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INTRODUCTION

In this article, as is evident from the title, we shall
discuss two beautiful physical phenomena. Both were
discovered long ago and have a fairly wide "range of
action" in general physics, c l - 3 ] plasma physics, C3~e:

and electronics.C 7 ] Up to now these phenomena have
been treated independently. The author has called at-
tention to the fact that there is a deep physical analogy
between the buildup of waves having negative energy
(in media in which there are charged-particle beams)
and the anomalous Doppler effect. The purpose of the
present article is to demonstrate this analogy, using
electron beams in plasmas and structures employed in
microwave electronics as examples. Of course the
larger part of the article is of the nature of a review.

1. POSITIVE- AND NEGATIVE-ENERGY WAVES IN
ELECTRON BEAMS IN PLASMAS

The concept of negative-energy waves in dispersive
media and of their instability mechanisms was first ad-
vanced from the points of view of general and plasma
physics by Kadomtsev, Mikhailovskii, and Timofeev, t3]

although in a more limited sense it was known earlier
in connection with electron beams in microwave oscil-
lators and amplifiers such as the traveling wave tube.C 7 ]

Let us recall the physical meaning of this concept.

Let us suppose that a "monochromatic" wave propa-
gates in some direction a in a uniform medium of di-
electric constant e, so that the electric field E(z, t) of
the wave varies according to the law

Ε = Eo exp [i (kz — at)]. (1.1)

If ε is independent of the frequency ω, i. e., if there is
no dispersion, the energy density W of the wave will be
given by W= ε (Εζ/8π), where the bar indicates averag-
ing over the period of the oscillations and W is the sum
of the electrical energy of the field and the kinetic en-
ergy of the oscillating particles. In the presence of
dispersion, we have, according to I 8 ] ,

W = — — (εω), Μ ο\

where by e and ω we mean their respective real parts
Ree and Reu>. The wave energy W will always be posi-
tive if the medium is in thermodynamic equilibrium,C8]

but, as was shown in the pioneering study of Kadomtsev,
Mikhailovskii, and Timofeev,C3] if the medium is not in
equilibrium W may have either sign—it all depends on
the nature of the dispersion. When dt ω/dw <0 we say
that the wave carries negative energy, meaning thereby
that the energy of the medium is lower when the wave is
present than when it is absent. C3]

Now let us suppose that the medium is a cold plasma
consisting of electrons and "stationary" positive ions,
the electron and ion concentrations both being ne. For
simplicity we shall assume that there is no magnetic
field (although, as will be shown below, all the results
will remain valid in the presence of a strong magnetic
field). In this case the dielectric constant for a high-
frequency electromagnetic wave is given by the well-
known formula

-1--2·. d.3)

in which we =v4imee
2/w is the Langmuir frequency of the

longitudinal (parallel to E) natural oscillations of the
electrons due to their (initial) displacements with re-
spect to the ions. For Langmuir oscillations (ω = ωβ),
Eq. (1.3) yields the dispersion equation

This equation is valid not only for the special case now
under discussion, but in general for all space-charge
potential oscillations (waves). It follows at once from
Poisson's equation div D = 0 (here D= eE, there being no
uncompensated charges in the plasma), which yields
ε -div E=0, i .e., ε =0, since div Ε does not vanish
for volume waves.

Now let us assume that all the electrons move with
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respect to the ions in the ζ direction with the same con-
stant velocity u, i. e., that they constitute a monoener-
getic beam; we shall denote the electron concentration
in the beam by n t . On transforming to the rest system
of the beam we obtain the same expression (1.3) for ε,
but with u)e replaced by the Langmuir frequency ω1

= j4Tmle
z/m of the beam and ω replaced by the fre-

quency ω' = ω - k · u, where k is the wave vector of the
oscillations. In fact, as a result of the Doppler effect
the frequency of the oscillations in the lab system (in
which the ions are at rest) is ω = ω'/(1 - few/ω), and this
leads to the expression just given for ω'. For the beam,
therefore,

-i-7i ' (1.5)

the oscillations. We determine ν and η from the equa-
tion of motion and Poisson's equation:

dv

and

div Ε ss ikE = inne.

In view of the fact that v, n, and Ε vary harmonically
in accordance with Eq. (1.1), we have

m (ω — ku)

1
ine ikE,

(1.11)

and from (1.2) we obtain the following expression for
the energy of the oscillations:

w-
£ 2 2 ws>\

~Sn (ω — ku)' '
(1.6)

where k is the projection of k in the direction of u (for
the longitudinal oscillations under consideration we
have kiiEiiu). It is evident that

W>0 if

VI'<0 if

(1.7)

We obtain (ω -ku) from the dispersion equation (1.4),
using Eq. (1.5):

ω — ku = ±< (1.8)

This means that the Langmuir oscillations of the beam
produce two space-charge waves in the rest system of
the ions: a fast wave with phase velocity w/k>u (the
positive sign in (1. 8)) and a slow wave with phase ve-
locity ci>/fe<w (the negative sign in (1. 8)). According to
Eq. (1.6), the energy densities of these waves are

W= ±
£2to

(1.9)

where the plus (minus) sign is for the fast (slow) wave.
Thus, the fast (slow) beam wave has positive (negative)
energy. The fact that one of the waves has negative en-
ergy is due to the fact that the medium is not in thermo-
dynamic equilibrium, owing to its sharp anisotropy re-
sulting from the presence of the particle beam.

To clarify the physical meaning of the result just ob-
tained we shall derive Eq. (1.9) in another way, with-
out making use of Eq. (1.2). The energy W of the wave,
as was noted above, is the sum of the energy WE = Ε2/8π
of the electric field and the kinetic energy Wg of the os-
cillating particles. WK is equal to the change in the
kinetic energy of the beam due to the effect of the wave:

WK = -^- (u + vf (n, - n) \ [Αι,, (1.10)

where ν and η are the perturbations of the velocity and
density of the beam electrons due to the wave (vllullE in
the longitudinal oscillations under consideration) and,
as before, the bar indicates averaging over a period of

whence, with the aid of Eq. (1.8), we obtain

J L = + 4 π ' 2 ι (-ι " 19)
η mk ωι ' ^ '

where the plus (minus) sign refers to the fast (slow)
wave. Thus, for the slow wave the velocity and density
perturbations ν and η of the beam are 180° out of phase,
and that, as we shall now show, is why the kinetic ener-
gy WK and the total energy W = WK + WE of this wave are
negative (for the fast wave, the perturbations ν and η
are in phase, so WK and W are positive)193.

According to (1.10) we have

(1-13)

for the slow wave, where n0 and v0 are the amplitudes
of η and ν (since the average in (1.13) is taken over a
period Γ of the oscillations the result will of course re-
main unchanged if the addition and subtraction signs in
the two expressions in parentheses under the integral
sign are interchanged). From Eqs. (1.13), (1.11), and
(1.12) we have

8η 16π (1.14)

where Eo is the amplitude of the field Ε that determines
va and n0 via Eqs. (1.11) and the superscript "s" indi-
cates that the corresponding quantity belongs to the slow
wave. Hence, taking (1.8) into account, the total ener-
gy density of the slow wave is

w s Ws . Ej El ω _ Ε* ω (1.15)

According to Eq. (1.12), in calculating the kinetic
energy density Wf

K for the fast wave one must take the
same signs in the two expressions in parentheses under
the integral sign in (1.13). Then we obtain

„,./ £» ku
* 8π ωι 16π (1.14)

(1.15)

It is evident that expressions (1.15) for the two beam
waves, which were obtained from simple kinematic con-
siderations, agree precisely with expression (1.9),
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FIG. 1. Dispersion curves: 1—3—branches of the function
y = l-t(w,k) atft = const., 4—lines y = l (4'—instability, 4"-
stability, 4'"—threshold (critical) regime).

which was derived with the use of the general definition
(1.2) for the energy of a wave.

Now let us write down the energetic relationships for
the total energy of the system (beam plus wave). This
energy, which is the sum of the kinetic energy Τ of the
beam electrons and the energy £ 2 /8π of the electric
field of the wave, changes as follows on excitation of a
wave:

(1.16)

where the superscripts " / " and "s" indicate the pres-
ence, and the superscript " 0 , " the absence, of waves.
It is evident that if a fast (slow) wave is excited, the
total energy of the system (beam plus wave) will be
higher (lower) than the initial energy of the beam; more-
over, according to (1.16), this energy difference is
precisely equal to the absolute value of the energy of
the excited waves. Therein lies the physical meaning
of positive and negative energies of waves. C 3 ' 7 ' 1 4 J As
regards the energy of the electric field of the oscilla-
tions, we see that it, unlike the total energy W of the
oscillations, is naturally positive and increases with
increasing amplitude of the wave: W£ = W& = Ε ο/16π.

The present derivation of the expression for W sheds
light on still another fundamental fact: the energy of
one of the Langmuir waves in a medium is negative only
because the medium (in this case the beam) is moving.
This can be seen directly from Eqs. (1.14) and (1.15):
if we set w =0, we find that both the kinetic and total
energies of the slow wave are positive. For a plasma
that is stationary as a whole, we find from Eqs. (1.14)
and (1.15) that

WE = WK = ^-,
(1.17)

This means that the total energy of the Langmuir oscil-
lations of a plasma at rest is positive and is the sum of
two equal positive quantities: the kinetic energy of the
oscillating electrons and the energy of the electric field.
As is easily seen, this same result (1.17) can also be
obtained in a different way: by calculating W from Eqs.
(1.2) and (1.3).

Finally, we note that so-called moderating structures
are used in microwave electronics. A familiar example
of such a structure is the metallic helix surrounding the

beam in devices such as the traveling wave tube.C 7 ] The
pitch of the helix is chosen so that the axial velocity of
the electromagnetic wave excited in the helix by the
beam will be close to the velocity of the beam particles.
It is clear from what was said above that the energy of
the wave in the helix will always be positive, since the
helix does not move.

2. INSTABILITY IN THE INTERACTION BETWEEN
WAVES HAVING ENERGIES OF OPPOSITE SIGNS

The result (1.16) obtained in Chap. 1 means that to
excite the fast space-charge wave in an electron beam
one must provide additional energy to the beam, while
to excite the slow wave one must extract energy from
the beam. In other words, in order for the slow wave
to build up there must be some mechanism for dissipat-
ing its energy. For example, such a mechanism might
be energy transfer from the wave to some other wave
associated with the stationary medium and therefore
having positive energy, e.g., to Langmuir oscillations
of the stationary plasma or to an electromagnetic wave
in a moderating microwave structure. We shall con-
sider both these possibilities.

If an electron beam passes through a plasma in such
a manner that the slow wave in the electron beam (the
"beam wave") can transfer energy to a plasma wave,
then both these waves will build up (at the expense of
the kinetic energy of the beam), i. e., the so-called
beam instability will arise. To formulate the condition
for beam instability in terms of the concepts under dis-
cussion let us return to the expression for the dielectric
constant of the medium. As is evident from Eqs. (1.3)
and (1.5), we have

for the system consisting of the beam and the plasma.
If this system is to be unstable, the slow beam wave
must have a sufficiently large "reservoir" from which
the energy required for building up the plasma wave can
be drawn. For this it is necessary that the (negative)
contribution from the slow wave to the total energy (1. 2)
of the oscillations of the beam-plasma system be larger
in absolute value than the (positive) contribution from
the plasma wave, i. e., that

Ι (ω — ku)"\

or

(2.2)

Beam instability will evidently set in at some threshold
value of the beam density. It is not difficult to see that
exactly the same expression for the beam-instability
threshold can also be obtained directly from the dis-
persion equation ε =0, i. e. ,ilOa:l

1 — e (ω) s
(ω — kuf- ω2 (2.3)

This equation, which is of the fourth degree in ω, is
best solved graphically.C11] The curves y = 1 - ε (ω) (the
left side of Eq. (2.3)) and y £ 1 (the right side of Eq.
(2.3)) are sketched in Fig. 1. If these curves intersect
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in four points, then all the roots for ω will be real and
there will be no instability; but if the curves intersect
in two points, then two of the four roots will be complex
and one of them will have a positive imaginary part
(ω=Ββω + ίγ, with y>0), and this means, in accordance
with Eq. (1.1), that the oscillations will build up. In-
stability sets in when the line y = 1 becomes tangent to
the central branch of the curve y = 1 - ε (ω). At the point
of tangency we have

and this, together with Eq. (2.1), gives the instability
threshold. It is evident from Eqs. (2.3) and (1.2) that
this threshold agrees precisely with the threshold given
by (2.2). The critical regime (2.4) at which instability
sets in corresponds, according to Eq. (2.3), to the os-
cillation frequency

It is important for what will follow to point out that this
frequency satisfies the condition

«>χ: (2.5')

the velocity of the beam particles is higher than the
phase velocity of the oscillations.

We have considered collisionless beam instability.
Now let us complicate the problem somewhat: we as-
sume that the plasma electrons collide with one another
and with the ions and the neutral gas, and denote the
collision frequency by v. If there were no beam and
Langmuir oscillations were excited in the plasma the
oscillations would be damped as a result of the colli-
sions (energy dissipation) since plasma oscillations
have positive energy. In the presence of a beam, dis-
sipation of the energy of the oscillations may lead to
buildup of the slow beam wave (since this wave has
negative energy) and thereby favor instability. To see
this, let us write the dispersion equation for the oscil-
lations with allowance for the collisionsQObl:

(ω—-*u)2 ' ω(ω+Ιν)
= 1 (2.6)

(it is the imaginary term added to the oscillation fre-
quency that leads to the above mentioned damping of
plasma oscillations in the absence of a beam). The in-
stability threshold is determined by the condition
8(ωϋβε)/9ω = 0 according to the "energetic" approach
under discussion and by the condition 9Re£/9a>=0 ac-
cording to Eq. (2.4). These two conditions are fully
equivalent since Ree (ω) =0 at the instability threshold.
It is evident from Eq. (2. 6) that the condition for in-
stability is

"l — ω ί --̂ (2.7)

which is a weaker condition than the "collisionless" con-
dition (2.2). Thus, collisions (energy dissipation) low-
er the instability threshold: instability sets in before
it would if there were no collisions. This phenomenon

is called dissipative instability. It is easily seen that
the oscillation frequency at which instability sets in is
lower than the frequency (2.5) and even better satisfies
the condition

»>-£. (2.5')

Now let us consider two more examples of beam in-
stability. Let an electron beam propagate through a
"background" of ions of finite mass M, which neutralize
its space charge, and let us assume that there is no
third component (plasma electrons). The oscillations
of such a quasineutral beam are described by the famil-
iar equation (2.3), but with the electron Langmuir fre-
quency ω, replaced by the ion Langmuir frequency ω+

= -/47rn+e
2/M, where nt=n^ is the ion concentration:

( ω -

(2.5) Accordingly,

ε = 1 —
(ω — ku.)'

(2.3')

(2.1)

This problem is quite analogous to the one just dis-
cussed. The instability (it is usually called the Bune-
man instability"23) develops because the slow beam
wave, which carries negative energy, transfers energy
to the ion wave, which carries positive energy, and
therefore builds itself up. As in the preceding problem,
the instability threshold can be determined either via
the "energetic" approach, or by solving the dispersion
equation directly; and of course both approaches lead
to the same result.C 1 3 ] Here it is important to note that
the oscillation frequency corresponding to the instabil-
ity threshold, which is given by

» = ^ ^ , -,„ < m 1 / 3 , (2.8)

again (and with a large margin) satisfies the condition

»>•£. (2.5')

A quasineutral electron beam is subject to still
another instability provided its transverse dimensions
are finite, its transverse density profile is (inevitably)
nonuniform, and it propagates along a strong magnetic
field (H=H,). This instability, which limits the attain-
able beam current,C 1 3 : is also described by the disper-
sion equation ε = 0, in which the contribution from the
beam electrons to the dielectric constant is given by the
expression (we omit unimportant details)[13: l

•Λ-- (2.9)

in which k is the magnitude of the wave vector k of the
oscillations, kt is the projection of k on the ζ axis (the
longitudinal wave number), and u>H=eH/mc is the elec-
tron Larmor frequency (ωΗ>ω, ω1, keu). It is evident
that in this case, according to Eq. (1.2), the energy of
the slow beam wave will be negative. The mechanism
of this instability is (from the point of view adopted
here) analogous to that of the Buneman instability. The
growing wave again satisfies the condition
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u>-£-: (2.5')

the velocity of the beam particles is higher than the
phase velocity of the oscillations.

This is a very appropriate place to point out that, as
the last example shows, the presence of a strong exter-
nal magnetic field does not affect the conclusions that
we reached above under the simplifying assumption that
no magnetic field was present. In the presence of a
(strong) field we have only to replace k by its projec-
tion kc onto the χ direction of the field Η = HZ in all the
formulas given earlier.1 '

Now let us turn to a few examples from the field of
electronics, in which the instability of negative-energy
waves is used to generate and amplify microwave oscil-
lations. C 7 : In the traveling-wave tube mentioned earlier,
an electromagnetic wave builds up in the helix sur-
rounding the beam (this wave has positive energy) as a
result of the action of the slow space-charge wave in
the beam (which carries negative energy) under such
conditions that the two waves are synchronous (have the
same phase velocity)"'141:

Ph
(2.10)

where t>Jh is the phase velocity of the wave in the helix
(measured along the axis of the helix), v\b is the phase
velocity of the slow beam wave, and kz is the longitudi-
nal wave number (measured along the beam). When
condition (2.10) is satisfied the positive-energy wave
in the helix is a "dissipative" load for the slow beam
wave, and both waves grow with time. It is evident
from (2.10) that this takes place under the condition

w > — : (2. 5 )

the beam "overtakes" the wave in the microwave struc-
ture surrounding it.

In the so-called resistive microwave amplifier,Cls]

the beam is surrounded by walls of finite (relatively
low) conductivity in order to provide a dissipative load
for the slow beam wave. In this system the electric
field of the slow beam wave induces conduction currents
in the walls; the consequent Joule losses are supplied
by the energy of the wave, and as a result the wave
builds up (at the expense of the kinetic of the beam elec-
trons). Let us formulate the dispersion equation for
such a system. To do this we first find the current
densities in the beam and the walls due to the field of
the waves; these are

1 beam =" n<ev ^ l ( ω _-(,„)

(according to (1.11)), and jvana = <?E, where σ is the
conductivity. The space-charge densities in the beam
and the walls are determined from the corresponding
equations of continuity:

"And multiply ω\ and u>\ by hl/k\ for more details see : i 3 ] .

950 Sov. Phys. Usp., Vol. 19, No. 11, November 1976
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On substituting the total space-charge density p = pt№m

+ (Wi, into Poisson's equation div Ε=4πρ, we obtain
the dispersion equation

whence

0) — /cu=i: »-'̂ ).

(2.11)

(2.12)

where the plus (minus) sign on the right is for the fast
(slow) wave. The imaginary part of the frequency of
the slow wave is evidently positive, and according to
(1.1), this means that the oscillations build up (are un-
stable). In this example, too, as in all the preceding
ones, instability sets in when the condition

u>
Re ω (2.5')

is satisfied, i. e., when all the beam electrons move
faster than the wave that they excite.

Finally, we mention still another microwave ampli-
fier, in which two electron beams with unequal veloci-
ties pass through a background of "stationary" charge-
compensating ions (the so-called electron-wave tube1161).
Here the beam with the lower velocity acts as a dissipa-
tive load for the slow wave in the beam with the higher
velocity. It is easily seen (by transforming to the rest
system of one of the beams) that the mechanism respon-
sible for the instability (for the buildup of the oscilla-
tions) is quite the same in this case as in the cases dis-
cussed above of a beam in a plasma or in a microwave
moderating structure. Condition (2.5') is naturally also
satisfied in this case.

3. THE ANOMALOUS DOPPLER EFFECT

Here we shall limit ourselves to a brief discussion
of the physical meaning of this remarkable phenomenon,
referring the reader to the fundamental works of Ginz-
burg and Frank, c n to their reveiws,C21 and to the lec-
tures of Tamm and Frank.C1]

First we recall the phenomenon known as "Vavilov-
Cerenkov radiation, " C 1 1 which is more "popular" just
now. This (electromagnetic) radiation arises when a
charged particle moves through a medium with a veloc-
ity (u = ut) exceeding the velocity of light vvb = c/N in that
medium:

„>.£, u = £-, (3.1)

where w/k=c/N = v^, kt = kcos6a, and Ν is the refrac-
tive index of the medium (assumed to be homogeneous
and isotropic). The radiation is observed only at an
angle θ0 to the direction of motion of the particle such
that

= ^£. = -£-, (3.1')
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Region of
the normal
Doppler
effect

Region of
the anomalous
Doppler

FIG. 2. (Drawn according toc2].)

i. e., only on the so-called Cerenkov cone (Fig. 2,
fromC2]).

Now let us replace the free charged particle by a
system that has internal energy U in addition to its
kinetic energy Τ (e.g., an arbitrary oscillator). If this
system emits a photon of energy Ηω « Τ and momentum
Hk in the direction θ it will "recoil, " and as a result
its kinetic energy will decrease by the quantity ΙATI
= Rkzu=Kkucos6. Consequently,

AT

Λ ω

k,u ucosO

But now we have a curious situation:

|ΔΓ|>ηω when

(3.2)

(3.3)

the system loses more kinetic energy than the emitted
photon carries off (!). This is one of the seeming para-
doxes of "superluminal" motion (in optics this is the
case in which u cos0> c/N). If such emission is to be
possible, the excess kinetic energy lost by the system
must go to increase the internal energy:

, , , / λ'-Ιί j \ + I U COS θ < \

hXJ — ha ( — 1 ) = 7ϊω ( 1 I .
P h

(3.4)

Thus, when condition (3.3) is satisfied the system emits
energy and at the same time undergoes a transition to
a more highly excited state (!). This phenomenon is
called the anomalous Doppler effect. It differs from
the normal ("ordinary, " in particular, "subluminal")
Doppler effect "only" in the sign of AU in formula (3.4):
In the normal Doppler effect the inequality opposite to
(3.3) is satisfied; then, according to Eq. (3.4), the pho-
ton is emitted "as usual" at the expense of decreasing
the internal energy of the system. The normal and
anomalous Doppler effects are separated by the situa-
tion in which the Cerenkov condition (3.1), (3.1') is
satisfied. Then AU = 0, and the emission of a photon at
the Cerenkov angle θ0 =arccos(vph/ft) takes place with-
out change in the internal energy of the system. Hence
a free charged particle having no internal degrees of
freedom can emit Vavilov-Cerenkov radiation. Thus,
all three effects are possible for a system moving at
"superluminal" velocity {u>vvtl), depending on the di-
rection in which the radiation is emitted: for θ> θ0, the
normal Doppler effect; for θ=θα, the Vavilov-Cerenkov
effect; and for θ<θα, the anomalous Doppler effect.
Only the normal Doppler effect is possible for a system
moving at "subluminal" velocity (w<wph).

Now let us consider the particular case in which the
oscillator is a charged particle (e.g., an electron)

moving freely with velocity u in the direction of an ex-
ternal magnetic field H = H, and having a small trans-
verse (1H) velocity component. The rotational energy
of the particle in the field Η (the internal energy of the
oscillator) can change by quanta of magnitude

eH
me

where m is the mass of the particle and η =0, ±1,
±2, . According to Eq. (3.4), which expresses the
conservation of energy, we haye

or

o H = h (ω — kzii),

ω — kzu = noiH.

(3.5a)

(3.5b)

The case n>0 corresponds to the normal Doppler effect:
the frequency of the emitted radiation in the rest system
of the oscillator (ω -ktu) is equal to the frequency of
the corresponding quantum transition. The case η < 0
corresponds to the anomalous Doppler effect; Hkeu=Ku>
+ Κ\η\ωΗ: the change in the kinetic energy of the longi-
tudinal motion of the oscillator goes to supply the en-
ergy Κω of the emitted photon and to increase the inter-
nal energy of the oscillator, i. e., the energy of its ro-
tation in the magnetic field. If the particle had no rota-
tional energy before radiating, it begins to "revolve"
as a result of emitting a photon (with n<0). In the case
of a particle beam, the anomalous Doppler effect tends
to facilitate its becoming isotropic, and this has been
observed experimentally.1·17^ Finally, the case n=0
corresponds to the Vavilov-Cerenkov effect: the emis-
sion of the photon is not accompanied by any change in
the rotational energy of the particle. Concerning the
part played by these phenomena in plasma physics,

,[2,4,11,18]
see

4. AN ANALOGY: THE LIMITING CONDITIONS FOR
THE EFFECTS

Now we can finally turn to what, according to the title
and introduction, is the basic purpose of this article.
Let us compare three facts discussed above: 1) (Chap.
2) When a negative-energy wave excites (emits)2' an-
other wave having positive energy, the negative-energy
wave goes over into a state in which the amplitude of its
oscillations, and therefore the energy of its electric
field, is higher; 2) (Chap. 3) If a system moves faster
than the wave it emits, then, when it emits the wave it
undergoes a transition to a more highly excited state—
to a state of higher internal energy (the anamolous Dopp-
ler effect); and 3) (Chaps. 1-3). Both the phenomena
discussed in Chaps. 1 and 2 take place under the same
conditions as regards dispersion, namely when the con-
dition (2.5'), κ>ω/£ ί ; is satisfied.3' In particular, the

2)Here we are using the word "emits" in a very conventional
manner—from a purely energetic point of view and only to
emphasize the analogy under discussion.

3 )In (2.5'), k = kt.
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FIG. 3. Velocity distributions in
beams: a) Hydrodynamic regime,
Δ» < «o — u/kt; b) Kinetic regime,
Δ« >«o - ω/fe, (in this case k~kt).

dispersion of the slow wave in an electron beam, which
carries negative energy and (under suitable conditions)
is unstable in a medium having positive energy, is de-
scribed by the equation

ω —ft2u = _ M l , (1.8)

which is fully analogous to the dispersion equation

ω — kzu = — | η ] ω,, (3.5)

in the anomalous Doppler effect.

To these facts we add another, which is associated

with the so-called cyclotron waves of an electron beam,

which have found application in microwave electronics

and plasma physics.C5b'73 The dispersion of these waves,

which are circularly polarized in the cross-section

plane of the beam, is determined by the dielectric con-

stant

= 1 —(ω — kziift—ω (4.1)

the frequency of the wave is determined from the dis-
persion equation ε =0. When ω Η » ωι this gives4'

i.e.,

ω — k,u ta ± ω Η . (4.2)

where the plus (minus) sign is for the fast (slow) wave.

Clearly, the dispersion formula (4.2) for cyclotronwaves

is virtually the same as condition (3.5) for radiation by

a Larmor oscillator. It is directly evident from Eqs.

(1.2), (4.1), and (4.2) that the fast wave, which corre-

sponds to the normal Doppler effect (u>>keu) carries

positive energy, while the slow wave, which gives rise

to the anomalous Doppler effect (iu<ktu) carries nega-

tive energy.

This group of facts permits us quite definitely to con-

clude that there is a direct physical analogy between the

instability of a negative-energy "beam" wave in a posi-

tive-energy medium and the anomalous Doppler effect.

4 ) For ωχ» ωΗ one obtains the space-charge beam waves previ-
ously described: ω - έ , » = ± &>ι.

The difference between the two phenomena is that the

anomalous Doppler effect (in the form examined above)

is an elementary process, while the instability is a col-

lective process; in particular, in the case of Eq. (3.5)

the internal energy of the system is the rotational ener-

gy of a single particle, while in the case of Eq. (1.8),

it is the vibrational energy of the aggregate of beam par-

ticles. But the instability arises precisely because one

elementary act induces the next one. i l a l Hence the in-

stability of a negative-energy wave under consideration

can be treated as an induced anomalous Doppler effect.

It is just this effect that lies at the basis of the instabil-

ities of amonoenergeticelectronbeam discussed in Chap.

2. Let us list these instabilities: 1) (collisionless) in-

stability of a beam in a plasma; 2) (dissipative) insta-

bility of a beam in a plasma; 3) Buneman instability of

a beam moving through a background of stationary ions;

4) beam-drift instability; 5) the instability of glancing

beams (the two-ray or electron-wave tube); 6) the insta-

bility of a beam in slow-wave structures—the genera-

tion and amplification of microwave oscillations in elec-

tronic devices such as the traveling-wave tube; and 7)

dissipative instability of a beam in systems such as the

resistive-type microwave amplifier.

Thus, if the dispersion in a "beam" system is such

that the phase velocity of the waves is lower than the ve-

locity of the beam (i. e., if the condition for the anom-

alous Doppler effect is satisfied) one can confidently ex-

pect the system to be unstable with respect to the growth

of two waves, of which one carries negative energy, and

the other, positive energy. On the other hand, if one

explains the instability of the system from the point of

view of the concept of negative-energy waves, it is the

induced anomalous Doppler effect that is "responsible"

for the instability.

There are two other effects that are analogous to the
anomalous Doppler effect: the induced normal Doppler
effect, and the induced Vavilov-Cerenkov effect/2·4·18·191

The latter may be called inverse Landau damping from
the name of an effect that plays an exceptional part in
plasma physics. [ 2 0 · 2 1 ]

Now we must add the following supplement of a funda-
mental nature to all that has been said above. In dis-
cussing beam instabilities we always considered the case
of a so-called "monoenergetic" beam, in which the ve-
locity spread of the electrons was so small that all the
beam electrons were moving faster than the wave they
were exciting (Fig. 3a). Such a beam is said to be in
the hydrodynamic regime"2]; in this regime u>u>/kz,
and the anomalous Doppler effect takes place. However,
the following question arises: What will happen if the
velocity spread of the beam electrons is not "small
enough, " so that, as illustrated in Fig. 3b, the condi-
tion u>u/kz is not satisfied for all the beam electrons?
In answering this question we limit ourselves to the case
of one-dimensional motion (k=ke). The situation turns
out to be radically different in a beam having a large ve-
locity spread (such a beam is said to be in the kinetic
regime1·22:): as the velocity spread increases, the anom-
alous Doppler effect disappears and, simultaneously
therewith, the negative-energy beam wave ceases to be
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excited—it damps out.5 ' This coincidence—the simul-
taneous disappearance of the anomalous Doppler effect
and the instability (buildup) of the negative-energy
wave—is naturally not accidental, but provides further
evidence of the deep physical analogy between these two
phenomena.

The boundary between the hydrodynamic and kinetic
regimes of a beam corresponds to the (limiting) velocity
spread6>

Ι ω — kzu0\

kzu0
(4.3)

This means, according to (1.8), (2.2), and (2.8), that

for the case of a beam in a collisionless plasma,

Δΐί _ / m \ l / 3

~ ^ T ~ [~M~ I (4.3"

in the case of a one-dimensional beam moving through
a background of mobile ions, and

"0 ~ ^"0 ~ ω
(4.3")

for the case of the beam in a traveling-wave tube, a re-
sistive-wall amplifier, and similar microwave devices.

When the velocity spread Δκ of the beam rises above
the indicated limit, the instability of the beam in plasma
media does not entirely disappear, but another (kinetic)
mechanism, the induced Vavilov-Cerenkov effect, [ 2 · 4 · 2 2 : ι

comes into play, and according to Fig. 3, b, this just
corresponds to the Cerenkov condition ω/k^u = 1. Thus,
the Vavilov-Cerenkov effect begins to come into play
just when the conditions for instability (buildup) of nega-
tive-energy waves cease to be satisfied. In particular,
therefore, the Vavilov-Cerenkov effect can have nothing
to do with the mechanism responsible for the operation
of the traveling wave tube and similar microwave de-
vices, for the operation of these devices, as was shown
above, depends on the instability of the negative-energy
waves, i. e., on the induced anomalous Doppler effect.

Let us give another example illustrating the analogy
we are pursuing. It is known that when a beam in the
kinetic regime passes through a plasma, the collisions
of the plasma electrons tend to damp out the beam insta-
bility. [ 4'5>1 O b : l This alone is evidence that the waves gen-
erated in the beam-plasma system in this regime have
positive energy. In fact, if there were negative-energy
waves in the system, the collisions of the plasma elec-

5>We shall not discuss the kinetic regime of a beam since such
a discussion would not conform to the general style of this
article. A clear and rigorous exposition of such topics will
be found i n B 1 . The kinetic instability of a beam under the
condition ω — keu~ — ηωΗ for the anomalous Doppler effect has
been investigated theoretically in ] for the case of three-
dimensional motion.

6)As an approximate value of Au one may take the full width at
half maximum of the electron velocity distribution function
fin) (see Fig. 3).

trons would not tend to damp them out, but to build them
up, as was shown in Chap. 3 by the example of the dis-
sipative instability of a beam in a plasma and in a resis-
tive-wall amplifier. Here, too, there is a regular coin-
cidence of two circumstances: first, the waves have
positive energy; and second, according to Fig. 3 the con-
ditions for the anomalous Doppler effect are not satisfied.

The existence of a direct relationship between the in-
duced anomalous Doppler effect and the instability of
negative-energy waves provides the basis for the very
fine ideaC241 of collective acceleration of ions to relativ-
istic energies in powerful high-voltage electron beams.
According to this idea, the accelerating agent is the
slow cyclotron wave (4.2), whose amplitude increases
with time on account of the energy losses to the ions
being accelerated (in accordance with the effect of dis-
sipation on a negative-energy wave). The acceleration
takes place in a continually falling magnetic field, and
on account of this the phase velocity ω/k,. of the slow
wave rises, tending toward the velocity of the (relativ-
istic) beam electrons, i. e., toward the velocity of light.

Finally, we note in the same context that the coinci-
dence discussed above is also found in very interesting
experiments1·23-1 on the generation of ultrahigh-power
microwave oscillations by intense relativistic beams in
a spatially modulated magnetic field: first, there is no
anomalous Doppler effect (since <*>>k2u); and second,
the space-charge waves that build up in the beam (which
is twisted into a helix), and it is these waves that deter-
mine the beam's coherent radiation, turn out to have
positive energy. iZ32

Thus, all the examples examined here further illus-
trate and confirm the conclusion reached above that
there is a deep physical analogy between the induced
anomalous Doppler effect and the instability of negative-
energy waves in "beamlike" dispersive media.
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