
dN2

dt
dMj_

at

-ε,ΛΤ,-γ,ΛΓ,Λ/, + β,ΛΤ, ( ; ! / - Λ Γ , - N2 - A/,),

• — ε 2Λ'2 — γ2Λ*2Λ/ι + β2Λ
Γ

2 (.1/ — Λ', — ΛΓ

2 — Λ/,),

: - ε Λ ί , + ν ι - Ί ί , / ν , + ϊζΛ/ιΛ^.

(2.3)

We assume all the coefficients e ; y( yt and β to be con-
stant.

Let eζ/βζ> ΐ\/β\. Then we can easily find from the
condition of stability of the steady states that not even
a single species can exist in the system when Μ<^ι/βι.

The existence of the following inequality is necessary
and sufficient for existence of a stable steady state in a
system having one species:

The further progress in filling the biogeocenosis with
species with increasing Mis highly determined by what
the relationship is between the quantities γζ/βζ and yJ
β1. When γζ/βζ> Ύ\/β\, then a necessary and sufficient
condition for existence of a steady state consisting of
two species (M1 and ATt) has the form

(2.4)

Yet if γί/β1 > ΎζΙβζ, then two stable steady states can
exist with the very same value of Μ (the trigger vari-
ant). With a relationship of the limiting mass and of
the coefficients that has the form

Λ.+(ι +1-) Ι^Ι^Χ < Μ,.iL-
βι

a variant is realized that has two stable steady states
as shown in Fig. 14a. Yet when inequalities of the fol-
lowing form are satisfied:

ει ι ε _ ε2 , e , / • . γ 2 \ ((-2/β2) — (ε,/βΟ _. , .

γι \ β' ' (Yi/Pi)-(Yi/Pa) '

then the variant is realized that is shown in Fig. 14b.
For this to happen, it suffices to have yx<yz.

The studied variants imply that, if one introduces a
species Nz for which γζ/βζ>Υι/βι, then its introduction
into the system (Mo, Nu Mj) will fail. Yet, conversely,
if one introduces the species Nt into the system (Mo,
Nz, Mx), then this introduction will always be success-
ful. Consequently the aboriginal species Nz will be com-
pletely supplanted. However, if the condition y^/β^ > yJ
βζ is satisfied, i .e . , the system can exist in trigger
states, then the result of introduction depends highly on
the initial state of the studied biogeocenosis and the
number of individuals of the colonizing species.

When the mass Μ becomes larger than the quantity

βι • γι V β' ' (Υι/βι)-(ϊί/β»)

and the condition γ^/βχ > Ύζ/βζ is satisfied here, then
biogeocenoses with two species prove to be unstable,
and the only possible variant turns out to be a self-
oscillatory one with three species (Fig. 14c).

We can naturally expect that more complex triggers
can also arise in more complicated systems having
crossed relations between producers and consumers.
The trigger behavior of biogeocenoses imposes restric-
tions on anthropogenic action, since when strong enough
influences are exerted, the system no longer returns
to its former state.

3. THE STATISTICAL MECHANICS OF ECOSYSTEMS

A. The theory of Kerner, non-ergodicity of Volterra
systems

The problem of the possible application of the meth-
ods of statistical physics and thermodynamics to bio-
logical systems has been intensively discussed in the
physical literature, since bio logical systems are not
equilibrium systems. : 5 2~5 4 ] Generally biogeocenoses con-
tain a large number of species—many hundreds and even
thousands. Therefore Lotkaclo:l has also proposed using
the apparatus of statistical physics for describing eco-
systems, Ε. Η. KernerC55'5e: l has devised a statistical
theory that uses the apparatus of W. Gibbs for biologi-
cal associations that are described by the equations of
V. Volterra (Eqs. (1.4)).

In the phase space vr, the state of each of the bio-
logical associations constitutes a point, while the state
of an ensemble is an ensemble of points. If we take a
sufficiently large number of biological associations,
then, following Gibbs, we can introduce in the phase
plane a fluid of density p(vu 1%, ..., vn) that describes
the behavior of the ensemble. Since the number of
points in the ensemble does not vary (the fluid is no-
where created nor destroyed), we can write an equation
of continuity:

(3.1)

The last summation in (3.1) vanishes owing to the anti-
symmetry of the au. Therefore the theorem of Liou-
ville is automatically satisfied.

By analogy with statistical mechanics, E. Kerner in-
troduced a microcanonical and a canonical ensemble.
We have the following distribution function for the mi-
crocanonical ensemble:

ρ = ρο8 (G — G o ).

The average over the microcanonical ensemble of the
function

"«S7 Γ1"ςΓ I

is zero. This implies that the average over the en-
semble of Nr is qr.
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We have the following expression for the time-aver-
ages:

I

hm -=- \ —-π—^ dz -*• 0.

Therefore

ment that will wrap itself ever more over the entire hy-
persurface G= const. In this case we can apply statisti-
cal mechanics. Unfortunately, Eqs. (1.4) are not of
this type. t 6 4 1 One can easily derive from (1.4) an equa-
tion for the distance Avr between phase points on two
different trajectories vr and v'r that started from close-
lying points at the initial instant of time:

which implies that

τ

lim-i- f N.dt*=q,.

That is, the averages over the ensemble and over time
of the quantity Nk are equal to one another. However,
as we shall show below, ergodicity still does not hold,
since the averages over the ensemble and those over
time are not equal for the higher moments.

One can derive all the fundamental thermodynamic
relationships by starting with Gibbs' phase integral.
E. Kerner found an analog of the Dulong-Petit law, or
a general rule of "thermodynamic" mixing of biological
associations having different "temperatures. " E. Ker-
ner also constructed curves for the variation of the ana-
logs of entropy and free energy with increasing "tem-
perature. " Goodwin1571 used an idea analogous to that
of E. Kerner for constructing a statistical mechanics
of biochemical systems.

Other statistical characteristics have also been pro-
posed for describing biological communities. It was
assumed here in introducing these characteristics that
communities that are more complicated in structure are
also more stable (as we have seen above, this is gen-
erally not true). For example, Margalef158·593 has pro-
posed using a quantity called the diversity for describ-
ing communities:

If we multiply the left- and right-hand sides of this
equation by qT(e*r - ev'r) and sum over r for small Δ
we get

2 Ρ Γ ? Γ ~~τ~=cons'·
Γ—1

On the other hand, near the steady states for the tra-
jectories themselves, we shall have G=2"=1|3,.gr[l
+ (v,/2)] =const. If the initial values of Ι Δντ I are small
in comparison with vr, then, as we see, the trajecto-
ries will never diverge far enough. That is, there is no
mixing.

As has been shown in1273, the system of equations
(1.1) also proves to be non-ergodic near the steady
state. In fact, let the solution of Eq. (1.1) have the
form

JVi = q, [1 + δ, (()],

where the 6, are small.
new variables xt = δ, V?^
small terms, we get

where

Then, upon introducing the
and neglecting second-order

(3.3)

fl= — Ν (3.2)

Here pt = Nt/N, N=ln

lml N{, N{ is the population of the
i-th species in the community, and η is the number of
species. We can easily see that the diversity differs
from the informational entropy only in the factor N.

MacArthur"-60'611 has proposed a measure analogous
to (3. 2), where p{ was taken to mean the probability of
transport of energy along a given pathway. SvirezhevC62]

has made a critical review of these theories.

Just as in statistical mechanics, the problem of sub-
stantiating E. Kerner's theory rests on proving the
properties of mixing and ergodicity of the solutions of
V. Volterra's equations.

Krylov1·633 has shown that, if the dynamic trajectories
in phase space are unstable at every point, and specif-
ically, two trajectories passing through close-lying
points strongly diverge from one another, then the sys-
tem is a mixing one. Then an initial element of the
phase volume will elongate into a very long and thin fila-

Let AM be the fe-th element of the Z-th eigenvector of
the matrix C

i};

Owing to the antisymmetry of the matrix Cik, we have
λ* = - λ,. Let A*lt = A*(. We shall choose the condi-
tion of normalization of the matrix A in the form

ι . ι

That is, A* is the Hermitian conjugate matrix of A.
We can write the general solution of Eq. (3. 3) in the
form

Η

)= Σ
1 1

Since the average of Nr over the canonical ensemble
is qr, and owing to the additivity of the function
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ν,)

we can easily convince ourselves that the average over

the ensemble of xtXj is zero. At the same time, the

time-average is

τ τ
l im-i f XiXjdi= lim -i- ( XiXf

Τ—σο J * T—<x> l •"
1 0 0

Let us differentiate (3. 4) with respect to time, and

replace on the right-hand sides of the obtained equa-

tions the derivatives dM^y/dt and dM^n^t^/dt by

their expressions from (3.4). Next, let us sum each

of the obtained equations with respect to i. Consequent-

ly, after dropping small quantities of the second order

in Δε and y, we have

mqkl

= 2
klq

prey m preyJ" prey,

4 (0) ι , (0) = 2 Λ,ΐΛ*ι Ι 2 AK'r" (°) Γ φ ° · ^predator ~ /Lr Δ Ε predator Mpredator ^predator · (3.6)

Thus the ergodic theorem is not satisfied. The given

example is instructive, since systems of equations that

are analogous to Volterra's systems, e.g., those de-

scribing the behavior of coupled chains of harmonic and

anharmonic oscillators, are widely used in physics.

B. Choice of macroparameters and equations for the

trophic levels

In spite of the fact that direct transfer of the methods

of statistical physics to study biocenoses faces diffi-

culties, one can construct a certain theory of the mac -

roquantities that describe the behavior of the system

as a whole, e.g., construct equations for the trophic

levels, by using the equations for the species.

This is important for evaluating the use of the equa-
tions for the species to describe the dynamics of the
trophic levels. Such a use of predator-prey equations
is widespread in constructing portrait models of eco-
systems.

Let the system of equations that describes the dy-

namics of the biomasses of the individual species of

orgnaisms have the formces:l

η

"= ε 'prey ̂ Prey " Σ V P r e , M P r . y M p r , d i t o r ,

dM\Ttiatm _ i

dt p r dator ^" predator

η

+ Σ Υ Predator ̂ 'predator M, r .y . (3. 4)

Here Μ P r , y is the biomass of the i-tti species of prey,
while M p r e d a t o r is the biomass of the i-th species of
predators, c'prey and ε p r e ( l a t o r are respectively the birth
rate of the prey and the death rate of the predators,
the yPr,y are the coefficients of consumption of prey by
the predators, and the y predator a r e the transport coef-
ficients of the biomasses of the prey into the biomasses
of the predators. All the coefficients are assumed to
be constants greater than zero. Let us assume that

prey =

ii _

r + Δ ε
fprey > f predator "" f predato r + " ε ppredator >

Here Mpr,y = 2Li M'pr.y and Mpr,dilt0I. =l"ul Mi

vttMm are
the biomasses of the trophic levels, and

"* prey = ~ ε predator + ^predator ™*prey > ^"predator

= Ε prey ~ ^prey ™predator>

•i-prey = -Wprer = I Jf (Mw,, Μ ρ Γ β 4 ιΐο Γ )

+ (^prey ~ Μ^Μ^,^Ιοϊ) (Aipredator + Mprey)J ,

[ d —

~^£ (^predator ^prey)

or-Wprey) (^predator + Μpr,T)J .

(We have also replaced in Eqs. (3. 6) the terms like
Σ",π=ι Aypr,yAiPr,yMpr,dator and J^ y = 1 AyPi.<latoI.M

i

jr.<lator

x M p r e y by the expressions that we get from (3. 4) by
summing the latter over i).

Upon differentiating (3. 6) with respect to time, and

replacing the expressions Z?=iAe'prey^prey a n d Σ"=ι
x Δε'predator^predator o n t h e right-hand sides of the ob-

tained expressions by their values from (3. 6), we get

equations for the biomasses of the trophic levels:

iprey + (-™prey/-^prey) -̂ prey + Μ predator-^prey »prey) -̂ prey + Μ predator-^prey

ipredator = V^predator/^predator) ^-predator + ̂ prey-i'predator·

(3.7)
We see that the given system of equations is not a
Volterra system of equations of the predator-prey type.
As we shall show below, it has qualitatively new prop-
erties.

In the general case, in order to derive the equations

for the macroscopic quantities (i.e., for the biomasses

of the trophic levels) from the equations for the micro-

scopic quantities (i.e., from the equations for the spe-

cies), we must systematically replace the one set of

time functions A/'pr.y(i) and Mp r,d a t o r(i) by other time

functions, respectively by

ey, &„„, MBTtr, ... , d"'1 Mwn/df"1,

and

l y - ^ p r e y + A y p r e y j Ύ predator - ^predator + ̂ Ύ predator · ( 3 . 5 ) -^predator» ^ p r e d a t o r ) -^predator) • • • , d" I

Here t p r e y and e mtlUtm are the averages of the quanti-
t i e S ε 'prey a n d Epredaton whi le y B r , y and ypr.dator a r e

the averages of the quantities y ' p r, y and y predator- More-
over, ΔβρΓ,τ, Δε|,Γ,ω[1Γ, Δγρί. τ, and Δγ ' ^ , . are much
smaller than epr,y, t,niitm, ypr.y and ypr.dator» respec-

Let us study the solutions of Eqs. (3. 7) near the
steady states

^"predator
 =
 (

 ε
 prey' ̂ prey) +

 v
t ̂" prey

 =
 (

 ε
 pr edator' ^predator) + β >

tively. where μ and ν are small increments.
(3.8)
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Since M p r e ( U t o r /M p r , d a t o r and Mmn/Mmn are of the zero
order of smallness with respect to μ and v, while
^predator a n d Lmn are of the first order of smallness,
we can neglect the second terms on the right-hand side
of (3. 8) near equilibrium. (It proves effective to apply
the Krylov-Bogolyubov method [ e e i far from equilibrium.)
Then we can easily integrate (3. 7), and we have

^prer = -̂ Λ* prery -^predator =-"-^"predator j (3.9)

where A and Β are constants of integration. Compari-
son of (3.9) and (3.6) shows that

S=Z]Ae i r , d a t O ri predator ,

which can be determined by starting with the initial con-
ditions.

Upon using (3. 8) and (3. 9), we get the equations for
μ and v:

β + e

V -t p r . r

or) ί> = ΑγίηΛίίοτβ,

A = " #>W "· (3· 1 0 )
The characteristic roots of this system, with account
taken of the smallness of Byprer and Αγντη as compared
with e p w Hpredator» c a n be written in the form

predator ε,r.y, ^3,4 = ± 7( l/2) i4By p r , d a t o r y p r w .
(3.U)

Thus, the dynamics of the biomass of the trophic lev-
els can be described as a sum of two oscillations, a
fast one and a slow one.

Figure 15 gives the results of computer calculations
of the dynamics of the biomasses of individual species
and of the entire lower trophic level for the case of a
two-level model system having three species on each
of the levels. We can distinctly see the fast and slow
oscillations. The lack of mixing is manifested in the
fact that the phase differences of the fast and slow os-
cillations hardly vary, but only oscillate weakly about
certain mean values. In the case where the ecological

VI/ l/ lAA/W^^

ZD

δΖ 6if SO SB № 128 « * t

FIG. 15. Variation in the number of prey for a two-level
trophic system for the case of weakly diverging coefficients
(three species per level). Values of the coefficients: ε in/

= 3±0.3, e * r e d a t o r = l ± 0 . 1 ; γ ^ ^ = 0. U ± 0 . 02, &
±0.004. Steady-state values: Λί^.φ = 10, Λί^.φ

= 16, ΛίρΓβ,= Σ3=1Λί*ΡβΓ.

I Months

FIG. 16. Variation of the biomass of the phytoplankton in the
surface layer of the water of the Ivan'kovskoe reservoir during
the vegetative season of 1969. 1—diatoms, 2—green, 3—
pyrophyta, 4—others.

coefficients are close together, as is quite evident from
the diagram, the fast oscillations for the species that
belong to a single trophic level coincide in phase. In
this regard, the pattern of seasonal variations of the
biomasses of different planktonic algae of the Ivan'-
kovskoe reservoir (Fig. 16) is of interest. " " The os-
cillations shown in the diagram correspond to the fast
oscillations visible in Fig. 15. We can easily see that
the maxima of the biomasses for the different species
of unicellular algae prove to be synchronized, which
confirms the hypothesis of close-lying ecological coef-
ficients.

C. Fokker-Planck equations for describing populations

A serious defect of the deterministic models is that
they ignore the natural biological variability under the
influence of random factors of the environment. One
can overcome this defect by replacing the constant pa-
rameters of the deterministic equations that we have
studied by random time-dependent functions.

On the other hand, the population interactions within
the system can be accompanied by changes in the dy-
namics of the biomasses of the species entering into the
ecosystem owing to random migrations and immigra-
tions. In taking these factors into account, studies of
the behavior of the trajectories in phase space or in-
vestigations of the stability of the steady states or of
the limit cycles when acted on by an individual infinitely
small perturbation prove to be totally insufficient. The
stability of the system can be estimated far more ade-
quately by using the parameter termed the lifetime of
the ecosystem, i. e., the mean time during which the
species composition of the system does not vary in
spite of random perturbations.

Here ecosystems of the Volterra type, i .e . , those
describable by Eqs. (1.1), are unstable because of
their non-gross nature. We can see this easily with
the example of a predator-prey system (Eqs. (1)). On
the phase plane ΝχΝζ, the solutions of Eqs. (1) have the
form of concentrically-lying closed trajectories. If,
e. g., the prey can migrate randomly into the ecosys-
tem or emigrate from it, then this process will be
represented on the phase plane NXNZ as a random shift
from a trajectory defined by a certain value of the pa-
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rameter G to a trajectory having another (close-lying)
value of G. Whether we find the system at a given in-
stant of time on any particular trajectory Gu ..., Gk

will be determined probabilistically.

Since the trajectory where we find the system is de-
termined only by chance, the probability of finding the
system is distributed over an ever larger number of
trajectories in the course of time. Thus the probability
of finding the system on a trajectory having a large
value of G increases. However, these trajectories pass
near the coordinate axes. When the phase point proves
to lie at a distance less than unity from a coordinate
axis, the system becomes degenerate, since a species
cannot exist in a number smaller than one individual.
It was shown inC683 that the lifetime of a system of the
predator-prey type declines hyperbolically with in-
creasing dispersion of the perturbing factor.

For the gross systems, e.g., for those whose phase
portraits are shown in Fig. 5, the lifetime will be de-
termined by the rate of diffusion of the phase point from
a stable singular point or a stable limit cycle as a func-
tion of random perturbations and of the size of the per-
turbing factor.

If the random perturbations are small, it is con-
venient to use the apparatus of the Fokker-Planck equa-
tions for studying the probability of finding the ecosys-
tem in any particular state. A Fokker-Planck equation
that was constructed on the basis of the deterministic
equation of Verhulst has been studied in detail inC27].
It is interesting to note that it coincides in form with
the Bloch equation that is widely known in solid-state
physics.

CONCLUSION

The biophysics of ecosystems has posed for physics
an entire set of new problems. First of all, there is
the study of selection rules in living systems. These
selection rules act from the molecular level up to the
level of ecosystems, and they involve the nature of the
material cycle. Therefore an understanding of the bio-
physical properties of organisms and their characteris-
tics can be gained only on the basis of a deep under-
standing of these selection rules. The impact of man
on the environment alters the nature of the cycle of the
chemical elements in the biosphere, and therefore pre-
viously stable systems cease to be so under the new
conditions. Apparently the trigger properties of living
systems play an especially important role here.

The importance of applying the methods of non-equi-
librium statistical mechanics for understanding the
theory of evolution of biological systems has been dis-
cussed repeatedly in the physical literature.C 5 2 : l The
study of ecosystems also opens up a large class of ob-
jects that occupy an intermediate position between those
studied by pure dynamics and by statistical physics.
These systems do not obey the ergodic theorem, and
they do not possess mixing properties. Yet one can
introduce macroparameters to describe them and apply
the method of equations of the Fokker-Planck type.
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