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1. INTRODUCTION

Dispersion-relation techniques1111 have been success-
fully used to describe hadron physics at low energies.
However, these techniques have been phenomenological
in character, since their use requires a number of ar-
bitrary parameters. By invoking dynamical principles
such as chiral symmetry, it has been possible to sub-
stantially reduce the number of undetermined param-
eters, thereby imposing additional boundary conditions
on the low-energy solutions of the dispersion rela-
tions. i l b n ' The combined use of the dispersion ap-
proach and perturbation theory in a quantum field
theory with a chiral dynamical symmetry may be even
more promising.

The purpose of the present review is to give a de-
tailed account of such a quantum chiral theory, which
makes it possible to obtain low-energy expansions for
the amplitudes of various hadronic processes without
introducing arbitrary parameters in the theory (apart
from th>> hadron masses and the pion decay constant).

The first attempts to apply the methods of quantum
field theory in describing strong interactions were
made in the early 1950s, immediately after quantum
electrodynamics had been formulated. However, these
attempts did not lead to any significant successes, not
only because of the large value of the coupling constant,
but also because the simplest Lagrangians which had
been proposed at that time did not in general reflect
any dynamical symmetry of the strong interactions.
The point is that the requirements of relativistic in-
variance and other so-called algebraic symmetries
used to classify particles leave a considerable arbitrari-
ness in the choice of the Lagrangian. Consequently, to

"in particular, this approach has been successfully used to
obtain a correct description of the p-wave resonance in the
•nit system and a unique expression for the mass of the ρ
meson in terms of the mass and decay constant of the pion.

specify the form of the interaction, it is necessary to
postulate a larger group of transformations—a dynam-
ical group. We recall that gauge invariance in quantum
electrodynamics is an example of such a dynamical
symmetry.

The currently known dynamical symmetries which
are used in gravitational theory, in the unified theory
of the weak and electromagnetic interactions, and in
strong-interaction theory not only determine the form
of the Lagrangian, but also give rise to a universality
property of the interactions, in the sense that the lowest
orders of the expansion in the coupling constant coincide
with the lowest orders of the expansion in powers of the
energy. This makes it possible to use such a field
theory to obtain reasonable results at low energies, in-
dependently of the value of the coupling constant.

In the present review we attempt to describe the
physics of low-energy mesonic processes according to
the following scheme: 1) we assume a dynamical sym-
metry of the strong interactions; 2) we find an interac-
tion Lagrangian satisfying this symmetry; 3) we deduce
the physical implications of the quantum field theory in
question by making use of the single-loop approximation.

Our starting point is the very fruitful idea of chiral
symmetry of the strong interactions, according to which
the strong interactions are approximately invariant with
respect to a certain group of transformations that in-
cludes both isotopic transformations and transforma-
tions which mix states of opposite parity.

The idea of this symmetry had already been conceived
in the celebrated paper of Feynman and Gell-Mann[2al

concerning the V -A form of the weak interactions,
where arguments along the following lines were em-
ployed. It is well known that the universality of certain
interactions of different particles (for example, the fact
that leptons and hadrons have the same electric charges)
indicates the existence of conserved quantities (the elec-
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tromagnetic current) and hence the existence of a def-
inite symmetry group (in our example, gauge invari-
ance). In exactly the same way, starting from the uni-
versality of the weak interaction of the axial-vector cur-
rents of the leptons and hadrons in μ decay and in β de-
cay of the neutron,2' it was proposed inC2a] that the full
group of transformations for the hadrons should include
transformations which mix states of opposite parity.
This idea was later developed by Gell-Mann,C2b] who
introduced not only the vector hadronic currents which
generate the unitary symmetry SU3, but also the axial-
vector currents. The commutation relations for all
these hadronic currents inC2b:l became known as chiral
current algebra, and the corresponding symmetry as
chiral symmetry.

There are two possible types of realizations of chiral
symmetry: algebraic and dynamical realizations.

An example of an algebraic realization is the classifi-
cation of non-interacting massless particles (such as
the neutrino) according to new quantum numbers—helici-
ties. The realization of chiral symmetry for massless
particles has been widely applied in describing lepton-
hadron processes at large momentum transfers and high
energies. This symmetry is consistent with models of
hadrons as beams of massless non-interacting partons
(or quarks) concentrated in a spatial region of dimen-
sions of order 1 GeV"1.C3]

The other, dynamical,t4: type of realization of cur-
rent algebra has been extremely fruitful in the region of
low energies, « 1 GeV, where hadrons can be repre-
sented approximately as point-like massive particles.
To understand the essence of the dynamical realization,
it is useful to consider the simple example of the axial-
vector currents used to describe the β decay of the
nucleon:

9 A = (1.2)

1 = N (P Λ Γ ( Ρ 2 ) ? Α - />1μ—Ρ2μ = 7«.

where Ν and JV are wave functions of free nucleons, γβ

are the Dirac matrices, τ ' are the Pauli matrices, and
gA is the coupling constant. It follows from the Dirac
equations (p? -M)N(pz) =0 and N(p1)(p1-M) = 0, that the
current J{fu is not conserved if Μ Φθ:

Φ 0.

Let us add to this current a pole term which describes
the emission by the nucleon of a massless pseudoscalar
particle, which has a weak decay constant Fw and a con-
stant g/M characterizing its axial-vector interaction
with the nucleon:

Λ = Ν (P.) τ'τ, (Υ̂ Λ - 4f ίψ-)" (Pi)· (1.1)

It is easy to see that we can now ensure conservation of

the axial-vector current

2)While the paper of Feynman and Gell-Mannt2al was being
written in 1958, it became known that the axial-vector and
vector constants in β decay are in the ratiogA& 1.3± 0.1.

and hence the existence of a corresponding symmetry,
by putting

SA=-^-g- (1.3)

Chiral symmetry in this case determines the dynamics
of the interaction of nucleons with the pseudoscalar par-
ticle, which is usually called a Goldstone particle. If
this particle is identified with the pion, Eq. (1.3),
which was first derived by Goldberger and TreimanCsl

by means of dispersion relations, is satisfied to an ac-
curacy of 7%. The pion has a non-zero mass m,, so
that the divergence of the axial-vector current, Eq.
(1.2), must have the value31

7,4 = n4/>1, (1.4)

where ir' is the pion field. Since the quantities in Eq.
(1.3) are slowly-varying functions of the momentum
transfer q at distances of the order of the pion mass
(the smoothness hypothesis), the right-hand side of Eq.

(1.4) can be regarded as a small perturbation, i.e., it
is "almost zero. " The relation (1.4), known as the
hypothesis of partial conservation of the axial-vector
current (PCAC), determines the mechanism of chiral
symmetry breaking. Using PCAC and the commutation
relations of current algebra, it is possible to derive
sum rules for the matrix elements of the weak and elec-
tromagnetic hadronic currents, which are in good agree-
ment with the experimental data,C6] as well as a number
of low-energy relations among the hadronic amplitudes
with and without meson emission at zero unphysical mo-
mentum. The information obtained in this way requires
a further extrapolation to physical momentum values
and becomes meaningless at higher energies, since it
does not satisfy the unitarity condition.

A possible method of avoiding these difficulties is the
method of phenomenological Lagrangians, by which the
results of current algebra can easily be reproduced at
the level of the tree approximation. Chiral symmetry
then ensures the self-consistency of the strong inter-
actions, in the sense that the effective low-energy cou-
pling constants of the weak, electromagnetic, and even
the strong interactions are not renormalized as a result
of higher orders in the strong interaction.ΙΊ1 In other
words, it is a consequence of chiral symmetry that the
expansion in the strong coupling constant to the lowest
orders coincides with the low-energy expansion in pow-
ers of the energy. We recall that an analogous situation
occurs in quantum electrodynamics,C8] where the lowest
orders of perturbation theory would contain the main
information at low energies even for a large coupling
constant.

During the period 1968-1971 many authors1 9· l o :

pointed out that the method of phenomenological La-

3>Equation (1.4) is written for the current (1.1) with the sub-
stitution l/^2-*l/(<72.— ml). This equation follows from the
equation of motion for the pion, (q1 — ml)Tr{ = — '
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grangians not only reproduces the results of current
algebra, but can also be extended to higher energies by
applying the techniques of quantum field theory. Dur-
ing the past six years, many papers have been con-
cerned with the quantization of chiral Lagrangians19"121

and with the description of a large quantity of experi-
mental data on low-energy processes in terms of quan-
tum chiral theories. C l 3 - 2 4 1

There are several approaches to the problem of quan-
tizing chiral Lagrangians. Lag rang ians which are re-
normalizable as a result of the introduction of hypo-
thetical sigma particles were considered in : 9 · 1 3 3 . Non-
linear Lagrangians with no hypothetical particles have
been widely studied, t 1 0 - 1 2 · 1 4 - 2 4 3 Such theories are non-
renormalizable and, as is well known, differ from re-
normalizable theories by the fact that they contain an
infinite number of undetermined parameters which can-
not be fixed by a renormalization of the physical quan-
tities. InC141 the number of undetermined parameters
was reduced to one, by exploiting the fact that non-
linear theories are obtained as limiting cases of linear
theories when the mass of the sigma particle tends to
infinity, mn — «>.

Finally, many authors1 1 5"2 1 3 have employed the meth-
od of regularizing a quantum field theory with a non-
polynomial Lagrangian, which makes it possible to fix
all the undetermined parameters. This method was
proposed by one of the present authors1125-1 and further
developed by LehmannC2e3 and by SalamandStrathdee/273

It is now known in the literature as the superpropagator
(SP) method. In eliminating the divergences according
to the SP method, it is necessary to consider the ex-
pression corresponding to the set of diagrams having a
fixed number of vertices and an arbitrary number of
internal lines as a single analytic function.

The present review is concerned with the description
of low-energy mesonic processes in terms of the single-
loop approximation in a quantum chiral theory. We con-
fine ourselves here to a discussion of the SP approach,
in which low-energy processes have been analyzed most
fully, giving results in agreement with those of the σ-
model in the limit w?0-«>.C143

The basic hypotheses and assumptions are as follows.

I. The Lagrangian is a realization of a chiral dynam-
ical symmetry. By virtue of the smoothness hypothesis,
a Lagrangian with the minimum number of derivatives
is chosen. Chiral symmetry is broken by the introduc-
tion of meson masses according to the scheme of Gell-
Mann, Oakes, and Renner.C 2 8 ]

Π. The SP method is used to calculate the meson
loop diagrams, and this fixes all the undetermined pa-
rameters.

III. To calculate the single-loop baryon diagrams,
it is sufficient to use standard renormalization theory,
which satisfies chiral symmetry. Thus only the finite
integrals corresponding to the baryon loop diagrams
are considered. The average values of the virtual
baryon momenta are finite and small. At low meson
energies, the strong vertices in the baryon loops are

therefore in the same regime as in the Goldberger-
Treiman relation (1.3). This means that we should also
expect the correspondence between the low-energy ex-
pansion and the expansion in the strong coupling con-
stant to hold for the single-loop baryon diagrams.

Tests of this assumption"4·2 9 3 have shown that the
corrections due to higher orders of perturbation theory
in the strong coupling constant are of order 20-30%.4)

The single-loop approximation gives essentially new in-
formation which is not contained in the original tree ap-
proximation. We shall give a brief account of the re-
sults of the single-loop approximation, indicating in
parentheses which hypotheses and assumptions (I, II,
III) are used to obtain these results.

The strong interactions of mesons have been con-
sidered in C l 4 - 1 7 · 2 2 1 , where calculations were made of the
amplitudes for ππ scattering114"17-223 as well as vK and
KKiui scattering. The scattering phases were calcu-
lated by means of Pade approximants. This review con-
tains a detailed account of the results of calculations of
the ππ scattering amplitude; these calculations were
made in the first instance for massless pions1 1 5 '1 6 3 and
later for massive pions. Cl7-22:l The scattering phases
are in agreement with the experimental data and contain
the p-meson resonance (I-III) (at an energy ~ 800 MeV
and with a width ~ 150 MeV). The scattering amplitude,
which satisfies the most general requirements of quan-
tum field theory, can be used to extract information
about all the scattering lengths, including those of the
d wave (I, II, ΙΠ) and the other higher partial waves (I).
(We note that the Born approximation gives only s and
p waves.) All the results are in good agreement with
the established experimental data [ 3 2 1 and with the re-
sults of their phenomenological analysis.C 3 3 ]

The electromagnetic interactions of mesons have
been considered in 1 1 8 ' 2 0 · 2 2 · 2 3 ^ where calculations were
made of the form factors and amplitudes for the Comp-
ton effect on pions and kaons. Within the errors, the
theoretical value for the root-mean-square radius of
the pion (I—III) is in agreement with the latest experi-
mental data.C 3 4 3 The values obtained for the radii of
the charged (I—III) and neutral (I, II) kaons are in good
agreement with the vector-dominance model. Values
are predicted for the polarizability of mesons (Ι, ΙΠ),
and it is found that there should be an appreciable en-
hancement of the effective coefficient of polarizability
for mesons in the vicinity of the two-pion production
threshold (I).

The principal weak decay modes of mesons were con-
sidered inC213, where calculations were made of the
weak decay constant of the pion as a function of the pion
mass (I, III) and the structure constants for the decay
(Ι, ΙΠ). An effect of second order in the weak interac-

4>It is of interest to note that the exact calculation of the po-
larizability of an elementary particle in quantum electro-
dynamics'30·1 gives the same result as the calculation of this
quantity in the single-loop approximation1313; i .e . , the sec-
ond order of the expansion in the energy is the same as the
second order of the expansion in the coupling constant (1/137).
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tion—the mass difference between the neutral kaons
(I, II)—was calculated in c i 9 ] .

All the results obtained from the single-loop approxi-
mation satisfy the relations between the observable
quantities which follow from current algebra and are in
reasonable agreement with the experimental data.

The material of our review is arranged as follows.
The next two sections contain an account of the main
principles used to construct chiral-invariant Lagrang-
ians and the basic calculational techniques.' In the fol-
lowing three sections we describe the strong, electro-
magnetic, and weak interactions, respectively. The
concluding section contains a discussion of the future
prospects for current algebra and quantum chiral
theory.

2. PHENOMENQLOGICAL LAGRANGIANS

In this section we describe the general method of ob-
taining phenomenological Lagrangians as non-linear
realizations of chiral symmetry. C35-3e] We first con-
sider the symmetry S£/2xSi72.

Suppose that the Lagrangian for free non-interacting
nucleons φ = (**) is given by

(2.1)

This Lagrangian is invariant with respect to the iso-
topic transformations containing a parameter ω,

ψ'-β«τ/2)»ψ, (2.2)

as reflected in the classification of the nucleons accord-
ing to the representation (1/2) of the group Si72. Let us
also consider the following transformations containing
a parameter a, which mix states of opposite parity:

After making the transformation (2.3), the Lagrangian
(2.1) takes the form

Lo (ψ') = i f 5ψ — Mtpe tavs ψ = Lo (ψ) + Λίψ (1 — e™vs) ψ. (2.4)

The Lagrangian (2.1) is invariant if we set the mass of
the nucleon equal to zero. This chiral invariance with
respect to (2.3) allows us to introduce an additional
classification of the nucleons according to their helici-
ties, i. e., according to right and left isotopic spin,
corresponding to the representations (1/2, 0) and (0,
1/2) of the group SUzxSUz. Another method of making
the Lagrangian (2.1) chiral-invariant without setting
Μ = 0 is to introduce an interaction of the nucleons with
"compensating" fields which, under the transformations
(2.3), cancel the non-invariant factor that appears in
the Lagrangian (2.4). Since we are concerned with
transformations which change the parity, we must in-
troduce interactions with pseudoscalar massless "pions"
by making the substitution

897

exp ( — V s
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(2.5)

where F, is a dimensioned constant. The fields irf

must transform according to the non-linear law

(2.6)
in such a way that the expression (2. 5) is invariant with
respect to the simultaneous transformations (2.3) and
(2.6) of the fields φ and π. It is easy to construct the
invariant Lagrangian for the pion field itself from the
matrix exp(y5 π · τ/F,):

L(n) = 4-Sp[e1,«p(T,-S.)e l l«p(-Y.-=-)]. (2.7)

Thus the full invariant Lagrangian has the |orm

ΜΨ. τ) = i^-Λ/ψ exp (_ ν 5 - |1)ψ + Ζ,(π). (2.8)

If we identify the Goldstone field that has been intro-
duced with the real pion and the axial-vector current
J5(2 =Ftdllv + O{n3) with the current that takes part in the
weak interactions, then the constant Fr in the first Born
approximation is equal to the weak decay constant of the
pion; this gives F,= 92 MeV. Throughout the remainder
of this section, we shall employ the dimensionless sys-
tem of units, putting Ft = 1.

To formulate the standard method of describing the
interaction of Goldstone particles,C 3 5·3 6 3 it is convenient
to go over from the Lagrangian (2.8) to the physically
equivalent Lagrangian

L (Ν, π) = ΝίΊμ { θμ + [exp ( - γ5 ψ\

by means of the transformation

(2.9)

(2.10)

We note that the expression exp[- γ5(π/2) · τ] represents
a finite transformation of the group SU2xSU2 'with pa-
rameters that are identified with the Goldstone fields.

We now consider the general representation. Let / '
and Κ' be the generators of the isotopic transformations
and proper chiral transformations, satisfying the com-
mutation relations

a)

b)

c)

[Ki, IA = i

IK,, Ks] =

(2.11)

In particular, for the representation considered
above, these generators have the form

The expression

can be expanded in terms of all the generators of the
group SUzxSUz:

(jt)+/je;(n)). (2.12)
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The explicit structure of the forms ω'μ and 0μ, which
are generally known in the physics literature as the
Cartan forms,C 3 5 ] can readily be obtained by differen-
tiating with respect to a parameter t. This parameter
is introduced in Eq. (2.12) by making the change of vari-
able π - / π . After differentiating, the right-hand side
of Eq. (2.12) gives

ίΙκ'-^-ωί + Ι'-^θ'Λ, (2.13)

while the left-hand side, using the commutation rela-
tions (2.11), gives

). (2.14)

Equating the coefficients of the corresponding genera-
tors on the right- and left-hand sides given by (2.13)
and (2.14), respectively, we obtain a system of two
first-order equations:

α * 1,-0 = 0,

(2.15)

The solution of this system of equations has the form

(2.16)

It is easy to see that the pion Lagrangian (2.7) is given
by

Thus the full Lagrangian (2.9) can be written

L(N, n) = i

(2.17)

(2.18)

where DllN = [dll+i(e^Tll/2)]N and ωμ=Ζ)μπ are called
the covariant derivatives of the fields Ν and ir, respec-
tively. All the terms in (2.18) are invariant with re-
spect to chiral transformations; the second term is not
coupled to the kinetic terms and can appear in the La-
grangian for an arbitrary value of the parameter gA.

We now formulate the standard method of constructing
the Lagrangian. Suppose that we know the full sym-
metry group G of the interaction in question. The non-
interacting particles are classified according to the
representations of a subgroup Η with generators / ' (we
shall denote the remaining generators of the group G
by if').

Now, to construct a Lagrangian which is invariant
with respect to the transformations of the full group G,
it is sufficient to replace the ordinary derivatives of the
fields in the free-field Lagrangian by the covariant de-
rivatives, using the Cartan forms ω and Θ, which can
be calculated according to the equation

exp (— IK'α') <5μexp (iK'a') = i [K'(s>i (a) +1% (a)].

The parameters a J(x) are identified with the fields of

the Goldstone particles.

We note that a similar procedure was used inC37] to
construct Einstein's theory of gravitation. The initial
group G was taken to be the 20-parameter group Λ (4) of
all linear transformations of 4-space, and the subgroup
Η was taken to be the 10-parameter Poincare group £P.
The remaining 10 parameters were identified with the
fields of Goldstone gravitons.

Let us construct a Lagrangian which is invariant with
respect to the transformations of the chiral group SU3

xSU3. Suppose that Bl and Φ* are the baryon and meson
octets. (We henceforth adopt the notation of the re-
views.C38]) A chiral-invariant Lagrangian which repro-
duces the theorems of current algebra has the form

(2.19)
here α «2/3 is the mixing parameter for the F and D
couplings, and the Cartan forms

' = 3μΦ' + Ο (Φ3), θί = μΦ11 + Ο (Φ1)

are determined by the equation
8

exp ( - 4 γ,ξ) <*μ exp (i- T s l ) = V5 -• ΟμΦ* + i - £ θμ, ξ = 2 λ*Φ\
» 1

where λ1 are the (3x3) Gell-Mann matrices.
(2.20)

We have so far been considering massless mesons.
The meson masses lead to chiral symmetry breaking.
This symmetry breaking is usually chosen according to
a definite representation of SU3 x SU3. In particular,
it was proposed in [ 2 8 3 to describe the symmetry break-
ing according to the simplest representation (3, 3*)θ(3*,
3) of the group, which characterizes the transforma-
tion properties of the matrix

w + a y ) , λ» = i / i i<

where s" and p" are non-linear functions of the fields
Φ1.

The symmetry breaking is chosen in the form

The constants cx and c2 in this expression are deter-
mined by the condition that the terms quadratic in the
fields in the expansion of s° and s8 are equal to the mass
part of the free Lagrangian m\KK + (l/2)mz,ni·.

In conclusion, we write the explicit form of the ma-
trix exp(i ξ):

exp (ίξ) =
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FIG. 1. The paths along which the point x2 =
in the integrals with the contours Lx and L2.

is approached

3. REGULARIZATION TECHNIQUES AND
COVARIANT PERTURBATION THEORY

In constructing a quantum chiral field theory, we
shall adopt the S-matrix formalism in the interaction
representation, where the S-matrix is usually written
in the form

(3-D

To eliminate the ambiguities which occur in the theory
when regularizing the divergent integrals in those cases
in which we must deal with renormalizable quantum
field theories (such as electrodynamics), it is sufficient
to renormalize a finite number of observable physical
quantities such as mass, charge, and wave functions of
fields. For non-renormalizable theories, an example
of which is a chiral theory, it would also be possible to
apply the regularization procedure of renormalizable
theories in each order of perturbation theory, but this
would lead to the presence of too many undetermined
parameters, which could no longer be fixed by renor-
malizing a finite number of observable physical quan-
tities. In our case, we must therefore use completely
different regularization techniques which are charac-
teristic of theories involving non-polynomial Lagrang-
ians. These methods were first proposed in135·39-1.

One such method, now known as the superpropagator
(SP) method, will be used in the remainder of our cal-
culations. A detailed account of this method can be
found in : 2 5 3. Here we shall give a brief description of
its basic idea. The characteristic singularities of the
coefficient functions on the light cone in renormalizable
theories are pole-type singularities. For example, the
two-vertex loop with η internal lines corresponding to
massless scalar particles is of the form

Π"» ( Χ Η (3.2)

To make the integral convergent in constructing the
Fourier transform of (3.2), it is necessary to carry
out a finite number of subtractions (using, for example,
the Pauli-Villars or Bogoliubov-Parasyuk regulariza-
tion; see ). However, the removal of this intermedi-
ate regularization entails the presence of a certain num-
ber of undetermined parameters in the final expression.

We turn now to non-polynomial Lagrangians. A typi-
cal example of such a Lagrangian is one having the ex-
ponential form

L^p = Glexp (C T (X)) - 1],

If we consider not an individual diagram but the com-
plete set of two-vertex diagrams obtained in second-
order perturbation theory in the constant G, it is easy
to derive the expression

) = iG* [exp ( - χ)) - 1 ] = /G exp [ -
_ <

(3.3)
In contrast with (3.2), we find here not pole singularities
on the light cone, but an essential singularity. On the
one hand, the behavior of the Green's function on the
light cone becomes more singular than in renormaliz-
able theories. But on tiie other hand, we can now ex-
ploit entirely new methods of regularizing the divergent
integrals, which were previously inapplicable. These
methods make use of the fact that for an essential sin-
gularity, unlike a pole singularity, the behavior of the
Green's function (3.3) on the light cone depends strongly
on the path along which we approach the singularity. If,
in the integral corresponding to the Fourier transform
of (3.3), we choose the contour of integration with re-
spect to the variable λ =χζ in such a way as to approach
the light cone from the region xz>0, we therefore ob-
tain a convergent integral and a finite expression for
the Green's function in momentum space. The specific
choice of the contour of integration is dictated by the
unitarity condition for the S-matrix.C 2 5 l 5 )

These properties of the full function Π *"(*•) are com-
pletely lost if we consider each term of its expansion in
powers of gz individually (in the same way that the limit

lim e = lin

differs from the sum of the limits of the individual
terms of the expansion). Moreover, the function
n e x p (£) has a logarithmic-type non-analytic dependence
on the coupling constant g-2. This confirms once again
that the expansion of this function in powers of gz is not
valid.

5>To illustrate this point, let us consider the two functions
U'$(x), where Π"ί?(χ) differs from (3.3) by the sign in the ex-
ponent. It follows from the unitarity of the S-matrix that
ΙηιΠ(ϊ?(/>) = 0 for p*< 0. This condition is satisfied by the
simple finite expression for

ff?S (/>) = \ dl'Iui (Ι Ρ Ι, λ'),

where λ ' = - * 2 , \p I =J-p2, /<±> = (2ir2G2/ \p\ )/λ' Jt(\p Ι /λ')

x [βχρ(τ§-2/(2π2λ') - 1 ] , and Jt is a Bessel function. For

fl'^ip), we find the more complicated expression

Li I-i

The contours L± and L% are shown in Fig. 1.
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FIG. 2. Diagrams corresponding to the "tree" approximation
(a) and the single-loop approximation (order FJ4) (b) for ττπ
scattering. The dashed and solid lines represent pions and
baryons, respectively.

The function Π ""(/>) can be represented in the form
of a modified expansion i n ^ 2 , in which each power g2"
may be associated with factors containing an additional
logarithmic dependence ong z (i. e., gZn 1η?2). This is
a manifestation of the fact that in obtaining a finite ex-
pression for "a given order i n ^ 2 " we took into account
the effects of all the remaining terms of the expansion
of the function Π Μ Ρ .

We now consider perturbation theory itself. It is con-
venient to write the S-matrix (3.1) in another equivalent
form by dividing the fields into internal fields Γ (which
lead to propagators in the coefficient functions) and ex-
ternal fields φ:

(3.4)

As we have already seen in Sec. 2, the different forms
of chiral Lagrangians must lead to identical physical
results. Physically equivalent Lagrangians are related
to one another by point transformations

φ = «ρ7(φ'). /(0) = ι.

For example, the Lagrangians

(3.5)

(3.6a)

(3.6b)

are physically equivalent. This equivalence is due to
the fact that the metric properties of the space of the
field itself, which are determined by the quadratic form
of the derivatives of the fields, does not depend on the
transformation (3.5). The choice of some particular
Lagrangian from among all the equivalent Lagrangians
(for example, (3.6a) instead of (3.6b)) in formulating
the perturbation theory is governed entirely by con-
siderations of simplicity of the techniques which are
used. In a similar way, there exist infinitely many
equivalent chiral Lagrangians. Chiral Lagrangians
written in the form

have an elegant geometrical interpretation: gis is the
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metric tensor of a three-dimensional isospace of con-
stant curvature characterized by the constant Ft. The
transformations (2.6) correspond to a displacement of
the origin on a sphere by the vector a and can therefore
be interpreted in terms of vector addition in a curved
space:

(3.8)

The limit Ft — » gives the usual Euclidean isospace.

In analogy with the λφ* theory (3.6a), the essence of
our covariant perturbation theory is as follows:

1) We choose the simplest so-called normal coordi-
nates in the space of the fields along the geodesies (this
choice corresponds to the exponential parametrization
eiK' used in Sec. 2 for the finite transformations of the
group).

2) In separating the fields into external fields π and
internal fields Γ, we make use of the operation of vec-
tor addition (3.8) along geodesies in a curved space (in
particular, to calculate the Cartan forms correspond-
ing to the Lagrangian L (ττ(+) Γ) in (2.12), we must
make the substitution exp(iKn)~ exp{iKn)exp(iKr)U1·^).

This choice of the fundamental fields has the follow-
ing advantages: 1) the simplest combinations occur in
calculating the matrix elements (compare, for example,
the Lagrangians (3.6a) and (3.6b)); 2) covariant pertur-
bation theory leads directly to a covariant separation of
all the diagrams into diagrams involving fixed numbers
of vertices, which is important for the application of
the SP calculational technique in a form which is invar-
iant with respect to the group SUzxSUz. To achieve
such an invariant separation in an arbitrary coordinate
system, it would be necessary to make additional and
very cumbersome rearrangements of the Feynman
diagrams.C 3 5·4 1·4 2 1

4. STRONG INTERACTIONS [νπ SCATTERING)

In the remainder of our exposition, we shall try as
far as possible to avoid dwelling on the details of the
calculations; we shall concentrate mainly on the results
that have been obtained, referring the reader who is
interested in the details to the original literature.C l 5" 2 3 1

We begin by considering the process of elastic τπτ scat-
tering.

The scattering amplitude has the form

<2JI)"4 VP°J>№1 (hiz\S\ 1,1ύ = I + i (2«)4 δ"> (ρ, + ft-ρ,-Λ)
X [fii.iAsi^ (*- t, u) + 6tlt,6tttlA{t, s, u) + SiiU6(,,^l(u, t, «)],

(4.1)

where / is the unit matrix, ik are isotopic indices of the
pion, 6tJ is the Kronecker delta symbol, s = (pt +/>2)

8,
t = (/>! -pi?, and u = {p1 -ptf. In Fig. 2 we show the
diagrams corresponding to the single-loop approxima-
tion (the order is not higher than l/F\). The diagram
a corresponds to the tree approximation. The contri- .
bution to the amplitude from the diagram b is calculated
by means of the SP method. t 2 S ] The contributions of the
remaining diagrams are calculated by means of the
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TABLE I.

«ft")

«5
<
"I
i-i
A
a !
b%

4

<

Experiment1321

0.10; 0.60
—0.10; —0.03
0.042; 0.040

1.4-10-3; 1.8.10-3
—2-10"1; 3·ΙΟ"1

Values from'221

0.15
-0.042

0.031
1.14-10-3
1.85-10-3
2.6-10-4

-1.02-10-1

-5.1-10-5

2-10-5

1.06-10"5

1.33-10-5
5-10-e
2-10-6

Values from133'

0.15+0.02
-0.065+0.025
0.0341+0.0036

(1.07+0.27)-10-3
(1.48+0.08)-10-3

(-3+8)-10-5
(—3.8+1.1) -10-s

(-4.4+1.1).10-5
(1.13+0.36)-li)-5
(1.27+0.3ΰ>-10-5

(3.8+0.5)· ΙΟ"5

(4.8+0.8)-ΙΟ-6

(1.7±0.8)-10-6

usual methods of renormalizable field theories, and we
retain here only the quadratic terms in the variables
s, t, and u, since the terms of higher order are small
and are of the type [S 2 /(47LF,,) 4 ](S/M^). 6 ) The contribu-
tions of all the members of the baryon octet are taken
into account by means of St/(3) theory. [ 1 β · 1 7 ] This pro-
cedure gives the following expression for A(s, t, u) in
the F? approximation1

1 1 1 9 ] :

(4π)~Μ (s, t, u) = α0 (3s—1) + α'Π (s, ί, u), (4.2)

- [3 ( ΰ - Ι) (ΰ-7) + 3 ί-1] / (ΰ) - [3 (Γ-1) (ί"-«) + 3ΐ-1] / (ί),

where

In the region of energies much smaller than AitF,,
Eq. (4. 2) provides a good expansion of the ππ scattering
amplitude in the small parameter a0. The amplitudes
in the channels with isospins 0, 1, and 2 are given by
the equations

A" = 3A (s, t, u) - A (f, s, u) + A (u. t, s),

A1 = A (t, s. u) — A («, t, s), A1 = A (t, s, «) + Λ (u, i, s).

Following1 3 3 ], we introduce the notation

/(s) = - s, .r)

6)The contributions to the terms which are constant or linear
in the variables s, t, and κ from the diagrams c—e of Fig. 2
contain undetermined parameters, which can be fixed by
applying the low-energy theorems requiring that the ampli-
tude has the form A(s, t, u) ~ S/F\ at low energies.

here a' are the scattering lengths, b\ and c\ are effec-
tive-range parameters, and P,(x) are the Legendre poly-
nomials. The scattering lengths and effective-range
parameters for the ττττ system are then found to have the
values given in the Table I.

For / s 3, the foregoing equations lead to the following
simple expressions for the scattering lengths:

The results given in the table are in goo<4 agreement
with the known experimental data t 3 2 ] and with the re-
sults of the phenomenological approach of Palou and

i
Yndurain, i331 who make use of the Froissart-Gribov
representation.

All the scattering lengths for
ities

' s 3 satisfy the inequal-

4(2!+3)(2/ + 5) '

which were obtained in U 3 ] from the requirements of
unitarity and analyticity of the scattering amplitude.

We note that while the values of the scattering lengths
of the S and Ρ waves are determined mainly by the Born
term (Fig. 2a), the Born term does not contribute at
all to the scattering lengths of the higher partial waves
beginning with the D wave, whose values are determined
by the contribution of the pion loop diagram 26.

By making a partial-wave expansion of the amplitude
A1 and applying the formula (cots' - i)"1 =-/l - (\/s)A\,
we can obtain information about the behavior of the
phase shifts for the im system. The corresponding
graphs are shown in Figs. 3 and 4. The dashed curves
in these figures show the behavior of the phase shifts in
the limit m,=0 (the case considered inC 1 5 '1 6 1). The Ρ
wave contains a conspicuous p-meson resonance at an
energy ~ 800 MeV with a width ~ 150 MeV.

FIG. 3. Behavior of the S-wave phase shifts 6§ and 6§ of the
ππ scattering amplitude. 1—theoretical curves for m, * 0, ί 1 ι :

2—curves for mT=0,C15·161 3—experimental points from132*3

andB 2 M, respectively. See1163 for the remaining points (V^ is
in MeV).
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To conclude this section, we mention a number of fur-
ther inequalities obtained by Martin1*4 ] in the sub-
threshold region from the conditions of unitarity and
crossing symmetry for the S wave of the process ir°ir°

"δετί dx[A(s, t, u) + A(t,s,u) + A{u,t,s)].

These inequalities a re as follows:

1) /Γ(*)</? (1), 0 < ί < 1 ;

2) <'/u°('l>0, 0 . 5 < ; < l ;
OS

1

3)

4)

5)

6)

7)

Direct calculations show that the amplitude (4.2) is
completely consistent with all these inequalities.

5. ELECTROMAGNETIC INTERACTIONS

The interaction with the electromagnetic field A^ is
introduced in the Lagrangian in the usual gauge-invari-
ant manner:

μ χ ( μ μ ) χ
χ ± = (π±, #±, ρ, Σ±, Β±). (5.1)

Α. Electromagnetic interactions of pions118·22-231

1) The form factor. The matrix element for a pion
in an external electromagnetic field A „ is given by

π* | S (A) | π*) = it

as

I!
no '

120

100

BO

BO

40

20

WO BOO BOO 1000 \

FIG. 4. Behavior of the P-wave phase shift δ} of the ττπ scat-
tering amplitude. 1—theoretical curve for m, * 0 , [ l n 2—for
m T =0, C 1 S · 1 6 3 3—experimental points from132*3 and : 3 2 b ], re-
spectively (V"s is in MeV).

π Ι \π

y

β

d e
FIG. 5. Diagrams corresponding to the "tree" approximation
(a) and the single-loop approximation (order e/F2.) (b—e) for
the pion form factor. The wavy lines represent photons.

where />t and pz are the pion momenta, ρ
—pz, and

= />x +

+ . . .

q =

(5.2)

is the pion form factor. Here &\,T)(q) is the contribution
to the form factor from the pion diagram 5b, and Φ^*^)
is the contribution from the baryon diagrams c-e of
Fig. 5 in the e/F\ approximation.

We make use of the SP method to calculate the func-
tion Φί"^) . This gives

(5.3)
where C=0.577. . . , qz=qz/^m\, and a 0 and J(q2) are
the same as in Eq. (4.2). It can be seen from (5.3)
that the pion-loop contribution to the radius of the pion
is given by

«0.065 F* (5.4)

As before, we calculate the contribution from the
baryon diagrams as far as the qz terms, since the re-
maining terms are small. All the divergences in the
diagrams c-e of Fig. 5 cancel among themselves, and
we find that Φί'Ό?) is given by the expression7'

(5.5)
6(2π)2

This gives the following contribution to the mean-square
radius of the pion:

<r2>(») = 0.36 fm7.

The radius of the pion

.65 F (5.6)

is in satisfactory agreement with the latest experimen-
tal data."* 3

Substituting the functions (5.3) and (5.5) in (5.2), we

7)The factor 1.7 appears after taking into account all the mem-
bers of the baryon octet (seeC181). The irK interactions con-
tribute very little to the pion form factor.
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find the following expression for the pion form factor:

Φ* = l+oto [ - 1 +8.6<T2 + (1 -qfj (f)\.

This formula describes a behavior of the pion form fac-
tor at energies -JI qz I < 1 GeV which is in good agreement
•with experimental data recently obtained at Dubna and
at Serpukhov'-3*-' (see the graphs in Fig. 6).

It is interesting to note that the radius of the pion is
determined almost entirely by the contribution of the
baryon loop diagrams. The value (5.6) for the radius
is close to predictions based on the p-dominance model
(7<P>,r~76/»^-0.64 F).

2) The Compton effect. The matrix element corre-
sponding to the Compton effect on the pion can be writ-
ten in the form

<π°(ρ,) ix" (p2)\S|νλ,(?ι)νλ,(?2)>

where ql and qz are the photon momenta, ejft and ej2

are the polarizabilities, />i and p2 are the pion momenta,
and a and b are isotopic indices. We note at the outset
that in the case of this process the divergences cancel
in the single-loop approximation not only in the baryon
loop diagrams, but also in the pion loop diagrams.
There is therefore no need to use the SP method here.
Without giving the general form of the covariant am-
plitude Τ££, we quote here the form that is obtained in
the lowest orders of perturbation theory:

(5.7)

The first three terms in the curly brackets are the
Born terms (the diagrams a and b of Fig. 7), ^*\ς^ζ)
is the contribution of the pion loops (c and d of Fig. 7),
and ^Vitfi) is the contribution of the baryon loops
(e-h of Fig. 7). We have retained only the constant
terms in /3(,6), since the remaining terms of the expan-
sion in powers of (qiqz) are small. In deriving (5. 7),
we have also made use of the equalities

(9,ε,) = (ϊ2ε2) = 0, eft = ?* = 0, p\^p\=,m%.

If the contributions to the amplitude from the diagrams
c and d of Fig. 7 are calculated together, we obtain the
finite expression

0.1 f'(Ge\ Ic 0.02

b

FIG. 6. Behavior of the pion form factor in the regions q1

>0 (a) and q2< 0 (b). 1—theoretical curve, : i 8 1 2—experimen-
tal points from : 3 4 a l and1 3 4", respectively.

FIG. 7. Diagrams corresponding to the "tree" approximation
(a, b) and the single-loop approximation (order e2/F?) (c—h)
for the Compton effect on the pion.

2-*}·

In considering the Compton effect on the neutral pion,
there is a complete cancellation among the diagrams
e-g of Fig. 7. For charged pions, the contributions
from the nucleon diagrams e-h of Fig. 7 are given by

β<"> = 4 ^ ^ - (5-8)

As before, allowance for the contributions from the re-
maining members of the baryon octet leads to an addi-
tional factor 1.7 in (5.8).

Defining the polarizability of the pion as the coeffi-
cient of the effective interaction of the pion with an ex-
ternal electromagnetic field Ae,

8)

we obtain

» = «πο (?2?2) l , № _0 =

= 0.33 -%• = 7 · 10"3 F ' ,

(5.9)
- = -0.04—3-= -8-10-* F 3 .

It is interesting to note that the function /3</)(qr1q'2) varies
rapidly in the threshold region. Thus, at the two-pion
production threshold, we obtain

8 'The energy factor (guvqiq2 — <li<I$\ which is always present
in the amplitude TJJ," in the single-loop approximation (see
(5.7)), corresponds in quantum-mechanical language to the
combination E 2 - H 2 . This implies that the electric and mag-
netic polarizabilities of the pion in this approximation are
equal in magnitude but opposite in sign.
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These values of at± are of the same order of magnitude
as estimates based on current algebra1451 and on quark
models,C 4 e l differing by a factor of two from the predic-
tions ofC451. Moreover, the value ar0=Q was obtained
inC451.

B. Electromagnetic interactions of kaons [201

We turn now to the problem of calculating the electro-
magnetic form factor and polarizability of the kaon.

1) The form factor. We write the form factor of the
charged kaon in the form

here Φ£} is the contribution to the form factor from the
pion loop diagram shown in Fig. 5b, Φ (/' is the contri-
bution from the kaon loop diagram, and Φ(^' is the con-
tribution from the baryon loop diagrams c and d in Fig.
5 but with kaons at the ends. As before, these contribu-
tions correspond to the e/F\ approximation. As in the
case of the pion form factor, the contribution from the
kaon loop can be neglected, and we give here only the
expressions for Φ^"^) and $$\q); the first of these
contributions is given by

here the constants a0 and C and the function<
are the same as in Eqs. (4.2) and (5.3). The term in
the square brackets contributes to the mean-square
radius of the kaon. This term has the value

(r2)£i = 0.08 F\ (5.10)

The contribution from the baryon diagrams is again
substantial; it is given by9 )

1.4

6 (2π)2 M\ !1· (5.11)

It follows from (5.10) and (5.11) that the root-mean-
square radius of the charged kaon has the value

;0.61 F.

For the neutral kaon, the contributions from the tree
diagrams and the baryon loop diagrams are equal to
zero, while the contribution from the pion loop diagram
remains the same as before in magnitude but has the
opposite sign. Hence we have

VU*)^, fa 0.28 F.

9)The factor 1.4 appears when allowance is made for the con-
tributions from the entire baryon octet. It is of interest to
note that in the case of exact SU(3) symmetry all the single-
loop diagrams for the self-energy of the meson, for its form
factor, and for the amplitude of the Compton effect are pro-
portional to the function/(5) = 3( l-a) 2 +(5/3)a 2 . The mini-
mum of this function corresponds to the value 5 = 0.65, in
good agreement with the experimental data.

This last result i s in good agreement with predictions
based on the vector-dominance model (a variant involv-
ing a model of current mixing 1 4 7 1).

2) The Compton effect. We now give a brief account
of the results of calculations of the amplitude for the
Compton effect on the kaon.

In addition to the diagrams shown in Fig. 7 but with
kaons instead of pions in the external lines, we shall
also consider the two diagrams c and d of Fig. 7 but
with internal kaon lines. These diagrams gave a neg-
ligibly small contribution to the amplitude for the Comp-
ton effect on the pion, but they must now be taken into
account. Dropping the Born t e r m s , we then obtain the
following expressions in the ez/F\ approximation for the
amplitudes with charged or neutral external kaons:

" (?1Ϊ2) + βjf > ]

, - # # ) [Pi?

The function β'κ(<1ι<]ζ) corresponds to the contribution
from the two diagrams containing internal pion lines
(the diagrams c and d of Fig. 7). When these diagrams
are calculated together, they give the finite contribution

«L_l_/l —JL.\j(sL. \\ · where
•6ml ^V iml ) J \ iml 1 I '

The function J ( | ) varies quite rapidly as ξ increases,
so that the contribution to the amplitude Τ ΐ" from
β'κ{ςι$2), which is equal to zero at qiqt =0, can become
appreciable at sufficiently large

The function β ^ * ' ^ ^ ) corresponds to the contribution
from the two diagrams containing internal kaon lines
and charged external kaons:

The analogous function in the case of neutral external
kaons is given by

These results show that the only non-zero contribution
to T*v at qiqi =0 comes from the function β{$*) «0.08

(4?ί')2

With neutral external kaons, as in the case of neutral
pions at the ends, the contribution to the amplitude Τ$"
from the baryon loop diagrams is equal to zero. For
charged external kaons, the combined contribution from
the diagrams e, f, and h of Fig. 7 is given by β^
»1.4(4ffF f)' 8; we have retained only the constant t e r m s
here, since the higher-order t e r m s of the expansion
in powers of (q^z) (of the type O{qxqjM%)) a r e small .
This shows that the baryon loop diagrams give the de-
cisive contribution to the amplitude T?" (0) for the Comp-
ton effect at (q^g) =0. For the other amplitude, we
have T$"(0)=0.
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(6.1)

FIG. 8. Diagrams corresponding to the "tree" approximation
(a) and the single-loop approximation (order G/Fr) (b, c) for
the decay ir*—p^. The double lines represent leptons.

Using equations analogous to (5.9), we find that the
polarizability of the kaon has the values

mK

These values are consistent with recent theoretical
estimates based on current algebra and PCAC,C48] giv-
ing aKt~ 10"3 F 3, and with experimental data, U 9 ] which,
unfortunately, have rather poor accuracy at the present
time, giving αή*?~ _ (4±11)χ1(Γ3 F 3 .

6. WEAK INTERACTIONS

A. Decays of charged pions'211

We shall now consider the principal decays of charged
mesons and calculate the structure constants for these
decays. To do this, we shall have to supplement the
chiral Lagrangian with the part which is responsible
for the weak interactions. We write this part in the
form

[ -V2 F^n'

Υα (1 - igAy>) Ψ» + ieV2 F^A

where L(*' =(G/^)cos6Ji(e )yu(l -iy%)v, G is the weak
coupling constant, θ is the Cabibbo angle, and μ, e,
and ν are the muon, electron, and neutrino fields.

We shall adopt the usual definition of the transition
amplitudes T; for example, for the process •ni~ μίν7,
we have

(μν(0.

where £ μ is the pion momentum, and Z'*' =
xcoseu{ll)yii(\ —iy5)u(v) is the leptonic current. The
second term in the brackets is much less than unity.
Comparing (6.1) with the experimental data, we have
Fr~93 MeV.

2) We now consider the process π*— β*νγ. A detailed
discussion of this process can be found in t 4 5 > 5 0 ]. The
Born approximation is determined by the diagrams of
Fig. 9a:

— G cos θ« ( μ,γμ (k + ~q— -' ~p (1 —

The single-loop approximation consists essentially of
the diagrams b and c of Fig. 9. These diagrams give
a contribution of the form

7H0) * I

where

'-ie VI [iA

hA = (6.2)

and εμμ0,β is the completely antisymmetric tensor. Thus
allowance for nucleon loops leads to 1) a renormaliza-
tion of the constant Ft (see (6.1)); 2) terms describing
structure radiation.

We find that the ratio hA/hv = y is given by

γ = -^-«0.41, (6.3)

while experiment gives two possible values y = {0.4,
-2}.C 5 1 ]

where ε" is the polarization of the photon, and p, q,
and I are the momenta of the pion, photon, and lepton
pair, respectively. Since the contributions from baryon
loops are much larger than those from pion loops, as
can easily be seen from the preceding calculations, we
shall take into account only the baryon contributions
here.

1) We begin with a discussion of the fundamental pion
decay π*— β±ν{β±ν). (We first consider only the i:N in-
teraction. At the end of this section we indicate what
corrections arise when allowance is made for all the
baryons of the octet.) This process can be used to fix
the only parameter F, of the chiral theory. It turns out
that the order of perturbation theory after the Born
term gives only a small correction to Ft, and there is
again a complete cancellation of the divergences in the
loop diagrams b and c of Fig. 8.

Thus, in the single-loop approximation, we obtain

c

FIG. 9. Diagrams corresponding to the "tree" approximation
(a) and the single-loop approximation (order eG/F,) (b, c) for
the decay ττ* — Jlvy.
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FIG. 10. Diagram corresponding to the single-loop approxi-
mation (order el/F,) for the decay ir° — yy.

We note that our approach automatically satisfies the
current-algebra relations"" between the constant hv

and the constant/ for the decay JT°- yy and between the
constant hA and the pion polarizability /3T.

The amplitude for the process n°— yy was first cal-
culated by SteinbergerC521 in the single-loop approxima-
tion (Fig. 10):

= 0.59- (6.4)

Here q{ are the photon momenta. The experimental val-
ues of/ are as follows:

| ;/ | = (0.45 1 5 3 1, 0 .57 ' S 4 l )-^- .

(6.5)

The current-algebra relation has the form

Comparing (6.4) with (6.2), it is easy to see that this
relation is satisfied.

The polarizability of the pion at energies qxqz =0 is
determined mainly by the baryon contributions (see Eq.
(5.8)). Comparing (5.8) with (6.2), we obtain

hA-FJf«>. (6.6)

This is in fact the relation which follows from current
algebra. " 5 1 Allowance for the contributions from the
remaining members of the baryon octet leads to factors
1.7 in the coefficients w i t h ^ and 1.2 in the coefficients
with^A . Thus the relations (6.5) and (6.6) are still
satisfied.

3) Finally, we consider the process ιτ*~ποβ*ν (Fig.
11). The calculation of the amplitude for this process
is very similar to the calculation of the pion form fac-
tor and gives the result

Γΐ 4- l

L + T

2Ί ^

where

This concludes our discussion of pion interactions.

FIG. 11. Diagrams corresponding to the "tree" approxima-
tion (a) and the single-loop approximation (order G/Fj) (b—d)
for the decay ir*-'ifiev.

*> ^ ν Κι

FIG. 12. Diagrams corresponding to the intermediate states
of the Ks and KL mesons. The dot-dash lines represent kaons.

B. The KL-KS mass difference1 1 9 1

To conclude our survey of the low -energy interactions
of mesons, we calculate the mass difference of the neu-
tral kaons.

We introduce one further Lagrangian, which describes
the ITK interaction and corresponds to the ΔΓ = 1/2 rule.
The simplest such chiral Lagrangian which contains no
derivative couplings has the formCl91

where Ks = (Ko +K0)/j2 and KL = i(K0 -Ko)/J%. The Born
approximation for this Lagrangian accurately repro-
duces the low-energy theorems of current algebra con-
cerning the non-leptonic decays of Ko mesons into two
or three pions.

The coupling constant a can be fixed by the probability
for the decay Ks - 2π (w(2ir)). This gives

(6.7)

We now proceed to the calculation of the mass differ-
ence between the KL and Ks mesons. This mass dif-
ference is due to the different virtual states into which
each of these mesons can be transformed, taking into
account their combined parity (Fig. 12). Bearing this
in mind, the mass difference AmK can be written in the
form

Δ mK, = mKL - mKs = 2 (/,, - f L ) , (6.8)

where fs is the sum of the matrix elements correspond-
ing to the infinite set of diagrams containing an even
number of virtual pions (Fig. 12a), and/L is the same
for the diagrams containing an odd number of pions
(Fig. 12b).

The quantities fs and/i can easily be calculated by
using the SP method.C25] It is found in this way that the
value of Am^ is determined almost entirely by the two-
pion diagram. The diagrams containing three or more
virtual pions contribute less than 1% to the value of
AmK . The contribution from the single-pion diagram
must be calculated together with the contribution from
the diagram containing a single virtual η meson, and
these contributions completely cancel according to ex-
act SU(3) symmetry. It is not essential to take into ac-
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count the η meson in the loop diagrams.

The expression for the matrix element corresponding
to the two-pion diagram takes the form

where C is the Euler constant, and J(m\/\m\) is given
in (4.3). Substituting (6.7) and (6.9) in (6. 8), we ob-
tain

while the experimental value of AmK is 0.48w(2r)

(see : 5 5 ]).

7. CONCLUSIONS

The foregoing examples by no means exhaust all the
problems which can be studied in the single-loop ap-
proximation of quantum chiral theory. We mention, as
an example, the (leptonic, semi-leptonic, and non-
leptonic) decays of kaons. Allowance for the single-
loop diagrams in calculations of these decays can help
to elucidate the group structure of chiral symmetry
breaking.

To summarize the examples which we have given of
the utilization of quantum chiral theory in describing
low-energy mesonic processes, we can say that the re-
sults that have been obtained at least reproduce the
actual qualitative features of the various physical pro-
cesses, leading to good quantitative agreement with the
experimental data in the majority of cases.

These results show that the universality of the strong,
weak, and electromagnetic interactions of hadrons may
account for the successful application of perturbation
theory, not only to first order, but in the next order in
the strong coupling constant, as confirmed by direct
estimates of the two-loop approximation. c u - 2 9 ] We re-
call that quantum chiral theory in the form in which it
has been formulated here can be used successfully only
at low energies much less than 4π^Γ= 1.2 GeV, which
is the energy scale that occurs naturally in this theory.
At higher energies, the approximation of point-like
hadrons may be inapplicable, in view of the structure
of the hadrons.

It is continually becoming more certain that such a
structure does exist, thanks to the successes of the
quark model of current algebra on the light cone and
pure quark models in explaining electroproduction pro-
cesses and neutrino reactions at high energies and in
describing an enormous number of resonance decays
and data on hadron spectroscopy.

At the same time, these successes definitely indicate
that chiral symmetry is an approximate symmetry of
the strong interactions for all currently accessible en-
ergies. However, this symmetry is realized in differ-
ent ways at different energies. In this connection, it
seems to us that one of the most interesting problems is
that of understanding the transition from a dynamical
realization to an algebraic realization of chiral sym-
metry in the region of moderate energies.

Dual resonance models which describe the interac-
tion of extended objects (strings) provide certain pos-
sibilities of studying this problem. On the one hand,
these models reproduce the spectrum of hadronic states
(the classification by Regge trajectories) and lead to
the Veneziano amplitudes; on the other hand, they re-
duce to field-theoretic models of point-like particles
in the low-energy limit. In particular, the most real-
istic dual resonance model of Neveu and SchwarzC56] has
as its point-like limit the chiral theory involving the
non-linear phenomenological Lagrangian considered in
the present review.

In conclusion, the authors express their gratitude to
D. I. Blokhintsev for providing the initiative for writ-
ing this review and for valuable remarks, and to D. V.
Volkov, V. A. Meshcheryakov, V. V. Serebryakov,
and D. V. Shirkov for useful discussions.
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