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The properties (and particularly the superfluidity) of liquid helium near the A point have long been and
still are objects of numerous investigations. Nonetheless, much of the problem remains unso}ved from both
the theoretical and the experimental points of view. The main reason is the small correlation length in
helium II even when the distance from the A point is as small as hundredths of a degree, so that to reveal a
number of specific effects one must work quite close to the A point. This article treats in detail the °
phenomenological theory of superfluidity of helium near the A point, a theory whose development ‘dates

back to 1958, and which is based on the use of the complex order parameter ¥ = ne?

(the density of the

superfluid part of helium is here p, = m7?, and the velocity of this helium component is v = (h/m)ye,
where m is the mass of the helium atom). In addition to formulating the general equations of the theory
and discussing the regions where they are valid, we consider a number of concrete effects. The predictions
of the theory are quite rich in content and can be verified in experiment. The main purpose of the article is

just to contribute to such a verification.
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I. INTRODUCTION

Helium was not observed on earth before 1895 (heli-
um lines were observed earlier, in 1868, in the sun’s
spectrum), and was first liquefied in 1908 (the boiling
temperature at atmospheric pressure is T, =4. 215 °K;
the critical point of the helium liquid-vapor system cor-
responds to a temperature T,=5.20 °K and a pressure
p.=2.26 atm). It is curious that the first indication of
the existence of a A transition in liquid helium from he-
lium I to helium II (T, =2.172 °K at a saturated-vapor
pressure p, =0.05 atm), manifesting itself in an anom-
alous temperature dependence of the density p, was ob-
tained by Kammerling-Onnes in the same year, 1911,
in which he discovered superconductivity. It is pos-
sible that it is just this complete natural preoccupation
with superconductivity which delayed further research
on helium II; furthermore, the work was interrupted by
the first world war. Be it as it may, not until 1924
was the X transition in helium clearly noted on the p(T)
curve, and in 1928 this transition manifested itself even
more pronouncedly in measurements of the dependence
of the dielectric constant of liguid helium on the tem-
perature (it was immediately afterwards that the con-
stants of helium I and helium II were introduced). If
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we speak of helium at equilibrium, the XA transition af-
fects most strongly the course of its specific heat
(1932), but a similar behavior of the specific heat is ob-
served also for other transitions in other substances.
Therefore the true distinguishing feature of helium II, for
which the inclusive term “superfluidity” is presently used,
manifests itself in the course of flow, heattransfer, etc.
To be specific, the behavior of helium-II films, which
at that time was not understood at all (and which we now
know to be due to superfluidity), was observed back in
1922; the superthermal conductivity of helium II at-
tracted attention in 1935, andfinally, its superfluidity
wasdiscovered in1938. This completed the first stage of
the study of liquid helium (for more details see!!»?7).1

It took thus all of thirty years (and in fact, evensome-
what more) to explain the most fundamental properties
of helium II. It is therefore not surprising that the in-
vestigation of superfluidity has remained far from com-
plete during the succeeding thirty years, in fact to this

DFor questions only indirectly connected with the topic of the
present article we refer the reader, when possible, only to
the reviews (see also the collection of original papers inm).
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very day. The scale of low-temperature research, to
be sure, became incomparably larger than during the
first period, when liquid helium was produced in only
about a dozen laboratories in the whole world (and for
the first fifteen years, up to 1923, only in Leiden). On.
the other hand, hitherto undreamt of experimental ca-
‘pabilities came into being, and consequently the re-
.quirements imposed on the measurements have grown
immeasurably and new problems have arisen., Further-
more, besides *He, studies of solutions of *He in *He
were initiated, and then also of pure liquid *He (first
produced in 1948). Phase transitions in liquid *He, due
to the appearance of the superfluid phases of *He have
been observed quite recently (1972-1974) at tempera-
tures T, 10-°K, and are now under intensive study
(see'®), The feasibility of producing superfluid molec-
ular hydrogen, !"-*! or a superfluid excitonic phase in
semiconductors has been suggested. %17 The question
of superfluidity in cosmic conditions, especially in the
case of a neutron liquid and neutron stars, %131 hag
also attracted much attention,

The study of superfluidity (more accurately speaking
of superfluid substances) thus occupies at present a
rather prominent place in physics, and there is no talk
whatever of this field being “saturated, ” even if we
restrict it only to helium II (i.e., to superfluid *He).

We regard it as quite probable that the unflagging in-
terest in helium II is due, in particular, to the lack of
an anywhere near complete microscopic theory of he-
lium II, similar to the modern microscopic theory of
superconductivity in metals. In brief, the Landau
superfluidity theory'*? (seel? 4 %1581 concerning its
subsequent development) can be divided into two parts:
the quasi-microscopic theory, which operates with a
gas of elementary excitations (quasiparticles), and the
fluid hydrodynamics of superfluid liquids. Neither ap-
proach, however, is suitable in the vicinity of the A
point, i.e., in a region that is in any case very typical
and important from the point of view of both theory and
experiment. A consistent microscopic theory of liquid
helium near the A point would provide simultaneously
a solution, “from first principles, ” of the problem of
second-order phase transitions for a three-dimensional
system, a task not yet completed even for simplified
models. One such model, the most interesting from
the viewpoint of liguid helium, is that of a non-ideal
Bose gas without the assumption that the density is low
(the gas approximation) or that the bond is weak. an
However, even a perfectly successful further investi-
gation of this model can hardly provide more than a
check on the presently known phenomenological theory
of second-order phase transitions, ©7~**’ supplemented
by an estimate or a calculation of the critical expo-
nents. Yet we expect much more from a theory that
describes completely the properties and the behavior
of helium II near the A point—not only a determination
of the temperature dependence of all the thermodynamic
quantities for an unbounded liquid, but also an assess-
ment of the influence of the boundaries (for example,
the dependence of the A-point temperature T,(d) on the
thickness d of the helium film), and finally, a dynamic
theory of the flow of helium with a general allowance
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for the dissipation and for the relaxation of the order
parameter.

It should be recalled in this connection that the order
parameter does not enter in Landau’s superfluidity
theory at all, since this theory was constructed only for
the region far from the X transition. For this reason,
a quantity connected with the order parameter, namely
the density p, of the superfluid part of the liquid, is re-
garded in the Landau theory as a given function of other
quantities, for example p and T'. Yet, when speaking
of equilibrium, the density p, near the transition point
(the X point) should be determined from the condition
that the thermodynamic potential be a minimum. The
quantity p, was introduced as an order parameter in
connection with the problem of critical velocities as
early as in?%%; in this formulation, however, this ques-
tion became of real interest much later (see Sec. 3.4
below). The introduction of the order parameter is im-
portant in the analysis of sound absorption in helium
II near the A point, 21) 14 this case, however, there
was no need to spell out exactly which of the quantities
is the order parameter. What was actually used was
only a formula for the first-sound absorption coeffi-
cient, containing only the speed of sound on both sides
of the transition point and the relaxation time (this is
why neither p, nor any other order parameter whatever
is used for helium II inf?!),

The pressing need of generalizing Landau’s theory of
superfluidity, especially to include the region of the A
transition, was brought about by the problem of the dis-
continuity of the velocity v, of the superfluid part of the
liguid at the boundary with a solid wall. It is well
known that the helium atoms stick to the wall, so that
on the wall itself not only should the normal flux of the
liquid vanish, j,=p,v,=0, but the flux of its superfluid
part j, =p,v, should also be equal to zero. The equality
i, =0 on the wall follows immediately from the usual
condition for a viscous liquid, v (on the wall)=0, which
pertains also to the velocity v,. For v,, to the con-
trary, the Landau theory makes use of the condition for
any ideal liquidon a wall, i.e,, the component of v, par-
allel to the boundary is assumed to be different from

~ zero on the wall, in spite of the sticking of the helium

atoms to the wall. An impression is thus gained that
the velocity v, should have a hydrodynamic disconti-
nuity near the wall. For some reason, no one seemed
to worry much about the question of this discontinuity
(see, however, ?27), although it is impossible to get
around it. In fact, the discontinuity at the wall, like

a discontinuity of the velocity v, in the interior of the
helium (a vortex layer), should be connected with a
surface energy o,=%%/ma*~107% erg/cm® (here m =my,
is the mass of the helium atom and a is the charac-
teristic thickness of the discontinuity, set equal to ap-
proximately 10°7 cm in the numerical estimates). The
foregoing estimate of o, follows from different con-
siderations'™®; for example, it is obtained from calcu-
lations of the zero-point (kinetic) energy following the
change of the wave function of helium atoms in a layer
of thickness a. The energy o, is always appreciable,
and were a discontinuity with such a surface energy
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actually to appear at a velocity v, #0 along the wall,
then this would be clearly discerned in an experiment,
in particular, an effect of “dry friction” would occur,
Actually, however, there is no such effect, and the sur-
face energy o, due to superfluid motion along the wall

is smaller by at least 7-8 orders of magnitude than in
the foregoing estimate, and can therefore be regarded
as equal to zero, 24!

How is this contradiction to be explained? A way out
can be found by assuming that p, =0 on the wall itself,
and consequently, the density of the superfluid part of
the liquid changes near the wall over a certain char-
acteristic distance £, so that p(0)=0 and py(z> £)=p,,,
where z isthedistance from the wall and p,, is the value
of p, in the interior of the helium II. Therefore, even
at v, #0, the flux on the wall is j,(0)=p,(0)v,=0, and
consequently the discontinuity of the velocity v, on the
wall itself becomes “innocent.” In other words, a cer-
tain specific surface energy o, is always connected with
the wall in the helium II, and is due to the presence of
a density gradient p,(z) that has the same value at v,=0
as when v~ 0 (this means also that there is no “dry
friction”). ;

The publication of'?*! was stimulated precisely by the
desire to construct a theory in which the density g, is
not only not specified in the interior of the helium, but
is defined by a certain equation compatible with the
boundary condition p(0)=0. At the same time, with
the theory of superconductivity as an example, 8! it
was already explained that the role of the order param-
eter for a superfluid (superconducting) system is played
by a certain complex “effective wave function” ¥=ne'",
Therefore, as applied to helium II, a similar complex
order parameter was introduced 'm[a“, with

pe=m | ¥ 2= mn? (1.1)
Vo= vg, (1.2)
Je=psvi= — S (WYY — YV ) = iy, (1.3)

where m =my, is the mass of the helium atom, and the
normalization of ¥ was chosen from considerations of
future convenience,

The introduced function ¥ is macroscopic and can be
used only at scales greatly exceeding the atomic scale
a~3%10"% cm. At the same time the density p, in he-
lium II far from the X point changes near the wall over
distances on the order of atomic, and in general the
correlation length ¢ characterizing the change of the
order parameter is of atomic dimensions. It is clear
therefore that a superfluidity theory based on the mac-
roscopic order parameter ¥ (we shall henceforth call
this the ¥-theory of superfluidity) can be developed, if
at all, only near the X point, where the length ¢ in-
creases. We have specifically in mind the region of
temperatures T satisfying the condition

(1.4)

We shall therefore assume henceforth, somewhat ar-
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bitrarily, that we are considering the region ¢ § 0.1,
i.e., not farther than 0.1-0.2 °K from the A point.

In the case of superconductivity, the correlation
length (the coherence length) £ is large (in a typical
pure type-I superconductor, the length £~ £~10"* cm
is of the order of the Cooper-pair dimension even at
T« T,), so that near the superconducting-transition
point (that is, under the condition (1.4) with T, replaced
by the critical temperature T,), the ¥-theory of super-
conductivity®®! is applicable over a wide range if we
use a self-consistent theory of second-order phase
transitions, in which the fluctuations of the order pa-
rameter.near the transition point are neglected.? For
helium II, as already mentioned, the correlation length
¢ is not anomalously large, and although on approach-
ing the X point we have £>>a~3x10® cm, which makes
possible a rather extensive use of the macroscopic func-
tion ¥, the self-consistent approximation (neglect of
fluctuations) has, strictly speaking, no region of ap-
plicability. A self-consistent phase-transition theory
was nevertheless used in™%), albeit with some stipula-
tion (it was impossible to proceed otherwise at that
time, in 1958). Therefore some of the final results
obtained in‘zs], concerning the dependence of the tem-
perature T, on the thickness d of the helium-II film,
concerning the surface energy o, (T) on the boundary of
the helium II with a solid, concerning the heat capacity
C(T, d) of the films, and concerning the structure of the
vortex filament, are all only of approximate character.
The situation is considerably improved if we dispense
with the expansion of the coefficients A, B, C...of
[wIZ, |¥l% |¥I%,,..etc. in powers of (T, -T), and
use instead®”! the experimentally-based dependence of
these coefficients on (T, - T). It is precisely along this
path, with allowance for experiment and the already
existing general theory of phase transitions, 7% that
the ¥-theory of superfluidity is presently develop-
ing"28-401 (we are citing here also articles devoted to
the more general question of extending the self-con~
sistent theory of phase transitions, an extension based
on the use of an arbitrary, in principle, temperature

A gelf-consistent phase-transition theory will be defined as
one in which the thermodynamic potential is expanded near
the transition point in powers of the order parameter, and the
coefficients of this expansion are represented in the form of
a series in (T~ T). It is precisely in such a scheme that
many models are considered in the self-consistent (average
or molecular) field approximation, i.e., neglecting fluctua-
tions. The phase-transition theory called here “self-con-
sistent” (this is not the most suitable term, but we do not
know of a better one), is frequently called the Landau phase-
trangition theory. We have decided not to use this designa-
tion, first, to avoid confusion with the Landau theory of su-
perfluidity, which is frequently mentioned in the present arti-
cle. Second, the principal features of Landau’s phase-tran-
sition theory!?® are the expansion in the order parameter,
the evaluation of the role of the symmetry, etc., whereas an
additional expansion in powers of (T, — T) is a much farther-
reaching and not obligatory assumption. Third, the self-con- -
sistent theory of phase transitions was actually used in rela-
tively simple concrete cases (ferromagnetism, liquid-vapor
critical point) long before Landau’s work.
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dependence of the coefficients A, B, C...).

The development of the theory is not yet complete,
and there are a number of unanswered questions in this
field, This being the situation, it is quite natural to
encounter also in the literature rather negative and con-

. tradictory assessments of the potentialities of the ¥-
theory of superfluidity of helium II. This is all the

" more a reason for casting light on the present status
of the theory, including a comparison with experiment,
and this is precisely the subject of this article. We
note, however, that no attempt has been made at all to
present a complete exposition (particularly when it
comes to the references), since this would call for
much more space and, principally, at the present state
of the problem it would hardly be justified and only
would make it difficult to see the forest for the trees.

Chapter I of the article is aimed at constructing the
W¥-theory of superfluidity for the stationary case at
v,=0, and also at discussing the region of its applica-
bility. A solution of a number of problems, such as
the calculation of the temperature T,(d) for films, is
given in Chap. III. In Chap. IV we then discuss the
¥-theory of superfluidity near the A point for the gen-
eral case (v, #0, nonstationarity). Finally, Chap. V is
devoted to a certain summary and to a list of future re-
.search projects.

1. HELIUM I1 IN STATES OF COMPLETE AND
INCOMPLETE THERMODYNAMIC EQUILIBRIUM
(QUIESCENCE, STATIONARY SUPERFLUID FLOW)

2.1. Fundamental equation for the ¥-function (the order
parameter)

It is meaningful, or in any case useful, to single out
the order parameter as one of the variables in the ex-
pression for the thermodynamic potential of the consid-
ered system (medium) only under certain conditions.

It is necessary that the selected order parameter be a
macroscopic quantity, i.e., a quantity already aver-
aged over certain small scales. Another aspect of the
problem is the guestion of the character of the relaxa-
tion of the order parameter. Generally speaking, the
relaxation time of the order parameter (or parameters)
is much longer than the relaxation times of the other
variables (pressure, temperature, etc.). It is just
under such conditions that we can consider states of
incomplete thermodynamic equilibrium in which all the
independent variables (quantities) except the order pa-
rameter are at equilibrium. Since the relaxation time
7(T) of the order parameter increases near the second-
order phase transition point T,, with 7 (T~ T,) -, the
consideration of states of incomplete thermodynamic
equilibrium in this region is particularly justified.

In the case of helium II, the order parameter is
chosen to be the already mentioned effective or macro-
scopic wave function ¥ =7ne'®, which is connected with
p, and v, by relations (1.1)~(1.3). To be sure, there
is another quantity that can claim the role of the order
parameter of helium II, namely the wave function ¥,
the square of the modulus of which is equal to the con-
centration »,(T) of the helium atoms that are in a2 mac-
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roscopic quantum state with zero momentum, 1t is
clear even from this that the choice of the “correct”
order parameter is not obvious. We shall return to
this question later (Sec. 2.4), and note for the time
being that the parameters n, and p, =mn? may turn out
to be proportional to each other, especially near the A
point, i,e., they are on a par or, more accurately,
one reduces to the other. Be that as it may, we shall
use below only the parameter ¥.

Assuming the existence of states of incomplete ther-
modynamic equilibrium, having different values of ¥,
we shall consider the thermodynamic potential®’ &(p,
T, ¥) of helium II in such states, As the variables we
chose here, besides ¥, also the pressure and the tem-~
perature. It is possible, of course, to consider other
thermodynamic potentials, such as free energy F(p, T,
¥), the thermodynamic potential  (u, 7, ¥), and the
internal energy E (p, S, ¥), where p is the pressure, p
is the density, u is the chemical potential, and S is the
entropy. When solving spatially-inhomogeneous prob-
lems it is necessary, strictly speaking, to use the po-~
tential & (u, T, ¥), since constancy of y and T corre-
sponds to thermal and mechanical equilibrium, whereas
the variables p, p, and S are generally speaking coor-
dinate-dependent. When general equations are con-
sidered, however, particularly when it comes to deriv-
ing the fundamental equation for ¥, it is more conve-
nient (or at any rate more customary) to use the free
energy or the potential ® (p, T, ¥). This is what we
shall do.

We start with a homogeneous system (helium) and
with absence of flow. Then & depends only on 5% =|¥|?,
i.e., =&y, (p, T, [$1%). We now assume that the
potential &;;, can be expanded near the A-transition
point in powers of | ¥(2, i.e.,

Duro (0, TI ¥R =Drlp, T)+A| YL WP+ S WP, (2.1)

where &, .is the thermodynamic potential of helium I
near the x point, and A, B, C,...,are functions of p
and T,

The state of complete thermodynamic equilibrium
corresponds to the minimum of &;; , with respect to ¥*,
i.e., to the condition

e

D11 _
{ e )Mw_o.
Below the transition point we have ¥+#0 and the equilib-

rium condition can be written in the form

(g‘ll)‘i’llg)zw.rE ( 0?711:0 )p.1‘=0'

2.2)

Confining ourselves to the terms written out in (2.1),
we obtain the condition (2. 2) in the form A + Bn®+ Cn*
=0, whence the equilibrium value

)More accurately speaking, we mean the density of the ther-
modynamic potential. For the sake of brevity, where no mis-
understanding can result, we shall use the same term for the
quantity and for its density.

V. L. Ginzburg and A. A. Sobaynin 776




We chose the + sign in front of the square root, since
this choice ensures satisfaction, below the X point, of
the stability condition (the minimum of the potential) in
the equilibrium state

(2.3)

2Dy
(9n2)2

=B+20n =V B =%44C>0. (2.4)
At the X point we have p,, =0, and it is thus obvious
that A(TA)=0. Above the X point we get A >0 from the
requirement that the state with n, =0 be stable. Con-
sequently, A< 0Oat T< T,. Thecoefficient C must be posi-
tive to ensure positiveness of &;;,at large values of 7%,

In the simplest variants, when C=0 or B=0, we have

C=0, Pe __ (2.4a)

(2.4D)

In the case (2.4a), of course, B>0.

In the self-consistent theory of second-order phase
transitions, the coefficients A, B, C,...are regarded
as expandable in powers of (T, —T) and, for example,
in variant (2.4a), which is valid at a sufficiently large
distance from the tricritical point (at which the coef-
ficient B=0), we have

dA
A=—ali=1), a=(G7), . B)=b
ma (T)—1T) (2'5)
Poe =

The entropy Sy - 8, /9T, by virtue of the condition
(2.2), is in this case equal to

S11=Sl—%‘%n3=51——a;‘(Tz—T), Sl:—ao;‘;l (2.8)
and the discontinuity of the heat capacity C,=T(8S/8T),
at the x point is equal to

a>T,
e

(2.7)

AC,,:C’,,, n—Cp 1=

In the temperature interval 1025 ¢ =(T, - 7)/7,$ 0.1
we can assume as a rough approximation p,« (T, - T),
i, e., that formula (2.5) can be used. Assuming, for
example, p,, =0.075 g/cm® at £€=0.1 and AC,=5.2%10"
erg-g™ deg™ =0.76x10" erg-cm™ deg™, we get?

4)The quantities cited here and below pertain to the A point of
pure ‘He at saturated-vapor pressure, Thorough investiga-
tions of the A transition in helium at all pressures have been
initiated in recent years, from p =p.,(7,) =0.05 atm to the
solidification pressure p,(T,) =29.74 atm, and also in dHe—
‘He mixtures (see, in particular,45481)  With increasing
pressure, and also in mixtures, the region in which p,,
« (T, — T)*’® with good accuracy becomes narrower, and the
region where the linear relation p,, < (T, — T) can be approxi-
mately used increases correspondingly. However, no de-
tailed analysis has been made so far of the behavior of the
coefficients A,B,C, ... as functions of the pressure and of
the 3He conceniration, We shall therefore refer throughout,
unless otherwise stipulated, only to the region of the A point
of pure ‘He at saturated-vapor pressure,
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@ = 6.7-10" erg/deg, b = 1.3.10% oy o3

(2.8)

Actually, however, the density P, is described suf-
ficiently accurately in the entire interval 109%5¢<0.1
by the law'!—#4!

Pre== ) =m | ¥ [P =1.430, (T, — I')%, (2.9)
pr=p (T3) = 0146 gem™® p,, = 1.43p, = 0.21 gem 3deg™
£ = 0.67 = 0.01.

Assuming, as is quite probable, that {=2/3, we can
put in (2.1)

A=—A, (T, — D) | T, — T " B=B,|T,—TP.C=0C,
“ (2.10)

for in this case, according to (2.3) we have p,, « (T,
—T)/s,

It C,=0, then

Ay = 1.1110-" erg/deg*”®, B, = 3.54-10~® erg-cm?®/deg?”?
Under conditions when coefficients of the type (2.10) are
used (in contrast to the self-consistent variant of the
type (2.5)), all the terms proportional to | ¥|%, |¥|*
and | ¥|% in (2.1) depend at equilibrium in the same man-
ner on (T, — T), and there are therefore no general rea-
sons for discarding the term with | ¥|® as T~ T,, as
well as the higher terms in [¥|%. By the same token,
the use of variant (2.10) is an approximation. As will
be shown below (Sec. 2.4), under the condition p, X p,,,
and especially if
Ps K Oses (2. 11)
it is already justifiable to discard the terms with | ¥|8
etc., and possibly also the term with | ¥(®, Yet in nar-
row channels and gaps, near a vortex axis, etc., the
equilibrium value of the density p, is precisely less than
the corresponding equilibrium value of p,, for bulky he-
lium II at rest. Thus, the approximation (2, 10) is justi-
fied in a rather wide range.

We note that since the transition point is a singular
point of the thermodynamic potential, the numerical val-
ues of the coefficients Ay, By, and Cy caningeneral be dif-
ferent at T>T, and T <T,. In what follows, however,
we shall disregard this fact (for the sake of simplicity,
and bearing in mind that we are applying the theory
mainly in the temperature region below the A point) (see
also the remarks in Secs. 2.4 and 3.2).

We introduce the dimensionless variable (see (2.9))

(2.12)

l|7:*%0‘~ ‘{roo:1]oo=]/—1—'éi&=1/f%.
In addition, we can express two of the coefficients A,
B,, and C, in (2.10) in terms of p,, and AC,, using for-
mula (2. 3) and calculating C, = - T(9*®/3T?), on the
basis of expressions (2.1), (2.9), and (2.10). As a re-
sult we can write

3AC

M,
Cuo— 0=y (=t ivp+

LB+,
(2.13)

(=23
2
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where

t=Ty—T="Te. M=-C—°-

o (2.14)

In the simplest variants of the theory"% the dimen-
sionless parameter is respectively M =0 or M =1,

As applied to helium II at equilibrium, the use of the
thermodynamic potentfal (2.13) contributes, of course,
nothing new. But this potential is needed in the ¥
theory of superfluidity as one of the blocks used to
write down equations suitable for the solution of the in-
homogeneous and nonstationary problems. In the latter
case, however, it is necessary to take into account,
generally speaking, the relaxation processes and dis-
sipation (see Chap. IV). We shall therefore discuss
first stationary inhomogeneous problems, in which it is
necessary to take into account only the derivatives of
¥ with respect to the coordinates. In addition. we as-
sume that v,=0, and consequently the ¥-function (the
order parameter) describes the state of the helium II
completely.

Under the indicated conditions, we choose for the
thermodynamic potential the expression
"2

n2 2
O (p. T ‘I’)=-2—le‘Yl"'+¢no=m—(v“%z+ps—;’+¢no=

(2.15)

where &,;, is the potential of the homogeneous helium
II at rest (see (2.1) and (2.13)), and expressions (1.1)
and (1.2) have been taken into account.

The choice of the form of the gradient term in (2.15)
is dictated by the requirement of invariance (the poten-
tial ® is a scalar), by the quantum-mechanical analogy,
by the analogy with the ¥~theory of superconductivity, 126!
and by the fact that at Vp,=0 we arrive at an expression
for the kinetic-energy density p,v2/2 (of course, these
arguments are far from independent of one another).
This is still not enough justification, but it pertains
also to the choice of the expression for &, and, in
general, topractically any phenomenological theory be~
fore it is deduced from the microscopic theory and be-
fore the region of its applicability is defined. The lat-
ter will be discussed further later on, and for the time
being we shall assume, without further discussion, ex-
pression (2.15) for &;;. Then the complete thermo-
dynamic potential is

&, ~ [ ®utp, 1. W av,

o

and the equation for ¥ is obtained as the extremum con-

dition when &;; is varied with respect to ¥*. Hence
A2 o0
7w A = (5785), ¥ (2.16)

If other thermodynamic potentials areused, then (8¢, o/
8l ¥|2), ; in (2.16) is replaced by other derivatives,

but all can be made equal to one another by a suitable
change of variables

( 59(Il)‘i’llg_)p,r=( :lp‘ll’lloz )p.T= ( :?;’Irz )"vT= ( ::IE}VIIOZ )"'s=mp‘.

Qu
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These relations follow from the identity dE = TdS + udp
+ udps and from the definitions of the densities of the
thermodynamic potentials &, F, and Q: #=E-TS+p
=pp, F=E-TS and =E -~ TS - up.

Thus, if the symbol u, is used, Eq. (2.16) assumes
the same form regardless of the choice of the thermo-
dynamic variables.

We introduce now, besides the y-function (2.12), also
the new coordinates

= §00=l/ﬁ2w"7"' =2,74-10"8 cm~deg?/? (2.17)

Eoo ’ 2mACI,

Then, taking (2.13) into account, Eq. (2.186) takes the
form (the asterisks denote that the derivatives are
taken with respect to 7,,, ;) -

3

Avb= g (=t 1P =00 [ |y P+ M 8 (2.18)

This is precisely the basic equation for what follows.
Of course, in the region below the X point, in which we
are mainly interested, we have {>0 and the absolute-
value symbol for ¢ in (2.18) can be omitted. We shall
usually do so. The equilibrium value § =¢,, obtained
from (2,18) at constant 3, is

=g =", (2.12a)
as it should (see (2.9) and (2.12); the quantity ¢, can be
regarded as real). The physical meaning of the quan-

tity £y, becomes particularly clear if one introduces the
dimensionless coordinates

r _Ewl@-Mste __, 3-M 2
Ear '’ fr= 1278 =§°( 3 )
_ 274408 [(3+ M),3)*/2
(Ta—T)*3

T,=

cm.

(2.19)
In terms of these coordinates we have for the function
o =¥/¥, (at equilibrium =1 and P =g, =£1/3)

Agpo=1—14+(1—M) | $o 2+ M | Yo |*] o,
fo= o= 2
T e T (Poo/m)”:l RYEI

(2.20)

and, at least as |y,12~0, the length £, defines in ob-
vious fashion the characteristic distance (the correla-
tion length or the “coherence length”) over which the
order parameter i, changes. This will be discussed
furtherinSec. 2.3. At M =0, thelength £, = £, coincides
with that used in2"’, Were we to confine ourselves to
the self-consistent variants (2.5) and (2.8), then

the role of £, would be assumed by the length™®’ £=x/
J2ma (T, -T)=3.5-10"%/JT, =T (cm). However, such
an approximation is not suitable near T,, since it cor-
responds to the relation p o (T, — T') instead of the ex~
perimentally verified relation (2.9). We note that for
superfluid 3He the situation is already different, " inas-
much as near the X point we can in fact put precisely
Ps (T). = T)-

The developed ¥-theory can quantitatively be valid
only under the condition
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ExD>a~ 3.10-% cm. (2.21)
At M 51 this condition, according to (2.19), can be re-
garded as practically satisfied if (T, - T')<0.1 °K.

By varying the functional &(¥) with respect to ¥, we
obtain for ¥* an equation that does not differ from
(2.16). Multiplying now Eq. (2.16) by ¥*, multiplying
the analogous equation for ¥* by ¥, and subtracting one
equation from the other, we obtain the continuity equa-
tion

div j, == div (pev,) = 0, (2.22)
where, of course, expressions (1.1)—(1.3) are used.
Equation (2.2) can be derived also by somewhat differ-
ent (but of course equivalent) method in which the real
and imaginary parts of (2.16) are separated.

We note incidentally that in (2.15) and in the succeed-
ing equations, if the definition (1.1) is used for p,, the
mass m of the helium cannot be replaced by some ef-
fective mass m,,, nor to replace (1,2) by v, = (%/
VL )Ve (in order to retain the expression p,02/2 for
the kinetic energy). The point isthat the effective mass
mqs, should, generally speaking, depend on the tempera-
ture, pressure, etc. But this means that under spa-
tially inhomogeneous conditions the mass m,,, would
depend on the coordinates. The continuity equation
(2.22) then no longer follows from the corresponding
equations for ¥ and ¥*, That m cannot be replaced
by m,;; is evidenced also by the requirement that other
parameters of the circulation §v, -dl be independent of
the temperature (for details see'®s’ and Sec. 3.4).

2.2. Boundary conditions

When solving Egs. (2.18) and (2.20) for ¥ it is nec-
essary to use definite boundary conditions. At the
boundary with a solid wall, at least in the absence of
heat exchange with the wall, one condition is obvious—
the velocity v, must be parallel to the wall, i.e.,

nV¢ = van = 0. (2.23)

where n is the normal to the wall.

Starting from the considerations discussed in the
Introduction, we assume further that on the wall we
have

P (0) =m | ¥ () )P =0 (2.24)

Actually this condition, even by virtue of the require-
ment (2.21), is indistinguishable from the condition that
‘the density p, vanish not on the wall itself, but at a cer-
tain distance from it, on the order of atomic dimen-
sions (see Sec. 3.2). On the axis of a vortex filament
in helium II we also assume condition (2.24), which
arises naturally when the corresponding vortex problem
is solved (see™’ and Sec. 3.4 below). The condition on
the free boundary of helium Il is not so reliably deter-
mined. Actual problems were solved both with condi-
tion (2. 24) and with the condition
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nV¥ = 0, free boundary. (2.25)
We can introduce also a more general boundary condi-
tion; for example, for a real function ¥ we can put
MLy o, (2.26)
where z is the direction along the normal to the bound-

ary and A is a certain coefficient that can, in principle,
depend on { =T - T and on other variables.

We note that condition (2.25), which is valid in the
¥-theory of superconductivity’?®’ for a boundary with
vacuum, is obtained if we stipulate, when varying the
functional $(¥), that it have an extremal valué, without
imposing any additional limitations on the boundaries. %’
The condition (2.26) can be arrived at, on the other
hand (see, for example, “7]), by seeking, without im-
posing any other requirements on the boundary, the ex-
tremum of the functional

N2t
2m

{1w©pas,

@ (¥)+

where ¥(0) is the value of ¥ on the boundary.

The need for using the condition (2.24) on a free sur-
face as well is brought about by the analysis, presented
in Sec. 3.3 below, of the situation on the boundary be-
tween helium II and its surface vapor. 870 Since the
physical results (for example, the temperature T,(d) of
the X point as a function of the film thickness d) depend
on the employed boundary conditions, the validity of the
employed boundary conditions should be checked, in
final analysis, by comparing the theory with experi-
ment. Finally, there is one more possibility, in prin-
ciple, of refining the boundary conditions by resorting
to the microscopic theory. But whereas in the case of
superconductivity this procedure is quite reliable (and
has already been employed®®*1) it can hardly be re-
garded as particularly promising at the present state
of the theory of helium II.

2.3. Acturacy of the W-theory (allowance for fluctuations)

It is natural to raise the question of the region of ap-
plicability and of the accuracy of the ¥-theory, based
on the use of expressions (2.15) and (2.13) for the ther-
modynamic potential. Unfortunately we encounter
here, besides the condition that we stay close to the A
point (see (1.4)), a number of other restrictions, which
will be discussed, together with the meaning of the em-

*)n such cases we speak sometimes of natural boundary condi-
tions. We arrive at these conditions by considering the vari-
ation .

J(veves*)dv = [T(VEE¥HdV — [SU*A¥dV,
Transforming

fu(veo¥*)dv = § (nvw)6¥*ds,

we see that the functional is minimal not only if (2.16) is
valid, but also if condition (2. 25) is satisfied. -
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ployed ¥-function, in the following Sec. 2.4. Here we
consider a very important aspect of the same problem,
namely, we assess the role of fluctuations of the order
parameter ¥. In this case, however, if these fluctua-
tions are small enough, we can use values of ¥ that are
solutions of Eq. (2.16), or, specifically, (2.18) and
(2.20).9

The incomplete thermodynamic potential

3, 1, v@ =[0G 1Y@, (2.27)

which depends, besides on p and T, also on the order
parameter ¥(r), determines the probability density of
a configuration with a given function ¥(r):

1
FsT

w (D) =expr—r (@ (7, ) Yo (oo T)—B (6, T, ¥ () (2.27a)
here &,(p, T) isthe complete thermodynamic equilibrium
potential. (We note once more that it would be some-
what more consistent to use here the potential Q(u, 7).)
From this, by virtue of the normalization [w(¥)D¥ =1,
follows an expression for the partition function V

Z=exp(—-%)=§exp[—§%ﬂ]D‘l’(r), (2.27b)

5T

with functional (configuration) integration with respect
to D¥(r).

In the self-consistent theory of phase transitions it is
assumed, in fact, that

_ D (¥, (1)
Z =2Zy=exp [—-—m— ,

(2.28)

i.e., it is assumed that
=D, T, ¥ loo T

where ¥, (r)is the value of ¥ corresponding to the ex-
tremum (minimum) of 5, i.e., satisfying in our case
Eq. (2.16). If the second-order phase transition point
were not a singular point of the thermodynamic poten-
tial, then the fluctuations about the extremal value would
play no noticeable role in the calculation of Z and &,
and, consequently, the approximation (2.28) would be
perfectly satisfactory. In fact, however, the transition
point is generally speaking a singular point, as mani-
fest by the increase of the fluctuations when this point
is approached. Inthe case of helium II (in contrast to
superconductors and superfluid 3He), the region of ap-
plicability of the self-consistent theory, understood
here as the region of relative smallness of the fluctua-
tions, turns out to be quite narrow or, sfrictly speaking,
generally nonexistent (see Sec. 2.1 ff). The use, just

8)These are the only equations {and their generalizations to in-
clude nonstationary problems in the presence of normal flow)
which will be used later on (see, however, the remarks made
in Secs. 2.4 and 3.2). Therefore a detailed study of Secs.
2.3 and 2. 4 is not needed before reading Chaps, III and IV of
this article,
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as in the self-consistent theory, of the expansion (2.1)
but with nonanalytic coefficients A, B,... that depend
ont=(T, - T) is precisely a stratagem of the renor-
malization type, which changes the order parameter and
makes it possible to take into account to a considerable .
degree the role of fluctuations even in a preliminary
approximation such as (2.10). The necessary criteri-
on for the success of this stratagem is that the part of
the long-wave fluctuations (about the employed equilib-
rium solution) which is not taken into account in (2.13)
must be small. We shall return to this question later.

We assume that the fluctuations 67 and 6¢ of the mod- -
ulus and of the phase of the function ¥ =7e'’, about a
certain “equilibrium” value ¥, =7, ¢***satisfying Eq.
(2.16), are small quantities. This means that

P oanel? 5 nge'% 4o ¥bn 4 ine Vet -, eive $O)
n=n",+ &, ¢ = g+ 5¢. 2

The corresponding fluctuation change of the potential
&5, taking into account terms of order not higher than
quadratic in 57 and O¢, is equal to (see (2.15))

80 =12 (v 2 62+ 5o,
" - . (2.29)
8o =—5— (V)24 5 —n} (V)2 -+ Dir o (ng) (52,

where &y o(n,) = (828, /87%),.,, and we have discarded
all the terms that are linear in 67 and 6¢ (some of these
terms vanish immediately by virtue of Eq. (2.16), while
others vanish as a result of the volume integration of
interest to us below, and specifically when 6&[=6%4dV is
calculated).

In the absence of fluctuations, the gradient term is
52 2 N
Orr— 01 0= 5| Ve =5~ [("0e)2 -+ 13 (Vo) %],

and it is clear that (6% — 6&y)<< (&g — ®114), provided
that the conditions

“—“"l’,)ﬁ@. o0 <1 (2.30)
are satisfied. Here and below the symbol () denotes
statistical averaging, since we are interested only in
the contribution made by the fluctuations after such an
averaging.

We shall show below that under the same conditions
(2. 30) the fluctuation increment 6%, or, more accu-
rately, the fluctuation increment to the thermodynamic
potential 6&, which is defined below and is of interest
to us, is also small. To be sure, the value of 6®, will
be calculated only neglecting the inhomogeneity of ¥ in
the equilibrium state, i.e., assuming the quantities 7,
‘and ¢, to be constant, but it seems to us tho? ix: all the
cases of interest this assumption can r:+ iead to signifi-
cant changes in the situation (see. !:>»waver, the end of
Sec. 3.1). '

From the general expression (2. 27) it follows im-
mediately that
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885 =B, (F.)— B (¥.)

=—-—kBT1nSexp 5 50 [8n. SoidV

e }'D'I]DQ)E-—,‘BTIDZﬂ.

(2.31)

where &(¥,) is defined in (2.28). The mean value of any

physical quantity X is

[ s0(6 av
=2} | xion, serexp { S—[k—"ﬂ—-

} onpe. (2.32)
We shall calculate the configuration integrals in a qua-
dratic approximation (that is, including only terms of or-
der (67 and (6¢)?) and only for a system that is homo-
geneous in the equilibrium state. Concretely, we choose
6& as given by expression (2, 29) for 6&,, the functions
7, and ¢, being assumed constant (properly speaking,
the phase ¢, is now immaterial).

In this homogeneous case it is convenient to use a
Fourier expansion, putting (V is the volume of the sys-
tem, i.e., in our case, the volume of the liquid helium)

o= ar, ne&v——z‘vq \

LS
—_— 'f]‘
i 'q
Vv 4
V=G Goq=Fh | (602 dV-Z g %
q

§ g owray—nz 3 1g, 12 (2.33)
q

Therefore (see also (2.29))

8Dy = wod"—-z{[—qu‘foxxo(m)]iilqlz' STy il 2 }

(Z. 34)
Some of the calculations that follow are more conve-
niently carried out not on the basis of the general for-
mulas (2. 31) and (2. 32), but directly on the basis of ex-
pression (2,.27a). Namely, the probability of the fluc-
tuation for which the thermodynamic potential changes
by an amount 6$ is equal to w = const - exp{- 6&,/kzT}.
Assuming that 6&,/k,T =x?/2, we obtain for the prob-
ability of the fluctuation of the quantity x

w(r)dx =l/-2'—ﬂ

since

(2.35)

PGy (22) = 5 22w () d.—r=-;— N

450

Vs
5 z‘(*/”’“dn-y -:AJ:!—

We now use expression (2. 34) for 8&y/kgT =Ax2/2 and
obtain directly with the aid of (2.35)"

Usince 7, is complex, the square |7g]? is the sum of the
squares of two independent quantities (the same pertains also
to 72| @ 1?). This circumstance was already taken into ac-
count in (2. 34) in the summation over all ¢, which is equiva-
lent to taking the factor |7| Z into account twice, We note
also that we are confining ourselves to a clagsical (non-quan-
tum) approximation, which is permissible under the condition
(11413 >1 (see'). The classical approach is valid near
the A point in the case of long-wave fluctuations with g S 1/&,.
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_ kT
e )= )= G Y 2

ksT (2.36)

2y B8
% =y iz -

We have next

<S (dny2 dV>_-_ “(l 1y 19 22T kT Tx q2dg
]

{Bn)?) = SN ol B
k2 Dfp o (Me) + (k2/m) g2

kT ‘mO7 g (ne)

_ _ 9max
T [Qmax” 72 arctg »———moﬂ o (/R ]
(2. 37)V
._ ((5@2),,_%&& {2.38)

2RI
It is important to recall the expression for the corre-
lation function (we put henceforth r=1; - 1,)

G (6)= (60 (1) B0 (ra)y= o 2 (Img 12 lor
- kgl r oy
= W myr <P ( —g_(i)") J

(2.39)
where the correlation length for the fluctuations is

_ W2{m
Ho= l/- D1y, (e}

and, of course, expression (2.36) is used.® Analo-
gously,

‘5 CIng et i

(2.40)

Go (1) = (59 (l't)ﬁ‘l’(l'z))=7;(h,—/k:fm—¢m7. (2.41)
The quantity

. kpTm?

So= _du_ﬁazze(_t) (24 4] a)

can be naturally called the correlation length for the
phase of the order parameter. In the microscopic ap-
proach™? it is precisely the length £, which is regarded
as fundamental.

In the self-consistent theory of phase transitions, the
fluctuations are assumed to be of no significance at all
and we can choose the maximum value g,, to be of the
order of n/£(0), where £(0) is the short-range radius,
with £0)~a~3x10" cm for helium. We can here al-
ways assume that tan (g, /Vm®; /7% =71/2. Most im-
portantly, the expression (mkzT/27%:%) .., Which en-
ters in (2. 37) and (2. 38), is practically independent of
the temperature near the A point and plays no role if a
fluctuation-dependent renormalization of the thermo-
dynamic potential is used.” The condition for the

) As is well known, the function {2. 39) satisfies the equation

(A——-E—,') = —4n E’%:—:}IIT)—G(')'

Thus, apart from a factor, G, is the Green’s function for the
equation written out above.

9)This is particularly easy to verify above the transition point,
by writing down the potential in the form &5 = &;+%(a(T,
—T) +(b/2)7*] and then replacing bn%/2 by 3b (n?)/2 = 3b { )/
2. Obviously, the constant term 5%(35/2) {(6n)?) changes here
the value of T, i.e., the temperature, at which the coeffi-
cient of #° vanishes. Using the experimental (observable)
value of T, as is always the normal procedure, this change
of T, (renormalization) does not play any role whatever.
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smallness of the fluctuations (2, 30) takes therefore the
form

kT 1/ mO% ‘
(= 2Rl mEUL e gy

_or

_ [kgTa)2 m 152
t=M-D>

~ 1.40-8 K, (2.42)

where we used the expressions (2.4a), (2.5), and (2.8),
and took into account the fact that in this case

Ofio(n)= —dd=dat, TMp=—F=—.

The correlation length (see (2.40) and (2. 8)) below the
A-transition point is then

ro=) ~3502 e, (2.43)

Above the transition point we have

Of10 (M) =24=—2at. =0

and the correlation length is

+ (1) = — hz 8.5-10-8
vo=t0=) gorm= VT o™

If the coefficient of the gradient term is expressed for
an arbitrary second-order transition described by a
certain order parameter 7 in the form 6 (instead of %72/
2m, as in the case of helium II), then the condition
(2.42) for the smallness of the fluctuations takes the
form®0-54) (gee algol197)10)

(2.44)

(kgTp)2 52

t»w. (2.45)

By virtue of the condition (2.42) and the require-~
ment of sufficient proximity to the A point (the condition

< T,), in the case of helium I at saturated-vapor pres-

sure the self-consistent theory can be used with some
reasonable accuracy only in the region
10° & £ << 0.4 °K. (2.46)
We are furthermore interested also in much lower
values of ¢, since in the experiments measurements
are already feasible even at ¢t § 10 °K. The scheme
described in Sec. 2.1, in which the coefficients A, B,
...in'the expansion (2.1} depend on ¢ in non-analytic
fashion (see (2.10), (2.13), (2.18), is resorted to in
fact in practically the entire temperature interval near
the A point. In this scheme, even the initial expres-

10 he coefficient (3270t of (2. 45) was left out in'5), with an
appropriate stipulation, since only the relative values of the
fluctuations for different transitions were compared there.
Incidentally, it is clear even from (2.45) that near the tri-
critical point at which b =0 the region of applicability of the
self-consistent approximation is particularly large (for de-
tails see!5)).

782 Sov. Phys. Usp., Vol. 19, No. 10, October 1976

sion for &y, ((t) agrees with the observed relation (2.9)
for pg(t), and leads for the correlation length below the
A point to the expression (see (2.13) and (2.17))

h2m Y472 (B4 M6 (1+ M) B

@iro (ne) 23
_ 2.74-10-8 [(34 M)/6 (14 M))!/2
= T cm

(= [

12AC (1+M) 3
T43 (palm) B+ M) T

(2.47)

Dixo (1) =

Above the X point we have

6ACp 1 £[¥3

0110 (o) =T 3o BRI Ty !

and for the correlation length £} = ¢, we obtain the ex-
pression

2.74-10-8 [(3+ M)/3]1/2
‘jz,j W (2.19a)

Br=ty=E (ﬂ)1/2=

3

the meaning of which thus becomes finally clear. It is
the lengths &, and &, which we shall find the most con-
venient for use henceforth.

Since the self-consistent theory of phase transitions
does not take temperature-dependent fluctuations into
account, it is obvious that the theory with altered co-
efficients A, B, C...already takes these fluctuations
into account to some degree. Namely, account is taken
in this case of all the fluctuations with wavelengths
smaller than and of the order of the correlation length
£(t), i.e., with wave vectors g 2 1/£(f). The point is
that the short-wave fluctuations, while small, are quite
numerous (see (2. 36); the integral [“™=(In,1%) ¢%dg at
large g, increases in proportion to g,,). With in-
creasing g, the fluctuations (17,12 increase up to val-
ues g~m®f /2~ 1/£(t) (see (2.36)). In the calcula-
tion of the thermodynamic potential in the critical re-
gion it is therefore necessary to take into account all
the fluctuations in the interval 1/a~gp,, 2 ¢ 9.~ 1/¢
(see also™&)1),  As to the longest-wave fluctuations
with g <1/&(t), it is clear from (2. 36) that they no longer
increase with decreasing ¢ and need not be taken into
account in the initial expression for &;;, - ®;. Thus,
the requirement that the fluctuations be small when ex-
pression (2.13) is used for the potential &, , pertains
only to the long-wave fluctuations with ¢ <g¢,, with

(2.48)

10":2/ 30 cm™?

9e=

[ 6(1+M)
éM(:)

where @ =@ a numerical coefficient that serves as a
parameter of the theory and ¢} is the correlation length
(2.47); we note that we have in mind here directly the
region below the transition point, and above this point
the value of @ can already be different.

1)1t must be stipulated, to be sure, that the short-wave fluctu-
ations with ¢ ~1/a actually are independent of { and make no
contribution to the singularity of the thermodynamic poten-
tial (from this point of view, only fluctuations with ¢ <<1/a
are important). We emphasize in the text only the fact that
all the fluctuations with ¢ 2 1/¢ can be regarded as taken
into account in expression (2.13) for &y ,.
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TABLE 1 .
= T won '
M =11 '/ AT p <«Op2> C Ay . A
0 0,776 - 0.0174 0,116 | —3.3-1067 4.4-10°8
1 0.635 0.0126 0.116 | —3,4-10-2 | —1.5.402
oo 0,449 . 0.0070 0,116 | —5,9-40-2 [ —3.7-102

We can be sure that the fluctuations not included in
expression (2.13) for &;;, are small if the conditions
(2, 30) are satisfied after we substitute g, =¢, in (2. 37)
and (2.38). We note that by proceeding in the same
manner as in the self-consistent theory we obtain, in
essence, the previous condmon (2.42), for in this
case 12)

@
gmax = 'g—(,')""l/-m “0(‘%) °

On the other hand, if we use the value g, =g, =Q/£ult),
in accordance with (2. 48), then we arrive at the condi-
tions (see (2.37), (2.38), and (2.19), (2.48))

(2.49)

() =5 (@ —aretg @) < mi =™,
n 2.49
(Oo) = —-mkeT0__ oy (2.492)

2a2n2n () Em (2)
At T<T,, the second and more stringent of these con-
ditions reduces to (see (2.47))

01]/"“+:’0<<1

It is important that the temperature ¢ does not enter in
the criterion (2.49a)-(2.49b) at all, and thus if it holds
it does so in the entire temperature interval near the

A point,

(2.49b)

To estimate the parameter @ and to obtain a quantita-
tive idea of the accuracy of the theory based on the use
of (2.13) and the expressions that follow, we turnto a
calculation of the fluctuation-induced increment 6d,,;
to the thermodynamic potential.

To this end it is necessary to use the general formula
(2.31). Substituting (2.34) in (2. 31) we obtain for the
density of the fluctuating part of the potential in the
equilibrium state

1 = kgl h2 2+ @ A2 2
80y (e, ) = o 8By (mg, )= "BL D 1o (W3 J?h;‘:;)’;e)” )9
ISqmax
9,
_kal L [(%m) g2 Oy g (ne)] (B2m) ¢ smg2
=3 S " CnkpT)? @y U

0

= _foT 3 ), 0®ito (no) 01172 _
bn2ty () {0 [ ey L TON T [FQ—arctg Q.

(2.50)

)The “catoff” introduced in (2.37) and (2.38) at g =g ~1/¢
when the criteria (2. 30) are used can be interpreted in the
following manner: we stipulate that the fluctuations
J(6m2dv) and (fn%(6¢)?dV) in the volume V ~£3 be small
in comparison with 72V ~n2¢3, 1t is clear that only fluctua-
tions with wavelength A =27/¢ < £ are significant in the inte—
gration over a region with dimensions on the order of £.
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Substituting here £y(t) and &j; o(7,(t)) in accordance with
(2.19) and (2.47), we see that
s = 0,03 (Inj t] + Cy), (2.51)
where C; and C; are quantities independent of . Al-
lowance for the potential 6&,, leads thus to a renormal-
ization of the specific-heat discontinuity at the X point
(owing to the term proportional to C,) and to the ap-
pearance of a logarithmic singularity inthe heat capac-
ity. It is posgible, in principle, to assume that the
entire observed logarithmic (or near-logarithmic)'®’
variation of the heat capacity is due to long-wave fluc-
tuations (see, in particular,®V), i.e., it is included in
0d,,. We then obtain the upper bound @, of @ from
(2.50) and (2.51) as well as from experimental
data, %%58) 5ccording to which

T<T),

_{ 4.55—3.001g (T1—7) (J/g-deg),
- T>Ty,

—0.65—3.001g| Ty —T| (J/g-deg),, (2:52)

Without dwelling on the details, we present in Table I
the values of @, at different values of the parameter
M (see[ﬁl.])

It is clear from the table that the conditions (2.49)
are satisfied. The role of the fluctuations becomes
even clearer if we calculate first &, (1) for some non-
equilibrium value of 7 and then find (6% 4,/81%), .,
=(0®,, )y It is next necessary to find the ratio A
=(8&n)y/®f1o(n,), Which characterizes the change of
the factor preceding (n-1,)? in the expansion of & q(7)
about the equilibrium value 7,, due to the long-wave
fluctuations. The renormalized value is @1y, ,on(7)
=& 0(n,) (1 +4). The calculation of A in the harmonic
{quadratic) approximation leads to two values A, indi-
cated in Table I. In general, however, A=A, +A, + 4
+Ag, where A,, Ag, and Ag are corrections needed
respectively to allow for the fluctuations of (67)%, (67,
and (6n)?+ (V6@ )?. -Calculation shows™!! that the cor-.
rections A,, Ag, and A@ are positive (in contrast to 4,),
and are of the order of |4,| in the sum. As a result we
obtain the values of A given in the last column of Table
I, which do not exceed several percent. Higher ac-
curacy can hardly be expected of our entire scheme,
which involves the selection of the function & (), or
the coefficients of the expansion of this function in pow-~
ers of 7, on the basis of empirical data. We can thus
state that allowance for the long-wave fluctuations (wave
numbers g £ 1/&,(t)) does not affect the results obtained
without their allowance (this does not pertain, of course,
to phenomena connected with the fluctuations them-
selves, for example, with the scattering of light by
fluctuations or with calculations of the fluctuating part
of the heat capacity).

By the same token, in view of the foregoing, we prove
at least that the scheme based on the use of coefficients

B According to!®®), ¢, ~t™ with a =~ 0, 026 (see also!®).
If o =0, the ¥-theory developed by us requires certain modi-
fications, but these seem still premature to us, (see Chap.
V).
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A, B,..., which are not analytic in ¢, in the expansion
of &;;, in | ¥|% (we consider specifically expression
(2.13)) is not contradictory {(or is self-consistent to
some degree). Incidentally, in connection with the dis-
cussion of the role of fluctuations from the point of view
of the accuracy of the ¥-theory of superfluidity men-
tion should also be made of*®? (see also™'"’ Chap. IV,

_ §7), according to which the ¥-theory of superfluidity

of helium II has no region of applicability at all. To the
extent that we are dealing with the initial self-consis-
tent variant?®! (see also Sec. 2.1 and, specifically,
expression (2.5)), this statement is correct to a certain
degree (more accurately, see the condition (2.46)) and
has already been noted in"®’, However, in the gen~
eralized theory (see (2.13) ff.), the role of long-wave
fluctuations is insignificant, and the conclusion drawn
above remains in force also when account is taken of
divergence of the longitudinal susceptibility x,« /2
for a “field” 2~0.!*) The point is that the nonanalytic
dependence of x, on .2 as h—0, as well as the logarith-
mic singularity of the heat capacity, can be completely
taken into account in the zeroth term of the expansion
of the potential &, (n, &) in powers of (n-17,), and has
no bearing on the other terms of the corresponding se-
ries, which are the only ones of interest to us from the
point of view of deriving (2.18) or the initial equations
(2.16), (2.13), !

We can thus forget about the fluctuations of the param-
eter ¥ (or, equivalently, the fluctuations of the quan-
tities 7 and ¢) when solving any problem that does not
deal with the fluctuations themselves.

2.4. Conditions and region of applicability of the ¥ theory

We have indicated above certain restrictions under
which the ¥-theory of superfluidity can be used. Thus,
an important condition is (2.21), £,> a, which makes
possible a phenomenological description, say, of the
distribution of p,(z) near a wall only at t = (T, - T)
<0.1°K. The same condition is necessary if the den-
sity p,(t) is to be small in comparison with pg, (T =0)
=p (only in this case can we count on being able to use
the expansion of the thermodynamic potential in |¥|? at
|¥12=1¥,12=p,/m). Finally, the same condition
(2.21), in all probability, is necessary also when only

)y “field’ h in the case of a system having a complex order
parameter ¥, we mean a quantity the introduction of which
requires addition of a term —(1/2) - (h¥* +h*¥) to the ther-
modynamic potential, The longitudinal susceptibility is

al¥y)
W=""g *

v"-ReY=ncosq:,

and in the quadratic approximation we have (¥,)=7,[1
—((8¢)?/2)1%=n,(1 - C; +C,VE), where Cy and C, are con-
stants and 7, is the equilibrium value of 7 in the field k.
Obviously, for a ferromagnet, in which the order param-

eter is the magnetization m, the field h is the magnetic field
and the increment to the thermodynamic potential is —m- h.
Although the field h cannot be realized physically for a su-
perfluid liquid or for a superconductor, introduction of this
field is a convenient device in the investigation of a number
~of questions.
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the gradient term (%2/2m)|v¥|? is used in (2.15). In-
deed, terms with higher derivatives or powers of the
derivative such as a, [V¥|*, a,|A¥|%, etc., are usually
of the same order in the self-consistent variant of
phase-transition theory when ¥ is varied over the co-
herence length or the correlation length at 7=0, i.e.,
over the length £(0), which has the meaning of the short-
range order or, as is sometimes said, of the molec-
ular-action radius. For helium II we have £(0)~a~3
%x10® cm, so that for the order parameter ¥ (r), which
varies over a length L, we have the ratio

a, | AV |2 a\2
FEEmy VYR (“L‘) :

It is clear therefore that a ¥-theory that takes into
account only the term (%2/2m)! V| ? (this approxima-
tion is sometimes called hydrodynamic) cannot be used
if the ¥ function varies over a characteristic length
L% a. It must be emphasized at the same time that
when Eqs. (2.18) and (2.20) are used for ¥ this func-
tion turns out to be variable, generally speaking, over
distances L= £y(t) or, in the case of the self-consistent
theory, over distances LR £(t) =#%/V2mat), i.e., satis-
faction of a condition such as (2. 21) near the A point
ensures in the self-consistent variant of the theory that
the term (%#2/2m)IV¥|? predominates over the other
terms with the derivatives.'®’ Unfortunately, when
¥-theory variants with coefficients that do not depend
analytically on ¢ are used, it is possible to work only
under the condition L> £,(¢)/Q (see (2.48)), and small-
ness of terms of the type a,| V¥I* and 4,1 A¥12 is en-
sured reliably only under the condition
Ly by (0, (2.53)
inasmuch as @ ~1. In practice, however, conditions of
the type (2.53) contain the parameter (£,/L), and we
may expect to be able to retain only the term with (#2/
2m)IV¥|2 even at LR £, (f).

We must dwell specially on the very possibility of ex-
panding the potential &, in powers of 1 ¥1? (see (2.1)
ff.). In modern theory of phase transitions'!?-18:30:32,35)
it is assumed in fact that after the regular part is sub-~
tracted the thermodynamic potential ®,(¥, €) takes the
form

1¥] )

EACINE 2.54)

@ (¥, &)=l (2%

where ¥ is the order parameter, ¥,(0)=¥,(T =0),

19)For superconductors, for superfluid *He (see!®®), and for
a superfluid neutron fluid (as well as for a superconducting
proton fluid), the coherence length £(0) = £(T =0) is large in
comparison with distance a between particles even at T'<K T,
(the role of £(0) is played by the dimension of the Cooper
pairs). Under similar conditions the term (%°/2m) | V¥ |2
dominates at temperatures at which £(7) >>£(0). At the same
time, in these cases the region of applicability of the self-
consistent variant of the ¥-theory turns out to be apprecia-
ble, since the fluctuations decrease rapidly with increasing
ratio £(0)/a (see (2. 45)), where the denominator contains
the cube of the coefficient 8, which i8 precisely the measure
of this ratio.
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e=(T, - T)/T,, while @ and B are exponents that deter-
mine the temperature dependences of the heat capacity
C,< el and.of the equilibrium order parameter | ¥,|
=7, = ¢? in this case the function f takes different forms
at ¢> 0 (the function f.) and <0 (the function f,).

The function £, can be expanded in powers of x = | ¥| /
v, (0)1 el s only at small values of x, and, more con-
cretely, this expansion is rigorously valid only so long
as n/1, <1 or p,/p,.<1 (see (2.11)).

Actually, however, at >0 we can confine ourselves
to the condition'®

Ls g,

o (2.11a)

Fortunately, this condition is satisfied in the over-
whelming majority of cases of interest to us (see Chap.
II), and only when we consider the boundary between
helium I and II in a gravitational field (Sec. 3.2) will
we need to use the function f as x -, when it cannot

be expanded in powers of x# (see also')), In that case,
however, the potential $4(¥, €) can be represented in
the form '

00 (t, =17 127 7 (e (T51) ")
while the function f can be expanded in powers of
y=e(¥,(0)/1 %)/, At a=0 and B=1/3, the expansion
of &, begins with a term proportional to |¥i 8 (we
assume that F(0)#0). Thus, it is possible to treat all
the problems by using the initial trinomial (2.13) as the
interpolation equation.

We emphasize that we have immediately chosen above
the critical exponents @ =0 and $=1/3, since they agree
at the presently attainable accuracy with the experi-
mental data (all the critical exponents above and below
the transition point are assumed to be the same, as is
also confirmed by the available experiments; this re-
mark holds also for the exponents we shall use some-
what later on). It would be possible, of course, to de-
velop the ¥-theory without fixing the critical exponents
beforehand, but, at least at the present stage, this
would lead only to still-unjustifiable complications.
This pertains, in essence, to the gradient term (#2/
2m)| V¥|2, which could be generalized by making the
substitution®?-61

n2 e, -0 7|
fn'—)mm (M, e)y=e " fi (—__'ne(o)lﬂﬂ ) s

with o =7y, while the exponents v and 71 enter in the ex-
pressions for the coherence length £~¢™ and the

Green’s function G,(r - 0)~» %", We have assumed

1®)pavoring this conclusion are, in particular, the measured
values of the magnetization m as a function of the field z in
magnetic phase transitions (see, e.g., '6“). The connection
between m and k is in this case similarto (2.54): &
=) e | T (m/m,(0) | €18). It is known from experiment!®
that expansion of the function f’ = x(df/dx) in powers of x*
=m/m,(0) | & 18, with the first three terms retained, can be
used up to values x~ 1.8,
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above that v=2/3 =28 and that 7 =0 (it is known from a
number of examplesm] that the exponentﬁ is quite
small—usually of the order of several percent, and can
perhaps also be equal to zero). In addition, the func-
tion f; was replaced by a constant.

The question of the value of the exponent 7} is con-
nected with the problem of choosing the order param-
eter for helium II. The point is that besides the order
parameter ¥, which determines the observed quanti-
ties v, and p, (or j,) in accordance with (1.1)-(1. 3),
in the case of helium II we deal also with a quantity
such as the concentration n, of the helium atoms that
have zero momentum (the Bose condensate). 1t is pre-
cisely the quantity ng (and the complex function ¥ re-
lated with it by ny=1¥|%) which has a clear-cut micro-
scopic meaning and can be regarded as an order
parameter._ According toml, if we use this order
parameter ¥_(we note that the notation in®® is differ-
ent, so that ¥ plays the role of ¥ and vice versa) and
put | ¥|=Vnyoce® and C, xe™® at T<T,, then p,oc| ¥|?
g™ Taking into account one of the relations em-
ployed in similarity theory, namely 28 - #jv =3(2 - @),
we obtain at @ =0 (logarithmic variation of the heat
capacity) the value 28=7v=2/3. Thus, the tempera-
ture dependence of p, turns out to agree with experi-
ment also at 7#0. Conversely, if 7 =0, then the order
parameters ¥ and ¥, at least near the A point, coin-
cide (or, more accurately, are proportional to each
other), Let us make a few more remarks in this con-
nection. The single-particle density matrix of a sys-
tem of N particles is by definition (the system is as-
sumed here to be in a pure state, i.e., at'any rate if
T =0)

o r) = S B T (0, 1) dry, (2.55)
where ¥(r, r;)} is the true wave function of the system
and depends on the coordinates of all N particles (=2,
..., N; the coordinates of one of the particles will be
designated by r and at ancther point by r’; of course,
dr,;=dr,, drg, ..., dry).

For ordinary liquids or non-superconductors we have
plr,r")~0 as | r~r’l=, but for a superfluid it can be
assumed that p(r, ')~ pg#0 as lr=r'l==, In any
case, this property means that the system particles
have a non-zero probability of having a zero momentum,
and this precisely corresponds to Bose condensation
(the concentration ny of particles with zero momentum
differs from zero or, as is customarily stated, is
finite). " Using the operators $(r) and y(r) for the

MInsofar as we know, this property of the single-particle den-
sity matrix (p, = 0), as a characteristic of the superfluid
state, was first formulated by L. D. Landau (see'®}), This
property was named later “off-diagonal long-range order”
(ODLRO), since it referred to the off-diagonal elements of
the p matrix (r=r’ for its diagonal elements). Brief men-
tion of ODLRO or of the interpretation of the macroscapic
¥ function (the order parameter) associated with this con-
cept was made aiready in!?®!, This question was subsequent-
ly considered in a large number of articles (see'®:%! and
the bibliography inf¢"1),
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creation and annihilation of a particle at the point r
we can write down for any temperature p(r, r’)
={{(§*(r)i(r))), where the double brackets {{ )) denote
both quantum-mechanical and statistical averaging.
The macroscopic wave function characterizing the
superfluid (superconducting) system can be naturally
introduced in the form™®

p(r, i-’)h._,,l_m={i'" {r) W(r’). (2. 56)
In (2, 56) we write ¥ instead of ¥, in order to empha~
size the connection, which is clear from the foregoing,
that exists between just the quantity ¥ and the particle
concentration ny(t) in the condensate. If the averaging
{( ) is over an ensemble with violated symmetry, for
which the order parameter has a definite (specified)
phase, then we can write ¥ =({(»))) (see™?®"),

In the case of helium II, both p,() and n,(t) are ob-
servable; however, measurement of ny(t), say by neu-
tron scattering, is in fact still very difficult and has
not been carried out at all near the A point. The ques-
tion remains whether it is more correct to relate p,
or ny with the modulus of the order parameter and,
accordingly to choose ¥ or ¥ as this parameter. In
the phenomenological approach to the problem we see
no arguments of fundamental character for such a
choice, and we assume that the choice should be dic-
tated only by considerations of convenience and maxi-
mum simplicity of the equations (and, or course, by
the results of comparison with experiment, since even
the most convenient and simple equations that do not
agree well with experiment are of no value). From
this point of view there is no doubt (at least at the
present stage) that the order parameter in the ¥-theory
of superfluidity should be chosen to be ¥, which is
connected with p, and v, by expressions (1.1) and (1. 2).
This is how we shall proceed.

Once the microscopic theory is developed, the ques-
tion of the roles of ¥ and ¥ should be resolved auto-
matically, since both quantities will be expressed in
terms of microscopic parameters. Here, as we have
seen, the function ¥ is expressed directly in terms of
the density matrix p(r, r’) and in this sense it is
“closer” to the microscopic theory. But from this it
does not follow at all that the equation for ¥ near the x
point is simpler and more lucid than the equation for
the function ¥, which will be expressed somehow in
terms of p(r, r') and possibly other quantities. '®

It remains to add that the definitions of the order
parameter in terms of ¥ and ¥ near the X point are not

18)An analogous problem can arise, in fact, in the case of
superconductivity. Phenomenologically, however, only the
function ¥, which is connected with the depth of penetration
of the magnetic field into the superconductor, was intro-
duced. 126! The same equations for ¥ were derived later
on'®! from the microscopic theory of superconductivity.
The fluctuations, which are particularly small for super-
conductors, were not taken into account, and the functions
¥ and ¥ were in fact assumed to be identical (see the re-
marks connected with relation (2. 57) below).
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mutually exclusive and may turn out to be identical.
The point is that the quantity Vp,/m =Va, is set in cor-
respondence, in fact (apa;rt from a possible mass re-
normalization m — »" < ™, which depends little on the
temperature), with the modulus of the local value of a
certain macroscopic wave function ¥, which already in-
corporates averaging over regions of the order of the
correlation length £,. At the same time, it is natural
to set the square root of the particle density in the con-
densate vy in correspondence with the modulus of the
total average value of the same function ¥, with allow-
ance for arbitrary long-wave fluctuations, particularly
phase fluctuations. These two types of averages, gen-
erally speaking, do not coincide, for when account is
taken of the long-wave phase fluctuations'®® ®? we have
T =) 1= [ | V1 = vlep (-S2L), 0 (2.57)
where the angle brackets { ) correspond to additional
averaging over the fluctuations with wavelengths
A =21/q2 ty,. In'"™ starting from this difference, a
simple explanation was obtained for the temperature de-
pendence of no(T) at low temperatures, which differs
from the relation n,(T)=p,(T)/m. It was also made
clear, in principle, that n, differs from the total par-
ticle density n. Near the A point one can in principle
not exclude the possibility that | ¥| differs from | ¥1
=K, but, as we have seen (see (2.49a)), in this re-
gion the quantity {(5¢)%, at least in the employed ap-
proximation, is small and does not depend on ¢t=T, -T.
This is precisely why it is quite probable that near the
A point the parameters ¥ and ¥ differ only by a nu-
merical factor (in the spatially-homogeneous case) or
practically coincide (at 7=0). Incidentally, it can be
concluded from the foregoing analysis that for our pur-
poses it is natural to use in fact the local order param-
eter ¥,

Thus, the ¥-theory of superfluidity, formulated in
Sec. 2.1, is actually subject to a number of restric-
tions and assumptions. However, for reasons that are
clear from the foregoing and are still discussed in the
concluding Chap. V, we regard this situation as per-
fectly normal and not precluding the extensive use of
the ¥-theory of superfluidity to solve actual problems,
which is the subject of the next Chap. III.

1Il. CONSIDERATION OF VARIOUS PROBLEMS AND
EFFECTS IN HELIUM NEAR THE A POINT

3.1. Size effects in films, capillaries, and pores (shift of
A point, decrease of density p,, and change of heat
capacity C,)

The vanishing of the modulus of the order parameter
|| =5 =Vp,/m on a solid wall (boundary condition (2.24),
and probably also on the free surface of helium II (see
Sec. 3.3 below) leads to the appearance of size effects
in “samples” (films, capillaries, etc.)with characteristic

"dimensions L comparable with the correlation length

£x(). Infact, if | ¥1=0 “on the ends” (on the walls or
on the free surface), then the mean value of | ¥| over
the entire volume of the film or of the capillary will be
less than for helium II in a large volume. Thus, itis
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directly clear that the mean value p, is decreased, and
this leads, e.g., to a decrease in the velocity of fourth
sound in porous materials. With increasing dimension
L (film thickness, etc.) the A-point temperature T,(L)
at which p,(T,) =0 is also naturally lowered. A change
takes place also in the equilibrium value of the thermo-
dynamic potential, and consequently also in the heat
capacity and other thermodynamic quantities. These
‘effects have been discussed on the basis of the ¥-theory
of superfluidity int25:2%2%:81=T51 " ang there are also a
number of experimeéntal datal**"%% (see also refer-
ences to earlier work in the cited articles), (74777

But the question of a quantitative comparison of theory
with experiment is in fact still open. We shall there-
fore dwell on size effects in considerable detail.

In this Chap. II (with the exception of 3.4), the he-
lium is assumed to be at rest, so that the parameter
¥ can be regarded as positive, real, and satisfying Eq.
(2.20). For convenience, we write down this equation
for the case when ¥, varies only in the z direction

d2
= [— 1+ (=) ¥ Ml o,
1/2 3+ ML/2
b=t (2 g (M) P e
=274-103(2EXL )*£7% em,

3.1)

4 —‘———i——
M ITION

v -
Yo = izgumare 1T n-T.
Equation (3.1) has as its first integral
’Z‘r" )2+¢;—#—¢3—%¢;=const2—1, (3.2)

and any problem for a plane layer can be solved in
quadratures. We begin, however, with the simplest
case, when a plane layer (film) of thickness d goes
over into the superfluid state at a certain temperature
T,(d) via a second-order transition, i.e., $j=0 at the
transition point. Then the value of ¥, close enough to
the transition point tends to zero, and we can confine
ourselves in the right-hand side of (3.1) to the first
term, meaning that §¢(z) =C, sinzy + C cosz,. For a
layer, taking the boundary conditions (2.24) into ac-
count, we have

Po(0) =0, @ =0 (3.3
or, in a form that is frequently more convenient
o (0)=0. (id‘z—")md/z:o. . (3.32)

Obviously, under these conditions we have ¥§(z)
~(, sinz,, and a nontrivial solution is obtained only at
d>d,, where sin(d,/£y)=0, i.e.,

de =y (1) =8.61-107 (2HM) V2 4=28 oy (3.4)
Hence, by virtue of the definition of £, (), and recog-
nizing that in the foregoing we had everywhere T,
=T,(d—-~=), we get

[(3-+ M)3)3/% (nZee)®® _ 2.53-10-11 [(34 M)/3]¥/*
AT =T\—Ts ()= = o K,

(3.4a)
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where d is the thickness (in centimeters) of the layer in
question (in this formulation of the problem, when we
determine the temperature 7,(d), it is natural to omit
the subscript “¢” of d). For a round capillary of radius
7o and for a spherical cavity (pore or drop) of radius R,
it is more effective to use in (2.20) cylindrical or
spherical coordinates, respectively, and in (3.1) the
derivative d%y,/dz% is replaced by

4, by g (v
Te du(r‘ dr.) and R:d_R,(H‘ dﬁ,)'

In place of the boundary condition (3. 3a) we now have
Yo =0, () _,=0 w@=0, (), =0 (.9

Proceeding as before, we obtain (2.4048 is the first
root of the Bessel function I(r))

. 3%
To.o== 240488y, ATy =T — Ty (ro) = ‘-69,“*“:3‘?;”””3] , (3.8
[}

(3.7

Ry ooy, ATymTy— T (Ro)= 2.53-10-1112(3;;-M)/3]3" .
, » B

A check on the validity of the theory would be satisfac-
tion of the relation'®’ AT, <d%/%, and measurement of
the coefficient will make it possible, in principle, to
determine the only remaining free parameter M. Un-
fortunately, at M <1, when a second-order phase tran-
sition takes place and the formulas written above are
valid, the dependence of 4, or of AT, on M is quite weak .
(when M varies from O to 1 the coefficients in formulas
(3.4a), (3.6), and (3.7) change by only a factor (4/3)*/3
i.e., by 24%). At M>1 the transition of a film from
the normal state (helium I) to the superfluid state (he-
lium II) is of first order, as will be shown below, and
the critical value of the thickness d,, corresponding to
the thermodynamic transition point (the point where the
thermodynamic potentials are equal), as well as the
corresponding “shift” AT, =T, - T,.(d), depend on M
very weakly, as before. Thus, for example, for a
plane-parallel gap we have d, . =4.4%;, as M- >, i.e.,
it differs from the value of d, at M =0 by only a factor
of 1.4.- Thus, even very large values of M cannot be
regarded as excluded from the known experimental data.
On the other hand, the characteristic relation‘ATxocd‘V 2

which does not deperid on M, is confirmed by experi-
ment.lu-une.al.az.eel

One of the most pressing problems of future research
is measurement of AT,(d) in rather wide gaps, i.e.,
close to T, =T,(d—=°). Only in this case is the condi-
tion £y > a~ 3% 10" cm, which is needed for the theory
to hold quantitatively, satisfied (see (1.4) and (2.21)),
and at the same time it is possible to measure the
thickness d with sufficient accuracy. On the other
hand, such measurements appear to be quite realistic,

®)More accurately, failure to satisfy this relation would con-
‘tradict the theory, whereas the relation AT, d /2 should
be satisfied even under simpler assumptions, provided only
that £(8) <¢"2/3, We shall no longer repeat below the similar
stipulations connected with the universally known “asym- '
metry” in the interpretation of experiments that agree or do
not agree with the conclusions of some particular theory.
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since it is possible to work with helium II very close to
the A point (see, e.g.,®*®) where values  $10°°K
were attained). By way of example we note that at
d=1p =10 cm the length is £,(t=AT,)=d,/n=3.2
%105 cm and the difference is

AT, (d)=2.5.10"8 [ﬁsﬂ]a/u K

it is clear that even gaps with d =10 to 10°® cm, if they
can be produced and their dimensions controlled, are
still perfectly suitable from the point of view of satis-
fying the condition £, > a.

We turn now to the other limiting case of very thick
layers, when it suffices to solve the problem for a half-
space. In this case it is convenient to measure the dis-
tances in units of &(#)=£,V3/(3+M)=2.74- 10°%%/?
cm. Thus, we put y =z/£4(t), after which Eq. (3.1)
and its first integral (3.2) take the form

2 E90 [ @D+ 2(1— 2] ¥+ ViU o, (3.8)
2 () + @~ i — 1 —2) H— i = £, (3.9)

where v2=2M/(M+3) and E=(M+3)I/6 is a certain new
constant. Equation (3.9) can also be rewritten in the
form

2(5B) —a—wrd v +1=E, (3.92)
from which it is clear why it is convenient to measure

the distances of units of &, and to replace the param-
eter M by vy.

Let us find the solution of Eq. (3.8) under jhe bound-
ary conditions (the helium fills the region 0 <y <)

Po (0) = 0, o (o0) =1.

Of course, as y— < the derivative dyo/dy—~ 0. In this
case, obviously, the constant E in (3.9a) is equal to 1,
and the equation can be integrated in terms of elemen-
tary functions

'lpo(y)a——-ﬁh(y—w—_tg—)i__—-. (3. 10)
Vitvi b2y YV T+
In the simplest variant, when M =0, we have
— z _ z _ 2/3 3.11
W@=thmr, A@O=puthi o, pe=143™ . (8.11)
We note that at large distances from the wall we have

V2 (1+va)),

1p,,(z)z1—exp(_ 2

The length &y = £o/V2(1 + 13) = £4V(3 + M)/6(1 + M), which
has the meaning of the correlation function of the mod-
ulus of the parameter ¥ below the A point, changes
only by V3 times when M is varied from 0 to . This
is indeed the cause, as we shall show below, of the
relatively weak dependence of various surface eifects
in thick films on the value of M.

Besides the distribution p,(z) itself near the wall,
interest attaches also to the surface “deficit” of the
superfluid mass
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A=°j: (Pae— 4 ()] d2, (8.12)
to the surface energy
o= So (D11 (ps (2))— D11 (Poe)] dz = .T @1zt (09— Prrx (Pu)] 2,
v .
(3.13)

and also to certain derivatives of the surface energy,2’
viz., the surface entropy S,= - (3¢/97T),, the surface
heat capacity C,= - T(8%0/87T%),, and the excess surface
mass my =~ (3g/84) .

In addition, in the case of solutions of helium-3 in
helium-4, interest can also attach to the excess sur-
face mass of the He®: mjy ,=—-(80/8u3), ¢, WheTe pg is
the chemical potential of He’.

The thermodynamic potential &;;_;{p,) per unit vol~
ume at »,=0 is, according to (2.13) and (2.15),

D111 () =Dr1 (p, T, p)—- D1 (p, T)
= Otz (Pue) [— (2= V) ¥+ (1 — 29 9+ 935 +2 (52 )],

AC
D11 (Pee) = Oy — D1 (Pse) = ZT: 22, t=T,—T,
_ =z _ M
V=g v:_M_-p-:s' (3.14)

Substituting the solution (3.10) in (3.12) and (3.13) and
taking (3.14) into account, it being convenient to change
from integration with respect to the coordinate to inte-
gration with respect to ¥, and to use (3.9a), we obtain

AO=80 pu () L2 1n (314 VTTH), (3.15)

o () =2 (&) D113 (Pue) 71/‘2— [ 44%) In (v+ VTF¥)
—wVIT+vi(1—2vD)].
(3.16)

The derivatives of ¢ with respect to T and with respect
to i, in view of the power-law dependence of ¢ on

t= T\(u) =T, are obviously expressed in terms of ¢ and
t themselves:

Sa=0i(t)= (2 —a—v) 170 (1) = 510 (1), (8.17)
Co= —Ta0h () =2 —a—v)(1—a—v) Ty () = —= 2o,
(3.18)
mo =0 (t =Ty () — 1) = —oi T =| T2 |5, (3.19)
Mg, o= — 0 (t =T (w, Ha)‘—T)=—ZTT;' 8. (3.20)

In the scheme considered by us, the critical exponents
are =0 and v=2/3. If M =0, when the solution (3.11)
is valid, the calculation is particularly simple and we

obtain directly, or else from (3.14) as vy—0,

Ag==V 2 (t) pse (1) = 0.81 - 1078 g/cm?
O~ %/1 & () r-11 (pse) = 9.0-1072%/% erg/cm®

(3.15a)
(3.16a)

In this case

20We have already emphasized (see Sec. 2.1) that to solve
static spatially~inhomogeneous problems we must use not
the potential &(p, T) but the potential Q(u, T).
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TABLE II.

M |vi=2M/(3 + M) LY T /%0 @y—11 (1)

0 0 1.414 1.886
1 172 1.347 1.976
2 4/5 1.272 2.026 .
o0 2

1.446 2.208

Sq = 0.12t3 erg/cm? deg, (3.17a)
Cq = —8 7-10-2-23 erg/cm? deg, (3.18a)
= 1.54-10~%z4/3 g/cm? (3.10a)

To measure the profile p,(z) we can use a procedure,
albeit not an easy one, of probing with second sound;
this will be discussed in Sec. (3.2). The quantities &
and o (as well as their derivatives) can be measured by
using “thick” films of thickness?"’

d> & = 2.74.10°% 2 cm .

In this case the mean values p, and $;;=%, - ®;_;
(averaged over the cross section) in the film are equal
to

Prm o2y (1= 20, (3.202)

B =D (pue) + 27 (3. 20b)

The quantity 7=A(¢, m)/p,(t) is frequently called the
healing length. Analogous formulas hold also for other

quantities. For example,
St =511 (0se) + 2‘:" = t“‘ R (3. 20¢)
Tp=C, <p.e>+-“—°=c <p.,)—%%-%, (3.20d)
p=pl —z‘" 4Ty, (3. 20e)

Measurements of the foregoing quantities, and in the
case of solutions also of m; ,, can be used in principle
to determine the parameter M, or to check the theory

if M is known from other experiments. «Unfortunately,
the dependence of A and o on M (it enters in (3.15) and
(3.16) via v3=2M/(3 + M) is quite weak, as is clear from
Table II.

For films of arbitrary thickness, the results of y(z)
and other quantities cannot be expressed in terms of
elementary functions. In a qualitative investigation of
the problem it is convenient to use a mechanical anal-
ogy, for when y is replaced by the time ¢, and ¥, is
replaced by the coordinate of the point x, Eq. (3.8) de-
scribes the motion of a point having a mass 4 in the
field of a potential (Fig. 1).

V(z)=2—)z2—(1 -2V} st —virs=1— (1 — 2?2 (1 ++2z%). (3.21)

On the other hand, Eq. (3.9) has the meaning of an

pMore accurately, as we shall see below, it suffices to have
d larger than the “critical” thickness d, or dy, (in the case
when the phase transition in the film is of first order) by an

amount on the order of 28y =2£,v(3+M/6(1+M).
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energy conservation law, the total energy (V +2x2) be-
ing equal to E. The distribution of P,(y) at half the
film thickness (0 <y <d/2£,) corresponds obviously to
the trajectory of the particle on the section from x=0
to the turning point x,, where x, is determined from
the solution of the equation
E~V(zy) =0. (3.22)
Using this circumstance, the expression for the dis-
tribution y¢(y) can be immediately written in para-
metric form (y varied in the interval from 0 to d/2&,)

x=1p d
=y2Z —
y=V £ VEiT®

Substituting x,, as the upper limit in this hexpression,
we obtain the connection between the amplitude of the
distribution x,, = 4(d/2) and the film thickness

xm

d _: 5 dz
—_—=D= ——
%o 2‘/2§ VE=V (z)

(3.23)
The quantity D has obviously, in the language of the
mechanical analogy, the meaning of the half-period of
the oscillations. Let us analyze (3.23) in somewhat
greater detail. To this end we substitute in it V(x) and
E in accord with {3.21) and (3.22), and make the sub-
stitution x/x, = sing under the integral sign.

After some transformations we obtain

E_*gvz (3.24)

W@‘ '
R@h 9)=(C—"W)—( -2 (1 + smz @) =%,

— 3 (1 + sin? @ 4 sint ¢) z4,]*/2.
(3.25)

12 and we

As xZ - 0, the integrand becomes (2 - v2)
obtain, as we should,

d. = Do = n§0]/2/(2 — Vi) = alV B + M3 = nky ().

We now obtain the next (first) term of the expansion of
Dinx?
o2
=3=2l/2—v' S [ + 2(2 2"3,) z,,.(1+sin=q>)+...]dq>
0

“1/ M

(3.26)
It is seen from (3.26) that at M>1 the dimensionless
length D first decreases with increasing x,,. At the
same time, as x, -1 the “period” D (the film thickness)
increases without limit. Thus D, as a function of x,,,
has a minimum D =D, at a certain value x, =2, .. I
now, conversely, we regard x,, as a function of D, then
in the interval D, <D<D, this function is double-val-

=D (1+5(U—Mzht...

122:]

14 £~1
| ser f1 FIG. 1. Plot of the function
. o Vix).
| | I ]
i HE.
=1 ~Zn J Iy 7 z
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FIG. 2. Dependence of
M, and of the dimension-
less thermodynamic po-
tential # on the film
thickness for the case
M>1.

ued, i.e., one and the same value of the film thickness
d=DE&g corresponds here to two different distributions
of Po{y) with different amplitudes x,,.

To determine the cause of this ambiguity, we turn to
an analysis of the behavior of the total excess thermo-
dynamic potential of the film referred to a unit surface,
®y1o1= [ @111 )dz = [21(p,) - ®,]dz. The mechanical
analog of &;;_; (more accurately, of the ratio & =&/
®;_11(pse) £0(t)) is the action integral of the particle over
a half-period of the oscillations

Dj2

D111 =5 =2 S [222—V (2)) dt
v

B 11 (Pae)
= —ED+4V§S VE=—V@dz.
[
(3.27)
The derivative $1D) of the action with respect to the
half-period of the oscillation is, as is well known, the
negative total energy of the particle (this can be veri-
fied also by direct differentiation of (3.25), after first
making the substitution ¥ =x/x,, under the integral
sign). Since E=V(x,)> 0 by its very meaning, this
means that & decreases monotonically with increasing
D. 1t is easy also to determine the sign of the second
derivative of the function #(D). We have

£ (z})

(D)= —E' (D)= — iy -

But E'(x2%)=dV/d(x?>0. Therefore 3" (D)<0 if

D" (x%)>0, and conversely &”(D)> 0 if D" (x2)<0.
Using the obtained information concerning the signs of
the derivatives, we can easily construct the entire
plot of &D). It must be borne in mind here that
PD=D.)=9"{D=D.)=0, and that at large D the #(D)
curve approaches asymptotically the straight line 20-D,
where §=0/(£¢®;_;1(0s¢)) (see formula (3. 20b)). The
approximate form of the plot of #*(D) is shown in the
lower half of Fig. 2. This plot is typical of first-order
phase transitions. The point D,, where the lower curve
crosses the abscissa axis corresponds here to the ther~
modynamic transition point (the point where the ther-
modynamic potentials are equal), and sections 1 and 2
correspond to the superheated and supercooled states.
The upper branch of the curve (shown dashed in Fig. 2)
corresponds to unstable states, In addition to the plot
of 7(D), the upper half of Fig. 2 shows a plot of the
function M,(D) = p;if ps(z)dz. The fact that this plot is
S-shaped also indicates a first-order transition.
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Approximate plots of the functions #(D) and M,(D) in
the case M =1, which is simpler to analyze, are shown
in Fig. 3.

Thus, depending on the value of the parameter M,
the phase transition in the film can be of first order
{M>1) or of second order {M<1)."?*%] The value M =1
corresponds to the tricritical point. The parameter M
can, in principle be affected by pressure or by intro-
duction of He® as an impurity. In fact, if the He® con-
centration in the solution is x5 >x3,, (xy , > 67% at sat-
urated-vapor pressure), then the transition to the su-
perfluid state is of first order also in an unbounded
liquid. In this case certainly M>1. The situation is
less clear at x;<x; , and even in pure He!, since sys-
tematic investigations of the A transition in sufficiently
thick films or gaps (with 2 (0.1 to 1)u), with well-con-
trolled geometry, have not yet been carried out, and
it is difficult in practice to distinguish between a sec-
ond-order phase transition and a weak first-order one
(according to'™), the transition in thin films is more
likely to be of second order).

In a quantitative study of the behavior of various
thermodynamic functions of a film, the integral in the
right-hand side of (3.27) is best written in a form sim-
ilar to (3.24) and (3.25);

xm o2
1,=4Vi5 VE=V (@ dzmi Véz:,.j cos*gR (zh,9)dp.  (3.28)
0 9

The average thermodynamic potential of the film is in
this case:

Tt (d) = s+ Droy (0ue) (—E+2L) (3.29)

AC d
D1 (Pse) = 2T: £ = IYGI

where according to (3.20) and (3.22),
E=E (ah)=2h [(2—v)) — (1 —2+}) ah — vjzh
=1—(1—ah2(1 +viz}).
(3.30)

It is convenient to reduce also the expression for p,(d)
to a similar form:

Iy

P ()= pae () (2h— ). poe=1.43p2t7", (3.31)

/2 20 d
) — G 2 c0s8% @ dg
12“21/“’"0 Reh, 0

Expressions (3.29) and (3. 31) in conjunction with

P

A A
S Paebalt)

1

B!

P bl

FIG. 3. Dependence of M, and of the dimensionless thermody-
namic potential ¢ on the film thickness for the case M <1.
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(3.28), (3.30) and (3.24), (3.25) define ®,(d) and p,(d)
in parametric form as functions of the parameter x,,,
which has the meaning of the amplitude of the distri-
bution of y¢(z), i.e., of the maximum value reached by
the function #4(z) at half the film thickness.

Differentiating (3.29) with respect to ¢t =T, ~ T and
recognizing at the same time, as already mentioned,
that &'(D)=d/dD(- ED +1I,) =~ E(D), we obtain an ex-
pression for the average entropy density and for the
average heat capacity of the film

811 (d) = S1+ S1-11 {pse) ( —E -I-—-' —) ) S.I-II (Pse) = ATCP )
. (3.32)
Cu (d)=C;+ACp[E—%%--J— DE' ( D)] (3.33)
E'(D)= 5' (Z ; 2—\’3)—2(;3_@2}:;) T D ' (3.34)

0

Let us analyze the derived relations.
thick films, of thickness

We begin with

1/2 3L M 12

_ A O-8p~2/3
=2.74-10"% EOEM

cm.

4T 0=8[ s

In this case we canput x4 =E=1 and E'(D)=0 in (3.29),
(3.31), (3.32), and (3.33). The corresponding inte-
grals I, and I, can be easily evaluated at x% =1, and
from (3.29), (3.31)-(3.33) we return, as we should, to
the asymptotic formulas (3.20). We note that the
asymptotic values given by (30) are rapidly {exponen-
tially) reached in the case of thick films, with correc-
tions on the order of exp{- (d —d,)/t;}, where

dy~ min(d,., dy) (d,, is the critical value of the thickness,
corresponding at M>1 to the equilibrium transition
temperature). Thus, with accuracy better than 5%,
these formulas can be used already at

d>de+2V 281

A few remarks are in order concerning the tempera-
ture dependences of p, and C, in thick films. In con-
junction with (3.15), the result (3.20a) means that

Eo (1) pse (8 2 V2
d

e = Dec (1) — In (v + YV T+7)

= Oue () — Knspie (Tn. (), V= 2

Mi3

(3.35)
i.e., for a thick film the average density p, is simply
“shifted” by an amount Kyp(T,(d)) in comparison with
the density p(7) in a large volume. The constant Ky
ranges from 0.90 (at M=0) to 0.52 (as M-=). Itis
precisely this kind of “shift” of the function p(7T) which
is observed in experiment (see, e.g.,# %% put it
cannot be used to estimate the numerical value of the
parameter M, since the data obtained in the corre-
sponding experiments refer to channels that are not
wide enough (AT, 2 10°2°K) and are as a rule irregular,
with a great uncertainty in the pore dimensions.

On the other hand, the difference between the heat
capacity C, of a thick film from the heat capacity C,lpg)
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in a large volume no longer reduces to a simple shift,
and according to (3.20d) it increases in proportion to
23 with increasing temperature. The maximum value
of the difference C,(p,,) -~ C,(d), reached at the limit of
applicability of the asymptotic formulas, i.e., at
d=~d,, +2V¥2ty, is approximately (0.1-0.2)AC,. Un-
fortunately, we know of no exact measurements of the
heat capacity C, in “thick helium films.”

We turn now to the case of thin films with d< diy
+2\/§§],. The analysis is simple enough here only if
M <1, i.e., when the phase transition in the film is of
second order. Assume first that M <1, In the limit
when x% <<1, we obtain from (3.26)

_ 8 D _ L@
2t = iy (50— 1) =5 [“' 1]
16 Ty () —T
9(1——M) TA-—TA(d)

(3.36)

Using this expression, we obtain from (3, 31¥

8 Ty () —T -
TO—) 0 T Ty

N =T @ (1 @) — T,
(3.37)

- z3
e P (T) 5=

where the last expression is obviously valid only if

T @)~ T ATy=T, — T, (d. (3.38)
It is clear from (3. 37) and (3. 38) that a linear depen-
dence of g, on the temperature should be observed only
in a narrow region near the temperature 7,(d) at which
superfluidity appears in the film. One can hardly hope
to reveal this effect distinctly by measuring the velocity
of fourth sound in porous materials filled with helium II.
The uncertainty in the pore dimensions and the need for
taking into account the variation of these dimensions
over distances on the order of £,(¢) can lead to sub-
stantial changes of the picture. The available data for
porous materials merely confirm the presence of the
shift A 7y(d), but cannot be used for a quantitative veri-
fication of the formulas given above. It must further-
more be added that the pores must in any case not be
small enough to make AT(d) 2 0.1 °K, for otherwise
the ¥-theory is quantitatively not valid at all (condition
(1.4)). The last remark refers, in particular, to™
which cites AT, =0.22°K. Both for this reason and on
the basis of Fig. 1 of®3 we still see no justification
for stating that the theory contradicts the observations.
We note furthermore that in®%, in contrast to®", a
region (3. 38) in which p, depends linearly on T;(d) T
has been observed. It is undoubtedly desirable to
measure pf#) for sufficiently wide gaps (or capillar-
ies, pores, etc.) with distinctly determined dimen-
sions. : :

We now calculate the ]ump of the heat capacity AC
= C,_ 11—~ G,1inafilm at T=Ty(d). From (3. 33) and

2)The result (3.37) at M =0 coincides with that given inf™1,
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TABLE IIL.

2
T *m, ¢ 5 - =
PO 1A B CR V=2 PR dgy | S | 45| 2% | g,
= 3| - 3 3 (__2“ ) By |PI_1r(P,)| AT

o

9/7 1 0.6 13,735 3.755 3.728 0.20 0.100| 0,094 6.11 1 0:28
2 0.8 {3.89% 4.056 3.845 0.45 0.226) 0.196 2.04 | 0.59
3 1 4.017 4,443 3.898 0.60 0.304| 0.248 1.36 1 0.74
4,51 1.2 14,101 4.967 3.914 0.69 0.352] 0.280 1.10 ] 0.82
7 1.4 |4.186 5.736 3.910 0,76 0,391] 0.293 1.00 | 0.88
17 1.7 14.291 8.112 3.882 0.83 0.434| 0.308 | 0.91 | 0.93
oo 2 4.404 oo 3,841 0.88 0.468] 0.320 )] 0.85 | 0.96
(3. 34), using also (3. 30) and (3. 36), we obtain®®
AT, (dy= Cp, 1y (Tr (d)) — Cpy (T1.(d))

_ 2 I | 2 g

_Ac,,(E_-9_-5-+?1)ED)L,_0

m
2 E' (23) 32ACp
=g AC:D. D (=3) ), —0 SGFM(I—2) *
(3. 39)

We note that the “jump” of the heat capacity in the film
is somewhat larger, even at M=0, than the “jump” AC,
" of the heat capacity in “bulky” helium. Inaddition, the
quantity A G,(7,(d)) does not depend on the thickness of the
film, incontradictionto the conclusiondrawn in‘?3, The
- interpretationof the experimental datagiven there seems
therefore doubtful tous. The general picture of the behav-
iorof AC,(T), which follows from the analysis presented
here, is obviously the following: atd>d, +2V2 &y, when
the film can be regarded as “thick,” AC firstdecreases
with increasing temperature, in accordance with for-
mula (3, 20d): next, at d~d,+2V2 £y it reaches a mini-
mum AC, nn ™ (0. 8=0.9) AG,, after which it begins to
grow and tends as T - T,(d) to the value determined by
(3. 39).

As M~1, the heat capacity C, diverges at T=T)(d)
because the value M =1 corresponds to the tricritical
point. It can be shown that as T-T,(d) the character of
the singularity of E,(T) is in this case of the square-root
type

Cp.11=Cp 1+ 0,37AC, Ta—

L@ oy, Tx('i) <.

T d)—T
(3. 39b)

The density of the superfluid component also vanishes
in this case in accordance with a square-root law

M=1, L_T-:*ﬂ<<1. - (3.37a)

- Tald) —T
6 =0.13p, (1)) 22 E=T_,

At M>1, to assess the positions of the transition
point (the temperature T (d) or the “critical” thickness
of the layer di,) and of the discontinuities that take place
at T= T, (d) in the density (Ap,), in the entropy (AS),

23)1f the critical exponents & for the heat capacity and v for the
correlation length are not fixed, the result (3, 39) takes the
form
= v2 16

ACp= AC,.

C—af(i~a) B+M(—M) (3.39a)

In particular, if the self-consistent variant (2, 5—(2. 8) were
used, the relative discontinuity of the heat capacity in the
film would be AC,/AC,=2/3.
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and in the heat capacity (AC,), as well as to determine
the limits of the temperature hysteresis, numerical cal-
culations are needed. Some results of calculations of
this kind are listed in Table IIIL.

The last column of Table III gives the values of the
relative pressure jump E; = [py(Ter(d) = P1])/Qperr(0ge)
which is realized in the film if the thickness of the film
(layer) is fixed.?¥ Actually, however, in the case of
films the given quantity is the vapor pressure over the
film, and it is the thickness which changes jumpwise at
T = Ty {(p). This circumstance must be taken into ac-
count when the predictions of the theory are compared
with experiment. A rapid change in thickness or vapor
pressure over the film takes place at T~ T,(d) also if
the phase transition in the film is of second order For
details see!™ 5],

Unfortunately, it is difficult to compare the thermo-
dynamic parameters of the films as given by the de-
veloped theory and by experiment in the immediate
vicinity of the transition temperature Ty(d) or Ty (d).
The point is that, as already mentioned in Sec. 2.4, the
heat capacity and other analogous quantities (entropy,
thermodynamic potential, etc.) depend on the long-wave
fluctuations. The corresponding contribution was at-~
tributed by us to terms of the type ®:(p, 7), 5;(p, T),
etc., and was assumed to be symmetrical with respect
to replacement of £ by -, i.e., to have no influence on
the difference ®,; —®;. In the case of helium in large
volumes this, in general, is confirmed by experiment.
In the case of films, however, the situation can be dif-
ferent, and the contribution of the fluctuations at £<0
and £>0 may turn out to be different (see, e.g., ).

In this case the considered ¥-theory must definitely be
modified. We note that in the calculation of 7,(d) this
difficulty is not so crucial, because the long-wave fluc-

‘tuations smear out the transition only slightly (so

that there is a certain “para-superfluidity” also at

T >t(d), see, e.g.“"%)), We emphasize that the noted
difficulties encountered when it comes to compare the-
ory with experiment (even for films whose thickness can
be accurately controlled) make the corresponding ex-
periments no less interesting and important.

3.2. Density distribution of superfluid component in

~ external fields

The effect of the boundaries is not the only factor that
leads to inhomogeneity of the modulus of the order pa-
rameter | ¥ | =n=vp,/m in immobile helium. A similar
result is produced also by the action of various external
fields on the liquid, e.g., the gravitational field, stric-
tion forces of electric and magnetic fields, or the fields
of the van der Waals forces. The field increases the
density p of the liquid, and with it the temperature T,

2)The additional pressure produced in the film as a result of
its transition to the superfluid state is given by the formula

#yp1
—ar= 9 wrT

where Qpp(Pse) = (AC, /2T, AC, = AC,=0.76 J-cm™ deg,
and E is defined in (3. 30).

=817 (Pse) £ (ﬁ) !
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= T\(p) of the X transition. As a result, if the potential
V(r) of the field forces is not constant in space, then
the phase transition into the superfluid state occurs not
simultaneously over the entire “sample,” and the first
to become superfluid (with decreasing temperature) are
those liquid regions in which the density p is lower. The
‘regions that have already gone over into the superfluid
state are separated from the neighboring ‘“normal” re-
-gions by diffuse phase boundaries, and the width and
shape of the boundary {the character of the distribution
of p(r) in the transition layer) depend on the field gra-
dient, on the correlation effects that are taken into ac-
count in (2. 15) with the aid of the term containing the
gradient of ¥, and also on the form of the density of the
thermcdynamic potential. It is clear even from this
that a study of the distribution of p,(r) in the transition
region is of considerable interest.

The question of the character of the inhomogeneous
distributions of p(r) in external fields and of the pos-
sibility of experimentally studying distributions of this
kind were considered on the basis of the ¥-theory of
superfluidity in®®®J, In addition, for the particular
case of the He I~ He II boundary in a gravitational field,
a number of preliminary estimates were made also
in'®+363 5nd in the experimental paper™’!. For lack of
space, and in view of the rather complete treatment
inB%®!  we omit many details in our review of the cited
papers.

When solving spatially -inhomogeneous problems in
which the changes of the density p are significant, it is
necessary to consider the thermodynamic potential

By, 75 ¥, 0= | [Fuuo (o, T | WP + 5 | V¥ P—pp ] ¥ (3. 40)

and to minimize this potehtial with respect to ¥*(r) and
o(r) simultaneously.

In the presence of an external field G =V V(r) (per
unit mass) it is necessary to add to the integrand of
(3.40) the term pV(r), representing the potential energy
of the particles in the field, and also, generally speak-
ing (if the density changes noticeably over distances on
the order of interatomic ones), the term (5/2)(Vp),
which takes into account the correlations of p. As a
result, by minimizing (3. 40), we obtain the following
system of coupled differential equations for the equi-
librium values of ¥,(r) and p,(r) '

"2 o F1io
ZmAP'(al‘l'lz )p.TW’

_ {9F110 oy .
6Ap—( ap )[‘I’I'—’.T wVr)

(3.41)

If however, the gradients of the density p are small, as
will be assumed from now on and is assured if the con-
dition (2. 21) holds, then the terms with the spatial de-
rivatives of p can be discarded. Furthermore, it is
convenient to change over from the density of the free
energy Fypolo, T, 1'% 1%) to the density of the thermody-
namic potential Q1 o(1o, T, 1¥1?) in terms of the vari-
ables pq, T, and |¥ [, where L, is the chemical poten-
tial of helium in the absence of an external field
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Po= (—%%L )I‘I'lz, RV (3.42)

Equations (3.41) are then separable and take the form

hi2 aQ
T A= (57 )y, (3. 43)
aQ
0= —( i’rf;o )mﬁ, T (3.43a)

We change over now to the reduced ¥ function (3. 12)
and to the dimensionless coordinates r, (see (2.17)),
and use for Q- 2; a formula similar to (2.13). Equa-
tion (3. 43a) then takes the form
Basb =g (—H P A= 1 PP | w P+ M9 1Y, (3.44)
which is analogous to (2.18), except that the distance to
the A transition, {=T,~ T, is itself now, generally
speaking, a function of the coordinates®, inasmuch as
in accord with (3. 42) we have .

t=To(p) ~T =T (p—V (1) —T =~ tu——V<r>, (3.45)
where fy= Ty o — T+(dTy/dp) (1 —»,) i8 the initial dis-
tance to a certain point (T3, {4g) O the X curve in the
absence of an external field, and d7,/dyu is the slope
of the X curve at the indicated point (at saturated-vapor
pressure we have dT,/du=-1.27x10"° deg-g-erg™).%¢

We note that if we were €6 use for @y, ~ 8, in (2. 13)
the more general formula (see®%! and Sec. 2.4)

Quo— = “ 2]:( 1£1173 )'

then Eq. (3.44) would take the form
at‘p—lﬂwa (!'#f/_s') .

Thus, were we to know from experiment the function
P(2) in the region of the transition layer, then by plot-
ting the dependence of y=(d%)/dz% )It(z, ) |™/% on
x=9/1¢1'/? it would be possible to determme the form
of the function f(x), and hence the form of the density of
the thermodynamic potential, and furthermore for all
xand £ § 0, and not only for x £ 1 and />0, as is the
case for films. We shall return to the question of the

21n principle, a changeover to other thermodynamic variables
can lead also to a change in the coefficients of (2. 18) (the
numerical value of the parameter M and the numerical val-
ues of the scales &, and ¥, indicated in (2. 12) and (2. 17);
see also (2.9))., Actually, however, the corresponding re-
normalization of the coefficients turns out to be very small
and, in particular, on going from the variables (p, T, ¥) to
(1q, T, W) it does not exceed 2% (for more details seel38)),

2)The equations used in'®! and!®®! contain instead of the de-
rivative dT,/du the derivative p,dT,/dp. That these two
derivatives are equivalent is implied also in the experimen-
tal paper. ¥!1 We note that although the difference between
dT,/dy and p,dT,/dp is quite small (~2%), allowance for it
brings the slope of the A curve dp,/dT =-113,9 atm/°K, ob-
tained mm“, closer to the best experimenta value dp,/dT
=—111.05 atm/°K"8! (the corrected value that follows
from”’“ for dp,/dT is —11.6 atm/°K).
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" FIG. 4. Distribation of the order parameter ¥(y) near the
He I-Hell interface in a gravitational field. The solid curves
were obtained by numerically solving Eq. (3. 50) for two values

of the parameter M, namely M =0 (curve 1) and M =1 (curve 2),

The dashed curve shows the distribution l,Z(y) =y"'3 that would
be obtained without taking correlation effects into account.

methods used to measure the density profile p,(z), but
for the time being, having no information on the com-
plete form of the function f(x), we assume Eq. (3.44)
and consider a number of concrete problems on its
basis.

We begin with the case of slowly varying fields and
assume first that the field G is entirely homogeneous.
In this case (the z axis is assumed directed along the
field)

VG = Gz. (3. 46)
In the particular case of a gravitational field the con-
stant G has obviously the meaning of the acceleration g
due to gravity. It is convenient to measure the co-
ordinate z from the plane ¢=%, - (dT,/di) Gz = 0, which
corresponds to the He I-He II phase separation bound-
ary in a field (without allowance for correlation effects),
and to change over to a new relative ¥ function and to a
new dimensionless coordinate y

(3.47)

where the characteristic scales ¥, and I, are equal to

Wo=(22)",  pe=1.43p (32) =0.21 (32 )g/em’

s (3.48)
o= |210)™

In particular, for the gravitational field (G=g=981 cm/
sec?) we have

pug =1.43p;, 22 —8.6.107 glem?, (3.49)
8

lg= 30 ( l%|g)_2/5 =6.7-10" ¢m.
In terms of the variables (3.47), Eq. (3.44) takes the
form

B 2 =y -y MR . (3.50)
Solutions of (3. 50) corresponding to the values M =0 and
M=1 are shown in Fig. 4, where the dashed curve
shows also the zZv'(y) distribution that would be obtained
without allowance for the correlation effect.  Attention
is called to the fact that the curves with M=0 and M=1
are very close to each other, despite the essentially
different character of the nonlinear term in (3. 50), The
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difference in t-l_le nonlinearity is most important in the
region where ¥ 21 ¥1/3, i.e., exactly where the ex-
pansion (2. 13) ceases to be valid, and where it would

_ be necessary to expand in powers of /1 |3 (see 35381

and Sec. 2.4)—the corresponding region is circled in
Fig. 4. The close character of the curves with M=0
and M =1 indicates, however, that the exact form of the
balance equation in this region is of no great signifi-
cance, and that the use of (3.44) is in all probability an
adequate approximation of the behavior of p,(2) in the
transition region.

In the case of an inhomogeneous but weakly varying
field, the potential V(z) can be expanded in a series
about the point z =z, at which ¢=7(2)-T=0

V@)=V @) +6E—n+ g (Fr),_ C—wtt ... (3.51)
In this case, if
()2 <1 (3. 51a)

then the field in the vicinity of the point 2 =2, can be
regarded as homogeneous, as before, and the entire
preceding analysis is valid. The foregoing pertains ob-
viously also to non-~planar interfaces, provided that the
curvature radius of the boundary is much larger than
its thickness I;.

From the point of view of experiment, apart from the
force of gravity, interest attaches also to the striction
forces that arise in electric and magnetic fields. In an
electric field, the additional chemical potential of the
liquid is equal to

aoE? (r)
2

) (3.52)

pe=Ve( = (&) i~
where E is the field intensity, ¢ is the dielectric con-
stant, and a;=3.1x 10" em®