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Modification of a magnetic field by plasma mechanisms
S. I. Valnshtein

Siberian Institute of Terrestrial Magnetism, Ionosphere, and Radiowave Propagation, Siberian Division,
USSR Academy of Sciences, Irkutsk
Usp. Fiz. Nauk 120, 613-645 (December 1976)

The review is devoted to the question of the rapid modification (generation, damping, etc.) of a magnetic
field in a collision-dominated plasma, when the frequency γ of the process is lower than the electron-
collision frequency v. The universally employed approach—the dynamo theory—is discussed in Chap. 2.
The simplest motions that lead to generation, to rapid annihilation of the "antidynamo", and to a
modification of the topological-pumping type are indicated. The discussion concerns problems of the
turbulent dynamos (where a functional approach is used) and of the nonlinear dynamo. In the latter case,
the Gibbs ensemble is used; a reverse cascade of magnetic and kinetic energy into the region of small wave
numbers is observed. Other plasma mechanisms are discussed, namely the modification of the field by ion
sound, the weakly-ionized plasma, and the solid-state plasma (dynamo based on thermal effects)—Chap. 3.
It is shown that the modification can be quite effective. Discussed in Chap. 4 are high-frequency
oscillations (whistlers, Langmuir oscillations) and their role in the modification of the field. The indicated
mechanisms can be effective under conditions of the solar chromosphere.
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1. INTRODUCTION

The question of modification of magnetic fields is im-
portant for many applications. Thus, after the discov-
ery of the magnetic fields of the sun, the stars, and the
interstellar gas, the question arose of the origin of these
fields. Another aspect of this problem is the rapid de-
struction or annihilation of these fields (solar flare, the
frontal point of the magnetosphere, the tail of the mag-
netosphere, ζ -pinch, etc.). As a rule, the plasma is
not strongly collision-dominated here, so that the dissi-
pation is low. The magnetic field is "frozen-in" into
the medium, and the annihilation proceeds quite slowly.
How are we then to explain the observed rather rapid
modification of the field?

The "classical" approach to this problem is that of the
dynamo theory, in which the entire responsibility for the
modification is placed on the hydrodynamic motions.
The latest review of this problem was published in our
country in 1972.C1]

Abroad, reviews were published by Stix, t21 Gubbins,C3]

Soward and Roberts, [ 4 ] and Radler.C s l Since that time,
major, principally qualitative, changes took place in the
theory. In recent years, a tendency to "come down to
earth" has been noted. On the one hand, papers were
published using a simple velocity field that lends itself
to laboratory simulation,Ce-131 and on the other hand
there are works that do not confine themselves to the
magnetohydrodynamics approximation and use a larger
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group of plasma mechanisms for the generation and
modification of the field. The range of applications has
consequently widened to such an extent that it has be-
come possible to verify the theory in laboratory experi-
ments and even to use it in technology. Papers were
also published on nonlinear MHD turbulence treated by
using Gibbs ensembles. C 1 4~ l e ] All this is reflected in a
most unsatisfactory manner in the foreign reviews. In
addition, as a rule, the reviews are devoted to applica-
tions: the solar cycle, the terrestrial dynamo, etc. In
the present article we attempt to describe new physical
ideas. The applications will be described after the ex-
position of the physics itself: without applications,
ideas become meaningless. The results contained in
the reviewCl] will, of course, not be repeated except
where necessary to make the text coherent and to clarify
the exposition. In this case they will be reported quite
concisely. Thus, the scope of this article is broader
than in reviews devoted to applications. On the other
hand, we confine ourselves only to collision-dominated
plasma, when the frequency of the field is lower than
the frequency of the collisions (the oscillation frequency
can be even larger than the collision frequency). The
procedure and the approach in the usual dynamo theory—
the MHD approximation (Ch. 2)—has by now been well
investigated and treated in the reviews. We shall there-
fore report only the results. To the contrary, the modi-
fication of a field by ion sound, thermomagnetic effects
in a solid-state plasma (Ch. 3), and the generation by
Langmuir oscillations (Ch. 4) are based on an approach
developed only in recent years. This is precisely why
the method and formulation of the problems of the sec-
ond type will be treated in detail, even though the num-
ber of papers reviewed in Ch. 2 alone is incomparably
larger than in Chs. 3 and 4, which constitute approxi-
mately half the paper.

2. NEW TOPICS IN THE "OLD" THEORY

A. Simple generators

Searches for simple models are necessitated by two
circumstances. First, there are many restrictions on
symmetrical models (Cowling,C17] Braginskii,Cl8] Zel'
devich t l 9 ]), i. e., axisymmetric models and the like
must be rejected. This immediately raised the ques-
tion: what kind of not too complicated model can produce
generation? Second, simple models are usually natural
and frequently realizable in nature. Thus, the Herzen-
berg dynamoC201 is realized by two rotating pairs (the
rotation axes of which are not parallel to each other)
immersed in a conducting liquid. The most natural ap-
proach to dispensing with symmetry was used by Bragin-
skii in c i e ], where he considered models that deviate
slightly from symmetry. In recent years this theory
continued to develop effectively (see, e. g., t 2 l ~ 2 9 3 ) , and was
used with particular success to explain the earth's mag-
netic field and its variations. It was noted that the mo-
tion that causes deflection from symmetry and produces
rotation has helicity i. e., the velocity ν correlates with
curl v. We shall have an opportunity to verify below
that the correlation ν · curl v, i. e., helical motions,
plays in general an important role in the theory of gen-
eration. Thus, RobertsC l 0 ] considers a velocity field

v = {cosy - cos2, sinz, siny}, which, as can be easily
verified, is helical: v~ curl v. It is therefore not sur-
prising that Roberts obtains generation. An exact sta-
tionary solution for a helix was obtained by Lortz.C 9 ]

Ponomarenkoci l ] obtained a nonstationary, i. e., an ex-
ponentially growing, solution for the helical model shown
in Fig. 1. The considered models are by far not exotic
in astrophysics. In fact, the rotation of a celestial body
alone suffices to explain the correlation ν · curl v*0.
The idea of this explanation dates back to the work of
Parker. t 3 0 ] Let us consider the convective zone of a
star; if we take into consideration the density gradient
Vp (the decrease of the density from the interior to-
wards the surface), then it is clear that a rising object
will tend to expand. The Coriolis force produces a torque
for a given cell, and this cell should rotate, so that
v· curlv~ ω · vp, where ω is the angular velocity. It is
easy to imagine that a similar relation ν · curl v~ ω · Vp
is observed in the descending case, so that a predomi-
nant right-hand or left-hand helix is produced (depending
on the sign of ω · Vp). The foregoing arguments give
grounds for hoping that waves in a rotating compressible
bounded medium (such as a celestial body) have helicity
and are consequently of interest for the dynamo. Indeed,
the Rossby waves, which are produced just in a rotating
body, are invoked to explain the solar cycle and genera-
tion in general. C3l~353 It was also natural to investi-
gateC2e>3e~*1] the convective instability of a rotating liquid
(generally speaking, including a homogeneous superim-
posed magnetic field). The authors reach the conclu-
sion that a rotating liquid, and the presence of a main-
tained temperature gradient, is convectively unstable
precisely to such perturbations, which in turn generate
the field. It is appropriate to mention here also the
role of tidal motions, to which attention was called by
DolginovC42'431 as a possible field generator in binary
stars and planets (the tidal action of satellites or of the
sun). Finally, closely connected with the tidal mecha-
nism is the precession mechanism. Incidentally, the
authors of1-443 have expressed doubts concerning the ef-
fectiveness of its action in the earth's core. There ex-
ist, however, non-helical models. For example, one
toroidal Tverskoi vortexC451 excites a field (with an axi-
symmetric vortex exciting a non-axisymmetric field,
so that no contradiction of the theorems of Cowling and
Braginskii occur), and a system of two vorticesCel can
likewise serve as a generator. The latter model comes
closer to the convection model: it is assumed that the
convective cells are analogous to toroidal vortices. A
modification of two rotating Herzenberg spheres com-

1
FIG. 1. Helical motion—field generator. A cylinder im-
mersed in a conducting medium (shaded) executes simulta-
neously rotational and translational motions. The helical tra-
jectory of an individual point of the cylinder is marked by the

I
1
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prises two cylinders rotating about axes that are not
parallel to each other. The departure from symmetry
is realized in this manner (Fig. 2).C 7 ] Another modifi-
cation consists of two rotating spheres in a vacuum.C461

An application of this model suggests itself right away—
binary stars. It appears that generation of this kind can
also be effected in a laboratory and used in technology.
One can attempt to depart from symmetry only in a mag-
netic field, i. e., using symmetric motion but an asym-
metric field (just as in the Tverskoi modelU 5 ]). Let us
simplify the motion to the utmost. The simplest non-
rigid-body motion of a continuous medium is shear, for
example, differential rotation. Assume that there is a
rotation axis ζ and that the velocity in the cylindrical
system is of the form vr =vs =0, vv =v(r). This motion
is two-dimensional, so that there comes into play a
theorem by Zel'dovich,Cl9] which states the following:
no field can be amplified without limit by two-dimen-
sional motion (there is no contradiction with the Cowling-
Braginskii theorems, since the field is not axisymmet-
ric). This theorem,C 1 9 ] however, was proved for an un-
bounded conducting medium. If we consider a medium
that is bounded with respect to r, or in other words if
it is assumed that σ depends on r, then the absence of
dynamo instability cannot be proved.C13]

It is appropriate to recall here that all the restriction
theorems are proved in the following manner: The in-
duction equation

(1)

is written in a coordinate system that is natural for the
given geometry, and an attempt is then made to sepa-
rate one of the three equations for the field components
from the others. If it is possible to separate at least
one equation and its boundary conditions from the re-
mainder, then it is possible to construct a restriction
theorem in practically all cases. This rule is probably
difficult to verify. It was found "empirically." In the
two-dimensional case, the Hz component of the field is
separated.C l 9 : If now σ depends on r, then in the equa-
tion for the Hz component (1) there will be added a term
dvm/dr (dHz/8r - dHr/dz), and now all the field compo-
nents are interlinked. The a{r) dependence can be due
to the very fact that the body is bounded, and one can
consider in particular a model wherein <τ = σ0 inside the
cylinder and σ = 0 (vacuum) outside the body. Figure 3
shows a solvable model: one cylinder rotates inside
another. In this model, the angular velocity of the cyl-
inder changes jumpwise.

However, if the whole situation is confined to inhomo-
geneous electric conductivity, then it is easiest to real-
ize in experiment a model wherein vacuum (or an insu-

FIG. 3. Simplest generator. Two
cylinders with axes parallel to the
ζ axis; the inside cylinder rotates.
The ζ axis is perpendicular to the
plane of the figure.

lator) is located between cylinders—in which case there
will be no friction between them (Fig. 4). For large
Rm =u>r\/vm and for a solution in the form

II = f (r) cxp (Et ikz)

f(r) is expressed in terms of modified functions / and Κ
of the argument βτ in the internal cylinder and κ r in the
external one; A r / r o « l , (32= x2+(imii/i/m), £ = ym(x2

-kz). Matching the solutions in the vacuum region, we
obtain the following dispersion equation:

+ ̂ [ > + ('"»2-1>(1+-f )]= 0 ·

We putiV=(4w2 + 3)/4, and then at τοβ~ Ν, Rm » Nz/m
and ΛΓ» 1 we get an unstable solution:

Re Ε = \-mNVrl = io

Unfortunately, it cannot be regarded as proved that
the two models considered above for the differentially
rotating cylinders yield indeed an increasing solution.
The point is that the author has attempted to find an un-
stable solution by using a continuous velocity field, i. e.,
without jumps, invoking the WKB method, which is ap-
plicable at Rm » 1. The result turned out to be negative,
and there were no growing solutions. The same is con-
firmed by the numerical experiments of M. Stix, who
used a continuous velocity field. The asymptotic expan-
sion for the Bessel functions at parameters correspond-
ing to an increasing solution converge poorly, and this
may explain the affirmative result oim. Actually, there
is no generation at Rm« l, for in this case the problem
becomes planar and does not "feel" the cylindrical ge-
ometry. In all probability, in this case the excitation
sets in at Rm=:l, when the cylindrical geometry must
come into play. This possibility can be verified in the
following manner. The equations for the Ηφ and Hr

components are made closed by the boundary conditions,
so there is no need to consider the behavior of the Ht

component. These equations are

FIG. 2. Two rotating cylinders, the axes of
which are perpendicular to each other, are
capable of generating a field.

FIG. 4. Generator that can be easily realized
in experiment. The Inner cylinder, of radius
r0, rotates; a gap Ar exists between the inner
and outer cylinders.
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dHr dHr , / . „ Η, 2 ^ Φ \

where ω is the angular velocity. The conditions on the
boundary with the vacuum at kR « 1, H~ expi(kz +m<p),
where R is the radius of the cylinder (Fig. 3), are

ar-ai%, ffr+_£T«L for /?.

In the absence of rotation, the eigenfunctions b r e a k up
into two types of h a r m o n i c s :

1) H, = -^rIm for). Hv = -iDI'm (κ/), / „ . , (κ,Λ) = 0.

2) Hr = C/m+1 for), Hv = - iC7 m + I for), /m (κ,Λ) = 0.

We now exclude the rotation, and let ω vary in contin-
uous fashion; at Rm « 1 the motion will influence only
the lowest h a r m o n i c s , while the higher ones attentuate
too rapidly (i. e . , the d e c r e m e n t γ{ due to the ohmic
damping is much l a r g e r than the growth r a t e due to the
motion).

We take into considerat ion only two harmonics at m
= 1: a lower one of type 1) with eigenvalue γ0, and a
lower one of type 2) with eigenvalue y t . The h a r m o n i c s
that a r e rec iproca l (dual) to these two bas ic h a r m o n i c s
are

Hr = —Im v = i/m+1 for)

and

We expand the solution in the two basic harmonics,
multiplying the scalar equations for Hr and Ηφ by the
dual harmonics and integrate with respect to r from 0
to R, and thus obtain

R Η

a± = 1 [ f (•>/„,_, for) 7m+1 for) dr ± j ± ^ Im for) 7m+I for) * · ] ,
ο ο

Η

d = j 7m_, for) /m+1 for) dr,
ο

The described system has an unstable solution if
ωχγΒω/dr and γο<<ύ<γι (more accurately ω^ν>Ό>Ί
avm/Rz, i .e. , R m > l ) .

In this case the growth rate will be close to ω. It ap-
pears that this is precisely the situation realized in cos-
mic electrodynamics, i. e., the growth rate is of the
order of the reciprocal time of the cell rotation v/l,
where I is the characteristic scale of variation of the
velocity. In fact, if div v=0 and ν is independent of t,
the eigenvalue problem takes the form JBH = (H · V) V
- (v · V)H + vm VZH. For an increasing harmonic we have
either (H · v) v» ^mV2H (then the scale of the field is
δ-lRnr1'2, E~v/D, or else (v· V)H= i/mV2H (then 6

-iRnr 1 , E*vRm/l), with Rm=vl/vm. The second case,
however, is unphysical: neglect of (H * V)v in compari-
son with (v · V)H means in fact that we are dealing with
the heat-conduction equation: EH = - (v · V)H + vmV*B,
and the dynamo is impossible. Therefore the unstable
harmonic will vary slowly in a direction parallel to v,
(v · V)R*Hv/l, and will vary rapidly in the perpendicular
direction, with a characteristic dimension δ (see Fig.
10 below); consequently, Ε α v/l and does not depend on
δ. We stipulate that this statement is still not univer-
sal. This is seen at least from the fact that the real
situation is not characterized by a single scale, such as
the dimension of the convective cell, of the entire body,
of the convective zone, etc. In addition, this situation
will certainly not take place if the field does not depend
on the direction parallel to the motion of the plasma
(e.g., differential rotation with axisymmetric field, or
Hartmann flow with a field that is independent of direc-
tion parallel to the walls of the channel).

The example shown in Fig. 3 simulates the differen-
tial rotation of a cylinder and is close in a certain sense
to the model of a differentially rotating galaxy. What
is the situation with a sphere? Assume that we have a
sphere and that v9 depends on θ and r . Will generation
take place? Unfortunately, no. The point is that in this
case the component Hr is separated, and no σ(τ) depen-
dence or even μ^) dependence (μ is the magnetic per-
meability) will change this circumstance. Let now σ
depend on the latitude θ (this may be due to the tempera-
ture difference between the equator and the pole, or, if
σ is governed by turbulence, it may be due to the depen-
dence of the intensity of the turbulence on Θ). Now a
term containing He is added to the equation for Hr, so
that the restriction is lifted. To be sure, no such prob-
lem was considered, and we can only expect that ampli-
fication of the field is possible. The already mentioned
independence of the increment on σ suggests that the
relative amplitude Ι νσ |/σ of the variation of σ is not
essential. All that matters is that the restriction on the
generation is lifted. The value of σ and its variation
will affect only the form of the instability of the mode,
which changes effectively over a scale Jvmu. The solu-
tion of this problem for a sphere would be of importance
in the explanation of the magnetism of the sun (for which
a dependence of vv on θ is directly observed) and for
the earth's core. Despite the abundance of mechanisms
that lead to generation, at the present time there exist
only two universally accepted dynamo models (i. e.,
models used directly to explain the solar cycle, the ter-
restrial dynamo, etc.). These are the Parker modelC30]

in which the aforementioned helical convection serves
to generate the poloidal component from the toroidal one
(the toroidal component, on the other hand, is "drawn
out" by the differential rotation from the poloidal one),
and the Braginskii modelCl8J of an almost-symmetrical
dynamo.

B. Other types of modifications

The most essential feature of the modification is the
decrease of the scalar field as a result of the motion.
Can we attempt to use this circumstance to explain the
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annihilation of the large-scale fields? The motion leads
to an effective decrease of the scale, and then the field
is simply dissipated as a result of ohmic losses. The
most convincing demonstration of this phenomenon is
probably that of Weiss.U 7 ] The induction equation was
solved numerically for two-dimensional convective cells.
The latter first tangles up the large-scale field, produc-
ing a "fine structure, " and then expels the field from
the region where such cells are present. To be sure,
in this case the field is in final analysis merely expelled
and not annihilated. Annihilation of the field can be ob-
tained in fact by simple motion of the plasma: let 9/82
= 0, Hl=0, v,. = 0 (planar case). The equation for the
vector potential A of the field is (curl A = H)

(2)

and the vector A has no other components. Let ν be in-
dependent of t and have the form of shear motion, for
example v = (v(y),0), w(y)>0 aty>0 and v(y)<0 at y <O.
Then, by specifying at y =±L boundary conditions cor-
responding to the absence of an external field source,
we can change over to the eigenvalue problem A,
=A )

(SchrBdinger equation with complex potential). So long
as a system of eigenfunctions (3) is complete,C48] it re-
mains for us only to find Eo for the lowest harmonic,
i. e., the one that attenuates most slowly (there are no
growing solutions, as can be seen from the similarity
between (2) and the equations for the temperature in a
moving liquid). Of course, interest attaches to the sit-
uation when Rm » 1. Let the initial scale of the field
perturbation be ~ I, and then k = 1/1. It is useful to sep-
arate Eq. (3) into its real and imaginary parts, which
are of the same order of magnitude (this is seen from
the fact that the solution of (3) can be sought by the WKB
method, and it exists). Further, in order for the right-
hand side to cancel out the left-hand side (otherwise the
order of the equation changes), the characteristic scale
of the function A in terms of ζ must not exceed δ
-Jvjvk, i .e. , | £ l > vm/6z = vk and l£ol ~v/l. A rig-
orous solution1123 confirms this conclusion.

We have purposefully described the formal estimates,
in considerable detail since the result is not self-evi-
dent. In fact, physically this result immediately con-
tradicts the intuitive "freezing-in" concept. The point
is that l/v is the time of deformation of a field with scale
/, and it might seem that the field should be deformed
by the motion during a time t» l/v. Figure 5a shows
the initial fluctuations of the field while Fig. 5b shows
their deformation in a time ~ l/v. Strictly speaking,
the dissipation has already been included and leads to
smoothing out of the "corners" of the field, where the
gradients are maximal. Further stretching of the force
lines leads to a new smoothing, etc. Thus, the "freez-
ing-in" is violated immediately, during the initial stage.
The importance and necessity of taking into account the
finite electric conductivity in neutral-layer problems
were indicated also inC49]. For a collisionless plasma

FIG. 5. Force lines of the field (solid lines). The dashed lines
reflect the dissipation-induced smoothing of the field "cor-
ners"; the arrows indicate the plasma motion.

the field-dynamics equation also takes the form (1), but
vm=0: there is no dissipation. Nonetheless, it is pos-
sible to use here, too, the fact that the scale of the field
decreases. The appearance of steep field gradients
turns on an anomalous dissipation: when the current
velocity exceeds the velocity of the ion sound (if Te>Tit

where Te and Tt are the electron and ion temperatures),
ion sound is excited and leads to the anomalous diffusion.
In final analysis, the shear motions of the plasma lead
to a decrease of the scale and to formation of a current
layer. InC50], this process was calculated under the con-
ditions of solar wind, where the velocity shears are ob-
served, and the condition Te>T{ is also satisfied. In
the region around which the earth's magnetosphere
flows, there is a particularly steep velocity gradient (a
decrease of the velocity from that of the solar wind to
zero over a dimension comparable with the earth's mag-
netosphere, or even less). Figure 6 shows the origin
of the magnetic inhomogeneity in the surrounding-flow
region. If the magnetosphere-field vector is directed
opposite to the field of the adjacent inhomogeneity, as
shown in Fig. 6, then the current layer can be directly
adjacent to the magnetosphere, and crossover of the
force lines is possible at the point A.[5l]

A principally new modification mechanism was pro-
posed inC53]. Consider the convection produced by Ben-
ard cells. The plasma rises inside the cell (along the
ζ axis) and descends along the edges. It is easy to vis-
ualize cells of this type, adjacent to one another, form-
ing a horizontal row and filling the (x, y) plane. It must
be borne in mind that the descending medium in the en-
tire system is topologically connected, whereas the ris-
ing parts of the plasma are separated. We consider now
the behavior of a large-scale magnetic field which is
horizontal at the initial instant, in the presence of such
an ensemble of cells. The upper force lines will be
shifted towards the edges of the cells and then will glide
entirely downward towards the base. On the other hand,
the lower force lines have no place to go, since they
will be drawn upward by the topologically unconnected
parts of the liquid, where they will only bend into loops,
so that on the whole they will not be displaced. This

FIG. 6. Interaction of a passing inhomogeneity of the solar
wind with the earth's magnetosphere. Crossover is possible
at the point A.
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mechanism operates as a pump, pumping the field into
the lower part of the convective zone (the sun). We
shall return to a discussion of this mechanism in Sec.
(C) in connection with the question of turbulent convec-
tion.

C. Turbulence: Kinematic formulation

We shall ignore completely the electromagnetic
forces, assuming the motion to be specified. This is in
fact the kinematic formulation, which is justified if the
fields are weak. Assume that turbulence is excited in
the liquid. What happens to the large-scale field (i. e.,
whose scale is L» I)? There will operate the principal
and therefore well known effect—mixing or turbulent
diffusion. In other words, the average field satisfies
the equation 8 (H)/8i = XV2 (H), where χ, in analogy with
physical kinetics, is estimated at X = vl/3 (it is more
convenient to interpret I here as the "mean free path"
of the convective element). Piddington153'541 expressed
doubts concerning the action of turbulent diffusion:
first, in his opinion, diffusion according to (1) calls for
annihilation of fields of opposite signs, in contrast to a
scalar admixture in the turbulent stream; second, for
this annihilation to occur the scale of the field must be
small. With respect to the first objection, we note that
the equation for the gradient of the scalar admixture is
similar to (1), in the two-dimensional case they simply
coincide, and the turbulent smoothing of the admixture
gradient is an experimental fact. With respect to the
second objection we were able to verify in Sees. (A)-(B)
the extent to which the motion leads effectively to a de-
crease in the scale of the field.

The correlation tensor of the velocity field is of the
form (VfVj) =Arirj +B6iJ, where r is the distance be-
tween the correlation points. Rotation of a celestial
body leads, as already mentioned, to the appearance of
the correlation (v · curl v), and the tensor (vrVj) acquires
an additional rotation-invariant (odd, gyrotropic) term
tijfrfC(r) (helical turbulence); the equation for the field
takes the form

(4)

The entire procedure reduces to the resolution Η
= (H)+h, to the solution of the linearized equation 9h/9i
= curl[vx <H>] + vmvzh, and then to calculation of the qua-
dratic correction. Credit for the development of this
trend belongs to Steenbeck, Radler, and Krause. 1 5 5" 5 7 3

An equation of the type (4) is derived also for a Markov
process, when the velocity field is white noise. [ 5 8 ] This
approach has been recently named mean field electro-
dynamics.

It can be shown that Eq. (4) has growing solutions
(the so called a effect). Doubts concerning these results
were advanced by Lerche, [ 5 9 · β ο : ι but this is of course due
to a misunderstanding: Equation (4) can be derived rig-
orously, as a theorem, in two cases: 1) small Rm, but
large dimension of the body; 2) a Markov process (more
concretely, r«l/v, where τ is the correlation time).
All that are used here are the most general and funda-
mental properties of correlation or spectral functions.

t ions . C e l l K 1 We recall that according to Sec. (A) the a
effect manifests itself not only in rising cells, but also
in the descending ones. This is seen formally from the
derivation of (4): what is important is the very predom-
inance of the left-hand or right-hand screw, and not the
direction of motion of the cell. In this connection we not
note that a number of workers1 5 3 'M 1 have stated that the
a effect is produced if the number of rising cells is
larger than that of the descending cells, or vice versa,
which raises, in Piddington's opinion,C533 a difficulty
when it comes to applications. This statement is, of
course, also a misunderstanding.

The most important for applications is the case Rm
» 1. At the same time, as a rule, the condition τ « l/v
is not satisfied, and this not a Markov process. It is
therefore natural to attempt to dispense with the rep-
resentation τ = 0 (δ-correlation in time) and to consider
the next approximation in the parameter τ/(1/ν). An
analogous formulation of the problem arises in the
theory of the scattering of electromagnetic waves by in-
homogeneities.Ce4] The Markov approximation is ob-
tained if one sums selectively the perturbation-theory
diagrams of Eq. (1). It is therefore natural to sum first
a more extensive aggregate of diagrams, obtaining by
the same token the next approximation. There is a
more concise functional approach, but too unwieldy to
be reported here; we present only its main ideas and the
results, referring the reader toC e 5 1 for details. The
basis of the approach is the introduction of the "Fourier
transform" of the probability distribution function

G = (exp (i ( ufij dxdt)),

where u} is the velocity and Q} is the argument, and
analogously for the magnetic field. Taking the varia-
tional derivatives, we obtain different correlation mo-
ments, and in place of (1) we have an equation for G in
terms of variational (and ordinary) derivatives. The
solution is sought in the form of an expansion in a func-
tional series. If we restrict this series to the minimum
number of terms, we obtain directly the Markov ap-
proximation. In the next approximation we obtain a new
result. Qualitatively, however, this result confirms
the old one: without gyrotropy generation is impossible,
the coefficient of turbulent diffusion does not differ in
order of magnitude from the old value x = vl/3. We note
that the stochastic model considered inCS9] is incorrect
(seeC131).

We turn now to the topological pumping of the field
described in Sec. (B). We consider turbulent convec-
tion formed by Benard cells. In other words, let the
convective cells with the topology described in Sec. (B)
be not a stable but a long-lived formation. An example
of such a convection is the convective zone of the sun:
sometimes the upper convective cells are set in corre-
spondence with granulation and supergranulation, and
the lifetime of such a cell is close to the lifetime of the
rotation of the cell, i. e., «l/v. This can be called ar-
bitrarily "turbulence, " since the process is random in
time (although it exhibits a regular structure in space).
One more feature of the convective zone is the presence
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of an entire spectrum of cell dimensions, starting with
the largest ones, the heights of which are comparable
with the depth of the entire zone, and ending with small
ones, which are difficult to resolve by modern instru-
ments. We assume that the topology of most cells is of
the form described in Sec. (B). Will there be pumping
of the field at the bottom of the zone? A formal answer
to this question can be obtained by describing this pro-
cess by means of anisotropic turbulence (the selected
direction is in this case the vertical one). The spec-
tral tensor of the velocity field for this process is
known, and its knowledge suffices to explain the behav-
ior of the magnetic field; this was done long ago. t 5 8 ]

The answer is negative: the anisotropic turbulence re-
sults only in anisotropic diffusion of the field and does
not cause pumping. Wherein lies the matter? One
might seem that the principal factor is the topology, and
pumping should take place. First, the motion inC521 has
the described topological property only for one series
of cells. If we continue uninterruptedly the velocity
field under this series and above it, then the topology
will inevitably be reversed there: the topologically con-
nected motions will be those in the upward direction.
It is impossible to place cells of identical topology one
under the other; and a discontinuity in the velocity field
is bound to appear. Figure 7 shows a section through
the cell of another type, below and above which it is pos-
sible to place a cell of the same topology: the velocity
field decreases to zero from below and from above (the
field lines become more widely spaced downward and
upward). But a horizontal series of such cells causes
pumping of the field not at the very bottom of the cells,
so that many layers will not produce a common effect,
and the pumping takes place only within each layer. Ul-
timately the picture will be the following: the largest
cells, the vertical dimension of which is not smaller
than the thickness of the zone, will cause topological
pumping. The smaller cells will cause turbulent dia-
magnetism, [1.19·β6-β9] w n i c n a i s o \eads to a crowding out
of the field under the convective zone, and the intensity
of the field below the convective zone is larger by a fac-
tor VRm than in the convective zone.

The crowding-out of the field under the convective
zone is of importance, in particular, for the following
circumstance. Many authors note that calculation of
the period of the solar cycle by using Eq. (4) with ad-
dition of the term curl[v rxH], where v r is the differen-
tial rotation, leads to too small a period (see, e.g./ 2 3 ).
Actually, the time is determined by the diffusion χ V2H,
and t0 =Lz/x, where L is the thickness of the zone. The
terms curl[v rxH] and curl aH enter in the form of
sources in the equations for the toroidal and the poloidal
components and influence only their relative amplitudes,
but not the settling time. It turns out that to~ 1 year or

FIG. 7.

FIG. 8. Schematic representation of the configuration of the
magnetic field corresponding to a sector structure of the inter-
planetary field. The signs + and - correspond to the polarities
in the interplanetary space. The figure shows a section of the
sun (dashed line) at the equator. The field having an intial con-
figuration of the type shown in Fig. a is crowded out by the dia-
magnetism of the convective zone under the surface and under
the convective zone of Fig. b.

less, whereas the solar cycle lasts 22 years. If we
take the crowding-out into account, then the period in-
creases, C703 owing to the high inductance of the sub-con-
vective plasma, which prevents too rapid a change of
the field.

An interesting application of the diamagnetic effect
is the so-called sector structure of the interplanetary
magnetic field, revealed by rocket observations. This
field is shown schematically in Fig. 8, and the configu-
ration of the field inside the sun is shown in Fig. 8a, of
course, arbitrarily. Only one thing is clear: the field
must be closed in some way or another under the sur-
face of the sun. The presence of a convective zone un-
der the very surface leads to a crowding out of the field
from this zone, so that part of the field goes downward,
while the main flux is closed under the surface of the
sun (Fig. 8b). The resultant appreciable (as shown by
elementary estimates) magnetic flux will interact with
the field of the spots. This can lead to the phenomenon
of active longitudes, wherein an increased activity is
observed at certain longitudes: the field shown in Fig.
8b produces a distinct nonequivalence of the different
longitudes.

So far we have dealt with the behavior of a large-scale
field. How do things stand with the small-scale mag-
netic field? The problem is solved exactly for a Mar-
kov process or for a special wave turbulence (acoustic).
The general conclusion is that the turbulence is unstable
to perturbations of the magnetic field and that the fluc-
tuations increase exponentially. As to the most typical
case 7~l/v, there exist here semi-empirical equations
which a number of workers believe to be correct.C 7 1- 7 4 1

The situation is made difficult by the absence of a small
parameter; numerical or laboratory simulation for large
values of Rm is quite difficult (we are dealing with a
three-dimensional random process, which is stationary
only in the statistical sense). One can only speculate
on the directions in which this problem will develop fur-
ther. 1) We can use a functional approach and the meth-
ods described in : 6 s : (it is even simpler to use the more
recent method proposed in [ 7 5 l 7 e ] , which yields less cum-
bersome expressions) to go outside the framework of

993 Sov. Phys. Usp., Vol. 19, No. 12, December 1976 S. I. Vainshtein 993



the Markov approximation. 2) We can attempt to ap-
proach the problem from the opposite direction: as-
sume that in first-order approximation τ = » , i. e., the
field is stationary, and then we have an eigenfunction
problem. The eigenfunction can be sought by the WKB
method (the higher-order derivative V2H is preceded by
a small quantity vm), although to be sure serious formal
difficulties are encountered here, since it is not clear
how to join together the solutions in the vicinities of the
turning points. If this difficulty is overcome, then it is
meaningful to consider in the next-order approximation
slow adiabatic change of the velocity τ » l/v— the in-
verse of the Markov process. 1 1 3 1 Can the a effect be
used on turbulence scales? A large cell of scale lv ro-
tates, and the small-scale motions (scale lz) generate in
it a field as a result of the a effect.C77] Unfortunately,
this reasoning does not lead to anything: the instability
growth r a t e t n is α/21«ω1^/Ζ|, ω1=ι>1//1 and the decre-
ment due to the turbulent diffusion ~ lzvz/l\ is always
larger than the growth rate.

Another aspect of the same problem is the generation
of vortices by potential motions: the point is that the
equation for the vortex curl ν coincides with (1), and
essentially a plays here the role of negative viscos-
ity, C 7 8 ] although it has a different dimensionality. The
energy transfer from small scales to large scales is
important in the physics of the earth's atmosphere.
Generation of small-scale vortices is important in cos-
mology, and the creation of the moment that rotates the
galaxies is connected with it. Unfortunately, relativis-
tic effects (large velocities, gravitation) introduce noth-
ing fundamentally new in this problem, t 7 9 : and at any
rate we know only the generalization of the usual theory.
Thus, the 4-curl ω'=(-^-)" 1 / 2e""" 1u ) !u J i m obeys, in the
main, the same relation as in the classical theory, and
can be generated in the same manner.

D. Turbulence: Nonlinearity

On this subject much is unclear, but nevertheless
there are some clear-cut results. We have in mind
MHD turbulence in the case of magnetic fields that are
not weak (i. e., capable of influencing the motion) and
Rm » l . We must first mention Kraichnan's idea of us-
ing a statistical-equilibrium ensemble, more accurately
a Gibbs ensemble. Of course, turbulence is quite far
from absolute equilibrium. Nonetheless, we consider
an advanced turbulence. We turn on the dissipation:
i/m = Tj = O (η is the ordinary viscosity), external force
that excites the turbulence, and also large wave num-
bers, i. e., we deny the existence of perturbations with
k>kmax (thus, we deal so to speak with excitation of a
lattice, where femai is equal to the reciprocal-lattice vec-
tors), while the small wave numbers are bounded by the
dimensions of the system. Then, after a certain time
the system arrives at a state of thermodynamic equilib-
rium, conserving the energy of the fluctuations. Of
course, this situation is physically not realizable: there
is no femax in a continuous medium; nonetheless, this hy-
pothetical equilibrium state will reflect the direction of
the transport of the perturbations in phase space into
regions of small dissipation. t e 0·8 1 3 in fact, the equilib-
rium for nonmagnetic turbulence has a fluctuation spec-

trum E(k)=ak2, and the energy is concentrated at kmlx,
thus indicating a tendency of transporting the perturba-
tions into the short-wave region, i. e., the transfer of
the energy to large k. The equilibrium two-dimensional
state reflects the reverse transport into the region of
small k, which is in accord with the known results.
Nonmagnetic hyrotropic turbulence has been analyzed in
inC811 and, again, the transfer of the characteristic fea-
tures of the equilibrium state to a dynamic state is con-
firmed by numerical experiments and by acceptable
arguments.

The approach to the magnetic case calls for a certain
caution. Thus, in the simplest (not gyrotropic) case
there is an equipartition of the magnetic and kinetic en-
ergies, C821 with Eu~E=akz, where Eu is the spectrum
of the magnetic fluctuations. This result, while indicat-
ing a transfer of magnetic and kinetic energies into the
region of large k (a fact which is trivial to a great de-
gree), is not an indication of the fact that in the real
case the magnetic energy tends to become comparable
with the kinetic energy, i. e., that a turbulent dynamo
of random fields takes p lace . t n In fact, as already em-
phasized many times above, the dynamo itself is closely
connected with dissipation, i. e., even if at initial instant
of time the field is large-scale, it subsequently becomes
rapidly modified, acquires a fine structure that "feels"
the dissipation, and then either grows or attenuates rap-
idly. Therefore the situation vm=Q is physically quite
far from the question of the turbulent dynamo. The very
form of the spectrum ~kz has a very simple interpreta-
tion: the Fourier amplitudes of the velocity and of the
field are the degrees of freedom of the system, the spec-
trum ~fe2 and the energy ~ E(k)dk denote equipartition
over the degrees of freedom (bosons at high tempera-
tures).

Qualitatively new results are obtained if gyrotropic
turbulence is considered,C151 and we now proceed to dis-
cuss these results. It is first necessary to find con-
served quantities, for which purpose we shall need,
besides (1), the equation of motion

£L + ( v V ) v = _ i V p _ * [ H χ rot H] (5)

(divv=0) and an equation for the vector potential 9A/8i
= [vx curl A] + vm V2A + V2<p. Using these equations, we
can easily show that if all the fields vanish at infinity
and νη = η = 0, the magnetic energy 1[(Ηζ/%τή-
+ (pv2/2)]d3r, the magnetic gyrotropy

I AHcPr (6)

and the "cross gyrotropy" / vH d3r are all conserved.
For a homogeneous isotropic turbulence, the integrals
are replaced by mean values. We note that the usual
gyrotropy ( v curlv) is not conserved in the general
magnetic case. We put

± H, (k) lit (k) = £„, A, (k) II, (k) = Hit, Vl (k) Ht (k) - IIc

(Η{ and tf are the Fourier amplitudes of the magnetic
field and of the velocity). Making use of the Gibbs en-
semble (see, e. g.,C 8 3 ]), we obtain the distribution func-
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tion p^z"1 exg{-a(EM + Ek) - βΗκ- yHc], where ζ is a
normalization constant and α, β, and γ are the thermo-
dynamic constants. It is now easy to calculate (EM),
(Ek), <flu) and (ffe>, as well as j&« {Eu)dk etc. The
result is the following. Ίϊ β=γ = Ο, then we obtain the
result1 8 2 1 {Eu)~{Ek)~}^, and if βφΟ, then the energy is
concentrated mainly at kmla! a fact that has led the auth-
ors ofCl5] to the conclusion that there exists a reverse
cascade towards small wave numbers. These results
are confirmed by numerical experiments1·741 and by cal-
culation in which the hypotheses of[71] are used. These
conclusions are to a certain degree not unexpected. In-
deed, we have already mentioned that gyrotropy on a
turbulent scale gives rise to generation of a large-scale
field, a fact that reflects to a certain degree a reverse
cascade. It is stated, however, in Ch. 3 that inside the
turbulent scales the a effect does not give a reverse
cascade. Does not this contradict the results ofCl5]?
No, since in the latter case we are dealing in fact with
generation of a field in the presence of a correlation
(A · H) or (H · curl H), while (v · curl v) can be equal to
zero. The authors ofci5] called this the β effect; it can
be intuitively understood in the following manner. C M ]

The action of a magnetic field on the motion can be fol-
lowed by using the simplified equation of motion

= <A> rot «<H>.

— =-Ti-[HXrotH] «--J-[<H>Xroth]; (7)

here Η is represented in the form Η = (Η) + h, and the
simplest linearization is carried out. We now substitute
(7) in (1) and average:

( i r ) = ~1~ .( <rot[[<H>X
Ό

2 1 f
(8)

We see that the correlation (H • curlH) acts on the mo-
tion in such a way that the β effect is produced:

p = 4 i k I < H (l) m[ H (ω> Λ"

which is analogous to the a effect. The magnetic gyro-
tropy (6) may turn out to be important for the dynamics
of the field in connection with the problem of nonlinear
stopping or stabilization of the dynamo instability. We
refer here to the fact that unlimited generation of a field
is, of course, impossible, and in definite cases stabil-
ization at a weakly nonlinear level is possible. [ 1 · β 5 - 8 7 ]

The idea consists in the fact that the growing large-
scale field suppresses first of all the cause of its
growth, i. e., the magnitude of the a term. A numeri-
cal calculation (which is quite complicated and cumber-
some) confirms this idea. However, using magnetic
gyrotropy (6), this stabilization can be illustrated quite
simply. Let the invariant (6) (magnetic gyrotropy) van-
ish at t =0. Since it can only attenuate, it will remain
equal to zero. In the presence of helicity (v· curl v)#0
the large-scale field begins to be excited and, as can be
easily verified, a field of the spiral type is excited. To
this end, we neglect dissipation in (4):

(9)

j (rot H) <H> dh «"iff -j- j ( H ) 2

It is seen from (9) that the helicity of the large-scale
field is almost maximal (curl H) II (H). The word "al-
most" has been added because actually it is also neces-
sary to take dissipation into account. From the fact
that the invariant (6) was equal to zero it follows that
in turbulent scales there is generated a gyrotropy
(H • curlH) which is opposite in sign to (9) and cancels
the latter completely. Hence

(10)

The dynamics of the field (H) is now determined by the
equation d(H)/dt = curl(ar + i3) (Η) + χ ν 2 (Η) and, as can
be seen from (10), the β effect acts opposite to the a
effect. At a sufficient intensity of the average field,
the instability becomes stabilized and generation stops,
roughly speaking, at the instant when a + β = 0.

In a vibrational dynamo (when the magnetic field os-
cillates but is not attenuated as a result of the action of
the motion of the motions on this field), for example,
in the solar cycle, the nonlinear stabilization deter-
mines the level of the oscillations themselves.c e e ]

The incomplete spirality of the field, which was noted
in the preceding paragraph, is quite essential. In fact,
if we have exactly curl (H) II (H), then the large-scale
harmonic is force-free. But it is known that the field
cannot be force-free in all of space (or in a bounded
body, with the boundary conditions corresponding to the
absence of external sources of the field). Therefore the
problem (4) with x = 0 cannot be posed as an eigenvalue
problem, and the correct solution in the general case χ
= 0C89] shows that the field is actually not force-free. It
is interesting to note that the nonlinear effect not only
brings the growth of the field to a halt. The field can
be generated even in the absence of rotation.C901 In fact,
since we are dealing with nonlinearity, a itself can de-
pend on (H). In the presence of one more physical vec-
tor q, for example the density gradient, the pseudo-
scalar a can be combined in the form a~ (H) curl (H>^2,
(<H>q), div((H)q)[<H)xq], ([<H)xq] curl[(H>xq]). Equa-
tion (4) becomes complicated and nonlinear in this case,
but it can be shown that a field can be excited also under
these conditions. The effect itself, in view of its non-
linearity, does not come into play at arbitrarily weak
fields (as in the ordinary dynamo theory). Whether this
nonlinearity gives rise to generation or simply to modi-
fication of the field, these terms must be included in
Eq. (4) if the field intensity is no longer small. It can
be noted here that the described systems become quite
cumbersome in a real situation, when we have the com-
bination of rotation, of a selected direction, of non-weak
fields, and of differential rotation (the solar convective
zone).
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In sufficiently complicated nonlinear problems it is
natural to invoke waves, their interactions, etc. Many
papers have been devoted to just such a formulation of
the problem. It is most natural to pose the problem in
the following manner. We consider a rotating system
with a definite configuration of the magnetic field. We
find the magnetic perturbations, the waves, and see
whether these wave perturbations react on the field in
such a way as to prevent its ohmic damping or even en-
hance the field. C 3 7- 4 1 ] Braginskii t3e] has considered
waves in the earth's core and has shown that the essen-
tial role is played by the magnetic, Archimedean
(buoyancy), and Coriolis forces (the so called Bragin-
skii MAC waves). These waves not only represent that
very deviation from symmetry referred to above in Sec.
(A), which maintains the earth's field, but also casts
light on the nature of the western drift of the field and
explains the difference between the magnetic and geo-
graphic axes of the earth.

The theory of an almost symmetric dynamo becomes
nonlinear: inC2el is specified not the entire velocity
field, but only the field that deviates from symmetry,
and what is thought is the principal symmetric motion
that produces generation, while inC291 an investigation
is made of the motion that results in stationary genera-
tion (i.e., 3H/8i=0).

Wave motions, just like turbulent motions, are cap-
able of stirring the field and lead to anomalous diffu-
sion. If the magnetic field is weak, then in first-order
approximation its action on the motion can be neglected,
i. e., only sound waves remain in the hydrodynamics—
acoustic turbulence. On the other hand, if the field is
amplified, then the perturbations turn into Alfven per-
turbations, both accelerated and decelerated. Their
interaction with the magnetic field was considered by
Ivanov. [ 9 i : It is clear that pure wave motions do not
stir up the field, since they correspond only to oscilla-
tions of each particle. The interaction of the wave leads
to a random walk of the particles, since each oscilla-
tion has a finite "memory time" as a result of the loss
of phase coherence. c n Actually the matter reduces to
calculation of an integral of the type /„" (v((t)vj(ti))dtu

and this is just the diffusion tensor. For non-interact-
ing waves, this integral has no meaning: it takes the
form Jo" exp(jco) (f - t^dt^. The interaction leads to an
integral over a "damped sinusoid" of the type exp(-a
+ ίωΑ)ί, αα^Α^/ν\> s 0 that the integral can be esti-
mated: ι>2Δί, Δί = (ΐ/ω)(ν/νΑ)

ζ, where νΛ is the Alfven
velocity, and ωΑ is the frequency of the Alfve'n wave.
Ultimately we have Χ=νι/ωΛυ\.

We consider the application of this phenomenon to sun-
spots. There exists a problem of the rapid decay of the
spots, which cannot be attributed to simple ohmic damp-
ing. If we interpret the motions observed in the spots
as MHD, which is natural, since the observed v<vA,
then the damping time of the spot will be Lz/x, where
L is in this case the smallest dimension of the spot.
The observed dimension of the spot is a large quantity,
and a smaller quantity is its vertical dimension. In
fact, at a depth of several hundred kilometers, where
the convective zone begins, the kinetic energy of the

convective motions already exceeds the magnetic ener-
gy in the spot. The field is effectively "churned" by
the convection. More accurately, the field will be
crowded out of the convective zone into the subphoto-
spheric zone as a result of the already mentioned dia-
magnetism. Figure 9a shows a "section" through a
bipolar group of spots. We note that in the literature
they frequently use the concept of "complete entangle-
ment" of the field of the spot under the photosphere
(Fig. 9b), in which no account is taken of the diamag-
netism. If L is now taken to mean the depth of the spot,
then the resultant time is comparable with the lifetime
of the spot.

Very strong magnetic fields, at a given source of tur-
bulence, lead to a weakening of the interaction and to a
decrease of the wave amplitudes. It might seem that
such fields should suppress the turbulence completely,
but this is not the case. Experiment shows that the tur-
bulence degenerates into two-dimensional.C92·933 This
can be understood in the following manner. Assume
that a homogeneous field HQ parallel to the ζ axis is ap-
plied on a conducting medium. If there are no pertur-
bations of the magnetic field at the initial instant, then
in the presence of two-dimensional motion v = {vx(x, y),
vy(x, y),0} they will not occur: the term curl[vxH0] of
(1) vanishes. Once there are no field perturbations,
this means that there are neither currents nor electro-
magnetic forces acting on the liquid and suppressing
the motions. Such a two-dimensional turbulence no
longer "feels" the field in the sense that even if the
field is further amplified, this will not affect its prop-
erties at all. Further discussion of this unusual phe-
nomenon (in particular, the energy transfer into the
region of small wave numbers etc.) is beyond the scope
of this article. On the other hand, modification will
take place if the field Ho depends on χ and y but, as be-
fore, is parallel to the ζ axis. It is interesting that in
this case it is possible to disregard the electromagnetic
forces.C 9 4 ] In fact, the equation for the field is

(ID

and the other components vanish, but in this case [H
χ curl H] = Vi/2/2, i. e., the forces are potential and can
be compensated for by pressure. This model may turn
out to be useful for the understanding of processes in
sunspots. If the turbulence in the sunspots degenerates
into a two-dimensional turbulence and therefore enters
it only in the vertical field, then its dynamics will be
described by Eq. (11). Turbulent motion "breaks apart"
the field; in final analysis, the equation obtained for the
average field is 8 (Η)/9ί = χΔ (Η) , and the diffusion co-

FIG. 9. Bipolar group of spots. The field between the spots is
crowded out under the photosphere as a result of
diamagnetism.
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efficient was calculated inC941. Of course, for large vm

an exact calculation is possible only for a Markov pro-
cess. At the same time, in view of the complete simi-
larity between (11) and the temperature equation (except
that vm is replaced by the coefficient of molecular ther-
mal conductivity) or, in general, with an equation for a
scalar admixture, it is possible to simulate this pro-
cess experimentally. This simulation makes it possible
to determine exactly the coefficient χ not only for a
Markov process. We note that in the experimental mod-
el the motion need not necessarily be two-dimensional,
it suffices only that the temperature be a function of χ
and y. A more direct simulation is possible, where one
applies to the conducting liquid not only a strong field
that degenerates the turbulence into a two-dimensional
one, but also a temperature gradient or some other ad-
mixture. In this case the applied uniform magnetic field
field serves only to produce two-dimensional turbulence,
and the additional scalar admixture simulates the be-
havior of the large-scale inhomogeneous magnetic field.

RadlerC95: has considered the reaction of a weak homo-
geneous magnetic field on the motion. The turbulence
has not yet degenerated into two-dimensional, since the
intensity of the field is not strong enough. It is possible,
however, to trace the following tendency: the motion
acquires two-dimensional features. What was unex-
pected was a different result: the weak field did not
suppress the turbulence (as had been customarily as-
sumed), and in some cases even amplified it. This can
be understood in the following manner. The magnetic
field can lead, among other effects, to a weakening of
the energy flux into the region of large wave numbers.
In fact, a very strong field excludes this transport com-
pletely, since the perturbations are transformed into
non-interacting waves. This leads to accumulation of
energy at small wave numbers and to a certain increase
of the energy in comparison with the case when there
is no applied field.

So far we have dealt in this section only with the be-
havior of a large-scale field. One of the most impor-
tant problems of turbulence theory is to obtain the spec-
trum, meaning the distribution of the energy with re-
spect to the scales. In magnetohydrodynamics the sit-
uation is aggravated by the fact that the question of the
interaction of the plasma motion with the field has not
been finally solved even in the linear approximation,
i. e., if the fields are assumed to be weak. There exist
semi-empirical equations, which when the magnetic
field is turned off produce a Kolmogorov spectrum, and
also have other numerical favorable properties and are
confirmed, in particular, by various numerical tests.
Their useC72~74: leads to the following result. In the re-
gion of scales where neither the viscosity nor the ohmic
dissipation comes into play as yet, a stationary energy
flux is established into the region of large wave numbers
with equal distribution of the magnetic and kinetic ener-
gies. The spectrum takes the form E~k'3lz. Indeed,
the energy flux is ρνζ/2τ = Ηζ/8πτ = const. The time of
interaction τ is determined from l/τ = ωνζ/ν\, where
vA is determined by the field with the largest scale.
This time coincides with the time of the interaction of
magnetohydrodynamic waves in a homogeneous field,

and in this case it is a quasi-homogeneous field of large
scale. From this it follows immediately that vz~Hz

~k-llz, E~k-3/z.

E. General discussion of magnetohydrodynamic
modification

1) We have seen that the motion gives rise to a rather
effective decrease of the scale—of the field, followed
by generation or else by rapid annihilation of the field.
It is precisely the failure to take this circumstance into
account which led Piddington to the criticism of the dy-
namo mechanisms; he indicated a rather low rate of dis-
sipation of the fields because of their large dimensions.
What is the situation here with the usual concept of
"freezing in"? After all such a shear motion, which at
first glance is harmful, or else differential rotation, is
capable of violating the "freezing-in" condition. These
examples illustrate the reefs on which such a represen-
tation can founder. t95]

2) Further progress in the research will apparently
involve with examination of the simplest motions and
their role in the dynamo, in particular that of a differ-
entially rotating sphere with electric conductivity that
depends on the latitude.

3) The simplicity of the mechanisms described in
Ch. 1 make it possible to verify the theory in a labora-
tory experiment, and also to use it in technology. Fig-
ure 4 shows in fact a dynamo without windings. In ad-
dition, the following hypothesis can be advanced: gen-
eration takes place in all cases when it is impossible
to prove the opposite by using the rules developed in
Sec. (A).

4) Allowance for the nonlinear electromagnetic forces
that act on the plasma should at first glance greatly
complicate the analysis. It appears, however, that
this is in fact not so. The instability growth rate γ
~v/l obtained in all the problems follows from the sim-
ple estimate (1) under the condition that Η is almost
parallel to ν (see the reasoning in Sec. (A )). An ap-
proximate form of an unstable harmonic is shown in
Fig. 10. It is seen from Fig. 10 that the electromag-
netic force will, in the main, be parallel to the y axis
and will rapidly reverse sign, but this force can be
cancelled by the pressure p(y). Consequently, it will
act over a scale / (and not δ) and cause only a simple
slowing down of the fundamental velocity. The validity
of this statement can be verified also from energy con-
siderations:

y,

FIG. 10. The force lines are shown by the solid lines, and
the arrows indicate the plasma velocity. It is seen that the
field is almost parallel to the velocity and is small in scale.
A large field gradient, ~H/6, exists mainly in a direction
perpendicular to v.
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^T~4r I v2dV= - \ v[HXrotH]dV
Δ at j J

= — ί Η rot [ν Χ H]d3r w— ~- f H2d3r. (12a)

This expression does not contain the small scale δ at
all.

5) The aforementioned decrease in the scale of the
field can be of independent interest, for example, when
it comes to explaining the fine s tructure of the field at
the s u n . t 9 7 ] The dimension δ calculated for granulation
and supergranulation is quite small and has so far not
been resolved by the apparatus. Such minute forma-
tions a re capable of heating the gas via Joule dissipa-
tion. An est imate of the largest field intensity yields
Hmax=H0 R m l / 2 , Ho, where Ho is the initial field. It fol-
lows from (12a) that the reaction of the field on the mo-
tion must be taken into account if vA~v, and conse-
quently vA cannot exceed v. Therefore formations with
scale δ and with field intensity Ho VRm are realized if
i/oV·*·™ < W4?rp (which yields in the case of granulation
motions an upper bound of the initial field H0S 0.3 G).
On the other hand, if Ho VRm > ν V4irp but Ho <ν -JAnp (for
grunulation 0 . 3 « f l « 100 G), then the scale will decrease
already not to such smal l dimensions δ, but sti l l a fine
structure of the field will be produced. Finally, if
H0>v^irp (sunspot), the action of the indicated mecha-
nism becomes impossible.

3. LOW FREQUENCIES

A. General remarks

The idea of the a effect can be transferred from mag-
netohydrodynamics to a plasma in which oscillations
are excited. In fact, in principle it is possible to pro-
duce a pseudoscalar a~ (k · H) (k is the wave vector),
which follows from the gyrotropic properties of the
plasma in a magnetic field. Formally, the gyrotropy
of the plasma manifests itself in the appearance of
terms of the type ιε ο / ω) β ) /ω (u>(e) =eH/mc, is the wave
frequency) in the dielectric tensor. It is clear before-
hand, however, that the apparatus here is not at all
similar to that used in the magnetohydrodynamics ap-
proximation.

We shall show that the correlation (v · curl v) appears
in a plane wave. Here ν should now be taken to mean
the electron velocity. We consider longitudinal oscil-
lations; if H=0, then v = k<,&. In the presence of a mag-
netic field in the general case we have

f_ f
•}.

where a and b are constants. Furthermore

+c.c.

(12b)

(13)

The averaging is over the period. Thus, we actually
have (v curl v)~ (k· H). In addition, it is clear that the
effect will take place only in the case of anisotropy of
the oscillations, i. e., when there is a selected phase
velocity and the amplitude of the oscillations with this
selected velocity is the largest. In the purely isotropic

case it is no longer possible to form a pseudoscalar of
the type (k · H), and (v · curl v) =0.

B. Formulation of the problem. Method

Two formulations of the problem are possible. The
first is perfectly analogous to the dynamo problem. As-
sume that oscillations are excited in the plasma and
there are no external field sources. What happens with
the fluctuations of the magnetic field? We shall assume
henceforth throughout that the plasma is collision-domi-
nated, or more accurately that the characteristic fre-
quency γ of the field variation is lower than the colli-
sion frequency. Consequently, without oscillations the
field would simply attenuate in accordance with the
equation

(14)

where η is the electron density. The waves in the plas-
ma cause oscillations of the charges, and in the linear
approximation they have no influence whatever on the
field. The nonlinear current averaged over the period
gives a nonvanishing contribution. The magnetic field
is assumed to be weakly inhomogeneous: L» λ, where
L is the scale of the field and λ is the wavelength, and
is assumed to be quasistationary: ω» γ. Since the mo-
tions depend on the field (see (13)), the nonlinear cur-
rent also depends on the field and, just as the field, it
is weakly inhomogeneous and generally speaking con-
tains a vortical component. The latter excites a field
and can compete with the ohmic damping in accordance
with (14).

The presence in the plasma of high-intensity oscilla-
tions (e. g., ion sound) can cause anomalous electric
conductivity, so that in this case it is necessary to take
σ in (14), as well as in all other formulas, to mean the
anomalous electroconductivity. We recall that in the
dynamo theory the plasma is assumed to be collision-
dominated and, although the collision frequency does
not enter in the growth rate γ-v/l, the very form of
the instability of the harmonic (the scale) is determined
by σ, meaning also by the frequency ν electron of the
collisions with the other particles. The situation here
is perfectly analogous: the final formulas contain the
collision frequency. The resultant field perturbations
are in general not waves; they are relatively large-
scale (L>A, where Λ is the electron mean free path)
and slowly growing (ν>γ) formations. They cannot be
regarded as a consequence of a direct interaction be-
tween the high-frequency oscillations with these per-
turbations (e. g., decay instability of the oscillations
etc.) precisely because the result contains the collision
frequency.

We note that the plasma is still "not quite" collisional.
This follows from the very existence of the oscillations:
ν<ωρ (ωρ is the plasma frequency) if we deal with Lang-
muir oscillations; vi < ω, where vi is the frequency of
the ion-ion or ion-neutral collisions, and ω is the fre-
quency of the ion sound, if the latter is considered.

The nonlinear current can be calculated by standard
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methods. We first obtain the linear current j ' and the
linear velocity v'; using the known dielectric tensor of
the plasma ε u in a magnetic field, we can change over
to a{j, and from it to j ' (assuming that E~k). The linear
velocity is already simply expressed in terms of j ' : v'
= j'/noe, the density perturbations are n'=n o(k· ν)/ω.
We next calculate the nonlinear current (n' ev') + («oev")
averaged over the period. The correction v" is ob-
tained from the nonlinear equation of motion, and in all
the nonlinear terms we substitute the linear velocity ν7.
The procedure itself is straightforward but cumbersome,
so that in this article we shall write out only the funda-
mental expressions.

C. Modification of field by ion sound

For purposes of methodology, we shall first describe
the effect qualitatively. Without a field, the motions of
the electrons and ions are almost identical and ν' ~ k.
In a magnetic field, the linear velocity of the electrons
takes the form (13). The nonlinear current fyi'ev) also
is similar to (13), with greatest interest attaching to
the last term in the bracket of (13): when we take the
curl of this term in order to introduce it into the equa-
tion (14) for the field, it takes the form curl aH, so
that in analogy with (4) it is precisely because of this
term that we should expect the appearance of instability.

The current (n'ev), due to this term, can be estimated
at n'~nov'/s, s is the speed of sound and (n'ev')
= noe (v'z) ω<β> (ω ( β )κ)Αω2, κ is a unit vector in the wave
propagation direction. We now introduce this current
into the electrodynamics equations:

v')), rot E--=~-^-,

here Ε is the self-induction field. We then obtain an
expression of the type (4), where

r'2) (ω">χ) ν (15)

The equation turns out to be nonlinear, since a depends
on H; nonetheless, the same physical considerations
that lead to the conclusion that a field can be generated
in the linear equation (4) are applicable here, too. It
suffices, for example, to consider the two-dimensional
field {Hx(x, y), Hy(x, y), Ez{x, y)} (or, accordingly in
a spherical coordinate system, the axisymmetric field
{Hr(r, θ), Ηφ (r, Θ), HB(r, Θ)}. Now the planar compo-
nent (Hx, Hy) (or the poloidal (Hr, He) for a sphere) gen-
erates Hz (the toroidal Ηφ) and vice versa. A rigorous
proof can be obtained for a definite example. [ 9 8 3 As to
the second formulation of the problem, of course, it is
much simpler: the field should be represented in the
form Ho+h, the equation should be linearized, and the
problem should be tested for stability. Analysis shows
that under the conditions indicated below, the instability
does indeed take place.

In a real situation, ion sound is excited at Te > T{ and
if the current velocity vt>s. If we assume that vd

slightly exceeds s, then excitation takes place in a nar-
row cone, and a broad wave spectrum (relative to k) is

exci ted. m i In this case (15) is replaced by an integral
that depends weakly on (k · ω ( β )).

Correct allowance for all the nonlinear terms leads
to the equation

- ^ L = _ v m r o t 2 H —
dt m [HXrotH]

(16)

+ rot {oH + b (ω<'Ή) κ -f d (κω<'>) (κΗ) κ + e [κΧ HJ

where 6, d = (ι/2) v/su?, e = /3s, β is the ratio of the en-
ergy of the oscillations to the energy of the
plasma. c"- 1 0 1 ] it is clear that in the curly bracket of
(16) are gathered all the combinations that constitute
true vectors and contain the field linearly and quadrati-
cally.

A comparison of the generation a term with the dis-
sipation vm curl2H leads to the instability criterion and
to the growth rate

Lcc>vm, ν = χ · (17)

The unstable fluctuations drift, as can be seen from
(16), along at a rate e = /3s. An analysis of (16) shows
that not only growing solutions are possible, but also
solutions connected with the modification of the field,
particularly solutions that attenuate rapidly.

It is seen from (15) that in the presence of an oscilla-
tion spectrum the largest contribution is made by the
low-frequency oscillations. The question is: at what
values of ω should the spectrum be cut off? The anal-
ysis itself is valid if ω ( β ) < ω, therefore, if the frequency
ω ( ε ) is higher than the lowest turbulence frequency a/
due to ion-ion or ion-neutral collisions,C99:l then the
spectrum is cut off precisely at the frequency a>(e). In
the opposite case the spectrum is cut off at ω'. There
is one more limitation on the low frequency. The point
is that for low frequencies the nonpotential electric
fields E,, assume an important role, and the oscil-
lations cease to be longitudinal. To estimate E,, we
introduce the electronic part of the current nev' into the
electrodynamic equations, where v' is determined
from (13)

rot Ε 6 = , — ί *
c dt

(18)

v' 4--^!!.

h is the fluctuating magnetic field; the ion current is
immaterial, since its nonpotential part ~ ω(/ω (u)t is
the ion cyclotron frequency)—this parameter is negli-
gibly small. Since kz» w2/c2, the displacement cur-
rent is negligible, and therefore h= (4jr/c)(nekxv/fe2)
χ (ω(β)/ω)α, where a depends on the term of (13) of which
the curl is taken. If it is taken of the second term,
then a = 1, and if of the third then a = 2, and the curl of
the first term vanishes. Hence Eb = (ω(β)/ω)<ΙΩ2,| νφ | /
czkz, where Up is the plasma frequency of the ions and
νφ is the potential electric field. The quantity (ω<β)/
ω)α is a small parameter, but nonetheless we take into
account in (13) the terms with this parameter; the ex-
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pression for Eb contains an additional parameter
Ω|/Α 2 , which is small if u^n^s/c. Thus, ΐΐ^/c is the
second lower bound of the frequency.

D. Applications

In experiment it is possible in principle to produce
the most favorable conditions ω ( β ) = ω', and the criterion
(17) takes the form Χ,ω2<ι/2)/(ω'Λ;)>1. We cut off the
spectrum at the ion-ion collisions, and then, according
to C 1 0 2 1 (assuming that the current velocity νΛ slightly
exceeds s) we have ω' = ut JUJrn. In addition, we as-
sume that /3 = 1O"2 and then at n = 1015 cm'1, at an elec-
tron thermal velocity vT = 109 cm/sec (thermonuclear
plasma), and at T{ only slightly lower than Te, we ob-
tain a critical dimension Lk = 1 cm. From the equality
ω<β) =ω' we obtain H" 10 G and y = 2xlO5 sec"1. We note
that it)' >Sltp/c, so that it is precisely at this frequency
that the spectrum should be cut off. However, this ion
sound can be excited by a current, but can be excited
with a beam, the concentration of which should be lower
than the plasma density: the point is that a large cur-
rent density does by itself produce a field exceeding 10
G, and the condition ω ( β ) * ω' is violated.

E. Weakly ionized plasma

If the electrons and ions collide only with neutrals and
all the collision frequencies (including the lowest one—
the reciprocal time of momentum transfer to the neutral
atoms, ~ v'njnn, where v' is the ion-neutral collision
frequency, ni is the ion density, and nn is the density of
the neutrals) are lower than the frequencies of the pro-
cesses, just as in the solar photosphere, then the situa-
tion is particularly simple. In this case the three-fluid
hydrodynamics reduces to ordinary magnetohydrody-
namics, i .e. , to Eqs. (1) and (5), where the density
here must be taken to be the density of the neutrals. All
this can be easily verified by adding to the equations of
motion of the neutrals, ions, and the electrons terms of
the type i/(v, -v n ). In particular, the Alfven wave con-
stitutes oscillations of all three components, and there-
fore its velocity is determined by the density of the neu-
tral component.

The solar photosphere satisfies also the "freezing-
in" condition, i. e., even though the collision frequency
is high, we have wpr<i/m/i2, where ωρΓ is the frequency
of the process. In this case the field is "frozen-in" into
the neutral component. Now it is the velocity of the neu-
trals which is specified in the kinematic formulation of
the dynamo. This velocity is transferred via collisions
to the ionized component, and the latter already influ-
ences the field. The reaction of the field takes place in
the reverse order: the field acts on the ionized com-
ponent, which transfers the velocity to the neutral com-
ponent. LercheC3: has considered the turbulent state of
such a three-fluid hydrodynamics. To close the re-
sultant infinite chain of equations, he uses the Million-
shchikov-Chandrasekhar hypothesis, namely, that the
fourth moments have a Gaussian dependence on the sec-
ond moments.

F. Long-known mechanisms

It should be stated that excitations of a magnetic fluc-
tuation by a beam or by high-frequency oscillations is
a situation far from new in plasma physics. Thus, it
is well known that in a plasma of not too low pressure
p (8πρ/ίΓ2 not very small) magnetic sound can build up
at vt>vA.

mi This includes also the hose instability,
viz., excitation of magnetic perturbations due to anisot-
ropy of the distribution function (/>„ >pj. Clo° Mention
can also be made of the buildup, considered inC1051, of
Alfve'n waves in the presence of high-frequency sound,
and also Thirring instability11061 and the new mechanism
of excitation of magnetohydrodynamic waves in a non-
uniform plasma. I l 0 7 1 It should be noted that in contrast
to the foregoing mechanism, we have dealt in the pre-
ceding sections with the field having the largest scale,
i. e., the scale of the perturbation can be comparable
with the dimension of the object, so that the per-
turbation does not represent waves. In the particular
case it can be a wave, but one that "feels" (via the
growth rate) the collision frequency, and at any rate

G. Solid-state plasma. General remarks

It is well known that a solid-state plasma has many
properties of an ordinary plasma. For this reason
alone, one can expect analogous magnetic instabilities
to appear in it. For the process to be effective, it is
important to have a sufficiently intense current, and we
therefore confine our analysis to metals, because of the
large number of carriers they contain. Usually one con-
siders the properties of a solid in a homogeneous mag-
netic field. It turns out if an inhomogeneous field is in-
volved, then various possibilities of its modification ap-
pear. In the examples considered above, heat flow will
inevitably be produced in the solid. In a homogeneous
magnetic field, various thermal effects and currents
are produced, and in an inhomogeneous field on the other
hand modification is possible. This phenomenon recalls
the same thermal effect, but with feedback. If the See-
beck effect is realized as a result of heat flow and the
difference between the thermoelectric powers of two
metals (inhomogeneity of the thermoelectric power),
then we have here the same heat flow and inhomogeneity
of the magnetic field. The feedback consists of the fact
that the produced current strengthens the field, meaning
also the inhomogeneity, which in turn leads to a
strengthening of the field. This is precisely how the
instability sets in.

Mention should be made here of the long-known elec-
troacoustomagnetic effect. Assume that acoustic oscil-
lations are excited in a piezoelectric semiconductor by
an external electric field: the drift velocity of the elec-
trons should for this purpose exceed the speed of sound.
If the directivity pattern of the phonon emission inside
the Cerenkov cone is asymmetrical with respect to the
direction of the carrier drift (this being connected with
the piezoelectric properties of the crystal), then the
acoustic force causes a solenoidel current and a mag-
netic moment in the sample.
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Η. Thermal dynamo

The effect indicated above manifests itself most
clearly in the simplest case: there are no phonons and
there is heat flow. In this case the coupling between
the electric field and the flows of the heat and of the
electrons is given in the general case in the form

)-^ (19)

(see, e. g., [ 1 0 9 : l ) , where j is the current and VT is the
temperature gradient; we have written out the kinetic
coefficients in such a way that q, nx, and w2 have the
same dimensionality. In this section we neglect the
fifth term which is small in comparison with the fourth
if ω < β ) « ν, as will indeed be assumed. We take the
curl of (19), change over to the equation for Η with the
aid of Maxwell's equations, and then obtain

?H =_rot[HXV<I>]+!<mV2H, v o = v j ' l ! i L . (20)

we have neglected here the Hall current (this is possible,
since u>ie) « v), and in addition, to exclude the Seebeck
effect, q is assumed to be constant: no ordinary heat
fluxes are produced. The similarity between (20) and
(1) is obvious. The magnetic field is assumed to be
weakly inhomogeneous, or more concretely, Eq. (19)
is valid in any case if A«L, where L is the inhomo-
geneity scale. In addition, in order for (19) and (20) to
be valid it is necessary that the frequency ω of the pro-
cess be much less than ω<ε) or v. The boundary condi-
tions are different here from those used when thermo-
magnetic phenomena are investigated. In this case it
is important that the field not be maintained by external
sources, i. e., there are no currents normal to the
boundary of the body, and a potential electric field that
does not influence the magnetic field is produced by the
presence of the surface charges.

According to c i 2 ] , motion in an unlimited medium is in-
capable of generating a field, and can produce only an
"antidynamo"—a rapid annihilation of the field. In this
case the "motion" V4> is potential, but in the limited
problem generation is possible. To verify this, we
turn to Fig. 4. Now, of course, the cylinders do not
rotate, but heat is made to flow through the internal cyl-
inder, i. e., one end of the cylinder is maintained at a
temperature T t and the other at T2. In the internal cyl-
inder νΦ is constant, and (20) is an equation with con-
stant coefficient. In the external cylinder VT = 0. The
gap is an insulator (vacuum), so that neither heat nor
current penetrate from the internal cylinder into the ex-
ternal one. Only an electromagnetic field is produced.
We can now solve the eigenfunction problem H = f(r)
x exp(£i +ΐ>ηφ +ikz), and the solution behaves differently
in three regions: in the internal cylinder the magnetic
inhomogeneities are dragged by the heat flux, in the ex-
ternal cylinder the currents are induced by the fields
that penetrate from the internal cylinder, and finally in
the gap between the cylinders and outside the cylinders
the field is current-free and is described by a harmonic
function. The joining together of the solutions gives the
dispersion equation for E. Fortunately, the system of
equations for the joining coincides fully with the corre-

sponding system that arises when the cylinders rotate,
except that m ω must be replaced by k Ι νΦ I. Therefore
the result is obtained without calculations. The analog
of the magnetic Reynolds number is RT = Ι νΦ I ro/vm,
and if Λ Γ >1 the fluctuations of the field are "frozen in"
in the heat flux. By analogy with Sec. (A) of Ch. 2, we
have fro~kro~N. The instability sets in at

and the instability growth rate is

(21)

(22)

We discuss now the extent to which the instability con-
ditions written out above are realistic. For estimates
we assume Πχ =q =π*Τ/3βΕρ, where EF is the Fermi en-

C 1 1 0 1 ) . Equation (21) can then be rewritten inergy (see
the form

(23)

here Τ is the average temperature (7Ί + T2)/2. We con-
sider by way of example a copper conductor. Assuming
by way of estimate raVT ~T, ν = 4.2 · 1013 sec"1 at room
temperature Tr, and w = 8xlO2 2 cm"3, we find that the
criterion (23) is not satisfied at Τ = Tr. We assume that
below the Debye temperature θ we have v~T5; we see
that (23) contains a very strong dependence on T, so
that to satisfy the criterion (23) it suffices to lower the
temperature somewhat, actually to Τ = 87 °K at Ν = 26.

The unstable harmonic is quite complicated in form:
it can be neither axisymmetric nor two-dimensional, in
order not to contradict the theorems that forbid the
dynamo. It is clear only that the entire field will be
concentrated in a skin layer of thickness ~ 1/k on the
surface of the internal cylinder and in the internal sur-
face of the external cylinder. Saturation of the instabil-
ity sets in when ω(<0 is no longer small in comparison
with ν {nx begins to depend on ω<β), and in addition the
heat flux can no longer be regarded as specified, since
the magnetic field will affect the flux). The estimate
ω'·β) = ν (T = 87°K) yields Η = 4xlO3 G.

From the solution of the dispersion equation we see
that not only y = Re£*0, but also ΙτηΕφΟ, and conse-
quently drift of the perturbations takes place. Analysis
shows that they drift with a velocity νΦ along the axis
of the cylinders. Therefore, if we solve the dispersion
equation with respect to k, assuming ω to be real, we
can obtain a spatial amplification of the perturbations.
An incident electromagnetic wave with frequency ω<γ
will be transformed into an unstable harmonic and be-
come amplified along the axes of the cylinders.

We note that the model in Fig. 4 can be realized not
only in the laboratory. In fact, the gap between the cyl-
inders can be filled with an insulator having a poor ther-
moconductivity and nothing changes. Now, however,
this model imitates a continuous medium. This raises
the interesting question: is it possible to excite a field
in the solid mantles of planets (Mercury, moon, earth)
as a result of heat flux and inhomogeneous electric con-
ductivity and thermal conductivity.
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I. Instability against the background of a uniform field

In the case of a simple homogeneous conductor, the
excitation described in Sec. (H) is impossible, and it is
necessary to take into account quantities of higher order
of smallness in the parameter ω(β)/ι/. We shall there-
fore neglect the fifth term of the right-hand side of (19).
Now we obtain in place of (20) an equation of type (16),
with the pseudoscalar a~ (H* VT). The exact value of
a is a = -enz{uie'iVT)/mvz. Since a depends on the
field, the second formulation of the problem in Sec. 2
is appropriate: we consider the instability against the
background of a uniform field; in particular, the field
can be parallel to V7\ Satisfaction of the criterion (17)
is possible in principle if ω ( β ) is not much smaller than
v. In this case, if it is assumed that n2 =nx=q, then it
is easy to verify that this is the same criterion (23),
with Ν = 1, which, as stated above, is easily realized.
The term curl[HxV<i>] will be present in the equation
for the field and cause the perturbation to drift with ve-
locity νΦ.

The models considered in Sees. (H) and (I) are none
other than direct conversion of thermal energy into elec-
tromagnetic energy. For estimates we assume that
ω<β)« ν. We fix ω in the dispersion equation, and then
we have spatial amplification. To realize the amplifi-
cation indicated in Sec. (H), we must choose specially
the conditions of the inhomogeneity of the sample,
whereas in Sec. (I) the sample can be homogeneous, but
on the other hand it is necessary to apply to it an ex-
ternal field such that ω(β> = ν. According to (22), γ
a T'n (we have replaced the inequality (21) by the ap-
proximate equality), therefore at low temperatures the
condition uxy actually does not impose any limitations,
and in contrast to the ordinary thermal effect in this
case there is excited an alternating current with fre-
quency ω. The power released in a unit volume is Ρ
= γΗ*/8π~ Γ"1. The possibility of heat removal also im-
proves with decreasing temperature: the required flux
through a unit area of the lateral surface of the external
cylinder is p/k~T~'1'. It is convenient to use for the
cooling a stream of low-temperature liquid flowing in
the gap between the cylinders—it is the metal layers of
thickness l/fe adjacent to the gap which are heated. By
way of example we consider copper at Τ = θ/5 « 60 °K,
r 0 = 10 cm, and then y=61 sec"1, l/fe=2xlO"2 cm, and
Λ=6χ10"3, so that the weak-inhomogeneity condition
L =\/k>A is satisfied. The weak-nonstationarity con-
dition ω<7<ω ( β ) is satisfied already at £f>3xlO"e G.
The collision frequency at this temperature is v = \0w

sec"1 and y« v, i. e., the process is relatively slow.
The heat flux necessary for heat removal at these pa-
rameters is p/k = 10"3 W/cm2.

4. HIGH FREQUENCIES

A. Helicon frequencies

Helicons correspond to frequencies between ω, and
ω(β> and constitute strongly gyrotropic oscillations. In
fact, this is a helix in pure form. Therefore it might
seem that helicons should serve as good generators of
a large-scale field, by producing the a effect. Calcula-

tion shows, however, that they are capable only to lead
to anomalous diffusion of the field (in exactly the same
manner as magnetohydrodynamic waves; see Sec. (D)
of Ch. 2).

In the presence of helicon sources, for example In-
stabilities that cause their buildup, the helicons inter-
act with one another or with other plasma oscillations.
An equilibrium spectrum can be established in this
case—a distribution of energy over the frequencies.
There exists no universal oscillation spectrum, it de-
pends on the various conditions of the plasma. Spectra
in a collisionless plasma were first obtained by Lifshitz
and Tsytovich t l l l ] and were described in detail in the
monographC112]

In a collision-dominated plasma and in the absence of
other oscillations, helicons interact with one another.
It is simplest to start from Eq. (14): at ω(β> « ν, the
Hall term is not small and the equation

-Ξ1 = — - ; _ £ _ rot [HXrot Η] Ι
fit A-rrne >• J '

(24)

is an exact nonlinear equation for the magnetic fluctua-
tions at helicon frequencies. Linearization of Eq. (24)
leads to a dispersion equation for the helicons ω
= ± I cos0| w(e)e2feVw2, cose = (k ·!!<,)/*:#„. There are two
possibilities here: weak or strong turbulence. The
weak turbulence can be defined in this case as follows:
the fluctuations of the field h are much smaller than
those of the homogeneous H o . It is possible to verify
directly that the exact equation (24) conserves the en-
ergy/H 2 dV, or, in the case of homogeneous turbulence,
(H2). Using the weak-coupling approximation (i. e., ex-
pressing the fourth moments in terms of the second mo-
ment with the aid of the random-phase approximation or,
equivalently, with the aid of the Millionshchikov hypoth-
esis), we can prove the presence of energy transfer into
the region of larger wave numbers, due to the nonlinear
interaction of the helicons.C U 3 ]

We can now formulate the problem in the same manner
as when the Kolmogorov spectrum is determined in hy-
drodynamics. Let the helicons be excited at low fre-
quencies ω < o>j and let them be attenuated as a result of
ohmic losses at high frequencies. In the region ω{ <ω
<ω ( β ) , a universal spectrum is established. Conserva-
tion of the energy flux in the region of large wave num-
bers yields Α2/τ = const, where τ is the helicon lifetime.
If the turbulence is weak, then, just as in Ch. 2 [Sec.
(5)], 1/τ = ωΛ2/ΐϊο» and since ω-fe2, we have ft2-*·"1 and

Ε ~ (25)

This spectrum was obtained i n C m ] . Since l/r~k and
the ohmic damping is ~ vj?, the spectrum is ultimately
cut off at large * by the damping at ft2 =Hjj v/wie). On
the other hand, if the turbulence is strong, then the
quantity l / τ must be estimated directly from the exact
equation (24): l/r = ck?h/4irne. From the condition that
the flux be stationary we obtain k2hhz = const

- *-'/·, (26)
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i. e., a steeper spectrum than for weak turbulence.C l l 3 ]

In this case, too, 1/τ~£4 / 3 increases more slowly than
vmkz. Using the complete equation (14), we easily under-
stand that this spectrum is cut off at eh/mc = v.

Which of the spectra is actually established in a real
situation of strong turbulence, when h at frequencies
aisaij is not smaller than Ho itself? In the region of the
smallest k (defined by ω :> cjj), the spectrum (26) is es-
tablished. At large wave numbers, a deviation from
locality of the turbulence is observed, since this region
will interact also with the large scales. The large-
scale fluctuations will play the role of the field Ho, and
in the smaller scales the fluctuations are transformed
into waves with the spectrum (25).

A large-scale weakly-inhomogeneous field (scale
L» 1/fe) will become modified in the presence of tur-
bulent helicons. In fact, transfer into the region of
large k acts also on the components with the largest
scale. Just as in hydrodynamics, turbulent viscosity
destroys the large-scale flow, and turbulent helicons
cause dissipation of a field of scale L within a time
L2/x, where the turbulent viscosity is X=•/(/?) c/4me. It
is easy to verify that yjvm = ej(}?)/mcv, and since -J{hz)
~H0, we have x/Vm = w(e)/i/, (x/vm is the analog of the
Reynolds number).

B. Langmuir oscillations

Excitation of large-scale fields by Langmuir oscilla-
tions was first considered by Tsytovich.C1151 If Lang-
muir oscillations are excited in a plasma, then there is
an instability of the type of an aperiodically growing
second sound. Transverse waves are excited, for which
H= ε*Ε, where ε* is the turbulent dielectric constant.
Since ε ' » l, consequently Η» E, i. e., the principal
energy of the oscillations is magnetic. Under definite
conditions, the scales of the magnetic perturbations
may turn out to be not small. This mechanism is de-
scribed in detail in the monographCue:i.

We proceed now to a collision-dominated plasma. The
high-frequency oscillations of the electrons in the mag-
netic field can be obtained from the equation of motion

— ίων = iecpk/m + [νΧω'1'] — k \ = inn'e. (27)

where ωη' =wo(k-v). Solving (27) with respect to v, we
obtain

ν = { < o k - " " ' " ^ " ; ' " + i [ k t a ' " ] }i[k Χ ω « > ] ψ ,

(28)

Obviously, (28) is a particular case of (13). The mag-
netic field produces weak gyrotropy of the oscillations
at ω<<!> « ωρ> as will be assumed from now on. In fact,
<v curl ν) ~ (k · ω(β>). Equation (27) is valid if the pro-
duced nonpotential electric field Eb is much less than
ilap. The estimate of Eb is obtained in the same man-
ner as for ion sound. We assume that ck» ωρ, and then
the displacement current in (18) can be neglected, the
fluctuations of the magnetic field are

so that for k » ωρ/ο (this condition coincides with the
condition that the displacement current be small) we can
disregard Eb.

Calculation of the nonlinear current (n'ev) leads to the
expression

j " = {n'ex'} =-- naea>m *[ {(u'"k) (Α2/ω) Φ (k, ω) d3k d o ,

Φ (k, ω) = Φ1 (k) δ (ω - ωρ) + 4\ (-k) δ (ω + ωρ). (29)

<3?t(k, ω) is the spectral function of the oscillations. The
main contribution to the integral in (29) is made by the
large wave vectors, so that for estimates we can as-
sume k =kjt and kd is the Debye wave vector. Of course,
this is true if the oscillation spectrum does not decrease
too steeply with large k, as is indeed assumed by us.
On the other hand, for isotropic oscillations Φ = (I kl, ω),
and the integral (29) vanishes. The anisotropy is en-
sured in the presence of two-stream instability; oscil-
lations are excited with (k· χ )>0, where * is a unit
vector in the direction of the chosen phase velocity; if
the oscillations are excited by a beam, then χ is par-
allel to the beam. The induced scattering of plasmons
by particles causes the latter to become isotropic, but
the chosen direction x still remains. Estimating (29)
with allowance for the foregoing, we obtain j " = - (κ· Η)

Substitution of the nonlinear currents in Maxwell's
equations yields'[117]

=v S/2H-- rot [HXrotH] - rot aH + roti> (κΧ Η] ,

Κγβ
(30)

Thus, we arrive again at the a effect. The criterion
of the instability and the growth rate are given by (17)
with (30) taken into account. If a homogeneous field is
applied to the plasma, then the question of the stability
is solved by linearizing Eq. (30). In the "classical"
formulation of the dynamo theory, the initial weakly-in-
homogeneous field is amplified to observable values.
The initial intensity of the field itself is of no impor-
tance—it can be infinitesimally small. The situation
here is different. The equation is essentially nonlinear:
a depends on the field, and therefore the criterion (17)
can be regarded as a condition on the initial field.
Fields that are too weak are not excited. Another new
feature connected with the nonlinearity is the non-expo-
nential amplification. In fact, the model equation
dy/dt=yz, which reflects the fact that the a term is
quadratic in the field, has a solution y =yo(l -Et)'1 (see
Fig. 11), which has a faster-than-exponential growth.
The singularity in 1/E raises no difficulty: the growth
of the field stops at ω<β) κ ωρ.

It is of interest to compare the emf field produced by
the Langmuir oscillations with the result of the Wein-
reich formula.C118] The latter reflects the connection
between the nonlinear current and the damping of the
wave. Obviously, such a connection should exist, since
the momentum transferred by the electrons and causing
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FIG. 11. Linear (1) and nonlinear
(2) a effect at identical initial
data. Solution 2 has a singularity
at i = l/E.

I/E

the emf is taken from the wave, and as a result the wave
attenuates. The Weinreich relation contains the wave
energy flux. In our case it has no meaning, inasmuch
as in the dispersion equation for the plasmons we have
neglected the thermal corrections, and there is no flux
(the group velocity vanishes). We derive the Weinreich
relation for this case. We multiply the density of the
number of quanta w/Κω (w is the oscillation energy den-
sity) by hk and obtain the momentum density wk/ω.
Further, in view of the fact that the damping decrement
of the plasmons, due to the collisions, is close to v,
the volume force acting on the electrons is given by
n0F = u>kv/u). This force is potential, and to take into
account deviations from potentiality it is necessary to
multiply by (ω<β)/ω ί)

2, which is a measure of the non-
potentiality of the oscillations. Consequently, E = F/e
= (^ΐ'/«οωβ)(ω(β)/ω/,)Ε. This is the analog of the Wein-
reich formula. On the other hand, according to (30),
we have Ε = otH/c. It is easily seen that these expres-
sions simply coincide at k=kd.

C. Applications

The criterion of the instability and the increment in
this problem are given by

(31)

It is difficult to realize the criterion (31) in experiment
at small β. Thus, if/3 = 1O'4, then it follows from the
criterion (31) that HL>7.5xlO7 at wr = 109 cm/sec (H is
in gausses and L is in centimeters). This is a rather
stringent condition. The instability is therefore real-
ized at larger β.

We proceed to discuss astrophysical examples. We
consider a relatively high-temperature plasma. For
example, for solar-flare conditions we have vT = 108

cm/sec and/3 = 1O"4, so that HL>1. 5 x l 0 \ At Η = 300 G
we have L>25 km; the critical dimension 25 km, of
course, is very small in comparison with the dimen-
sions of the flare region. It is assumed that in flares
σ is determined by the resonant interactions, or in other
words, by collisions of electrons with ion-sound oscil-
lations. If this is so, then it is necessary to substitute
the turbulent electric conductivity in expression (31) for
γ. The resultant fluctuations of the field can serve as
a source of additional heating of the gas, since their
scale is quite small. The nonlinearity of Eq. (30) leads
to an ambiguity of the solution and to different possibili-
ties. Thus, it is possible to have not only a rapid

. growth of the field, but also a rapid damping of the field
(in comparison with the usual diffusion damping), as

well as a modification of a different kind (see Sec. (C)
of Ch. 3).

MaksimovCU9] has considered an application of the
given mechanism for the high-latitude ionosphere, where
the beams definitely exist and are observed. If β
= (2/3) nbvl/nQV%, where nb and vb are the concentration
and velocity of the beam, then the critical scale is Lh

= 100 km at nb =1 cm"3. The perturbations develop again
against the background of the main magnetic field of the
earth, constitute magnetohydrodynamic waves, and are
registered in the form of definite variations.

The indicated mechanism permits a choice between
two interpretations of the linearly polarized χ rays from
the flare loops on the sun.C l 2 0 : In one of them the polar-
ization is attributed to bremsstrahlung of anisotropic
b e a m s . t m - 1 2 3 1 in the other it is attributed to Thomson
scattering of the radiation in the photosphere. In the
latter model, the distribution of the electrons in the
beam is isotropic. c i 2 4 ] In the first interpretation, the
mechanism proposed above is operative, while in the
second it is not (the anisotropy of the beam and of the
oscillations is of importance). If the mechanism is
operative, then the excited fluctuations can be in prin-
ciple registered, and this will make the choice possible.

TomozovC1251 has considered the action of the plasma
mechanisms of the field enhancement in quasars and in
active galactic cores. The presence of magnetic fields
in the indicated objects is necessary to interpret their
flare activity, as indicated by Shklovskii.Cl2e] The ex-
citation of the field in such large scales calls for a long
time, so that it is necessary to invoke turbulent elec-
tric conductivity due to ion-sound oscillations, thus
greatly decreasing the characteristic time of the am-
plification. Estimates show that this mechanism is
capable of producing a field on the order of several
hundred gauss over reasonable times.

5. CONCLUSION

The "old" dynamo theory has a sufficient number of
applications. At the same time, new ideas and mech-
anisms exist to a large degree only in the theory, and
here the theory has overtaken the interpretation of the
observations. Of course, this situation is not satis-
factory. The author would consider the task of the pres-
ent review to be fulfilled to a considerable degree if it
were able to suggest a large number of applications of
these ideas in astrophysics, geophysics, and in experi-
ments.
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the work.
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