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1. INTRODUCTION

We currently know an entire set of semiconductors
having a forbidden band that is identically equal to zero,
and they are commonly called gapless semiconductors
(GS). Gapless semiconductors form the natural bound-
ary between metals l ) and semiconductors. They are
distinguished from typical semiconductors by the lack of
a threshold for creation of electron-hole pairs, and
from metals by the substantially lower density of the
electron gas.

Two types of GS are possible. The first type includes
substances in which the forbidden band proves to be zero
owing to fortuitous degeneracy of the conduction band
and the valence band. In these semiconductors, the gap-
less state can be destroyed by any perturbation, includ-
ing those that don't alter the symmetry of the crystal.
Examples of the first type of GS are the alloys

C2] Pb^So/Te, 0 1 and Pb^Sn^Se 1" when having
a certain ratio of components.

GS of the second type show the greatest interest from
the standpoint of the characteristics of the gapless state.
Here this state arises from the crystal-lattice sym-
metry. Their conduction and valence bands belong to
the same irreducible representation of the symmetry
group. That is, the states in these bands have identical
symmetry. Therefore the gapless state inGS of the
second type can vanish only under perturbations that re-
duce the crystal-lattice symmetry. Examples are gray
tin (α-Sn), which crystallizes in the diamond structure,
and the chalcogenides of mercury (β-HgS, HgSe, and
HgTe), which crystallize in the sphalerite structure.

This review is devoted to presenting the current ideas
on the energy spectrum of the charge carriers in GS's
of the second type.21 The first part of the review gives

°They can be defined as metals having a point Fermi sur-
face.1 1 1

2 ) For brevity, we shall henceforth take the term gapless semi-
conductor to mean only a GS of the second type.
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FIG. 1. Band diagram of a semiconductor having the diamond
or sphalerite structure: a) without taking account of the spin-
orbit Interaction; b) with account taken of the spin-orbital in-
teraction (the values J = l/2, 3/2, and 1/2 are shown).

the pattern of arrangement of the bands in GS's, and
describes the energy spectrum within the framework of
the local-potential approximation. The second part
shows that this approximation is valid only far from the
point of degeneracy; for electrons, at an energy above
the Bohr energy of an electron, and for holes, at an en-
ergy above the Bohr energy of a hole.

2. STRUCTURE OF THE ENERGY BANDS OF
GAPLESS SEMICONDUCTORS

As we have noted, the energy spectrum of a GS arises
from the symmetry of the crystal. If we compare two
semiconductors having the same crystal-lattice sym-
metry, the orders of arrangement of the energy bands
in the "normal" semiconductor and in the GS prove to
be mutually inverted. People say that the GS has an
inverted band structure. Let us illustrate this with the
example of the "normal" semiconductor InSb and the
GS HgTe. Both crystals have the sphalerite structure,
with similar parameters of the energy spectrum. Let
us recall the structure of the bands of InSb near the
center of the Brillouin zone (the vicinity of the point Γ),
as is schematically shown in Fig. 1.

The conduction band is separated from the valence
band by the energy spacing Et (forbidden band). It is
described in the vicinity of the minimum by wave func-
tions having s-symmetry (irreducible representation
ΓβΧ The valence band near its vertex is described by
functions of />-symmetry. Upon accounting for spin, the
degeneracy of the conduction and the valence bands
would be two- and sixfold, respectively. However,
spin-orbit interaction partially removes the degeneracy
of the valence band, and the states are no longer classi-
fied in terms of the orbital angular momentum 1, but
in terms of the total angular momentum J = l + s (s is the
spin angular momentum). The conduction band remains
doubly degenerate («7= 1/2). J can adopt two values for
states in the valence band: «7 = 3/2 and .7=1/2. The val-
ue «7=3/2 corresponds to bands of light and heavy holes,
each of which is doubly degenerate when fe# 0 (k is the
wave vector). Whenfe = 0, the bands with «7=3/2 are
fourfold degenerate. The bands of light and heavy holes
belong to the same irreducible representation Γβ. The
value «7=1/2 corresponds to a valence band that is sep-
arated at the point Γ from the two upper bands by the

magnitude of the spin-orbital interaction energy Δ. The
actual spectrum of the valence band of InSb is somewhat
more complicated, owing to the lack of a center of sym-
metry in the sphalerite structure. Yet the terms arising
hereby that are linear in the quasimomentum in the dis-
persion law for holes contribute insignificantly to the
total energy for InSb. B 1

In the inverted band structure that is realized in HgTe,
the band of s-symmetry lies below the bands having
J = 3/2, and it has a negative curvature. The inversion
causes the curvature of one of the bands having «7=3/2
to be positive, while the other is negative (Fig. 2). In
this structure, the forbidden band is identically equal
to zero, while Et<0, if, as before, we measure energy
from the top of the valence band, and denote by Et the
energy gap between the extremal points of the band
having s-symmetry (irreducible representation Γβ in
HgTe or Γ, in α-Sn) and of that having «7 = 3/2 (irreduc-
ible representation Γβ in HgTe or Γ J in β-Sn). The fact
that the forbidden band equals zero for this band model
is not fortuitous, since all four bands having J=3/2 be-
long to a single irreducible representation. Therefore a
forbidden band can arise only from an external agent that
lowers the crystal-lattice symmetry, e.g., uniaxialcom-
pression.

Groves and Paul1 6 3 proposed an inverted band struc-
ture in 1963 for α-Sin in order to explain the contradic-
tions that arose at that time between different experi-
mental data. One group of experiments indicated that
the width of the forbidden band of α-Sn is very small;
according to other experiments, the effective mass of
the electrons is of the same order of magnitude as in
other diamondlike semiconductors. Yet we know from
theory (see. e.g."3) that the effective mass is propor-
tional to the width of the forbidden band if the transition
between the valence band and the conduction band is
direct and allowed. Here the proportionality coefficient
varies but slightly within the group of diamondlike semi-
conductors. Therefore, with a normal band structure,
a small width of the forbidden band entails a proportion-
al decrease in the effective mass of the electrons. The
inverted structure proposed by Groves and Paul elimi-
nates this contradiction. Actually, the mass of the
electrons is mainly determined by the interaction of the
bands having s- and />-symmetries, which are separated
by an energy gap of size Et. This is positive for the

FIG. 2. Inverted band diagram.
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normal band structure, and negative for the inverted
band structure. This is just why the effective mass of
the electrons differs from zero in semiconductors
having a zero forbidden band.

What are the reasons for the inversion of the bands?
If we trace the variation of the mutual arrangement of
the bands in the series C (diamond)-Si-Ge-a-Sn,
all elements of which have the same crystal-lattice
symmetry, we note the following tendency. As the
atomic number increases from diamond to tin, the di- -
rect energy gap at the point Γ, i .e . , the spacing be-
tween the bands Εέ = Ε (Γ ;j) - E(T J) diminishes. Simul- t

taneously, relativistic effects play a greater role, and
they act in the same direction. The noted tendency for
the bands Γ , and f \ to approach can ultimately invert
them.

The calculations imply that the onset of the inverted
band structure in α-Sn substantially involves the rel-
ativistic effects. Actually, it has been shown"-1 that the
order of the bands in α-Sn should be normal within the
framework of the nonrelativistic self-consistent orthog-
nalized plane-wave (OPW) method. Therefore correc-
tions to the potential were introduced into the scheme of
calculations that permitted them to adjust certain refer-
ence points of the energy spectrum to the "experimental
data.1 9 Ί The relativistic self-consistent OPW calcula-
tions1·9·101 for α-Sn led to an inverted band structure.
The calculated value £,. = -0.416 eV proved to be close
to the experimental value -0.413 eV. c u ] The relativis-
tic OPW method was used in1 1 0 3 to calculate the energies
at the high-symmetry points of the Brillouin zone. The
relationship between the energy and the wave vector at
the intermediate points was determined by using the
k-p method. Here the matrix elements of the transitions
were the adjustment parameters. It turned out that the
agreement between the experimental and theoretical val-
ues of the matrix elements of the transition between the
Γ 7 and Γ j bands is poorer than for the Et values: the
experimental value is 1. 69 atomic units, and the theo-
retical is 1.13 atomic units.

The studies1 8"1 0 3 are important in that they clearly
imply that the inverted band structure in α-Sn, and
perhaps in the other GS, arises from relativistic ef-
fects.

Most of the other calculations of the energy spectrum
of a GS have been performed by using empirical meth-
ods: either the empirical pseudopotential method for
a_Snci2.13] a n d H g T e a n d H g S e > CH.IS] o r t h e Korringa-

Kohn-Rostoker method for HgTe and HgSe.cle:l The en-
ergy at the points of high symmetry in HgTe, HgSe,
and β-HgS has also been calculated by the empirical
OPW method.C17]

3. EXPERIMENTAL DATA THAT CONFIRM THE
INVERTED BAND STRUCTURE OF GAPLESS
SEMICONDUCTORS

Let us briefly take up the experimental data that at-
test to the inverted band structure of the GS. First of
all, as we have noted, an inevitable consequence of the
inverted band structure is that the forbidden band is of

size zero. Even the first experimental studies of the
conductivity and the Hall coefficient in <x-SnC181 and
HgTe1-19"221 indicated that their forbidden bands are
small. As for HgTe and HgSe, hypotheses were later
advanced of even a small overlap of the conduction band
and the valence band. C23~25J All of the estimates of the
size of the forbidden band and the depth of overlap were
made in the cited studies under various assumptions.
Yet the conclusion was general that the studied materi-
als have an unusually small gap between the conduction
and valence bands.

An important characteristic of a GS is the form of the
temperature-dependence of the concentration of charge
carriers. In an intrinsic GS at T = 0, the Fermi level
passes through the point of contact of the bands. At
finite temperature, if mn*mp (mn amd mp are the effec-
tive masses of the electrons and holes), the Fermi level
must lie in one of the allowed bands. When mp » w^,
the Fermi level lies in the conduction band, and the
electrons are degenerate while the holes are nondegen-
erate. Then we can write the following expressions for
the concentration η of electrons and p of holes:

(2mnEF)3/2
(1)

where EF is the Fermi energy. Upon equating these
expressions, we can find the Fermi energy as a function
of the temperature for an intrinsic GS:

In
τ (2)

Upon neglecting the second term on the right-hand side
of (2), we get with logarithmic accuracy when mp» n^:

(3)

Thus the Fermi energy EF is proportional to T. Then,
according to (1), n<x T 3 / 2 . The purer the studied GS's
are, the greater the accuracy of this law and the great-
er the temperature range over which it holds. [ 1 8 · 2 6 - 8 β ]

Moreover, the temperature independence of the reduced
Fermi level that is implied by Eq. (3) has been found
experimentally upon studying the thermo-emf in pure
enough crystals of HgTe. E e l

Evidence favoring the inverted band structure of the
GS's is furnished by some interesting experiments in-
volving hydrostatic pressure and uniaxial compression.
Hydrostatic pressure does not affect the nature of the
temperature-dependence of the electron concentration^291

since the zero forbidden band arises from the symmetry
of the crystal. Omnidirectional pressure does not alter
this symmetry, but only alters the effective mass of the
electrons. [ 3 0 1 In contrast to omnidirectional pressure,
uniaxial pressure lowers the symmetry of the crystal,
and thus removes the degeneracy of the valence band
and of the conduction band. That is, it gives rise to a
forbidden band, as has been confirmed by measure-
mentsC 3 i : of the Hall coefficient under pressure along
the [100] and [111] axes in α-Sn.
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The most convincing proofs of the inverted-band mod-
el have been furnished by magneto-optical studies of
GS's , the results of which are presented in Chap. 4.
Here we shall only mention that oscillations of the re-
flection coefficient in a magnetic field were observed
experimentallyΒ21 for the first time in HgTe, and they
involve two types of interband transitions between the
Landau subbands of the different bands: Γβ— Γβ and Γ8

- Γ8. They showed that the frequencies of the transi-
tions of the first type also approach zero upon extrapo-
lating the magnetic field to zero, in accord with the zero
width of the forbidden band. We should note that the
properties of semiconductors in a magnetic field are
generally highly sensitive to the symmetry of the band
states. For example, in InSb the electrons, whose band
possesses s-symmetry, are diamagnetic, whereas in
HgTe the electrons are paramagnetic. O 3 · 8 4 3 studies of
the magnetic susceptibility have pictorially revealed1353

the generality of the nature of the conduction band of
HgTe and the band of light holes in InSb and Ge.

A fuller and more detailed review of the experiments
that have served to prove the inverted band structure of
the GS can be found in the monograph061.

4. THE ENERGY SPECTRUM NEAR THE CENTER
OF THE BRILLOUIN ZONE AS BASED ON THE
HAMILTONIAN OF LUTTINGER

The spectrum of the free charge carriers near the
point of degeneracy of the bands of a GS can be deter-
mined from the Hamiltonian of Luttinger. Q r i We shall
be interested in small values of k, i .e., the effective-
mass approximation. The Hamiltonian in the effective-
mass approximation can be found by using the k · ρ
method. Yet it is simpler to derive the Hamiltonian
from symmetry considerations, as Luttinger1371 has
done for the valence band of Ge, which is quadruply
degenerate at the point k = 0.

For a nondegenerate band, the only invariant that is
quadratic in k is kz. Therefore the Hamiltonian has
the iorTCi$B = f?ki/(2n&), where the coefficient nf* is
the effective mass of an electron. Degenerate bands
possess another vector J (the total angular momentum)
that characterizes the state, in addition to the vector k.
We are interested in the value «7 = 3/2. The components
Jx, Js, and J, are 4x4 matrices. Therefore, in addition
to the invariant k, which is the only possible one for a
simple band, there is also a spherically-symmetrical
invarant (k· J)2 and the invariant fe^ + fc^ + fe2./2, which
satisfies cubic symmetry. Correspondingly, the Hamil-
tonian of Luttinger has the form

E{k) = ± •£- V v^4 + 3 (vJ - y\ (5)

(4)
where ma is the mass of a free electron. The last term
describes the corrugation of the isoenergetic surfaces.
The constants y,, y2, and y3 determine the spectrum of
free charge carriers, which can be found by diagonal-
izing the matrix of (4). The numerical matrices Jx, Jm

and J, are given in the book01. After diagonalization,
we obtain the dispersion law for E(k);

In semiconductors having a small IE,I, such as InSb
or HgTe, the major role is played by the interaction of
bands having s- and ί-symmetries. This interaction
strongly diminishes the anisotropy of the isoenergetic
surfaces. Since we are interested in the characteristic
features involving the absence of a forbidden band, we
shall henceforth neglect the corrugation (i.e. we shall·
assume that y2 =y3 = y) as well as the small terms linear
in k that should be added to the Hamiltonian of (4) for
semiconductors lacking a center of symmetry.

As we see from Eq. (5), the Hamiltonian of Luttinger
describes either an ordinary semiconductor having two
types of holes, or a GS, depending on the relationship
between yt and y. If yi>2y, then the spectrum of (5)
corresponds to light and heavy holes (with energy mea-
sured into the interior of the valence band), and the con-
stants yt and y are related as follows to the masses of
light and heavy holes:

mt = ma (γ, mh = m0 (y1 — (6)

Yet if 2y> y u then the Hamiltonian of (4) gives the spec-
trum of a GS having the following mass of electrons and
holes:

= m 0 (7)

(we assume that the energy of the electrons is positive,
while that of the holes is negative.)

In order to find the spectrum near the point of degen-
eracy in the magnetic field H, we must add to the Ham-
iltonian of (4) two new invariants (J*H) and J3/rr + J\HS

+ J\ Ht, while we introduce the quantity Κ = - tV + (e/
cti) A in place of the wave vector k. Here A = [H x r]/2
is the vector potential in the magnetic field. Conse-
quently, the Hamiltonian of Luttinger in the magnetic
field takes on the form

Σ

(8)

where {Alfy = (AB+BA)/2, and κ and q are Luttinger's
new parameters. The values of the constants ylf yz,
ys, and κ for various materials have been determined
from light-absorption or -reflection experiments in a
strong magnetic field. The peaks of the reflection or
absorption coefficient as functions of the magnetic field
intensity Η were correlated with transitions between the
levels, as determined from the Hamiltonian of (8). We
give below in Table I the experimental values of the Lut-
tinger parameters for the GS's . For comparison, we
give the Luttinger parameters for Ge and InSb.

As we see from the table, the parameters obtained by
different authors for HgTe differ rather strongly. The
studies performed in"51 have shown that the combina-
tion-resonance lines correspond better to a net of levels
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TABLE I.

Ge38
InSb»

a-Sn«

VI

13.2
33.51

15.14

Ϊ 2

4.10
14.48

11.40

V3

5.62
15.65

8.02

κ

3.29
13.47

f 13.11

H g T e "
HgTeJ2

HgTe«,«

VI

12.8
14.8
16.8
14.8

Ϊ 2

8.4
8.6

10.4
10.9

V3

8.4
8.6

9.2
8.7

V.

10.5
10.2
11.2
11.7

having the Luttinger parameters fromC43:, whereas the
cyclotron-resonance lines agree better with the Luttin-
ger parameters from"13. However, as the level diagram
implies, the positions of the cyclotron-resonance peaks
given inH 5 3 are less sensitive to the choice of param-
eters than are the positions of the recombination-reso-
nance peaks. One of the possible reasons for the large
disagreement of the Luttinger parameters given in the
literature is that the energy of the lower Landau levels
is a small difference of large quantities.

In t 4 1 l 4 2 ] , the Luttinger parameters were determined
while neglecting the corrugation of the isoenergetic sur-
faces. The parameter q is anomalously small in dia-
mondlike semiconductors (e.g., <? = 0. 4 for InSbt53), and
we shall henceforth neglect it.

Luttinger1-373 showed that if we neglect the corrugation
of the isoenergetic surfaces (y2 = y3 = y), there exists an
operator

that commutes with the Hamiltonian of (8). This cir-
cumstance permits us to find the energy levels in a
magnetic field. When kH = 0, where kH is the projection
of the wave vector on the magnetic-field direction, there
are two non-equidistant systems of levels. In line
with1-37·1, we shall introduce the quantum number nsO,
which is the eigenvalue of the operator Q. For the first
series of levels a, the energy spectrum has the form

) = ·5-(νι-γ-κ), €„(!) = i ( 3 V l - 3 v - x ) .

(9)
for Κ Ϊ 2 . The energy of the series of levels b is deter-
mined by the formulas

hen

(10)

for « ϊ 2 .

If the fundamental contribution to the parameters ylt

y, and κ comes from the interaction with the nearest
s-band, then the relationship holds that yt =2y=2x.
Then the energy spectrum takes on an especially simple
form. The energy of the holes has an infinite-fold de-
generacy at Ε - 0, which is not removed even when kH

The energy of the electron levels is

„ , , , tieH I , 1 \ r'2k2u2
2mn (ID

where mn = m0/4y.

According to (9)-(ll), an energy gap arises in a GS
in a strong magnetic field between the levels of the con-
duction band and the valence band. In the case where
mp» mn, it is equal to a good approximation to f&H/
(1mnc). The onset of a forbidden band in a magnetic
field is illustrated by magnetoresistance experiments
in HgTe.C46'473 Figure 3 shows the curves for the relation-
ship of the longitudinal and transverse magnetoresis-
tance to the magnetic field intensity for an HgTe speci-
men having a Hall coefficient in zero magnetic field
ii o = -4xlO3 cm3/C, and a Hall mobility of 7xl05 cm2/
V · sec at 4. 2 CK. t 4 e 3 One observes a sharp growth that
is close to exponential in the longitudinal magnetoresis-
tance, which involves the formation of a forbidden band.
Upon further increase in the magnetic field, it changes
into a slower increase in the resistance. In this mag-
netic-field region, the longitudinal magnetoresistance
is practically equal to the transverse value, as is char-
acteristic of conduction by impurities whose levels have
"frozen" out of the allowed bands into the forbidden
band that is created by the magnetic field. While at low
temperatures the electron concentration depends sub-
stantially on the concentration of impurities existing
in the specimen, intrinsic conduction plays a greater
role with increasing temperature, and one can estimate
quantitatively the size of the forbidden band that arises
in the magnetic field. Figure 4 shows the longitudinal
magnetoresistance curves of HgTe at various tempera-
tures from"71, where the authors estimated the size of
the forbidden band at 64° and 77 °K. The size of the
gap proved to depend on the temperature, being 7. 6
mH/{moc) at 64 °K, and 8.2 HeH/(moc) at 77 °K. The
uncertainty of the parameters of the bands currently
hinders an exact quantitative comparison. Let us com-
pare the experimental value of 8. 2 KeH/(moc) at 77 °K
with the value calculated from the data ofC43'443, where
they gave a value of Et at 77 °K. If we assume that the
corrections to the Luttinger parameters that account
for the interaction with the higher bands depend weakly
on the temperature, we find that the width of the forbid-
den band in a magnetic field lies in the range (6. 4-8.3)
fieH/(moc).

FIG. 3. Experimental
curves of the longitudinal
(II) and transverse (x) mag-
netoresistance o£ HgTe as
functions of the magnetic
field strength at 1. 7 °K.[461
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WOH.kOe

75 H,kOe

FIG. 4. The longitudinal resistance as a function of the mag-
netic field for HgTe at different temperatures.'471 The arrows
indicate the scale for the given curve.

They calculated i n " 1 · 4 8 1 the curves for the relation-
ship of the energy of the levels of HgTe and α-Sn in a
magnetic field to kH. The energy of the hole levels of
series a for η » 2 is a non-monotonic function of kH.
The energy has a minimum at kH = 0, and two symmetri-
cal maxima.

5. PECULIARITIES OF GAPLESS SEMICONDUCTORS

a) The material in Chap. 4 can create the impres-
sion that the whole difference of a gapless semiconductor
from an ordinary one having a quadruply degenerate
valence band in terms of mathematical description con-
sists only in the different relationship of the constants
7Ί and y. This conclusion holds only to the extent that
the spectrum can be described within the framework of
the one-particle approximation using the local potential
(we recall that the Luttinger Hamiltonian was derived by
the k · ρ method for a particle moving in the field of the
crystal potential). However, in contrast to an ordinary
semiconductor, effects involving electron-electron in-
teraction are very substantial in a GS. Energy is not
required for creating electron-hole pairs, since the for-
bidden band is zero. The possibility of virtual creation
of excitons leads both to altering the dielectric prop-
erties of the GS, and to a substantial renormalization of
the spectrum of the electrons, and especially, that of
the holes.

Let us first discuss the peculiarities of the dielectric
constant of a GS. Sherrington and KohnMe] have calcu-
lated the interband absorption coefficient and the corre-
sponding contribution to the dielectric constant at T=0.
In an ordinary semiconductor, the contribution to the
conductivity σ at frequencies somewhat above the thresh-
old of interband absorption is proportional to V ttu> — Ee/u
for allowed transitions.C 5 0 1 In a GS, the conduction band
and the valence band have the same parity at k = 0.
Therefore the transition is forbidden for k = 0, and σ
<x(fe)-£,f / l !/w. I S 0 1 If we assume that E, = 0, we find
that aoc Vu\ This is Sherrington and Kohn's result.
The only characteristic quantity having the dimensions
of energy in a GS is the Bohr energy of an electron (or
hole). The real component of the dielectric constant
is of the same order of magnitude as the imaginary com-
ponent. According to t 4 9 1 , when mp» m,,,

(12)

Here ε0 is the contribution to the dielectric constant
from all the bands except the Γ8bands. Equation (12) was
derived in the random-phase approximation without ac-
counting for the non-parabolicity and corrugation of the
isoenergetic surfaces. We shall discuss the limits of
applicability of this formula somewhat later.

The presence of free charge carriers (of impurity
origin or arising from thermal excitation from the va-
lence band) has the effect that Im ε(ω) differs from zero
only when u)>EF/tt, owing to the Moss-Burstein effect.
When <j)=Er/H, Re ε (ω) has a logarithmic singularity in-
stead of a radical one. t 5 1 1

The discussed peculiarities of a GS prove to be es-
sential in analyzing phenomena that involve interaction
of radiation with free charge carr iers" 9 · 5 1 1 or with the
crystal lattice. C52-53] The excitation of plasma oscilla-
tions or optical phonons by action of an electromagnetic
wave occurs on a background of interband transitions
that open up an additional decay channel for plasmons
and polarized phonons, as described by the imaginary
component of Eq. (12). We note that the contribution of
interband transitions to the real component of the dielec-
tric function can be treated as an additional mechanism
of shielding of polarized optical phonons that must be
taken into account in analyzing an electron-phonon inter-
action in a GS, e. g., scattering of electrons by optical
phonons, magnetophonon resonance, etc. It is also
evident that this situation must be taken into account in
determining the effective charge of the ions in a GS.

The need of accounting for the dielectric anomaly of
a GS in studying optical phenomena in the fundamental
lattice absorption region was first shown1533 in analyzing
ir reflection experiments in HgTe. This has later been
demonstrated in greater detail in [ 5 4 ] . An effect of the
frequency-dependence of the dielectric constant of a GS
on the reflection spectrum in the region of the plasma
minimum has been found experimentally in a-Sn.

The charge shielding is determined by the static di-
electric constant ε( q), where q is the wave vector. Ac-
count taken of virtual interband transitions leads1·561 to
an expression for t(q) that is analogous to (12), in
which one must replace fa) by Hzqi/2mn;

ε (?) = (13)

The shielding radius is of the order of the Bohr ra-
dius of an electron, but the potential of the charge de-
clines considerably more slowly at large distances than
in ordinary Debye shielding. According toC 5 e l, the po-
tential of a shielded charge center declines as 1/r2 at
distances large in comparison with the Bohr radius of
an electron.

If the GS contains donors, then the electrons are de-
generate (we shall discuss the role of impurities in a
GS in Chap. 6). Owing to the Moss-Burstein effect,
transitions can occur only at energies larger than the
Fermi energy Er. Therefore, the static dielectric con-
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stant ε(0) is finite in a doped GS, and it increases with
decreasing concentration of electrons1·57·1:

ε(Ο)=εο (14)

Here the Fermi momentum KkF is related in the usual
way to the electron concentration: kF =3ir2w.

We can easily note that Eqs. (12)-(14) have similar
structures. They involve the ratio of the Bohr energy
of an electron EB =mne

i/2Kz£l to the characteristic en-
ergy. In the case of ε(ω), the characteristic energy is
of the order of fa>; the characteristic energy iort(q)
is Hzq*/mn; and in a doped semiconductor, the char-
acteristic energy is the Fermi energy EF = ftzkF/2mn.
A gap of the order of tseH/(im,,c) arises in an external
magnetic field, and accordingly, the static dielectric
constant becomes a finite quantity that is inversely
proportional to J5. C 5 8 ]

The unusual behavior of the dielectric constant and its
sensitivity to external parameters must be reflected in
the kinetic properties of GS's. If, for example, one
calculates the mobility of electrons in HgTe at low tem-
peratures by the Brooks-Herring formula for scattering
by charged centers, then the calculated quantities prove
to be smaller than the experimental. t 5 9 ] In this case,
the discrepancy of theory and experiment cannot be ex-
plained by an underestimate of any scattering mecha-
nisms, since the theory strongly overestimates the scat-
tering power of the charged centers, even when these
mechanisms are not taken into account. An analogous
but less marked discrepancy between theory and experi-
ment occurs also in a-Sn t 5 0 ] and in HgSe. c e n The ex-
perimental results were obtained with specimens that
contained rather large amounts of impurities (jSlO15

cm"'). Hence the refined calculation of the scattering
cross-section of the charged centers was performed by
using Eq. (14). It turned out that taking account of the
dependence of the dielectric constant on the electron
concentration as well as of the angular dependence of
the amplitudes of the Bloch wave functions arising from
the degeneracy of the bands led to relatively good agree-
ment of theory with experiment.ce2: l

Thus, taking account of electron-electron interaction
alone in GS's permits one more or less successfully to
explain the kinetic and optical properties. Yet we must
not forget that all the presented formulas have been de-
rived within the framework of the random-phase ap-
proximation (RPA). Hence the calculations of the mo-
bility or the absorption coefficient that are performed
within the framework of the RPA can serve only to in-
dicate qualitatively the scale and the direction in which
the electron-electron interaction affects the properties
of the GS. It makes no sense to achieve quantitative
agreement, since if the dielectric anomaly is small, it
plays no substantial role. Yet if it is large, the RPA
loses applicability. Actually Eq. (14), with which the
mobility was calculated, is only the first term of an ex-
pansion in powers of <JEB/EF. Therefore, whenever an
additional term that involves virtual transitions becomes
substantial, the expansion ceases to hold. The value of
the concentration in the purest currently available .

specimens of HgTe is precisely that which makes EB

~ EF. At energies lower than the EB energy that char-
acterizes the interaction of an electron with a hole in a
pure GS {mp>> m j , many-particle effects determine
the properties of the pure GS.

The lack of a parameter in terms of which one could
reduce the calculation to a number compelled Abrikosov
and Beneslavskii a t 6 3 : l to use the scaling theory'951 that
had been developed in the theory of phase transitions.
The fundamental results of:l>e3:l can be formulated as
follows. The automodeling solution for the Fourier
component of the overall Coulomb interaction has the
form

Γ=Λμ (15)

Here qa = mne
z/Hz^0, and χ = (qo/qf m^/Ttq^ The ex-

ponent ν satisfies the inequality l < y < 3 . The limiting
values of the unknown function d(x) are chosen from the
condition that Γ depends only on q when ω— 0, and only
onu>when#-0. Thus, <2(0)~l, and <2(#-°°)oc*l-(3/I'>.
The charge-carrier spectrum is determined by the poles
of the one-particle Green's function. According t o c u ,
the automodeling behavior of the latter can be repre-
sented in the form

'•Hi (16)

Here g is an unknown function having the boundary con-
ditions g(0)~l, g(x~°o)a:x-a/'', and α is a constant that
satisfies the inequalitites a < 2 and a<v. Unfortunately,
the scaling theory gives excessively broad limits for
possible variation of the physical quantities. The con-
stants a and ν must be determined from experiment.
Subsequently AbrikosovCM1 calculated the critical ex-
ponents a and ν by using two methods that are used in
the theory of phase transitions (expansion in terms of
dimensionality and expansion in terms of a "large num-
ber of components"). Both methods gave qualitatively
similar results in a first approximation. Except for
a very small neighborhood near the point of degeneracy
(of the order of 2. 5xl0" 4 £ B ), the values of the critical
exponents proved to be equal: a. = v=1. Thus, accord-
ing to1 8 4 3, the RPA gives the correct dependence of the
dielectric constant on ω and q, apart from a very nar-
row region near the point of degeneracy.

b) Now let us study the effect of the electron-electron
interaction on the energy spectrum of the carriers in a
GS. As we have noted, the Hamiltonian of Luttinger137·1

was derived within the framework of the k · ρ method,
which is valid for an electron that lies in the periodic
field of the local potential. However, even in the one-
particle approximation described by the Hartree-Fock
equation, the exchange interaction cannot always be
written in the form of a local potential. This is justified
only the case of a completely filled valence band that is
separated from the conduction band by a gap. Here we
neglect interband transitions. In ordinary semiconduc-
tors, the local-potential approximation generally de-
scribes the energy spectrum well. In the case of a GS,
we face a situation in which the nonlocal nature of the
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potential becomes substantial. In essence, we are
dealing in a pure GS with a half-filled band, since the
conduction band and the valence band belong at the point
Γ to a single irreducible representation. The exchange
interaction is accounted for in the SchrSdinger equation
for an electron in the one-particle approximation by the
additional term

<λ· " W i 1 Γ̂ Τΰ
μ=±3/2

(μ, ς)χα(μ. ι) χ» (Κ k).

(17)
Here μ and λ give the numbers of the states, and a and
β are the numbers of the columns of the eigenfunction χ
of the Hamiltonian of (4). The summation is performed
over all the occupied states. The second term in the
brackets has been subtracted in order to make the in-
tegral converge. This term is a part of the local po-
tential. We can assume that the same term has been
added to the lattice potential. The functions χ(λ, k)
are spinors that correspond to spin 3/2, and λ is the
helicity of the part ic le . t e " The functions with helicity
λ=± 3/2 describe hole states, while those with λ=± 1/2
describe electron states.

In a pure GS, we must sum in (17) over the states of
the valence band. Upon using the relationship

2
μ=±3/2

. ς)ΧΪ(μ. q) = (18)

where Λ1*' is the operator for projection on the states ι
of the valence band, we obtain from (17)

(19)

and which usually describes well the valence bands of
light and heavy holes in a "normal" semiconductor, can-
not be used in its previous form of a GS, even in the
one -particle approximation.

In the presence of donors, when the electron concen-
tration differs from zero, the filling of the electron
states affects the one-particle spectrum of the free
charge carriers of the GS. Let us study the case of a
degenerate gas that occupies the states up to the Fermi
energy Er. In the summation that takes part in (17), we
must account for the filling of the electron states. Con-
sequently an additional term appears:

* (k) η (λ, k) = -^- J -ip- 2 J
μ ± 1 / 2 ομ=±1/2 ο

χχ5(μ.
(22)

The upper limit of the integral over q equals the Fermi
momentum kF. Upon using the relationship

Σ (23)

where Λ(π) is the operator for projection on the elec-
tron states, we obtain from Eqs. (19) and (22):

^M/.m+[4-^№)}· (24)

The functions fix) aadf^x) have the form

(25)

Thus the exchange interaction leads to additional terms
that are linear in k in the spectrum of the charge car-
riers. The one-particle Hamiltonian of a pure GS with
account taken of the exchange interaction has the form

Equation (20) has been written in the spherical approxima-
tion. We can easily find from (20) the energy spectrum
of the carriers:

The one-particle Hamiltonian with account taken of the
filling of the electron states can be written as follows:

(2°) We find from (26):

(26)

(27)

(21)

The existence of terms linear in k in the electron and
hole spectra was first demonstrated by Halperin and
Rice. I e e : l Abrikosov:e73 has made a detailed analysis of
the spectrum for a large hole-electron mass ratio. For
electrons, the renormalization of the spectrum that in-
volves the terms linear in k is substantial only when Ε
<EB, i . e . , in the region where many-electron effects
become substantial. At the same time, the hole spec-
trum is renormalized owing to the nonlocal nature of
the potential over a far wider range of energies up to
the Bohr energy of a hole (mp/m^\EB. Thus we con-
clude that the Hamiltonian of Luttinger, which was de-
rived within the framework of the local-potential theory,

The spectrum of holes and electrons for k» kF can be
found as before by Eq. (21). When kF» k, the spectrum
is quadratic, but the masses of the electrons and holes
depend on the concentration of electrons:

(28)

Interestingly, the linear terms that arise from the non-
locality of the potential can liquidate the overlap of the
bands in a GS having the sphalerite structure.

All the formulas written above have pertained to a GS
whose lattice contains a center of symmetry. Yet if a
symmetry center is lacking, then the following addition-
al terms" 3 must appear in the Hamiltonian:
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V3
Jl - /?)} + Κ {J, [Ji - (29)

where κ 0 is a constant. Terms of this type lead to over-
lap of the valence band and the conduction band in a GS
having the sphalerite structure. The energy of this
overlap is usually small. For example, for InSb the
energy involved in the linear terms of the type of (29)
is of the order of 5xlO"6 eV.C51 The maxima of the over-
lap energy lie in the [111] direction. The values of the
energy and the momentum at the points of the maximum
are

Eov = 4 hkov = 2 Υ 2 mpx0.
(30)

However, the terms linear in k that involve the nonlo-
cality of the potential were not taken into account in
calculating the overlap energy. The overlap of the
bands disappeares when we account for these terms if
•K0<37re2/64v2~e0#. It is more convenient to rewrite
this inequality in terms of the overlap energy that fig-
ures in the local-potential theory. In order that an
overlap should exist, the condition must be satisfied
that Eor> (3i7/32)2 mpe VZi%Hz.

The renormalization of the hole spectrum alters the
statistics, e. g., that of the free charge carriers in the
GS. Thus, in an intrinsic semiconductor, the electrons
are degenerate when mp» m,,. According to (3), the
Fermi energy in the local-potential case depends linear-
ly on the temperature, while the carrier concentration
is

(2mnT)3/-
ι \ Wn / (31)

When we account for the nonlocality of the potential, we
get a different relationship when (37Γ/16)2 (mp/mn)EB

»Γ»(3π/16)2£Β1η[(3/4)(32/37Γ)3(Τ/£Β)!>/2]:

Ε = Τ In Γ— ( ^ \~* { ^ \3^Z Ί (32)

(2mnT) ·. ο/ο Γ 3 / 32 \3 / Τ \3/2 π /ο·3\

We must take account of the linear terms that arise
from the nonlocality of the potential in calculating any
of the kinetic coefficients. The nonlocality of the po-
tential also leads to renormalization of the energy spec-
trum of semiconductors that have a narrow width of
forbidden band. The effect was studied inC68:l of the ex-
change interaction on the energy spectrum of the car-
riers in the case in which Kane's modelce9] describes
well the spectrum of the electrons and light holes.
Here the spectrum of the heavy holes is determined
within the framework of the local-potential theory by
the interaction with higher bands. The nonlocality of
the potential primarily renormalizes the spectrum of
the heavy holes. The relationship of the energy EH of a
heavy hole to the wave vector k has the form

3eEg
8 , \ - ly-i ί

,yEg + Pk
}n\,jEg-Pk

from the upper bands, P=-(iH/mo){S\pt\z), ρ is the
momentum operator, I S) is the function for an electron
having s-symmetry at the point Γ, and I Z) is the func-
tion for />-symmetry. The energy is measured in (34)
into the interior of the valence band.

Equation (34) implies that the spectrum of the heavy holes,
just like that of the light holes, is parabolic only in the
region of relatively small values of the wave vector kP
« Et. The nonparabolicity becomes substantial when
kP1iEt, in the same region of values of the wave vector
as for the bands of light holes and electrons.

When kP« Et, we have

-τ)- (35)

Here mA is the contribution to the mass of a heavy hole

Just like the mass of a light hole, that of a heavy hole
declines with decreasing Et in the parabolic region of
the spectrum. In InSb, the correction to the mass of a
heavy hole involving nonlocality amounts to 15%. In
solid substitutional solutions Cd^Hg^Te, the mass of a
heavy hole is mainly determined by the exchange inter-
action when Et~ 50 meV.

6. IMPURITY STATES IN GAPLESS SEMICONDUCTORS

a) The statistics of the carriers and the kinetic prop-
erties of semiconductors are determined in many ways
by the nature and concentration of the impurities pres-
ent. In an ordinary semiconductor having a forbidden
band of finite width, the carriers ean give rise to bound
states at the impurity atoms. For example, this situa-
tion gives rise to the activational type of variation of
the conductivity at low temperatures.

In a GS, the impurity states lie in a region of the con-
tinuous spectrum of the conduction band (acceptor
levels) or of the valence band (donor levels), whereby
discrete levels are absent. An electron acquires the
capability of transferring into any of the states of the
continuous spectrum having the same energy.

Moreover, in the case of a semiconductor having a
zero forbidden band, the problem of the possible val-
ues of an electron at an impurity is substantially com-
plicated by the fact that it ceases to be a one-electron
problem. In a certain sense, it resembles the problem
of the deep levels in semiconductors having a forbidden
band of finite width. In the case of a shallow level in a
semiconductor having a finite forbidden band, the many-
electron effects are not substantial, since the correction
that they engender is of the order of the ratio of the en-
ergy of the shallow level to the width of the forbidden
band. If the level is deep, then this ratio becomes of
the order of unity, and we must not neglect the many-
electron effects. An analogous difficulty is known in
quantum electrodynamics. The role of the forbidden
band is played there by the energy that is required for
creation of an electron-positron pair, 2m0c

2, where c
is the speed of light. The corrections to the energy of
an electron in the field of a nucleus of charge Ze that
involve the polarization of the vaccum (i.e., creation
of virtual electron-positron pairs), and which give rise
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to the so-called Lamb shift of the levels, are of the or-
der of the ratio of the Bohr energy to the energy 2moc 8

)

i .e . , {Zez/tscf« (Z/137)2. This correction is small for
the hydrogen atom ("shallow level"). Yet the solution
cannot be restricted to the one-electron problem for
large enough Z.

As we have noted, the many-electron effects for a
GS become substantial near the point of degeneracy in
an energy range of the order of the Bohr energy of an
electron. Bearing this in mind, let us study first the
one-electron problem of the impurity states, and then
analyze which of the results continue to hold when we
account for the interelectronic interaction.

If the masses of an electron and of a hole were of the
same order, then there would be only one characteris-
tic energy, the Bohr energy of an electron (or of a hole),
which would determine both the positions and the dif-
fuseness of the levels. Then the diffuseness of the
levels would be of the order of the spacing between
them, even in the one-electron approximation, and the
density of states would be a smooth function of the en-
ergy. It is also evident that the many-electron effects
must be substantial when the masses of an electron and
a hole are comparable. The situation differs when there
is a large difference between the masses of an electron
and a hole. If the mass of a hole is much larger than
that of an electron, as happens in all known GS's, then
the density of states in the conduction band for an ac-
ceptor must show sharp peaks. As we shall now show,
the relative width of these peaks is proportional to {mj
mp)

s/z. We can estimate the width of a level crudely
from perturbation theory. The probability W of transi-
tion from the discrete spectrum to the continuous spec-
trum is proportional to the expression

(37)

2π
W=±?-\Va\* £(£„), (36)

where g{E0) is the density of states in the conduction
band at the energy E = EQ, and Va is the matrix element
of the transition between the states of the discrete and
the continuous spectra. In order of magnitude, the en-
ergy EQ of a hole at the acceptor is equal to the Bohr
energy of the hole mpe

i/2z\tri. The characteristic ra-
dius of the acceptor state is of the order of the Bohr ra-
dius of the hole ap = Kzz0/mpe

z. In the conduction band,
the energy Eo corresponds to the momentum Kk~^mnEa

~ f[/^ia~ap"t where a,, = ̂ 2e 0/(W J ne 2) is the Bohr radius of
an electron. Since the wavelength of an electron of en-
ergy Eo is much larger than ap (ap/mJE0/tl ~ {mn/mpf

1'1),
then in estimating Va, we can neglect the wave vector of
the electron in the oscillatory exponential of the Bloch
wave function. Consequently we get the following esti-
mate: να~Ε0(ή,η. Thus the sharpness of the acceptor
levels fully involves the density of states in the conduc-
tion band. For a parabolic dispersion law of the energy
spectrum of the electrons,

i. e., the relative width is

Sharp donor levels do not exist in a GS having mp

» m,,. An analogous estimate by perturbation theory
shows that the diffuseness of the levels is of the order
of their energy. Moreover, the donors alter the den-
sity of states at energies of the order of the Bohr en-
ergy of an electron. The many-electron effects are
substantial at these energies, since the shielding radius
in a GS is of the order of the Bohr radius of an elec-
tron, even in the absence of free carriers. At the same
time, the one-particle approximation proves sufficient
for calculating the position and width of an acceptor
level since the energy of an acceptor state when mp

» m^ is of the order of the Bohr energy of a hole, and
it is hence far larger than the Bohr energy of an elec-
tron, while the characteristic radius ap is small in com-
parison with the Bohr radius an of an electron. As the
temperature or the donor concentration increases, the
charge of the acceptors becomes shielded by free elec-
trons: The shielding radius decreases with increasing
electron concentration. However, it is comparable with
the Bohr radius of a hole at an acceptor only when the
Fermi level Et ~ (wi^/w,)3 Eo lies far above the ground
acceptor level.

b) Let us proceed to calculate the acceptor level nu-
merically. First we shall treat for comparison a semi-
conductor having a forbidden band of finite width in
which the mass mh of a heavy hole is large in compar-
ison with the mass m, of a light hole. In order to de-
rive the SchrSdinger equation for a hole in the field of
a shallow impurity center, we must add to the Hamil-
tonian of (4) the potential V(r) of the center. In the
spherical approximation, the equation has the form

(38)

Here ρ is the momentum operator. The problem of the
acceptor levels with an arbitrary ratio of masses has
been solved in many studies, e. g., by using the varia-
tional method. C70~T53 The system of equations (38),
which consists of four equations in partial derivatives,
can be reduced to two subsystems (each consisting of
two equations) consisting of ordinary differential equa-'
tions, and then the possible values of Ε can be deter-
mined. We are interested in the values of Ε for m,
« mh. Therefore let us proceed as follows. We shall
resolve the wave function into two terms φ= ψ ( ί ) + ψ(*)

in such a way that ψ(ι> is composed of the wave functions
of the light holes, while ψ(Μ is a packet of wave functions
of the heavy holes. The expression for the operator
A(O(k) for projection onto the heavy-hole states coin-
cides with the expression for the operator for projec-
tion onto the hole states in a GS in (18), while the for-
mula (23) holds for the operator for projection onto the
light-hole states. Thus,

Equation (34) implies that iN-E^
of the level is

*. Thewidth
ψ<> (k) = Λ'1) (k) ψ (k), ψ1" (k) = A<h> (k) ψ (k). (39)
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The Hamiltonian can be represented in the form

(40)

We can derive the integral equations for ψ*ι) and iplh>

from (38) by multiplying on the left by Λ<1> and Λ'*\
Eq. (40) implies that

(41)

As we see from (38) and (41), ψ'"-» 0 in the limit as w,
— 0. Hence the positions of the levels can be found
from the equations

-Tk^vo ί (

As before, Eq. (42) consists in a system of four inte-
gral equations. However, we can reduce it to a single
integral equation. The function for the ground state is
of the form

> (k) = / (k) A<"> (k) χ (μ). (43)

Here f(k) is a scalar function that depends only on the
absolute magnitude of k, while χ(μ) is a numerical
spinor in which any of the four rows in the column dif-
fers from zero. The ground state is quadruply degen-
erate. m Upon using (43), we can derive from (42) the
equation for fl,k);

Equation (44), when transformed to dimensionless form,
contains no parameters of the material. The eigenvalues
of this equation have been found, both with a computer
(Eq. (44) having been transformed preliminarily into an
ordinary differential equation), and by using the varia-
tion principle. In the latter case, the trial function was
taken to be hydrogen-like with a single variational pa-
rameter n:

(45)

We get the following equation for n:

(46)

Minimization with respect to « gives the value « = 1. 52,
which agrees well with the value « = 1.5 that was ob-
tained in the computer calculation. When mh» ml, the
energy of the acceptor ground state in a semiconductor
having a forbidden band of finite width is Eo = 2mhe*/
9ε2

0*
2. ™α

A detailed study of the relationship of the wave func-
tion to the distance from the impurity center shows that
it first declines exponentially with a characteristic scale
of the order of the Bohr radius ah = Hze.0/mhe

z of a heavy
hole. Then this exponential decline goes over into a
.power law, and the wave function declines as 1/r3.

Finally, when r»ah, the power-law decline is re-
placed by an exponential decline, though the character-
istic scale of the decline is now the geometric-mean
quantity #/Vw,.E0~ Va,aft, where α, =ε ο # 2 /m,ez is the
Bohr radius of a light hole. The existence of the long
exponential tail is not significant in solving the problem
of the position of the ground-state level, and we can
ignore it in the variational calculations. Such tails
come to light in the kinetic properties of the semicon-
ductors, in which the overlap of the wave functions of
adjacent centers is essential, e.g., in solving the prob-
lem of hopping conduction.I77]

In the case of a GS, we must account for the terms
linear in k in determining the energy of the quasidis-
crete levels in the one-particle approximation. We
shall write the equation for the wave function in the field
of a Coulombic center in the momentum representation:

(47)

The expression for$£0(k) has been derived above (see
(20). Quasidiscrete states exist only when mp» mn.
Analogously to what is done in the problem of the energy
levels in a semiconductor having a forbidden band of
finite width, we shall resolve the wave function into two
parts ψ = ψΜ +4>{ρ), where

t<"> (k) = A<"> (k) ψ (k), (k) ψ (k).

We shall not write explictly the equations for φΜ and
ψ ( ί ), since the further course of the treatment fully
copies the derivation of Eq. (42). Just in the same way,
we can neglect the function ψ(π) in the studied case,
owing to the smallness of mjmp. The equation for ψ ("
has the form

( 2m. 32e0

-k + E)t'"{k)—T S^-O. (48)

Equation (48) differs from (42) in the presence of the term
linear in k, which arises from the nonlocality of the ex-
change interaction. At an energy of the resonance level
that is of the order of the Bohr energy of a hole, this
term is of the same order as all the rest of the terms of
Eq. (48).

Now let us find the energy of the resonance level
having maximum energy E. As above, we can seek the
wave function in the form of (43). We get the following
equation for the scalar function f(k):

= 0. (49)

As in the case of Eq. (44), the eigenvalues of Eq. (49)
can be found by the variation principle. Upon choosing
f(k) in the form of (45), we obtain the following relation-
ship between Ε and the variational parameter n:

(50)

Minimization with respect to η gives the value « = 2.44
which corresponds to the energy Eo = 0. 085mpe*/ζ^. c e 8 ]
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FIG. 5. The energy Eo of
the acceptor ground state
as a function of Et. The
ground-state energy Eo is
in units of jn^e 4 / 6 ^, and
Et inunits of m^

For the parameters of HgTe, where ε 0 = 20 and mp

= 0.4m0, the energy of the resonance state is 2.3 meV,
whereas a calculation performed within the framework
of the local-potential theory gives ε 0 = 6 meV.C783 The
experimental value of the energy Eo found by cyclotron
resonance measurements in HgTe" 9 1 is 2.2 meV.

We have taken up in detail the solution of the problem
of the levels in the field of a Coulombic impurity center.
With decreasing I Et I, we cannot restrict the treatment
to terms proportional to kz in the electron and hole
spectra. We must take account of nonparabolicity,
which introduces an interaction with the nearest band
having s-symmetry at the point Γ. The energy of the
ground state as a function of I Et\ increases with de-
creasing I Et I, and when Et = 0, it becomes equal to
w^V'eo^ 2 . c e e : l .Eo continues t° grow further in the
semiconductor region where Et>0, and it approaches
the value 2ηιΗβ*/9ε \ηζ at large Et (Fig. 5).

The' problem of the position of the impurity level in
the case where the potential is strongly localized within
a single cell has been treated inC 8 0 ' e 1 1. The coupling be-
tween the bands was assumed inC 8 1 ] to be so strong that
the interband matrix elements of the potential were
equal to the intraband elements. As in the case of a
Coulomb center, the acceptor levels are of resonance
type, while the donor levels are highly diffuse. The
trend of movement of the resonance levels is qualitative-
ly the same as for a Coulomb center. The authors ofC8M

think that there are two types of centers in the solid
solution CdjjHgi./re: those with a Coulomb potential are
Cu ions, and those with a highly localized potential are
Hg vacancies. The values of the matrix elements of
the potential of the Hg vacancies have been determined
jjjCei] from experimental data, whereupon they con-
structed the curve of the dependence of Eo on χ (in the
appropriate units, this is the dependence on Ef). It
agreed satisfactorily with the results of[80:.

7. STATISTICS OF CARRIERS IN GAPLESS
SEMICONDUCTORS

The existence of sharp acceptor levels on the back-
ground of the continuous spectrum of the conduction band
gives rise to a number of interesting features in the
thermodynamics and kinetics of the charge carriers in
a GS. When the masses of electrons and holes differ
greatly, donors and acceptors play differing roles in
such a semiconductor.

Since there are no bound states of electrons at donors,
the concentration η of free electrons equals the con-
centration ND of donors, even at T=0. On the other

hand, the acceptor levels are sharp, and hence the tem-
perature must be of the same order as the energy of the
acceptor ground state Eo for an appreciable ionization
of the acceptors to occur. (We are treating only the
case of a low enough acceptor concentration NAd

s

p« 1,
so that the wave functions of adjacent acceptors overlap
but little. For HgTe this condition implies that ΛΓΑ

« 1 0 2 0 cm"3). Since there is no forbidden band, free
carriers arise at arbitrarily low temperatures, even
in the absence of donors. Thus, when ND =0, intrinsic
conduction arises in the GS at lower temperatures than
does the impurity conduction involving ionization of ac-
ceptors.

If both donors and acceptors are present, then the
GS will be «-type («>/>) at low temperature, regardless
of the relationship between the concentrations NA and
ND. Compensation does not occur at low temperatures
(it is energetically unfavorable) if the Fermi level lies
below the acceptor level. A sort of compensation sets
in with increasing temperature, and at a high enough
temperature, the semiconductor becomes />-type if NA

>ND. In the course of this compensation, the concen-
tration η of free electrons can decline with increasing
temperature in a certain temperature range.

Let us find the concentration η of electrons as a func-
tion of the temperature. We shall consider the acceptor
levels to be sharp. Upon assuming that all the donors
are ionized, we can find the Fermi energy Er from the
equation of neutrality

[l+4exp (51)

The coefficient 4 accounts for the quadruple degeneracy
of the ground state.

Let us treat the most interesting case in which Er > T,
so that the electrons are degenerate, while the holes are
not degenerate. Then we get from (49):

(52)

where

N,-
(2mnE0)

3'2

Τ ηΏ--

We have chosen the characteristic concentration ΛΓ0

such that the Fermi level coincides with the energy of
the acceptor level when n = N0. We can determine from
(52) and (53) the concentrations of electrons and holes
as functions of the temperature. We shall give as an
example the curves calculated on a computer for n(T)
for the case in which (3-/F/4) (ntp/n^f2 = 100. This cor-
responds to the mass ratio mjun^ = 18, which is close
to that in HgTe. Figures 6 and 7 show the results of cal-
culations for different values of the dimensionless con-
centration nA and nD. The shape of the function n(T)
differs qualitatively, depending on whether nD < 1 or nD
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FIG. 6. Theoretical curves of the relationship of the concen-
tration η of free electrons to the temperature Τ at a donor con-
centration nD = 0. 8 at different acceptor concentrations: 1—nA

= 0; 2— «A = l; 3—nA = 10; 4—nA = 50; 5—nA = 100. All concen-
trations are expressed in units of Af0.

Figure 6 corresponds to the case nD =0. 8, so that at
T=0, the Fermi level lies somewhat below the ground-
state acceptor energy Eo. In the absence of acceptors
(curve 1) at low temperatures, the electron concentra-
tion remains constant, and then it begins to increase
monotonically with increasing temperature, owing to
formation of electron-hole pairs. A minimum appears
on the n(T) curve with increasing acceptor concentra-
tion.

The decline in the concentration of free electrons with
increasing temperature in the low-temperature region
is due to capture of electrons by acceptors. With fur-
ther temperature increase, the role of thermal genera-
tion of pairs increases as the acceptors become oc-
cupied, and this increases the concentration of elec-
trons.

Figure 7 corresponds to the case in which the Fermi
level is above the acceptor level at Γ=0 (nD = l. 6). In
contrast to the previous case, an increase in NA leads
to a partial compensation even at T = 0: as the acceptor
concentration increases, the electron concentration η
declines to the value n = N0 when NA =ND - No. Further
increase in NA does not diminish the concentration of
free electrons, since their capture by acceptors be-
comes energetically unfavorable. liNA>ND-N0, then
two competing processes occur at ΤΦ0: thermal stok-
ing of electrons onto the unoccupied acceptor levels,
and thermal generation of electron-hole pairs. The
former process dominates at low temperatures, and the
latter at higher temperatures. Consequently the func-
tion n(T) must have a minimum, just as in the case
where nD<l.

Evidently, the temperature-dependence curve of the
conductivity must also show a minimum, which will be
more sharply marked because impurity scattering plays
a greater role upon ionization of the acceptors.

We note that such an unusual temperature-dependence
of the electron concentration and the conductivity allows
us to expect that the volt-ampere characteristic of a
GS will have a falling region. Actually, the heating of
the carriers by the field can lead at appropriate donor
and acceptor concentrations to a decline in the concen-
tration of electrons, and a concomitant decline in the
conductivity.

We must bear in mind that the electrons that have
been captured by acceptors can participate in conduction,
since the acceptor level is quasidiscrete and the life-
time of an electron in such a level is finite. Evidently
the mobility of these electrons is small.

There is currently an entire set of experimental
studies that confirm the existence of quasidiscrete ac-
ceptor levels.

A non-monotonic type of temperature-dependence of
the conductivity has been observed in HgTe" 2 · 8 3 1 and in
the solid solutions CdjHg^Te. [ β 4 · 8 5 ] We can assume
that this non-monotonic character involves the acceptor
levels. They studied in t 8 6 3 the pressure-dependence of
the concentration of free carriers at T = 4. 2 CK in p-
type specimens of Cd^Hgi^Te having x = 0.14-0.15.
It turned out that the position of the Fermi level does
not change with the pressure. This behavior of the .
Fermi level compelled the authors of"63 to conclude that
an acceptor level exists on the background of the con-
tinuous spectrum of the conduction band. A detailed
study of galvanomagnetic phenomena in Cd^Hg^Te p-
type solid solutions having 0. Kx<Q. 15 under omnila-
teral pressure up to 15 kiloatm has been performed
in [ 8 7 1. The acceptor concentration was large, and the
quasidiscrete states became diffuse in the impurity
band, which overlaps the conduction band at an energy
of about 3 meV, according to the data ofC87]. In' 9 4 1 they
studied the shift in the Fermi level with increasing tem-
perature in p-type CdxHg1. ITe having x = Q. 1.

A relationship between the frequencies of inter- and
intraband transitions in HgTe and the magnetic field
intensity was given in 1 5 2 · 8 8 3 . The measurements were
performed in a Faraday-Voigt geometry in a range of
wavelengths from 2 mm to 100 μτα at 4.2 °K. They
found extra absorption lines in addition to the frequen-
cies that the authors identified with different transitions
among the levels, as described by the Luttinger Hamil-
tonian. In the limit of weak magnetic field, the energy
of the corresponding levels proved to differ from zero.
The authors ascribed these lines to quasidiscrete ac-
ceptor levels. Analogous transitions have been observed
inC 4 2 :. Manifestations of an impurity acceptor band in
kinetic effects inCd i Hg 1 ^Te solid solutions having x = \
with NA> 5x 1017 cm"3 have found in1-893. A minimum on
the n(T) curve was firmly established in1·89·903 in speci-
mens of Cd IHg1. ITe having x = Q. 1 with a hole concen-
tration p = 8 x 1017 cm"3.

FIG. 7. The same as in Fig.
6, for raD = 1.6.

0,5 I T/Eo
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8. CONCLUSION

Considerable progress has currently been attained in

studying the energy spectrum of GS's. It has become

clear that the latter is not a copy of the spectrum of a

"normal" semiconductor having degenerate bands in

which the sign of the curvature of one of them has been

reversed, as was originally assumed in the model of

Groves and Paul.C e l It has been shown that many-par-

ticle effects play a considerable role near the point of

degeneracy of the bands, while the valence band is sub-

stantially restructured owing to the nonlocality of the

lattice potential of the GS. Quasilocalized levels of im-

purity states occur on the background of the continuous

spectrum of the conduction band.

Yet a whole set of unelucidated problems remains.

On the theoretical level, this primarily concerns the

regions of the spectrum near the point of degeneracy of

the bands, where the many-electron effects are sub-

stantial. The problem remains open of the stability of

the spectrum in this region. Instability can give rise

to an exciton dielectric. Β 1 " Μ 1 Much work looms ahead

in studying the effect of a magnetic field on the electron

and hole spectra of GS's with account taken of the non-

locality of the potential. As for the experimental

studies, we need purer materials than we yet have.

Studies of galvanomagnetic and resonance phenomena at

low temperatures will lead to greater understanding of

the features of GS's.

As yet the impurities have not been fully identified,
even in the most studied substance, HgTe. In this
sense, a large volume of studies still remains on the
effect of controlled impurities on electronic phenomena
in GS's.

Refinement is needed in the band parameters in HgTe

(and in other GS's), which as yet differ greatly in the

measurements made by different authors.
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