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1. The problems of present-day theory are the prob-
lems of field theory. Whereas classical mechanics and
quantum mechanics are logically faultless schemes (the
limitations on the region of applicability of the former
have been dictated solely by experiment, and, with re-
gard to the latter, up to now there are no facts in sight
that would give us cause to reconsider it), field theory
has contained internal contradictions from the very be-
ginning.

Why is field theory necessary? It is required by the
theory of relativity, in which every interaction propa-
gates with a finite velocity and, therefore, a carrier of
the interaction—a field—is required. A field is a cer-
tain dynamical system having an infinite number of
degrees of freedom. On the other hand, by virtue of
the fact that in relativistic mechanics there is no par-
ticle-number conservation law—particles can be cre-
ated and annihilated—every system actually has an in-
finite number of degrees of freedom, i .e . , acquires
the character of a field. Thus, relativistic theory is
a theory of interacting fields.

It is well known that internal contradictions were al-
ready contained in classical electrodynamics. The
Maxwell-Lorentz equations give the possibility of deter-
mining the field from a given distribution of charges
and currents. But the distribution of charges and cur-
rents is itself determined by the field. The equations
of motion of the charges give the possibility of finding
this distribution, but for a given field. However, the
solution of the consistent system of equations for the
combined dynamical system "field and charges" comes
up against insuperable difficulties.

In classical electrodynamics only one step was taken.
It is possible to find first the motion of an electron in
a given field, then find the field created by the electron
with the given motion, and then take into account the
action of this field on the motion of the electron. Thus
is the radiation reaction calculated. But for this meth-
od of successive approximations to be carried through
it is necessary that the following condition be fulfilled:
the force of the radiation reaction should be smaller
than the original force. This is fulfilled for a field with
wavelength greater than the classical electron radius
re = ez/mcz. Classical electrodynamics does not know
the answer for shorter lengths.

Here the difficulties of classical electrodynamics are
removed by external means. A quantum treatment is
already required for wavelengths significantly greater
than re—of the order of the electron Compton wave-
length λβ = η/me = 137re.

Classical electrodynamics remains fundamentally
unsatisfactory, but in practice the difficulties are trans-

ferred to quantum electrodyamics.

The solutions of the equations of quantum electro-
dynamics are also constructed by the method of suc-
cessive approximations (perturbation theory); the
solutions appear as expansions in the small parameter
ez= 1/137.1( And in the first approximation quantum
electrodynamics led to excellent results, describing a
wide range of phenomena: emission of photons, scatter-
ing of photons and electrons, and the formation and an-
nihilation of electron-positron pairs. But attempts to
find corrections to these results led to absurdities. The
next term of the expansion did indeed contain an extra
power of the small parameter e 2, but multiplying it
there appeared an integral over the wavelengths, of
the type

f άλ

in which the upper limit was given by a wavelength
characteristic of the given process (determined, e.g.,
by the transferred momentum or energy), and the low-
er limit was unbounded, i .e . , the integral was loga-
rithmically divergent at the lower limit. The situation
here is similar to that which obtained in classical
electrodynamics in the attempt to calculate the electro-
magnetic mass of the electron. Indeed, the Coulomb field
at a distance r from a charge at rest is proportional to
1/V2, and, therefore, the energy ~/r" 2dr. We note
that the entire electron self-energy me2 is already con-
tained in the region r > rg/2 in this integral, so that, in
this problem too, the physical restriction of the range
of applicability to the region r>\ hands over the prob-
lem to quantum electrodynamics.

Such a strange situation, in which the theory gives
answers in agreement with experiment by an approxi-
mate method whose validity cannot be justified within the
theory itself by the small size of the corrections to it,
could not fail to irritate the pioneers of quantum elec-
trodynamics. Therefore, they, and in particular
Heisenberg, expected the same resolutionof the problem
as there had been for classical electrodynamics, i .e . ,
that facts contradicting the results of quantum electro-
dynamics would appear and then it would be necessary
to assume that a radically new theory was needed and
quantum electrodynamics would be restricted (no lon-
ger from within, but from without) to the region of not
very short distances or not very high energies. There-
fore, each new experimental fact was treated first of
all from this point of view. (An idea of the frame of
mind of theorists at this time is given by Heitler's book,

u Here and in the following, by e1 we mean the dimensionless
quantity e2/fi"c.
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which came out in 1936.) Such was the situation when
showers were discovered in cosmic rays. This was
regarded as contradicting the theory—in quantum elec-
trodynamics the probability of production of a large
number of pairs and photons in one event is extremely
small. Later it turned out that the showers are beauti-
fully described by cascade theory, without multiple
production and in agreement with quantum electrody-
namics. Next a contradiction arose between cascade
theory and the intensity of the soft component of cosmic
rays in the lower layers of the atmosphere. The con-
tradiction was resolved by the discovery of muons and
pions and by a revision of the scheme of the origin of
cosmic rays, and cascade theory, i .e . , quantum elec-
trodynamics, was found to be correct.

The next stage in the development of the theory
starts from a new experimental fact—the discovery
of the Lamb shift of levels. Its order of magnitude
was such that it would have been possible to interpret
it as the second-order corrections of perturbation the-
ory, if the theory had made it possible to calculate this
second approximation. And then it was calculated.
How? Surely the second approximation contains an
infinity—a divergent integral! Crudely speaking, the
prescription is as follows. We close our eyes to the
divergence of the integral. We pretend not to notice
it. For this it is best to denote a certain (divergent)
part of it, e.g., /**, by some symbol, α or δ. Then
we recall that multiplying α or δ there appears the
small parameter e 2 . We note that in the expression
for any amplitude calculated to a given accuracy in pow-
ers of e 2, a and δ appear only in the form e 2(l + δ)
= e'2 and m + b = m', where e and m are the charge and
mass of the electron. We then do a renormalization,
i .e . , we assume that it is e' and m' which are the elec-
tron charge and mass that are measured in the standard
way in experiment. After this there appears before us
a formula of the second or a higher approximation, and
there are no infinities. The precise procedure of the
calculations differs little from this rough outline. On a
fundamental level it is desirable to convince oneself
of the uniqueness of the procedure and of the fact that,
in any approximation, everything can be reduced to a
renormalization of the mass and charge. This has been
done.

Is this theory a good one? Yes—there is excellent
agreement with experiment. At the present time the
most sensitive check consists in measuring the anom-
alous magnetic moment of the electron and muon. For
the electron the calculations have been taken up to the
third approximation and surpass experiment in accu-
racy. For the muon, in accordance with the theory,
experiment has reached that level of accuracy beyond
which it is necessary to take into account the contribu-
tion of hadrons. But how are we to understand this
handling of the divergent integrals? The simplest way
is to imagine that the lower limit is in fact finite. Some-
thing external to the theory itself cuts off the integrals;
precisely where this happens is not very important for
us—it is somewhere at very short distances.

2. The students of Landau, knowing how highly he

estimated concrete physical results and how little he
liked conversations on general "fundamental" topics,
were somewhat surprised by the comparative restraint
with which Landau greeted the outstanding successes
of quantum electrodynamics in calculating the radiative
corrections. But they displayed insufficient under-
standing of the character of their teacher's attitude to
science. In fact, Landau could not work outside an
atmosphere of ideological clarity. To his way of think-
ing, the latter concept was by no means the same thing
as formal rigor. He did indeed dislike debates on
themes concerned with the fundamental basis of the sci-
ences, but this was only for those sciences whose funda-
mental principles he considered to be clear, such as,
e. g., quantum mechanics or statistical physics. His
attitude to those subjects in which there was no clarity
was entirely different. A good example is provided by
his earlier papers with Peierls, and also by Landau's
attitude to the parity-nonconservation problem that arose
later.

The same situation obtained in the era of the radiative
corrections. He valued the results, of course, but re-
garded the methods by which they were obtained as for-
mal prescriptions. So Landau and his students devoted
themselves to seeking the foundations.

The result was four articles by Landau, Abrikosov
and Khalatniko.c n The formulation of the problem in
these papers is as follows. Insofar as the divergences
are associated with short distances, i. e., with the point
nature of the charges, is it not possible to find first the
solution for charges of finite dimensions r0 and then see
what will happen when r 0 - 0? In order to elucidate this
approach, we shall consider a simple example, which,
as it turns out, is entirely adequate for the general
problem. Suppose that we have two equal charges,
situated a distance r apart. If the charges are in a
vacuum, their potential energy has the form of Cou-
lomb's law

V = e2/r

irrespective of whether the charge is a point charge or
has an arbitrary spherically symmetric distribution
with radius r0 < r. This expression is the solution of
the electrostatics equation

div Ε = 0 or AV = 0, r > r 0 .

If the charges are in a dielectric, the electrostatics
equation takes the form

div D = 0,

where

D = (1 + 4πχ) Ε,

(χ is the polarizability of the medium). In the general
case the quantity χ is an integral operator. The ex-
pression for V can be written in the form

V = -
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To determine d it is necessary to know the polarizabil-
ity of the medium. We note that the form of d depends
on the dimensions r0 of the charge and that we need to
know the solution of the electrostatics equation only in
the region r> r0. The quantity r0 can be varied arbi-
trarily. For example, even if the charge is a point
charge, we can cut out a sphere of radius r0 around it,
but include in e(r0) not only the original charge but also
all the associated charges induced by the polarization of
the medium inside the sphere of radius r 0 . 2 ) If we
choose ro = r, the simple Coulomb law is restored, i .e.,
for r=r0, d=\. It may be said that the problem re-
duces to the determination of ^(r), i .e., of the charge
as a function of the radius:

t* (r) = e» (r0) d. (1)

In quantum electrodynamics, because of the phenom-
enon of polarization of the vacuum, charges placed in a
vacuum do not interact in accordance with Coulomb's
law. The problem consists in determining the polariza-
tion χ of the vacuum, and the function d. The solution
of this problem by the method of perturbation theory
implies that we take Coulomb's law as the initial (ze-
roth) approximation, the next approximation then con-
siders the polarization of the vacuum in the given field,
and so on. Thus, we obtain the solution in the form of
a series

to us, are added; for simplicity we confine ourselves
to distances r < \).

It should be said that the interpretation, used in
these papers, of the cutoff of the divergent integrals
was not fundamentally new. What was essentially new
was the second part of the formulation of the problem;
this reduces to the determination of the function d with-
out the use of perturbation theory. The point is that
the formal system of equations of quantum electrody-
namics is more symbolic than real. From it we can
obtain a perturbation-theory series for the amplitudes.
But there is no closed system of equations for the
amplitudes or Green functions—an infinite system of
equations (the Dyson equations) is obtained for them.
In the work of Landau, Abrikosov and Khalatnikov it
was shown that for small e2 a closed system of equa-
tions can be formulated. The authors solved it for the
asymptotic limit ro«r *i\ and found that

i.e.,

i.+ (2/3ji)«Mn(r/r0)

•l+(2/3n)e2(ro)ln(r/ro)"

(2)

(3)

We note that in the case when (2e2/3ir)ln(r/r0)< 1 the
expression (2) can be expanded in the series

1 + + . . .

The function <ft contains the divergent integral /λ"1<ίλ
spoken of earlier. But if we start not from a point
Charge but from a charge of finite dimensions, an ad-
ditional boundary condition is imposed on d: d=\ for
r=r0. This means that the lower limit of the integral
is now not 0 but r0, and /r

r

0 λ"ΧίΑ = ln(r/r0). In place of
the divergent integral we have obtained a finite inte-
gral, cut off at r0. We have achieved this by restrict-
ing ourselves: we do not know what happens in the re-
gion r< r0, and we have denoted by e the entire charge
within the sphere, including the primary ("bare")
charge and the associated vacuum charges. It then
turns out that, although we have based the perturbation
theory on the small value of e2, the expansion param-
eter is e2ln(r/r0). Therefore, we can vary r0 only
within limits such that the condition

is fulfilled.

We note also that this simple expression for dx holds
for r « \ , while for r of the order of \ or r > Xe we
must replace rby \ in this formula (furthermore,
terms independent of r0, which will not be of interest

aOne need not visualize both charges as spheres of radius r0.
It is only necessary to regard the "active" charge, i. e. , the
one "creating" the field, as such. Of course, it does not
matter which of the two charges is assigned the "active" role
and which the "passive" It is important only that their prod-
uct be measurable. In the following we shall regard e2 rath-
er than e as a function of r0.

which coincides with the series that can be obtained in
perturbation theory if terms containing e 2 and ln(r/r0)
to equal powers are kept. The formulas (2) and (3) are
valid under lesser restrictions: for e z « l and an arbi-
trary value of r/r0» 1 (but, of course, τ<λβ·} in prac-
tice, they are valid up to r~ λβ).

Thus, in these papers it was shown that if we start
from a primary charge that is not a point but has di-
mensions r0, then for e z « 1 a solution for d exists.
This solution makes it possible to carry out the renor-
malization of the charge. What we usually call the
physical charge is the constant appearing in Coulomb's
law for long-wavelength photons. In the terms used,
this is e(\). Thus, we can carry out the calculations
by perturbation theory and express the results in terms
of e(\); the primary ("bare") charge e(r0) never enters
our formulas, if we are interested in the region r > r0.
The renormalization of the mass can be justified anal-
ogously.

Formula (3) was obtained taking into account only the
contribution of the electrons to the polarization of the
vacuum. Apart from the contribution of the electrons,
it is necessary also to take into account that of the mu-
ons, of other heavy leptons if they exist, and perhaps,
of other particles (e. g., quarks). Therefore, in the
limit of small r the coefficient of the logarithm in (2)
and (3) must be increased by a factor of v, where u is
the effective number of fermions participating in the
polarization of the vacuum at short distances.

Results analogous to (2) and (3) were obtained at al-
most the same time by Gell-Mann and Low. β 1 They
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devised a method that was developed later as the re-
normalization-group method (cf.t9:l). The starting point
of the method is the relation (1). Since d is a dimen-
sionless quantity, for r « \ it is a function only of the
charge e and the ratio r/r0. Thus,

(4)

The relation (4) remains valid for an arbitrary choice
of r0. Therefore, putting ra=p and r=p+dp and taking
into account that d(e?,l) = 1, we obtain from (4), having
denoted ez(p) = a, the following differential equation

da — φ (α) dp/ρ,

where

(α, χ)

or

φ (α)

(5)

(6)

Integrating (6) from ρ = r0 to ρ = r, we obtain

in-L-T
ro J

to.
φ (α)

(7)

To perform the integration in (7) we need to know
φ(οι), a function of only one variable (the charge).
Therefore, assuming the charge to be small, we can
make use of perturbation theory. We then obtain

d(ct, z)=-l—Uln*,

and from (7) we obtain the expression (3) for ez(r).

(8)

The essence of the method can be elucidated in the
language of the equivalent electrostatics problem. We
solve the equation for the potential exactly, and deter-
mine the polarizability of the medium by perturbation
theory.

The method of Gell-Mann and Low gives the possibil-
ity, in principle, of improving the approximation by
taking into account terms of higher order in a in φ(α).
For this it is necessary to calculate for d(et, x) in per-
turbation theory the terms of order a"*1 lnx that do not
appear in the expansion of the formula (2).

3. We turn now to the analysis of the formula (3):

e2 (r) =. -
- τ Ρ < * (r 0 ) In ( r ; r 0 ) ' 0)

where

2v

We shall trace what happens to e*(r) on decrease of
r0 with constant ez(r0). The formula (9) was obtained
under the assumption that ez(r0) is small, but the mag-
nitude of the logarithm was not restricted. Consequent-
ly, by decreasing r0 we can reach a value of it such that

Then we can neglect unity in the denominator of (9),
and ez(r) is found to be a quantity independent of e(r0):

<*(r) = — ί - . (10)

Λ>

We can now pass to the point-charge limit

e*(r)-+0 as r o -*0. (11)

This result was obtained by Landau and Pomeran-
chukB ] and Fradkin. t 4 ]

But we are not obliged to assume that ez(ra) is small.
From experiment we know only that the "renormalized"
or "physical" charge ez(\) is small. We are not in a
position to solve the problem for large ez(r0) exactly.
However, Landau and Pomeranchuk adduced arguments
that the result (11) should also remain valid for arbi-
trary ez(r0). These arguments are based on the for-
mally exact expression for ez(r). For example, the
latter can be represented in the form of the following
functional integral (cf., e .g . , t l 2 ] ) :

e2 (r) = j A (0) A (r) / (A) exp [ - -^ ] A (x) D A (i) d'x] dA;

here e 2 ( i .e., ez(r0)) appears only in the exponential
factor that expresses the role of the free field in the
Lagrangian, while the factor f(A) expressing the role
of the interaction does not contain e. But ez appears
in the denominator in the exponent, and in this case
the function ez{r) is found to be independent of e, even
for small ez. Therefore, it seems natural to think that
with increase of e the role of this factor, i .e . , the role
of the free field relative to the role of the interaction,
will be still smaller.

"We arrive at the fundamental conclusion that it ap-
parently follows from formal quantum electrodynamics
that the electron charge is equal to zero. The caveat
"apparently" refers to a certain lack of rigor in the
reasoning expounded above. " (This is a quotation from
the article by Landau and Pomeranchuk.)

The meaning of the results (9)-(ll) is simple. A
charge placed in a medium that becomes polarized de-
creases on account of the polarization. At short dis-
tances this polarization is so strong that, irrespective
of the magnitude of the charge, at a certain distance the
residual charge no longer depends on the original
charge. In the limit of a point primary charge (even
an infinite one), at any finite distance nothing of it re-
mains.

This result substantially changes our conception of
the content of the equations of quantum electrodynamics.
Before, the situation appeared to be as follows: there
are some formal equations, and their solution is known
in the form of a perturbation-theory series, each term
of which, except the first, contains infinities. Now,
there is a solution, obtained by passing to the limit of
a point charge from a charge of finite dimensions, but
this solution gives zero charge, i .e . , absence of all
interaction and absence of all processes. Such a theory
is not meaningless, but is physically unsatisfactory.
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If the field equations have solutions which can be ob-
tained by passing to the limit of a point charge from a
charge of finite dimensions, it is possible to try to find
solutions by means of a more general limiting process,
in which there are two lengths—the radius r0 of the
electron and the range r'o of the interaction of the elec-
tron with the field. Such a method was proposed by
Abrikosov and Khalatnikov.cl0] Pomeranchuk showedm

that, using the method, it is possible to escape from
the assumption that the charge ez(r0) is small and ob-
tain the results (10), (11) directly for any value of e(r0),
in confirmation of the arguments expressed in the paper
of Landau and Pomeranchuk. Thus, the way was open
to the study of fields with large coupling constant, e. g.,
the theory of the interaction of nucleons with the π-me-
son field. Strictly, it was this which constituted the
main interest in Pomeranchuk's investigations.

In a series of papers" 3 Pomeranchuk showed that,
in this case too, field theory leads to zero value of the
effective coupling constant g(r) at finite distances (the
important problem of taking meson-meson interactions
into account was considered by Dyatlov, Sudakov and
Ter-Martirosyanc u : l).

The conclusion that Pomeranchuk drew from these
results was radical: field theory in its existing form
was useless for the description of strong interactions.

How can the practical successes of quantum electro-
dynamics in its domain be understood? We rewrite the
relation (9) in the form solved for e 2(r 0), and choose

(12)

here e*(\e) is, as already noted above, the "physical"
charge of the electron, i .e . , the charge that is mani-
fested at large distances, outside the effective region of
polarization of the vacuum. When we go inside this re-
gion (ro<Xe), the charge increases. However, we can-
not, on the basis of formula (12), reach a large charge,
since we cannot use (12) near those values of r0 for
which the denominator vanishes. In fact, in practice
one never needs to use (12) in this region, because
this is the region of values ro~exp(-137/(3). Quantum
electrodynamics is valid in practice precisely because
we use approximate solutions with a point interaction,
leaving open the question of what occurs at short dis-
tances.

Thus, there are two possible ways of interpreting
quantum electrodynamics—the "theoretical" and the
"pragmatic. " The theoretical way consists in taking
its equations seriously, solving them by the method of
taking the limit r0—0, and arriving at the trivial solu-
tion e=0 ("zero-charge"). The pragmatic way assumes
that the "physical" charge e(Xe) is given empirically;
then there are solutions in the form of perturbation-
theory series, but the theory is not applicable to short
distances.

For the strong interactions (i. e., for a constant
g(^e) of order unity) the pragmatic approach will give
nothing, since in the attempt to make use of the formula
of the type (12) we immediately find ourselves outside

its region of applicability. There is no region in which
it would be possible to disregard short distances.

4. It cannot be said that the radical conclusions of
Pomeranchuk found wide recognition or sympathy. This,
however, was not connected with the fact that important
defects were found in these papers. True, it was
pointed out that the Landau-Pomeranchuk solution was
found for small e 2 and that taking higher approxima-
tions into account could alter the character of the Gell-
Mann-Low function (5) in such a way that from formula
(7) would follow not the relation (9), but another that
does not lead to zero value of the charge. The require-
ments which it is necessary to impose on the behavior
of φ(α), and the possible consequences, have been ana-
lyzed. But nobody has indicated a real mechanism that
would lead to such a change of φ(α). It has also been
correctly pointed out that a situation in which the limit-
ing process has nothing in common with the exact solu-
tion is mathematically possible. But nobody has
pointed to the existence of a solution of the equations
of quantum electrodynamics with a point interaction,
outside perturbation theory, other than that which is
obtained by the physically intuitive method of passing
to the limit of a point charge from a finite charge. And
it is not known whether there is any real meaning in
any other formulation of the problem. Thus, the criti-
cism did not go further than that degree of doubt which
was contained in the quotation cited earlier from the
article of Landau and Pomeranchuk.

Rather, it may be said that the conclusions of Pom-
eranchuk were ignored by virtue of their purely nega-
tive character (Pomeranchuk himself thought this). With
regard to electrodynamics they changed practically
nothing, while with regard to the strong interaction they
gave no indications of how we must work with them.
Landau and PomeranchukBJ put forward the hypothesis
that, since field theory is inapplicable to the strong in-
teraction, i .e . , at distances of the order of the Comp-
ton wavelength \ of the ir-meson, a new universal
length of the order of λ, should appear in physics. How-
ever, the most sensitive experiment pertaining to such
an effect—the sufficiently accurate measurement of the
anomalous magnetic moment of the muon (since λμ is
close to Xr)—did not confirm this assertion. The value
of the anomalous magnetic moment agrees with that cal-
culated by quantum electrodynamics.

Nevertheless, most of the leading theorists indepen-
dently developed a sense of deadlock in their attempts
to obtain concrete physical results from field theory
outside the framework of perturbation theory. This
feeling was shared, for example, by Feynman, who had
made great efforts in this direction and had developed
for this a method of ordering of operators and the meth-
od of path integrals. He expressed his point of view in
a letter to Landau dated about 1955, in which he char-
acterized the attempts to create a theory of the strong
interactions as a child-like imitation of quantum elec-
trodynamics (with a simple replacement of the vector
interaction by a pseudoscalar interaction) and expressed
the opinion that Nature is "not so stupid" as not to in-
vent something more subtle.
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This feeling led to the result that the actual develop-
ment of the theory of strong interactions in the following
decade turned substantially away from field theory.
Starting from the ideas expressed by Heisenberg in 1943,
people began to consider the basic elements of the theo-
ry to be not the fields, but amplitudes (the elements of
the scattering matrix) closer to directly measurable
quantities. The scattering matrix satisfies the unitar-
ity condition; this is a basic requirement of quantum
mechanics.3> The unitarity relations indicate the singu-
larities of the amplitudes, regarded as functions of
complex variables. To a certain extent, the analytic
properties of the amplitudes can be formally justified
in field theory. Together, unitarity and analyticity pro-
duce a series of relations, which can be regarded as
the analog of a dynamical system of equations. Unfor-
tunately, this system is infinite, and the analytic prop-
erties of the amplitudes are complicated. Only in the
case when there is a small parameter, as in quantum
electrodynamics, does this actually enable us to solve
practically all the problems without using field theory.
Nevertheless, in this way it has been possible to obtain
a number of results that are important for the theory
of strong interactions, including such results as Pomer-
anchuk's theorem on the asymptotic equality of particle
and antiparticle cross-sections and Froissart's theorem
on the maximum growth of cross-sections.

The ideas of S-matrix theory have also been promoted
by the fact that there became too many hadrons for each
of them to be assigned its own field. It is natural to
believe that it is impossible to regard some of them as
elementary and others as composite, and the idea of
the "democracy of the hadrons" arose. The idea of the
"bootstrap" emerged, according to which practically
any hadrons with suitable quantum numbers can be taken
as the initial ones, and the analyticity and unitarity re -
quirements will themselves give the entire spectrum of
hardons.

The peak of this development was the method of com-
plex angular momenta (Regge poles), developed for ap-
plication to the theory of strong interactions in 1961-
1962. Enthusiasts, e. g., Chew, considered that the
theory of strong interactions was very near to comple-
tion.

However, at precisely this time the development of
the theory was given a backward tilt in the direction of
field theory. This began when it became clear that the
complex angular-momentum plane was not so simple.
Branch points appeared on it. The indication that they
exist emerged from field theory after Mandelstam had
pointed out the types of Feynman diagram that lead to
branch points in the complex angular-momentum plane.
In order to investigate the properties of the amplitudes
with allowance for the branch points it was necessary
to construct a field-theoretical form of the reggeon,
and "ladders," "combs," etc., appeared. The original

3'The unitarity condition expresses two fundamental features
of the quantum-mechanical description: the probability inter-
pretation of the amplitudes and the principle of superposition
of states.

simplicity of the theory of Regge poles, analogous to
the simplicity of the first approximation in field theory,
was transformed into the complexity of an infinite
series, in which, in the general case, all the terms
were of the same order. Gribov developed a diagram-
matic scheme, analogous to the Feynman-diagram
scheme, in which each element of a diagram was ef-
fectively already an aggregate of certain Feynman dia-
grams. Working with this scheme became just as dif-
ficult an art as solving problems in field theory. And
for all that, lying at the basis, of it was a somewhat ab-
stracted field theory, of a field that did not correspond
to definite initial particles but possessed properties
which cannot be obtained from a concrete model—prop-
erties ensuring that the transverse momentum transfers
are small, a basic fact in the interaction of high-energy
hadrons.

From another direction, the idea of higher sym-.
metries of the hadrons appeared and could be inter-
preted intuitively by the hypothesis of quarks. Facts
about the inelastic scattering of leptons emerged which
seemed to indicate the existence of primary point ob-
jects within the hadrons.

Thus we returned to the domain of field theory. There
are primary fermion fields (e. g., quarks), analogous
to the electron-positron field. The democracy of the
hadrons is preserved—they all consist of unobservable
quarks. The fermion fields somehow interact amongst
themselves, e. g., through the medium of certain boson
fields. From this everything should follow.

But how are we to understand this, if field theory has
led to the self-switching-off of the interaction—the van-
ishing of the charge?

5. It has turned out that this knot is being cut through
rather than untied. For the fields and interactions that
have been considered by everybody, including Pomer-
anchuk, since the 1930's, the zero-charge theorem is
valid. But it is possible to construct fields and inter-
actions to which the theorem is inapplicable and which
possess nontrivial (not zero-charge) solutions. Such
fields were first considered by Yang and Mills in 1954.t6:

It has been found that, for this, it is not necessary to
decline to imitate quantum electrodynamics—rather,
we must, in a certain sense, strengthen it. The elec-
tromagnetic field possesses two properties that were
regarded as not very important in general field theory.
The first is that the photon mass is equal to zero. The
second is that the vector potential A^ appearing in the
expression for the interaction has four components,
whereas the photon has only two polarizations. This
led to formal difficulties. It was necessary either to
reject an explicitly Lorentz-covariant description, as-
sociating only the transverse components of A,,, with the
photons and introducing a Coulomb interaction between
the charges (this is what was done in the earlier stage
of the development of quantum electrodynamics, and it
made it difficult to study the radiative corrections and
carry out renormalizations), or, using, e.g. , the in-
variant perturbation' theory of Feynman, to introduce
into the treatment longitudinally polarized and time-like
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photons, the latter possessing a property that is not
normal in quantum mechanics—they have negative norm
("negative probabilities"). These difficulties disap-
peared when the interactions of the fermions with other
fields (e. g., the ir-meson field) associated with par-
ticles with nonzero mass and zero spin were considered.
In the development of general formal field theory—in
particular, of axiomatic field theory, the case of elec-
trodynamics was even ignored altogether. The require-
ment of positive norm and the existence of an energy
gap between the vacuum and the first excited state of
the system of fields were postulated. At the same time,
owing to the zero mass of the photon, in electrody-
namics the energy spectrum of the system abuts con-
tinuously upon the vacuum. The presence in quantum
electrodynamics of the "infrared catastrophe"—the
phenomenon of emission of an infinite number of long-
wavelength photons in collisions—is connected with this
circumstance. Owing to this circumstance, in quantum
electrodynamics it is even very difficult to introduce
with sufficient formal rigor the concept of the scatter-
ing matrix—the basic quantity in the calculation of prob-
abilities and cross-sections. In physical applications
these difficulties are fairly easily overcome, but in
formal field theory they are a barrier.

The special properties of quantum electrodynamics
indicated above are a consequence of the presence of
an additional symmetry in its Lagrangian. In addition
to invariance under Lorentz transformations, it pos-
sesses invariance under gauge transformations. If ψ
is the Dirac field of the electron and A^ is the vector
potential, the gauge transformations have the form

where the parameter χ is an arbitrary function of the
coordinates and time, e is the electron charge, and
8μ= 8/θ#μ. The gauge transformations form a group:
two successive transformations with parameters xx and
X2 give a transformation of the same type, with param-
eter χ = xt + &. Since two successive transformations
performed in opposite orders give the same result (the
transformation operations commute), this group is
called Abelian. It is designated in group theory as the
group U{1). The number 1 signifies that the group is
a one-parameter group. It is characterized by only one
generator (infinitesimal-transformation operator)—the
unit operator. This group is also called local, since X
has a value at each point of space-time.

The existence of the gauge group leads to a simple
prescription for introducing an interaction (the "mini-
mal" interaction) between the fields. We take the free-
field Lagrangian, i. e., the sum of the Lagrangians of
the free electromagnetic and electron fields:

where

and make in it the replacement

3μ-»ΰμ = 3μ + ίΜμ,

i .e . ,

£(ψ, Κ. βμ) = £ ° ( * . Αμ, DJ.

We thus obtain the Lagrangian L of the interacting
fields:

L"-* L = L" — j»A μ , jv- = «pyi»i|>.

The Lagrangian L possesses invariance under gauge
transformations, which was not possessed by L ° (more
precisely, by L%).

Yang and Mills carried out a generalization of quan-
tum electrodynamics, introducing in place of the Abelian
gauge group f7(l) the nonabelian gauge group SU(2),
i .e., the group of rotations in isotopic space with local
parameters (angles of rotation).4> The group SU(n) is
also introduced entirely analogously. Since the group
SU(n) has N=nz -1 parameters χ* and the same num-
ber of generators τ* (in the case w = 2, these are the
isospin operators), it is necessary to introduce the
same number of vector fields A\ (i = 1,2, . . . , N) (in the
case of the group SU(2), N=3, so that A* is a three-di-
mensional isovector; in the case of St/(3), A1 is an
octet), and define !>„ as the matrix

where A^ is the matrix

r ^ Τ Λ μ ,

i— 1

and g is the constant by which we have replaced the
constant e.

Now, applying the previous prescription, we obtain
the Lagrangian of the system of fields A\ interacting
with the Dirac fields ψ* in the form

i = — i - S p ^ (13)

here summation over k is implied; if k corresponds to
a spinor representation (isospinor in the case η = 2,
superspinor for η = 3), k = l, . . . , n. The explicit form
of the matrices r 1 corresponds to this representation.
We note that the tensor field is equal to

ί"μν = β μ 4 ν - £>νΛμ = ΰμΑν - 5νΛμ + ig IAU, A,\,

where the brackets denote the commutator. In the case
of electrodynamics (the group U(l)), [\, Αν] = 0 and
Ftlv does not differ from the free field. But in the case

4'The group U(l) is equivalent to the group of rotations of a
plane about an axis perpendicular to it, and the group SU{2)
is equivalent to the rotation group in three-dimensional
space. Since two rotations performed about different axes
in opposite orders lead to different results, this is a non-
abelian group.
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of the group SU{n) the commutator is nonzero and,
therefore, the Lagrangian contains interaction of the
fields Al with each other (terms in L of third and
fourth order in .4). Thus, the corresponding "photons"
radiate each other and scatter each other even in the
absence of other fields.

At first, the Yang-Mills fields did not excite great
interest. This is explained by their abstract character.
They are a set of vector fields corresponding to mass-
less particles, and we know only one such particle—the
photon. In 1962 the theory of Yang-Mills fields at-
tracted the interest of Feynman, who, while examining
them as an intermediate model having a certain analogy
with the quantum theory of gravitation, discovered that
the theory requires a modification of the usual Feyn-
man rules. This stimulated a large number of papers,
which led to the construction of a perturbation-theory
scheme for nonabelian gauge fields. Popular interest
in Yang-Mills fields arose after Weinberg and Salam
showed in 1967 that they can serve as a basis for con-
structing a unified theory of the weak and electromag-
netic interactions; here we shall not be interested in
this aspect. Nonabelian gauge fields became a serious
basis for the theory of strong interactions in 1973, after
Gross and Wilczek, and Politzer,C 7 ] had shown that they
do not obey the zero-charge theorem but possess a
property that is in a certain sense opposite and has ac-
quired the name of asymptotic freedom.

Gross and Wilczek and Politzer posed for Yang-Mills
fields the problem analogous to that solved in quantum
electrodynamics by Landau, Abrikosov and Khalatnikov
and by Gell-Mann and Low—the problem of the effective
charge g(r) as a function of radius. They obtained an
expression analogous to the expression (9) in electro-
dynamics, but with an important difference: the coef-
ficient of gz(r0)ln(r/ra) in the denominator can have the
opposite sign. Writing it in the form solved for gz(r0)
(in analogy with (12)), we obtain

where

(14)

(15)

here the first term is determined by the interaction of
the fields Α*μ amongst themselves and η is the dimen-
sionality of the group, i. e., the label in the group name
SU(n). The second term β is determined by those fields
with which the Yang-Mills fields additionally interact.
In particular, if these are Dirac fermion fields forming
a superspinor of SU(n) (an n-plet), then β =1/3ιτ. If the
number of such independent w-plets is v, then

and

l l n — 2v

We see that for

the coefficient y is positive. For η = 2, fmal = H, and
for η = 3, ymax = 16. For « = 2 and t> = 1, y=10/3ir. For η
= 3 and y = 3, γ=2Ί/6τι. For ra = 3andi> = 4, y = 25/67r.

We now decrease r0. For ygzln(r/r0)>> 1 we obtain
from (14)

2 Co)" V In(r/r0)

and

(r 0 ) -*• 0 •0. (16)

This result is the direct opposite of (11). What hap-
pens is not that the charge at a finite distance vanishes
for any value of the original point charge, but that a
zero point charge corresponds to a finite charge at a
finite distance. We note that it is impossible to obtain
this result if, being formally guided by the field equa-
tions, we consider only point charges. It is necessary
to proceed by a limit process, as was suggested by
Landau.

The property (16) has acquired the name of asymp-
totic freedom—at short distances the interaction weak-
ens and the particles become free. The polarization of
the medium leads not to a decrease of the charge as in
electrostatics, but to an increase. How does this come
about?

First we shall return to quantum electrodynamics.
If we make use of the method of Gell-Mann and Low,
then, to obtain ez(r), it is necessary, as described
earlier, to calculate the function φ(α) by formula (5)
and substitute it into (7). But to calculate <p(a) it is
necessary to find the function <i(a, x) by perturbation
theory to first order in a. For this we must consider
the following Feynman diagram:

- O ~ — £**•

11

in which a dashed line corresponds to the Coulomb field
and a solid line to the electron field. The electron loop
expresses the virtual production and annihilation of a
pair, giving rise to polarization of the vacuum. In this
way we arrive at the expression (8). Diagrams of an
analogous type also occur in the case of a Yang-Mills
field, and describe the polarization of the vacuum by
those particles with which it interacts. They lead to a
term - j3a In* and, as in the case of electrodynamics,
have negative sign. But, besides this, the Yang-Mills
field contains self-charged components and it is neces-
sary to take into account their contribution to the vacuum
polarization.

In electrodynamics, as already mentioned earlier,
different descriptions of the interaction are possible.
The old description is that the electromagnetic inter-
action is realized in two ways: the instantaneous (the
Coulomb interaction) and the retarded—through emis-
sion and absorption of quanta that can have two trans-
verse polarizations. A more modern description,
which goes back to Feynman, is that the entire inter-
action is realized as if by emission and absorption of
quanta of four polarizations. We shall use the old way,
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following the paper of Khriplovich,C8J who calculated
the function d in Yang-Mills theory for the case w = 2,
v = l. The field has three components—two charged
and one neutral. Each of these components consists of
the Coulomb field and transverse quanta. Accordingly,
two diagrams will give a contribution to d. The first
is

here a dashed line corresponds to the neutral Coulomb
field, and wavy lines to the charged quanta. This dia-
gram, like the previous one, describes the production
and annihilation of a pair of charged particles and gives
a contribution to d that again has negative sign. It can
be shown that every diagram of this type leads to a
negative quantity—this is a consequence of the unitarity
relation. The second diagram, while outwardly simi-
lar, is different in character. It cannot be interpreted
as the virtual creation and annihilation of particles,
and it is this diagram which leads to a positive value:

here the dashed-dotted line is the charged Coulomb
field. This is not a propagating particle—it is an in-
stantaneous interaction with charge transfer. The sum
of these two diagrams gives the value 11/3π for the
first term in y, in agreement with (15) (for η = 2, ν = 1).

β. The ideas about the strong interaction that hold
sway at the present time reduce to the following. There
exist several (v) kinds of quarks qlf}(f=l, 2, . . . , v).
Until recently it was assumed that ν = 3. At the present
time data that indicate the necessity to introduce a
fourth quark have appeared. It is possible that the num-
ber of types of quark will have to be increased. Each
of the quarks qlf) forms a triplet of the group SU(Z),
i.e., the quark of each kind qu) can be found in three
states qjf\ k = \,2, 3. The index k is customarily
called "color, "e .g . , k = 1 is "blue," k = 2 is "yellow, "
k = Z is "red." The local group SU(3) is usually called
color SC/(3) (it must not be confused with the SU(3)
group that groups together the three kinds of quark
qif> with different / = 1, 2, 3; we shall not be concerned
with this group below). The colored quarks q[f) inter-
act with a vector gauge field Al that forms an octet (in
accordance with the number of parameters or genera-
tors of the group SU{3))—these are the Yang-Mills
fields. They are called gluon fields. All the quarks
possess a charge, determined by their interaction with
the gluons. For the theory of such a system of colored
quarks and gluon fields, describable by the Lagrangian
(13), Gell-Mann has proposed the name "quantum chro-
modynamics."

The existence of asymptotic freedom implies that
chromodynamics can lead to nontrivial solutions when
arbitrarily short distances are taken into account. In
the limit of short distances (ro-O) has effective charge
g(r0)- 0; this means that inside the hadrons, in the
region of small r, the quarks behave as free particles.
This explains the experiments on deep-inelastic scat-
tering of electrons and neutrinos, which, in a certain

region of energies and momentum transfers, can be
interpreted as scattering by independent point objects.
The particular region of distances for which gz(r0)
« 1 can be taken into account by using perturbation
theory and the renormalization-group method. The
converse aspect of asymptotic freedom is the growth
of the interaction at large distances. Indeed, if we re-
write formula (14) in the form

1 - v « 2 (!•„) In (r/r,,) ' r>r0, (17)

it is easy to see that g{r) grows with increase of r. We
do not know how to fix r0 and g(r0) in this formula, or
up to what values of r it can be used. It is clear that
there is a limit, since on decreasing the denominator
we leave the region of applicability of the formula.
Qualitatively, however, one can conceive that the inter-
action increases with distance. If this increase con-
tinues without limit, the quarks are locked in a poten-
tial well and cannot be torn out of it. This is the ex-
planation of the unobservability fo free quarks. They
can only be in a bound state, and such states are the
hadrons. If the interaction potential of the atoms in a
molecule were an exact oscillator potential, the atoms
would also be unobservable.

The unobservability of quarks is intimately connected
with the unobservability of "color." All the hadrons are
"white" states, i .e., singlets under the group Si7(3)col.

At the present time great efforts are being made to
find a serious justification for these ideas and for the
confinement of quarks. In such situations, of course,
illusions are possible. The difficulty of treating large
distances (the "infrared catastrophe") remains.

But the problem of treating short distances is re-
solved. We imagine that any "true, " i .e., dynamical,
field theory is a theory using gauge vector fields. The
other field theories that directly describe the hadrons
and their interactions are phenomenological and should
reduce, at a certain stage, to the theory of the inter-
actions of quarks with gluons. If we compare the theory
of the strong interactions with the nonrelativistic quan-
tum mechanics of atomic systems, we can draw the fol-
lowing analogy. The dynamics of atomic systems is the
dynamics of electrons with Coulomb interaction. The
dynamics of hadron systems is the dynamics of quarks
and gluons. In a certain approximation, from the dy-
namics of electrons there arise phenomenological poten-
tials for the interactions of atoms, molecular forces,
quasi-particles, etc. From the dynamics of quarks
there arise the phenomenological theories of the inter-
action of hadrons, reggeons, etc.

Electrodynamics is also such a phenomenological
theory, although it sounds blasphemous to characterize
it in this way. Electrodynamics is valid in the prag-
matic sense mentioned above—everywhere except at
very short distances, where its application becomes
invalid by virtue of the zero-charge theorem. But be-
fore this happens electrodynamics merges with the theo-
ry of the weak interaction, into a unified theory of inter-
actions with nonabelian gauge fields. This happens at
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distances at which the weak interaction is comparable
in strength with the electromagnetic interaction.
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