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The properties (and particularly the superfluidity) of liquid helium near the λ point have long been and
still are objects of numerous investigations. Nonetheless, much of the problem remains unsolved from both
the theoretical and the experimental points of view. The main reason is the small correlation length in
helium II even when the distance from the λ point is as small as hundredths of a degree, so that to reveal a
number of specific effects one must work quite close to the λ point. This article treats in detail the
phenomenological theory of superfluidity of helium near the λ point, a theory whose development dates
back to 1958, and which is based on the use of the complex order parameter Ψ = ηεν (the density of the
superfluid part of helium is here ps = mrf, and the velocity of this helium component is v = (h/m)V<P>
where m is the mass of the helium atom). In addition to formulating the general equations of the theory
and discussing the regions where they are valid, we consider a number of concrete effects. The predictions
of the theory are quite rich in content and can be verified in experiment. The main purpose of the article is
just to contribute to such a verification.
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I. INTRODUCTION

Helium was not observed on earth before 1895 (heli-
um lines were observed earlier, in 1868, in the sun's
spectrum), and was first liquefied in 1908 (the boiling
temperature at atmospheric pressure is Tt =4.215 °K;
the critical point of the helium liquid-vapor system cor-
responds to a temperature Tc = 5.20 °K and a pressure
pc = 2.26 atm). It is curious that the first indication of
the existence of a λ transition in liquid helium from he-
lium I to helium II (7\ = 2.172 °K at a saturated-vapor
pressure px =0.05 atm), manifesting itself in an anom-
alous temperature dependence of the density p, was ob-
tained by Kammerling-Onnes in the same year, 1911,
in which he discovered superconductivity. It is pos-
sible that it is just this complete natural preoccupation
with superconductivity which delayed further research
on helium II; furthermore, the work was interrupted by
the first world war. Be it as it may, not until 1924
was the λ transition in helium clearly noted on the p{T)
curve, and in 1928 this transition manifested itself even
more pronouncedly in measurements of the dependence
of the dielectric constant of liquid helium on the tem-
perature (it was immediately afterwards that the con-
stants of helium I and helium II were introduced). If

we speak of helium at equilibrium, the λ transition af-
fects most strongly the course of its specific heat
(1932), but a similar behavior of the specific heat is ob-
served also for other transitions in other substances.
Therefore the true distinguishing feature of helium II, for
which the inclusive term "superfluidity" is presently used,
manifests itself in the course of flow, heat transfer, etc.
To be specific, the behavior of helium-Π films, which
at that time was not understood at all (and which we now
know to be due to superfluidity), was observed back in
1922; the superthermal conductivity of helium II at-
tracted attention in 1935, and finally, its superfluidity
was discovered in 1938. This completed the first stage of
the study of liquid helium (for more details see^'8-1).1'

It took thus all of thirty years (and in fact, even some-
what more) to explain the most fundamental properties
of helium II. It is therefore not surprising that the in-
vestigation of superfluidity has remained far from com-
plete during the succeeding thirty years, in fact to this

" F o r questions only indirectly connected with the topic of the
present article we refer the reader, when possible, only to
the reviews (see also the collection of original papers in131).
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very day. The scale of low-temperature research, to
be sure, became incomparably larger than during the
first period, when liquid helium was produced in only
about a dozen laboratories in the whole world (and for
the first fifteen years, up to 1923, only in Leiden). On
the other hand, hitherto undreamt of experimental ca-
pabilities came into being, and consequently the re-

, quirements imposed on the measurements have grown
immeasurably and new problems have arisen. Further-
more, besides *He, studies of solutions of 3He in *He
were initiated, and then also of pure liquid 3He (first
produced in 1948). Phase transitions in liquid 3He, due
to the appearance of the superfluid phases of 3He have
been observed quite recently (1972-1974) at tempera-
tures Tc 10'3°K, and are now under intensive study
(seeCel). The feasibility of producing superfluid molec-
ular hydrogen, t 7 " 9 ] or a superfluid excitonic phase in
semiconductors has been suggested. [ 1 0 · 1 1 ] The question
of superfluidity in cosmic conditions, especially in the
case of a neutron liquid and neutron stars, [ 1 2 · 1 3 : has
also attracted much attention.

The study of superfluidity (more accurately speaking
of superfluid substances) thus occupies at present a
rather prominent place in physics, and there is no talk
whatever of this field being "saturated, " even if we
restrict it only to helium II (i. e., to superfluid 4He).

We regard it as quite probable that the unflagging in-
terest in helium II is due, in particular, to the lack of
an anywhere near complete microscopic theory of he-
lium Π, similar to the modern microscopic theory of
superconductivity in metals. In brief, the Landau
superfluidity theory c i 4 ] ( s e e t 2 > 4 · 5 ' 1 5 · 1 6 1 concerning its
subsequent development) can be divided into two parts:
the quasi-microscopic theory, which operates with a
gas of elementary excitations (quasiparticles), and the
fluid hydrodynamics of superfluid liquids. Neither ap-
proach, however, is suitable in the vicinity of the λ
point, i. e., in a region that is in any case very typical
and important from the point of view of both theory and
experiment. A consistent microscopic theory of liquid
helium near the λ point would provide simultaneously
a solution, "from first principles, " of the problem of
second-order phase transitions for a three-dimensional
system, a task not yet completed even for simplified
models. One such model, the most interesting from
the viewpoint of liquid helium, is that of a non-ideal
Bose gas without the assumption that the density is low
(the gas approximation) or that the bond is weak. a 7 ]

However, even a perfectly successful further investi-
gation of this model can hardly provide more than a
check on the presently known phenomenological theory
of second-order phase transitions, C 1 7- 1 9 ] supplemented
by an estimate or a calculation of the critical expo-
nents. Yet we expect much more from a theory that
describes completely the properties and the behavior
of helium Π near the λ point—not only a determination
of the temperature dependence of all the thermodynamic
quantities for an unbounded liquid, but also an assess-
ment of the influence of the boundaries (for example,
the dependence of the λ-point temperature Tx{d) on the
thickness d of the helium film), and finally, a dynamic
theory of the flow of helium with a general allowance

for the dissipation and for the relaxation of the order
parameter.

It should be recalled in this connection that the order
parameter does not enter in Landau's superfluidity
theory at all, since this theory was constructed only for
the region far from the λ transition. For this reason,
a quantity connected with the order parameter, namely
the density p5 of the superfluid part of the liquid, is re-
garded in the Landau theory as a given function of other
quantities, for example ρ and T. Yet, when speaking
of equilibrium, the density p5 near the transition point
(the λ point) should be determined from the condition
that the thermodynamic potential be a minimum. The
quantity ps was introduced as an order parameter in
connection with the problem of critical velocities as
early as in t 2 0 :; in this formulation, however, this ques-
tion became of real interest much later (see Sec. 3.4
below). The introduction of the order parameter is im-
portant in the analysis of sound absorption in helium
II near the λ point.C21] in this case, however, there
was no need to spell out exactly which of the quantities
is the order parameter. What was actually used was
only a formula for the first-sound absorption coeffi-
cient, containing only the speed of sound on both sides
of the transition point and the relaxation time (this is
why neither p s nor any other order parameter whatever
is used for helium II inC21]).

The pressing need of generalizing Landau's theory of
superfluidity, especially to include the region of the λ
transition, was brought about by the problem of the dis-
continuity of the velocity v s of the superfluid part of the
liquid at the boundary with a solid wall. It is well
known that the helium atoms stick to the wall, so that
on the wall itself not only should the normal flux of the
liquid vanish, j n = pnvn = O, but the flux of its superfluid
part j s = p sv i should also be equal to zero. The equality
j n = 0 on the wall follows immediately from the usual
condition for a viscous liquid, ν (on the wall) =0, which
pertains also to the velocity vn. For vs, to the con-
trary, the Landau theory makes use of the condition for
any ideal liquid on a wall, i .e . , the component of v, par-
allel to the boundary is assumed to be different from
zero on the wall, in spite of the sticking of the helium
atoms to the wall. An impression is thus gained that
the velocity vs should have a hydrodynamic disconti-
nuity near the wall. For some reason, no one seemed
to worry much about the question of this discontinuity
(see, however,C22:), although it is impossible to get
around it. In fact, the discontinuity at the wall, like
a discontinuity of the velocity v s in the interior of the
helium (a vortex layer), should be connected with a
surface energy vs=ti2/mai~i0'2 erg/cm2 (here m =wH e

is the mass of the helium atom and a is the charac-
teristic thickness of the discontinuity, set equal to ap-
proximately 10~7 cm in the numerical estimates). The
foregoing estimate of as follows from different con-
siderations'233; for example, it is obtained from calcu-
lations of the zero-point (kinetic) energy following the
change of the wave function of helium atoms in a layer
of thickness a. The energy as is always appreciable,
and were a discontinuity with such a surface energy
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actually to appear at a velocity vs *0 along the wall,
then this would be clearly discerned in an experiment,
in particular, an effect of "dry friction" would occur.
Actually, however, there is no such effect, and the sur-
face energy as due to superfluid motion along the wall
is smaller by at least 7-8 orders of magnitude than in
the foregoing estimate, and can therefore be regarded
as equal to zero. C 2 4 ]

How is this contradiction to be explained? A way out
can be found by assuming that p s =0 on the wall itself,
and consequently, the density of the superfluid part of
the liquid changes near the wall over a certain char-
acteristic distance ξ, so that ps(0)=0 and ps(z» ξ)=ρ«,
where ζ is the distance from the wall and px is the value
of p s in the interior of the helium Π. Therefore, even
at vs Φ 0, the flux on the wall is ^(0) = ps(0)vs = 0, and
consequently the discontinuity of the velocity vs on the
wall itself becomes "innocent. " In other words, a cer-
tain specific surface energy as is always connected with
the wall in the helium II, and is due to the presence of
a density gradient ps(z) that has the same value at vs=0
as when vs~ 0 (this means also that there is no "dry
friction").

The publication oft25] was stimulated precisely by the
desire to construct a theory in which the density ps is
not only not specified in the interior of the helium, but
is defined by a certain equation compatible with the
boundary condition ps(0) =0. At the same time, with
the theory of superconductivity as an example,C26] it
was already explained that the role of the order param-
eter for a superfluid (superconducting) system is played
by a certain complex "effective wave function" Ψ = ηβ'ν.
Therefore, as applied to helium II, a similar complex
order parameter was introduced inC251, with

| Ψ p = mr)2, (1.1)

(1.2)

(1.3)

where m =mHe is the mass of the helium atom, and the
normalization of Φ was chosen from considerations of
future convenience.

The introduced function Φ is macroscopic and can be
used only at scales greatly exceeding the atomic scale
«~3xlO~8 cm. At the same time the density p s in he-
lium Π far from the λ point changes near the wall over
distances on the order of atomic, and in general the
correlation length ξ characterizing the change of the
order parameter is of atomic dimensions. It is clear
therefore that a superfluidity theory based on the mac-
roscopic order parameter Φ (we shall henceforth call
this the Φ-theory of superfluidity) can be developed, if
at all, only near the λ point, where the length ξ in-
creases. We have specifically in mind the region of
temperatures Τ satisfying the condition

e = i * F l . - ' < i . (1.4)

bitrarily, that we are considering the region ε S 0.1,
i. e., not farther than 0.1-0.2 °K from the λ point.

In the case of superconductivity, the correlation
length (the coherence length) ξ is large (in a typical
pure type-I superconductor, the length ξ~ ξο~ 10"4 cm
is of the order of the Cooper-pair dimension even at
T« Tc), so that near the superconducting-transition
point (that is, under the condition (1.4) with Tx replaced
by the critical temperature Tc), the Φ-theory of super-
conductivity1261 is applicable over a wide range if we
use a self-consistent theory of second-order phase
transitions, in which the fluctuations of the order pa-
rameter^near the transition point are neglected.2) For
helium II, as already mentioned, the correlation length
ξ is not anomalously large, and although on approach-
ing the λ point we have ξ » a ~ 3 χ 10"8 cm, which makes
possible a rather extensive use of the macroscopic func-
tion Φ, the self-consistent approximation (neglect of
fluctuations) has, strictly speaking, no region of ap-
plicability. A self-consistent phase-transition theory
was nevertheless used inC25], albeit with some stipula-
tion (it was impossible to proceed otherwise at that
time, in 1958). Therefore some of the final results
obtained inC25], concerning the dependence of the tem-
perature 7\ on the thickness d of the helium-II film,
concerning the surface energy os (T) on the boundary of
the helium II with a solid, concerning the heat capacity
C(T, d) of the films, and concerning the structure of the
vortex filament, are all only of approximate character.
The situation is considerably improved if we dispense
with the expansion of the coefficients A, B, C... of
ΙΦΙ2, ΙΦΙ4, ΙΦΙ6, . . . e t c . in powers of (Te - T), and
use insteadC27: the experimentally-based dependence of
these coefficients on (Tc - T). It is precisely along this
path, with allowance for experiment and the already
existing general theory of phase transitions, C l 7 - 1 9 ] that
the Φ-theory of superfluidity is presently develop-

ing C28-40]
(we are citing here also articles devoted to

the more general question of extending the self-con-
sistent theory of phase transitions, an extension based
on the use of an arbitrary, in principle, temperature

We shall therefore assume henceforth, somewhat ar-

2)A self-consistent phase-transition theory will be defined as
one in which the thermodynamic potential is expanded near
the transition point in powers of the order parameter, and the
coefficients of this expansion are represented in the form of
a series in (Tc- T). It is precisely in such a scheme that
many models are considered in the self-consistent (average
or molecular) field approximation, i. e. , neglecting fluctua-
tions. The phase-transition theory called here "self-con-
sistent" (this is not the most suitable term, but we do not
know of a better one), is frequently called the Landau phase-
transition theory. We have decided not to use this designa-
tion, first, to avoid confusion with the Landau theory of su-
perfluidity, which is frequently mentioned in the present arti-
cle. Second, the principal features of Landau's phase-tran-
sition theory1191 are the expansion in the order parameter,
the evaluation of the role of the symmetry, etc. , whereas an
additional expansion in powers of (Tc - T) is a much farther-
reaching and not obligatory assumption. Third, the self-con-
sistent theory of phase transitions was actually used in rela-
tively simple concrete cases (ferromagnetism, liquid-vapor
critical point) long before Landau's work.

775 Sov. Phys. Usp., Vol. 19, No. 10, October 1976 V. L. Ginzburg and A. A. Sobaynin 775



dependence of the coefficients A, B, C...).

The development of the theory is not yet complete,
and there are a number of unanswered questions in this
field. This being the situation, it is quite natural to
encounter also in the literature rather negative and con-
tradictory assessments of the potentialities of the Φ-
theory of superfluidity of helium II. This is all the
more a reason for casting light on the present status
of the theory, including a comparison with experiment,
and this is precisely the subject of this article. We
note, however, that no attempt has been made at all to
present a complete exposition (particularly when it
comes to the references), since this would call for
much more space and, principally, at the present state
of the problem it would hardly be justified and only
would make it difficult to see the forest for the trees.

Chapter Π of the article is aimed at constructing the
Φ-theory of superfluidity for the stationary case at
vn=0, and also at discussing the region of its applica-
bility. A solution of a number of problems, such as
the calculation of the temperature Tx{d) for films, is
given in Chap. ΙΠ. In Chap. IV we then discuss the
Φ-theory of superfluidity near the λ point for the gen-
eral case (vn*0, nonstationarity). Finally, Chap. Vis
devoted to a certain summary and to a list of future re-
search projects.

II. HELIUM II IN STATES OF COMPLETE AND
INCOMPLETE THERMODYNAMIC EQUILIBRIUM
(QUIESCENCE, STATIONARY SUPERFLUID FLOW)

2.1. Fundamental equation for the Ψ-function (the order
parameter)

It is meaningful, or in any case useful, to single out
the order parameter as one of the variables in the ex-
pression for the thermodynamic potential of the consid-
ered system (medium) only under certain conditions.
It is necessary that the selected order parameter be a
macroscopic quantity, i. e., a quantity already aver-
aged over certain small scales. Another aspect of the
problem is the question of the character of the relaxa-
tion of the order parameter. Generally speaking, the
relaxation time of the order parameter (or parameters)
is much longer than the relaxation times of the other
variables (pressure, temperature, etc.). It is just
under such conditions that we can consider states of
incomplete thermodynamic equilibrium in which all the
independent variables (quantities) except the order pa-
rameter are at equilibrium. Since the relaxation time
T(T) of the order parameter increases near the second-
order phase transition point 7\, with τ ( Γ - 7\)-°°, the
consideration of states of incomplete thermodynamic
equilibrium in this region is particularly justified.

In the case of helium Π, the order parameter is
chosen to be the already mentioned effective or macro-
scopic wave function % = ηβ1ν, which is connected with
p s and v5 by relations (1.1)-(1.3). To be sure, there
is another quantity that can claim the role of the order
parameter of helium II, namely the wave function Φ,
the square of the modulus of which is equal to the con-
centration no(T) of the helium atoms that are in a mac-

roscopic quantum state with zero momentum. It is
clear even from this that the choice of the "correct"
order parameter is not obvious. We shall return to
this question later (Sec. 2.4), and note for the time
being that the parameters no and ρ3=τηηζ may turn out
to be proportional to each other, especially near the λ
point, i. e., they are on a par or, more accurately,
one reduces to the other. Be that as it may, we shall
use below only the parameter Φ.

Assuming the existence of states of incomplete ther-
modynamic equilibrium, having different values of Φ,
we shall consider the thermodynamic potential3' Φ(ρ,
Τ, Φ) of helium II in such states. As the variables we
chose here, besides Φ, also the pressure and the tem-
perature. It is possible, of course, to consider other
thermodynamic potentials, such as free energy F( ρ, Τ,
Φ), the thermodynamic potential Ω (μ, Γ, Φ), and the
internal energy E(p, S, Φ), where ρ is the pressure, ρ
is the density, μ is the chemical potential, and S is the
entropy. When solving spatially-inhomogeneous prob*
lems it is necessary, strictly speaking, to use the po-
tential Ω (μ, Γ, Φ), since constancy of μ and Τ corre-
sponds to thermal and mechanical equilibrium, whereas
the variables ρ, ρ, and S are generally speaking coor-
dinate-dependent. When general equations are con-
sidered, however, particularly when it comes to deriv-
ing the fundamental equation for Φ, it is more conve-
nient (or at any rate more customary) to use the free
energy or the potential Φ (ρ, Τ, Φ). This is what we
shall do.

We start with a homogeneous system (helium) and
with absence of flow. Then Φ depends only on if = ΙΦ I2,
i .e . , Φ = Φ 1 Ι 0 (Ρ, Τ, ΙψΙ2). We now assume that the
potential Φ π 0 can be expanded near the λ-transition
point in powers of ΙΦΙ2, i. e.,

(2.1)

where Φ, .is the thermodynamic potential of helium I
near the λ point, and A, B, C, , are functions of p
andT.

The state of complete thermodynamic equilibrium
corresponds to the minimum of Φη 0 with respect to Φ*,
i. e., to the condition

(<π^)Ρ, τ

ψ=°·
Below the transition point we have Φ Φ 0 and the equilib-
rium condition can be written in the form

V 3η2 jp, : r '
(2.2)

Confining ourselves to the terms written out in (2.1),
we obtain the condition (2.2) in the form Α +Βηζ + Οη4

= 0, whence the equilibrium value

3'More accurately speaking, we mean the density of the ther-
modynamic potential. For the sake of brevity, where no mis-
understanding can result, we shall use the same term for the
quantity and for its density.
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(2.3) a = 0.7-10-" erg/deg, b = 1.3-10-3» erg-cm"3

(2.8)

We chose the + sign in front of the square root, since

this choice ensures satisfaction, below the λ point, of

the stability condition (the minimum of the potential) in

the equilibrium state

(2.4)

At the λ point we have pse = 0, and it is thus obvious

that Α(Τλ) =0. Above the λ point we get A >0 from the

requirement that the state with ηβ=0 be stable. Con-

sequently, A< Oat T< Τχ. The coefficient C must be posi-

tive to ensure positiveness of 3>II0at large values of η2.

In the simplest variants, when C = 0 or B=0, we have

In —

B = O, Ss-^y -—

In the case (2.4a), of course, B>0.

(2.4a)

(2.4b)

In the self-consistent theory of second-order phase

transitions, the coefficients A, B, C, are regarded

as expandable in powers of (7\ - T) and, for example,
in variant (2.4a), which is valid at a sufficiently large
distance from the tricritical point (at which the coef-
ficient B = 0), we have

_
ma{T)—T)

(2.5)

The entropy S n - 3ΦΠ 0/9Τ, by virtue of the condition

(2.2), is in this case equal to

and the discontinuity of the heat capacity
at the λ point is equal to

= T(dS/dT)p

(2.7)

In the temperature interval №*< ε = (Tx - T)/Tx£ 0.1

we can assume as a rough approximation p^oc (Τλ - Τ),

i. e., that formula (2. 5) can be used. Assuming, for

example, p№ =0.075 g/cm3 at ε =0.1 and ACp = 5.2xl0 7

erg-g"1 deg'1 =O.76xlO7 erg-cm'3 deg'1, we get4 )

4 )The quantities cited here and below pertain to the λ point of
pure 4He at saturated-vapor pressure. Thorough investiga-
tions of the λ transition in helium at all pressures have been
initiated in recent years, from/>=£Mt(7\) = 0.05 atm to the
solidification pressure pm(Tx) =29. 74 atm, and also in 3 He-
4He mixtures (see, in particular, l 4 5·4 6 1). With increasing
pressure, and also in mixtures, the region in which pse

<*: (7\ — T)2 '3 with good accuracy becomes narrower, and the
region where the linear relation pse cc (Tx-T) can be approxi-
mately used increases correspondingly. However, no de-
tailed analysis has been made so far of the behavior of the
coefficients A,B,C, . . . as functions of the pressure and of
the 3He concentration. We shall therefore refer throughout,
unless otherwise stipulated, only to the region of the λ point
of pure 4He at saturated-vapor pressure.

Actually, however, the density Ose is described suf-
ficiently accurately in the entire interval Ι Ο ^ ε ^ ο . Ι
by the law141"441

ple --= mi]* = m | Ψ ρ = 1.43ρλ (Γ λ — ΐ)ζ, (2 . 9)

Ρ>. = Ρ (Τ>.) = 0.146 g-cm"3 ρ 0 0 = 1.43 ρ λ ^ 0.21 g-cm"3deg" f

ζ = 0.(17 ± 0.01.

Assuming, as is quite probable, that £ = 2/3, we can
put in (2.1)

A = -Ao (Tk - T) | T>. - Τ |'/3. Β - B o | 7\ - Γ |2/3. C = Co,

' (2.10)

for in th i s case , according to (2.3) we have p s ecc (Tx

- T ) 2 / 3 .

If C 0 = 0 , then

Ao = l.H-10-'» erg/deg4'3, B(, = 3.54-10-39 erg-cm3/deg2'3

Under conditions when coefficients of the type (2.10) a r e

used (in c o n t r a s t to the se l f-consis tent var iant of the

type (2. 5)), all the t e r m s proport ional to Ι \£Ί2, | Φ | 4

and Ι Φ | 6 in (2.1) depend at equi l ibr ium in the s a m e m a n -

ner on (Τλ - Τ), and t h e r e a r e there fore no g e n e r a l r e a -

sons for d i scard ing the t e r m with Ι Φ Ι 6 a s Γ— Tx, a s

well as the higher t e r m s in Ι Ψ Ι 2 . By the s a m e token,

the use of var iant (2.10) is an approximation. As will

be shown below (Sec. 2.4), under the condition ps<p^,

and especial ly if

p»<U<Sf, (2.11)

it is a l ready justifiable to d i s c a r d the t e r m s with Ι Φ1 8

e t c . , and possibly a l so the t e r m with Ι Φ | β . Yet in n a r -

row channels and gaps, near a vor tex axis, e t c . , the

equi l ibr ium value of the density ps is p r e c i s e l y less than

the corresponding equi l ibr ium value of pse for bulky h e -

l ium II at r e s t . Thus, the approximation (2.10) is jus t i -

fied in a r a t h e r wide r a n g e .

We note that s ince the t r a n s i t i o n point is a s ingular
point of the t h e r m o d y n a m i c potential, the n u m e r i c a l val-
u e s of the coefficients Ao, Bo, and Co can in g e n e r a l be dif-
ferent at Τ > Tx and Τ <ΤΧ. In what follows, however,
we shall disregard this fact (for the sake of simplicity,
and bearing in mind that we are applying the theory
mainly in the temperature region below the λ point) (see
also the remarks in Sees. 2.4 and 3.2).

We introduce the dimensionless variable (see (2.9))

--V —.
r m

(2.12)

In addition, we can express two of the coefficients Ao,
Bo, and Co in (2.10) in terms of px and ACP, using for-
mula (2.3) and calculating Cp = - Τ(ΒΖΦ/3ΤΖ)Ρ on the
basis of expressions (2.1), (2.9), and (2.10). As a re-
sult we can write

- Ϊ ι or).
(2.13)
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where

M = - (2.14)

In the simplest variants of the theory1 2 7 '3 6 ] the dimen-
sionless parameter is respectively Μ = 0 orAf = 1.

As applied to helium II at equilibrium, the use of the
thermodynamic potential (2.13) contributes, of course,
nothing new. But this potential is needed in the Φ
theory of superfluidity as one of the blocks used to
write down equations suitable for the solution of the in-
homogeneous and nonstationary problems. In the latter
case, however, it is necessary to take into account,
generally speaking, the relaxation processes and dis-
sipation (see Chap. IV). We shall therefore discuss
first stationary inhomogeneous problems, in which it is
necessary to take into account only the derivatives of
Φ with respect to the coordinates. In addition, we as-
sume that vn = 0, and consequently the ^-function (the
order parameter) describes the state of the helium II
completely.

Under the indicated conditions, we choose for the
thermodynamic potential the expression

Φη(Ρ.Τ. Ψ) = ^ (2.15)

where Φ π 0 is the potential of the homogeneous helium
II at rest (see (2.1) and (2.13)), and expressions (1.1)
and (1.2) have been taken into account.

The choice of the form of the gradient term in (2.15)
is dictated by the requirement of invariance (the poten-
tial Φ is a scalar), by the quantum-mechanical analogy,
by the analogy with the Φ-theory of superconductivity,Ι2β]

and by the fact that at Vps = 0 we arrive at an expression
for the kinetic-energy density p sf|/2 (of course, these
arguments are far from independent of one another).
This is still not enough justification, but it pertains
also to the choice of the expression for Φ π 0 and, in
general, to practically any phenomenological theory be-
fore it is deduced from the microscopic theory and be-
fore the region of its applicability is defined. The lat-
ter will be discussed further later on, and for the time
being we shall assume, without further discussion, ex-
pression (2.15) for Φ π . Then the complete thermo-
dynamic potential is

Φ,Χ = ( ΦΠ(Ρ, Τ, Ψ) dV,

and the equation for Ψ is obtained as the extremum con-
dition when Φ π is varied with respect to Φ*. Hence

Ψ (2.16)

If other thermodynamic potentials are used, then (ΘΦΙΙ0/
β| Φ Ι 2 ) Λ Γ in (2.16) is replaced by other derivatives,
but all can be made equal to one another by a suitable
change of variables

These relations follow from the identity dE = TdS + μάρ
+ β^άρ3 and from the definitions of the densities of the
thermodynamic potentials Φ, F, and Ω: $=E-TS + p
= μρ, F = E-TS and U=E~TS- μρ.

Thus, if the symbol μ5 is used, Eq. (2.16) assumes
the same form regardless of the choice of the thermo-
dynamic variables.

We introduce now, besides the ψ-function (2.12), also
the new coordinates

"5Γ· cnwieg* (2.17)

Then, taking (2.13) into account, Eq. (2.16) takes the
form (the asterisks denote that the derivatives are
taken with respect to r + + , ()

This is precisely the basic equation for what follows.
Of course, in the region below the λ point, in which we
are mainly interested, we have f >0 and the absolute-
value symbol for t in (2.18) can be omitted. We shall
usually do so. The equilibrium value φ = φβ, obtained
from (2.18) at constant φ, is

,1 (2.12a)

as it should (see (2.9) and (2.12); the quantity ψβ can be
regarded as real). The physical meaning of the quan-
tity 400 becomes particularly clear if one introduces the
dimensionless coordinates

, _ r ' loo 1(3-.tf)/3)'/2

Τ'~ΈΓ' l» W )

2.74·10-»[(3-!-Λί);3]
^ ^ 1 7

(2.19)

In terms of these coordinates we have for the function
φο = φ/φβ (at equilibrium ψο = 1 and φ = φΘ=11/3)

- Μ) K-o ρ + Μ | ψ01*1 ψ,,,
(2.20)

Ψ* (Poo/m)"- ί 1 / 3 '

and, at least as Ι φ01
2 - 0, the length ξΜ defines in ob-

vious fashion the characteristic distance (the correla-
tion length or the "coherence length") over which the
order parameter φ0 changes. This will be discussed
further in Sec. 2.3. AtM=0, the length |j,= ?o coincides
with that used inC21]. Were we to confine ourselves to
the self-consistent variants (2.5) and (2.8), then
the role of iu would be assumed by the length t 2 s : ξ =Κ/
4%ma ( Γ λ - Γ ) = 3.5·10- β/νΓ λ-Γ (cm). However, such
an approximation is not suitable near Γλ, since it cor-
responds to the relation ρΜ<χ (Γλ - Τ) instead of the ex-
perimentally verified relation (2.9). We note that for
superfluid 3He the situation is already different,Ce] inas-
much as near the λ point we can in fact put precisely

(2.16a)
The developed Φ-theory can quantitatively be valid

only under the condition
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>a ~ 3-10-8 cm. (2.21) = 0, free boundary. (2.25)

At Μ S 1 this condition, according to (2.19), can be re-
garded as practically satisfied if (Γλ - Τ) <0.1 °K.

By varying the functional Φ(Φ) with respect to Φ, we
obtain for Ψ* an equation that does not differ from
(2.16). Multiplying now Eq. (2.16) by**, multiplying
the analogous equation for Φ* by Φ, and subtracting one
equation from the other, we obtain the continuity equa-
tion

div j s = div (psvs) = 0, (2.22)

where, of course, expressions (1.1)—(1.3) are used.
Equation (2.2) can be derived also by somewhat differ-
ent (but of course equivalent) method in which the real
and imaginary parts of (2.16) are separated.

We note incidentally that in (2.15) and in the succeed-
ing equations, if the definition (1.1) is used for ps, the
mass m of the helium cannot be replaced by some ef-
fective mass w e t f , nor to replace (1.2) by vs = (K/
V"iw6f£)V(p (in order to retain the expression psv\/2 for
the kinetic energy). The point is that the effective mass
meM should, generally speaking, depend on the tempera-
ture, pressure, etc. But this means that under spa-
tially inhomogeneous conditions the mass mett would
depend on the coordinates. The continuity equation
(2.22) then no longer follows from the corresponding
equations for Φ and Φ*. That m cannot be replaced
by meil is evidenced also by the requirement that other
parameters of the circulation /v s -dl be independent of
the temperature (for details see t 2 5 ] and Sec. 3.4).

2.2. Boundary conditions

When solving Eqs. (2.18) and (2.20) for φ it is nec-
essary to use definite boundary conditions. At the
boundary with a solid wall, at least in the absence of
heat exchange with the wall, one condition is obvious—
the velocity v s must be parallel to the wall, i. e.,

nVcf = v,n = 0.

where η is the normal to the wall.

(2.23)

Starting from the considerations discussed in the
Introduction, we assume further that on the wall we
have

p. (0) = m Ί Ψ (0) 0. (2.24)

Actually this condition, even by virtue of the require-
ment (2.21), is indistinguishable from the condition that
the density p5 vanish not on the wall itself, but at a cer-
tain distance from it, on the order of atomic dimen-
sions (see Sec. 3.2). On the axis of a vortex filament
in helium Π we also assume condition (2.24), which
arises naturally when the corresponding vortex problem
is solved (seeC253 and Sec. 3.4 below). The condition on
the free boundary of helium II is not so reliably deter-
mined. Actual problems were solved both with condi-
tion (2.24) and with the condition

We can introduce also a more general boundary condi-
tion; for example, for a real function Φ we can put

3<P ι ; - I W _ Q ίο OR\

where ζ is the direction along the normal to the bound-
ary and λ is a certain coefficient that can, in principle,
depend on t =T - Τ and on other variables.

We note that condition (2.25), which is valid in the
Φ-theory of superconductivity[26] for a boundary with
vacuum, is obtained if we stipulate, when varying the
functional Φ(Φ), that it have an extremal value, without
imposing any additional limitations on the boundaries.S)

The condition (2.26) can be arrived at, on the other
hand (see, for example,C47]), by seeking, without im-
posing any other requirements on the boundary, the ex-
tremum of the functional

Φ(Ψ)-
2m

where Φ(0) is the value of * on the boundary.

The need for using the condition (2.24) on a free sur-
face as well is brought about by the analysis, presented
in Sec. 3.3 below, of the situation on the boundary be-
tween helium II and its surface vapor.C 3 7 ] Since the
physical results (for example, the temperature Tx(d) of
the λ point as a function of the film thickness d) depend
on the employed boundary conditions, the validity of the
employed boundary conditions should be checked, in
final analysis, by comparing the theory with experi-
ment. Finally, there is one more possibility, in prin-
ciple, of refining the boundary conditions by resorting
to the microscopic theory. But whereas in the case of
superconductivity this procedure is quite reliable (and
has already been employedC48-49]), it can hardly be re-
garded as particularly promising at the present state
of the theory of helium II.

2.3. Accuracy of the Φ-theory (allowance for fluctuations)

It is natural to raise the question of the region of ap-
plicability and of the accuracy of the Φ-theory, based
on the use of expressions (2.15) and (2.13) for the ther-
modynamic potential. Unfortunately we encounter
here, besides the condition that we stay close to the λ
point (see (1.4)), a number of other restrictions, which
will be discussed, together with the meaning of the em-

5)In such cases we speak sometimes of natural boundary condi-
tions. We arrive at these conditions by considering the vari-
ation

Transforming

we see that the functional is minimal not only if (2.16) is
valid, but also if condition (2.25) is satisfied.
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ployed Φ-function, in the following Sec. 2.4. Here we
consider a very important aspect of the same problem,
namely, we assess the role of fluctuations of the order
parameter Φ. In this case, however, if these fluctua-
tions are small enough, we can use values of Φ that are
solutions of Eq. (2.16), or, specifically, (2.18) and
(2.20).e )

The incomplete thermodynamic potential

Φ b, Τ, Ψ (r)l = j Φ (ρ, Τ, Ψ Μ) dV, (2.27)

which depends, besides on p and T, also on the order
parameter Φ(Γ), determines the probability density of
a configuration with a given function Φ(Γ):

[Φ,(ρ, Τ, ψ . (ρ, Γ ) ) - Φ (ρ, Γ, ψ (Γ))]; (2.27a)

here $e(p, T) is the complete thermodynamic equilibrium
potential. (We note once more that it would be some-
what more consistent to use here the potential Ω(μ, Τ).)
From this, by virtue of the normalization /Μ;(Φ)Ζ)Φ = 1,
follows an expression for the partition function

(2.27b)

with functional (configuration) integration with respect
to %

In the self-consistent theory of phase transitions it is
assumed, in fact, that

Φ IT. MI (2.28)

i. e., it is assumed that

Φ, = Φ (ρ, Γ, Ψβ (ρ, Γ»,

where Φβ (r) is the value of Φ corresponding to the ex-
tremum (minimum) of Φ, i. e., satisfying in our case
Eq. (2.16). If the second-order phase transition point
were not a singular point of the thermodynamic poten-
tial, then the fluctuations about the extremal value would
play no noticeable role in the calculation of Ζ and Φβ

and, consequently, the approximation (2.28) would be
perfectly satisfactory. In fact, however, the transition
point is generally speaking a singular point, as mani-
fest by the increase of the fluctuations when this point
is approached. In the case of helium II (in contrast to
superconductors and superfluid 3He), the region of ap-
plicability of the self-consistent theory, understood
here as the region of relative smallness of the fluctua-
tions, turns out to be quite narrow or, strictly speaking,
generally nonexistent (see Sec. 2.1 ff). The use, just

e)These are the only equations (and their generalizations to in-
clude nonstationary problems in the presence of normal flow)
which will be used later on (see, however, the remarks made
in Sees. 2.4 and 3.2). Therefore a detailed study of Sees.
2.3 and 2.4 is not needed before reading Chaps. Ill and IV of
this article.

as in the self-consistent theory, of the expansion (2.1)
but with nonanalytic coefficients A, B, that depend
on t = (2\ - Γ) is precisely a stratagem of the renor-
malization type, which changes the order parameter and
makes it possible to take into account to a considerable
degree the role of fluctuations even in a preliminary
approximation such as (2.10). The necessary criteri-
on for the success of this stratagem is that the part of
the long-wave fluctuations (about the employed equilib-
rium solution) which is not taken into account in (2.13)
must be small. We shall return to this question later.

We assume that the fluctuations δη and δφ of the mod-
ulus and of the phase of the function Φ = ηβ'", about a
certain "equilibrium" value Φβ=ηββ<0·satisfying Eq.
(2.16), are small quantities. This means that

η = η , -f δη, φ = tpe + δψ.

The corresponding fluctuation change of the potential
4>u, taking into account terms of order not higher than
quadratic in δη and δφ, is equal to (see (2.15))

(2.29)

where ΦπΟ(»?β)= (92*no/97J2)>7=>je

 a n d w e n a v e discarded
all the terms that are linear in δη and δφ (some of these
terms vanish immediately by virtue of Eq. (2.16), while
others vanish as a result of the volume integration of
interest to us below, and specifically when δΦ/ = δΦίίν is
calculated).

In the absence of fluctuations, the gradient term is

-j£-1 v-r, Κ?ι.) 2 +η? (V<pe)
2].

and it is clear that (6Φ - δΦ0)« (Φη - Φΐ Ι 0). provided
that the conditions

(2.30)

are satisfied. Here and below the symbol ( ) denotes
statistical averaging, since we are interested only in
the contribution made by the fluctuations after such an
averaging.

We shall show below that under the same conditions
(2.30) the fluctuation increment δΦ0 or, more accu-
rately, the fluctuation increment to the thermodynamic
potential δΦη which is defined below and is of interest
to us, is also small. To be sure, the value of δΦη will
be calculated only neglecting the inhomogeneity of Φ in
the equilibrium state, i. e., assuming the quantities η<,
and φβ to be constant, but it seems to us thp.t in all the
cases of interest this assumption can r.••'•: lead to signifi-
cant changes in the situation (see :-,ov8ver, the end of
Sec. 3.1).

From the general expression (2.27) it follows im-
mediately that
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kBT

where Φ(Ψβ) is defined in (2.28).
physical quantity X is

) = Z;f f Χ [δη, ftp] « ρ { -

(2.31)

The mean value of any

} Βη Οφ. (2.32)

We shall calculate the configuration integrals in a qua-
dratic approximation (that is, including only terms of or-
der (δη)ζ and (δφ)2) and only for a system that is homo-
geneous in the equilibrium state. Concretely, we choose
δΦ as given by expression (2.29) for δΦ0, the functions
η,, and φβ being assumed constant (properly speaking,
the phase <pe is now immaterial).

In this homogeneous case it is convenient to use a
Fourier expansion, putting (V is the volume of the sys-
tem, i. e., in our case, the volume of the liquid helium)

w 2 v*r·
' q

w Σ ν*.
' q

(2.33)

Therefore (see also (2.29))

(2.34)

Some of the calculations that follow a r e more conve-
niently c a r r i e d out not on the b a s i s of the genera l for-
mulas (2.31) and (2.32), but direct ly on the bas i s of ex-
p r e s s i o n (2.27a). Namely, the probability of the fluc-
tuation for which the thermodynamic potential changes
by an amount δΦ is equal t o w = const · exp{- 5$0/kBT}.
Assuming that 6$0/kBT = \xz/2, we obtain for the prob-
ability of the fluctuation of the quantity χ

since

+ f
We now use expression (2.34) for 6io/kBT = \xz/2 and
obtain directly with the aid of (2.35)"

<ΙΦ,Ι2>=

We have next

(2.36)

It is important to recall the expression for the corre-
lation function (we put henceforth r = r t - r2·)

Gn (r) = (δη (r,) δη (r2)> < Ι η , I 2 ) '">'

(2.39)

where the correlation length for the fluctuations is

(2.40)

and, of course, expression (2.36) is used.8 ) Analo-
gously,

The quantity

4π/ί«ρ,,<ί)

(2.41)

(2.41a)

can be naturally called the correlation length for the
phase of the order parameter. In the microscopic ap-
proach"" it is precisely the length ξν which is regarded
as fundamental.

In the self-consistent theory of phase transitions, the
fluctuations are assumed to be of no significance at all
and we can choose the maximum value qma to be of the
order of ττ/ξ(Ο), where ξ(0) is the short-range radius,
with ξ(0)~α~3χ10"8 cm for helium. We can here al-
ways assume that Xaxi~1(qma./Jm$llo/Hi) = t!/2. Most im-
portantly, the expression {mkBT/2viRi)qaa> which en-
ters in (2.37) and (2.38), is practically independent of
the temperature near the λ point and plays no role if a
fluctuation-dependent renormalization of the thermo-
dynamic potential is used.9 ) The condition for the

8)As is well known, the function (2.39) satisfies the equation

7'Since η, is complex, the square Ι τ/β 1
2 is the sum of the

squares of two independent quantities (the same pertains also
to vl I <p, 12). This circumstance was already taken into ac-
count in (2.34) in the summation over all q, which is equiva-
lent to taking the factor I T)q 1

2 into account twice. We note
also that we are confining ourselves to a classical (non-quan-
tum) approximation, which is permissible under the condition
< 1 tje 1

2>»1 (see1401). The classical approach is valid near
the λ point in the case of long-wave fluctuations with q < \/%H.

Thus, apart from a factor, G, is the Green's function for the
equation written out above.

"This is particularly easy to verify above the transition point,
by writing down the potential in the form Φ π 0 = ΦΙ + ΐ)2[α(Τλ

- Τ) + (δ/2)7)2] and then replacing 6J)2/2 by 36 <IJ2)/2 = 36 {δη)2}/
2. Obviously, the constant term 62(36/2) ((δη)2) changes here
the value of 7\, i.e., the temperature, at which the coeffi-
cient of η2 vanishes. Using the experimental (observable)
value of Tx, as is always the normal procedure, this change
of T\ (renormalization) does not play any role whatever.
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smallness of the fluctuations (2.30) takes therefore the
form

or

(2.42)

where we used the expressions (2.4a), (2.5), and (2.8),
and took into account the fact that in this case

Β b

The correlation length (see (2.40) and (2.8)) below the
λ-transition point is then

(2.43)

Above the transition point we have

Φίΐο(η,) = 2 4 = — 2αί. η | = 0

and the correlation length is

$•(*) =
3.5-10-8 (2.44)

If the coefficient of the gradient term is expressed for
an arbitrary second-order transition described by a
certain order parameter η in the form δ (instead of Ti1/
2m, as in the case of helium II), then the condition
(2.42) for the smallness of the fluctuations takes the
f o r m C50-S4]

(2.45)

By virtue of-the condition (2.42) and the require-
ment of sufficient proximity to the λ point (the condition
t« 2\), in the case of helium Π at saturated-vapor pres-
sure the self-consistent theory can be used with some
reasonable accuracy only in the region

t < 0.1 "K. (2.46)

We are furthermore interested also in much lower
values of t, since in the experiments measurements
are already feasible even at t $ 10"* °K. The scheme
described in Sec. 2.1, in which the coefficients A, B,
. . . in the expansion (2.1) depend on t in non-analytic
fashion (see (2.10), (2.13), (2.18), is resorted to in
fact in practically the entire temperature interval near
the λ point. In this scheme, even the initial expres-

10>The coefficient (321Γ2)"1 of (2.45) was left out in1501, with an
appropriate stipulation, since only the relative values of the
fluctuations for different transitions were compared there.
Incidentally, it is clear even from (2.45) that near the tri-
critical point at which 6 = 0 the region of applicability of the
self-consistent approximation is particularly large (for de-
tails see'5 5 1).

sion for Φπ „(<) agrees with the observed relation (2.9)
for px{t), and leads for the correlation length below the
λ point to the expression (see (2.13) and (2.17))

j'2/m T / 2

J
2.74-

Τπο(η.) (2.47)

Above the λ point we have

ΦΠ0(η«)=-

and for the correlation length
pression

0,-8,-6, (3±Jl)'/2 2.74

, = ξΜ we obtain the ex-

the meaning of which thus becomes finally clear. It is
the lengths ξΜ and ξ0 which we shall find the most con-
venient for use henceforth.

Since the self-consistent theory of phase transitions
does not take temperature-dependent fluctuations into
account, it is obvious that the theory with altered co-
efficients A, B, C... already takes these fluctuations
into account to some degree. Namely, account is taken
in this case of all the fluctuations with wavelengths
smaller than and of the order of the correlation length
ξ(ί), i. e., with wave vectors q £ 1/ξ(ί). The point is
that the short-wave fluctuations, while small, are quite
numerous (see (2.36); the integral /"""(I TJ, 12><72Λ? at
large qmtl increases in proportion to qma). With in-
creasing q, the fluctuations (Ι η,,Ι8) increase up to val-
ues q~ijm<t>;i0/Hz~l/t(t) (see (2.36)). In the calcula-
tion of the thermodynamic potential in the critical re-
gion it is therefore necessary to take into account all
the fluctuations in the interval I/a~qmu %q1> qc~\/t,
(see alsoC5e])u>. As to the longest-wave fluctuations
with q < 1/ξ(ί), it is clear from (2.36) that they no longer
increase with decreasing q and need not be taken into
account in the initial expression for Φπ 0 - Φι. Thus,
the requirement that the fluctuations be small when ex-
pression (2.13) is used for the potential 3>iI0 pertains
only to the long-wave fluctuations with q *iqc, with

(2.48)

where Q = Q' a. numerical coefficient that serves as a
parameter of the theory and k'u is the correlation length
(2.47); we note that we have in mind here directly the
region below the transition point, and above this point
the value of Q can already be different.

l u I t must be stipulated, to be sure, that the short-wave fluctu-
ations with q ~ I/a actually are independent of t and make no
contribution to the singularity of the thermodynamic poten-
tial (from this point of view, only fluctuations with q«I/a
are important). We emphasize in the text only the fact that
all the fluctuations with q £ 1/4 can be regarded as taken
into account in expression (2.13) for Φ π 0.
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TABLE I.

Μ

0
1
οο

β--1.1

0
0
0

1/ 3 + Μ
V β(1+Μ)

.776

.635

.449 .

'•ψ

Ο.0174
0.0126
0.0070

0.116
0.116
0.116

—3
— 3
—5,

4

3-
4-
9-

10-»
10-2
10-2

4
—1
—3.

Δ

4-10-3
5-10-2
7-10-2

We can be sure that the fluctuations not included in
expression (2.13) for ΦΗ 0 are small if the conditions
(2,30) are satisfied after we substitute qmu=qc in(2.37)
and (2.38). We note that by proceeding in the same
manner as in the self-consistent theory we obtain, in
essence, the previous condition (2.42), for in this

case
12)

" ξ (I) *
(2.49)

On the other hand, if we use the value qma =qc=Q/iu{t),
in accordance with (2.48), then we arrive at the condi-
tions (see (2.37), (2.38), and (2.19), (2.48))

(2.49a)

At Γ < 2\, the second and more stringent of these con-
ditions reduces to (see (2.47))

(2.49b)

It is important that the temperature t does not enter in
the criterion (2.49a)-(2.49b) at all, and thus if it holds
it does so in the entire temperature interval near the
λ point.

To estimate the parameter Q and to obtain a quantita-
tive idea of the accuracy of the theory based on the use
of (2.13) and the expressions that follow, we turn to a
calculation of the fluctuation-induced increment δΦΠ

to the thermodynamic potential.

To this end it is necessary to use the general formula
(2.31). Substituting (2.34) in (2.31) we obtain for the
density of the fluctuating part of the potential in the
equilibrium state

0 - 4- Λ,, (η.. )] (*»/«.

»/l») q* 4n,2
dq

(2. 50)

12)The "cutoff" introduced in (2.37) and (2.38) at q=qma~l/t
when the criteria (2. 30) are used can be interpreted in the
following manner: we stipulate that the fluctuations
(f{6n)2dV) and (j'ΐ)\(δφγάν) in the volume V~(,i be small
in comparison with τ)|ν~η|ξ 3. It is clear that only fluctua-
tions with wavelength Λ = 2π/?<ξ are significant in the inte-
gration over a region with dimensions on the order of I .

Substituting here ξ^(ί) and Φ", 0

(2.19) and (2.47), we see that

n | ( | + C,),

in accordance with

(2.51)

where Q and C2 are quantities independent of t. Al-
lowance for the potential δΦη leads thus to a renormal-
ization of the specific-heat discontinuity at the λ point
(owing to the term proportional to C2) and to the ap-
pearance of a logarithmic singularity in the heat capac-
ity. It is possible, in principle, to assume that the
entire observed logarithmic (or near-logarithmic)13'
variation of the heat capacity is due to long-wave fluc-
tuations (see, in particular,C 3 1 ]), i. e., it is included in
δΦ {1. We then obtain the upper bound Qm of Q from
(2.50) and (2.51) as well as from experimental
data, C 5 7 'S 8 ] according to which

f 4.55-3.0018(7\-Γ) (J/g-deg), T<Tk,
\ _0.65-3 J/3.001g |7\-

(2:52)

Without dwelling on the details, we present in Table I
the values of Qm at different values of the parameter
Μ (see t e 1 3).

It is clear from the table that the conditions (2.49)
are satisfied. The role of the fluctuations becomes
even clearer if we calculate first δΦη (η) for some non-
equilibrium value of η and then find (98δΦ ( 1/θη ί)η^β

- (δ*η)£>· tt i s n e x t necessary to find the ratio Δ
= ( ° Φ « ) £ / Φ Π Ο ( Ί Λ which characterizes the change of
the factor preceding (η — τ^Ϋ in the expansion of ΦΙΙΟ(»7)
about the equilibrium value τ^, due to the long-wave
fluctuations. The renormalized value is Φ*! 0> „„(%)
= Φ π 0 (ηβ) (1 + Δ). The calculation of Δ in the harmonic
(quadratic) approximation leads to two values Δ2 indi-
cated in Table I. In general, however, Δ = \ + Δ4 + \
+ Αφ, where Δ4, Δ^, and Αφ are corrections needed
respectively to allow for the fluctuations of (δη)4, (δη)*,
and (δη)2 · (νδφ)ζ. Calculation shows"1 3 that the cor-
rections Δ+, Δβ, and Αφ are positive (in contrast to Δ2),
and are of the order of ΙΔ21 in the sum. As a result we
obtain the values of Δ given in the last column of Table
I, which do not exceed several percent. Higher ac-
curacy can hardly be expected of our entire scheme,
which involves the selection of the function ΦΙΙ0(η), or
the coefficients of the expansion of this function in pow-
ers of η, on the basis of empirical data. We can thus
state that allowance for the long-wave fluctuations (wave
numbers q < Ι/ξ^ί)) does not affect the results obtained
without their allowance (this does not pertain, of course,
to phenomena connected with the fluctuations them-
selves, for example, with the scattering of light by
fluctuations or with calculations of the fluctuating part
of the heat capacity).

By the same token, in view of the foregoing, we prove
at least that the scheme based on the use of coefficients

"'According to [ 5 8 · 5 9 1 , Cp ~ί" α with a = - 0 . 026 (see also1601).
If α * 0, the Φ-theory developed by us requires certain modi-
fications, but these seem still premature to us, (see Chap.
V).
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A, B,..., which are not analytic in t, in the expansion
of Φ π 0 in ΙΦ I2 (we consider specifically expression
(2.13)) is not contradictory (or is self-consistent to
some degree). Incidentally-, in connection with the dis-
cussion of the role of fluctuations from the point of view
of the accuracy of the Φ-theory of superfluidity men-
tion should also be made ofCe2] (see a l so c n ] Chap. IV,
J7), according to which the Φ-theory of superfluidity
of helium Π has no region of applicability at all. To the
extent that we are dealing with the initial self-consis-
tent variant1253 (see also Sec. 2.1 and, specifically,
expression (2.5)), this statement is correct to a certain
degree (more accurately, see the condition (2.46)) and
has already been noted inC501. However, in the gen-
eralized theory (see (2.13) ff.), the role of long-wave
fluctuations is insignificant, and the conclusion drawn
above remains in force also when account is taken of
divergence of the longitudinal susceptibility xu°^h'1/z

for a "field" A-0. 1 4 ) The point is that the nonanalytic
dependence of χ,, on h as Λ-0, as well as the logarith-
mic singularity of the heat capacity, can be completely
taken into account in the zeroth term of the expansion
of the potential Φ π „ (η, h) in powers of (η - r]e), and has
no bearing on the other terms of the corresponding se-
ries, which are the only ones of interest to us from the
point of view of deriving (2.18) or the initial equations
(2.16), (2.13).E e l ]

We can thus forget about the fluctuations of the param-
eter Φ (or, equivalently, the fluctuations of the quan-
tities η and φ) when solving any problem that does not
deal with the fluctuations themselves.

2.4. Conditions and region of applicability of the Ψ theory

We have indicated above certain restrictions under
which the Φ-theory of superfluidity can be used. Thus,
an important condition is (2.21), ξ*»α, which makes
possible a phenomenological description, say, of the
distribution of ps(z) near a wall only at t = (7\ - T)
<0.ί °K. The same condition is necessary if the den-
sity px(t) is to be small in comparison with p№ (T =0)
= ρ (only in this case can we count on being able to use
the expansion of the thermodynamic potential in ΙΦ12 at
Ι ψ 18 =- | ψβ 12 = pjm). Finally, the same condition
(2.21), in all probability, is necessary also when only

M)By "field" h in the case of a system having a complex order
parameter Φ, we mean a quantity the introduction of which
requires addition of a term -(1/2) · (fc** + ft**) to the ther-
modynamic potential. The longitudinal susceptibility is

and in the quadratic approximation we have (Φ,,) =ηβ[1
-{(6φ)2/2)]«τ)β(1 -C t + C2v¥), where C t and C2 are con-
stants and tje is the equilibrium value of η in the field h.

Obviously, for a ferromagnet, in which the order param-
eter is the magnetization m, the field h is the magnetic field
and the increment to the thermodynamic potential is - m · h.
Although the field h cannot be realized physically for a su-
perfluid liquid or for a superconductor, introduction of this
field is a convenient device in the investigation of a number
of questions.

the gradient term (Kz/2m)Ινφ|2 is used in (2.15). In-
deed, terms with higher derivatives or powers of the
derivative such as a t Ι ν φ 14, a21 ΔΦ | 2 , etc., are usually
of the same order in the self-consistent variant of
phase-transition theory when Φ is varied over the co-
herence length or the correlation length at Γ =0, i. e.,
over the length ξ(0), which has the meaning of the short-
range order or, as is sometimes said, of the molec-
ular-action radius. For helium II we have ξ(0) ~α ~ 3
χ 10"8 cm, so that for the order parameter Φ (r), which
varies over a length L, we have the ratio

(ft2/2m)

It is clear therefore that a Φ-theory that takes into
account only the term {Κζ/2τη)\ Vip\z (this approxima-
tion is sometimes called hydrodynamic) cannot be used
if the Φ function varies over a characteristic length
L% a. It must be emphasized at the same time that
when Eqs. (2.18) and (2.20) are used for Φ this func-
tion turns out to be variable, generally speaking, over
distances Lt £M(t) or, in the case of the self-consistent
theory, over distances Lk ξ(ί) =£/V2ma<)> i .e . , satis-
faction of a condition such as (2.21) near the λ point
ensures in the self-consistent variant of the theory that
the term (H2/2m)W^\z predominates over the other
terms with the derivatives.1 5 ' Unfortunately, when
Φ-theory variants with coefficients that do not depend
analytically on t are used, it is possible to work only
under the condition L> ^U(t)/Q (see (2.48)), and small-
ness of terms of the type αχ1 νΦΙ4 and α2Ι ΔΦΙ2 is en-
sured reliably only under the condition

£>!«(<), (2.53)

inasmuch as Q~ 1. In practice, however, conditions of
the type (2.53) contain the parameter (ξ^/Ζ,)2, and we
may expect to be able to retain only the term with (ft2/
2™)ΐνΦΙ2 even at 1,2: ξ*(f).

We must dwell specially on the very possibility of ex-
panding the potential ΦΤΐ0 in powers of ΙΦΙ2 (see (2.1)
ff.). In modern theory of phase transitions"7· 1 8·3 0·3 2·3 5 3

it is assumed in fact that after the regular part is sub-
tracted the thermodynamic potential Φο(*, ε) takes the
form

( 2 · 5 4 )

where Φ is the order parameter, Φβ(0) = Φβ(Γ =

1 5 )For superconductors, for superfluid 3He (see16·631), and for
a superfluid neutron fluid (as well as for a superconducting
proton fluid), the coherence length ξ(0) = | (T = 0) is large in
comparison with distance a between particles even at Τ « 7\
(the role of ξ(0) is played by the dimension of the Cooper
pairs). Under similar conditions the term (£2/2m) I V* 12

dominates at temperatures at which ξ(Τ) »ξ(0). At the same
time, in these cases the region of applicability of the self-
consistent variant of the Φ-theory turns out to be apprecia-
ble, since the fluctuations decrease rapidly with increasing
ratio ξ(0)/α (see (2.45)), where the denominator contains
the cube of the coefficient δ, which is precisely the measure
of this ratio.
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ε = (Τλ - Γ)/Γλ, while a and /3 are exponents that deter-

mine the temperature dependences of the heat capacity

Cp °c Ι ε I"™ and of the equilibrium order parameter Ι ΦβΙ

=7]eocee; in this case the function / takes different forms

at ε> Ο (the function/.) and ε<0 (the functionft).

The function/, can be expanded in powers of χ = ΙΦΙ /

Φβ(0)Ι ε Ιβ only at small values of x, and, more con-

cretely, this expansion is rigorously valid only so long

as η/ηβ«ί or ps/pse« 1 (see (2.11)).

Actually, however, at ε > 0 we can confine ourselves
to the condition16'

f-<i. (2.11a)

Fortunately, this condition is satisfied in the over-

whelming majority of cases of interest to us (see Chap.

Ill), and only when we consider the boundary between

helium I and Π in a gravitational field (Sec. 3.2) will

we need to use the function/ as # — °°, when it cannot

be expanded in powers of xz (see alsoC32]). In that case,

however, the potential Φο(*, ε ) can be represented in

the form

while the function/ can be expanded in powers of
3) = ε(Φβ(0)/ΙΦΙ)1/β. At a = 0 and /3 = 1/3, the expansion
of Φο begins with a term proportional to Ι ΦΙβ (we
assume that/(0)^0). Thus, it is possible to treat all
the problems by using the initial trinomial (2.13) as the
interpolation equation.

We emphasize that we have immediately chosen above
the critical exponents a=0 and j3 = 1/3, since they agree
at the presently attainable accuracy with the experi-
mental data (all the critical exponents above and below
the transition point are assumed to be the same, as is
also confirmed by the available experiments; this re-
mark holds also for the exponents we shall use some-
what later on). It would be possible, of course, to de-
velop the Φ-theory without fixing the critical exponents
beforehand, but, at least at the present stage, this
would lead only to still-unjustifiable complications.
This pertains, in essence, to the gradient term {Kz/
2m)\ νΦΙ 2, which could be generalized by making the
substitution132·813

• ) ·

with σ=ην, while the exponents ν and TJ enter in the ex-

pressions for the coherence length ξ ~ ε"ν and the

Green's function Glr- 0)~ r ' < u i i ' . We have assumed

16>Favoring this conclusion are, in particular, the measured
values of the magnetization m as a function of the field h in
magnetic phase transitions (see, e.g. , I 6 4 1 ) . The connection
between m and λ is in this case similar to (2. 54): h
= I e 12'"'Bf'(m/me{0) I ε | *). It is known from experiment1641

that expansion of the function/' = x(df/dx) in powers of x2

= m/me(Q) Ι ε Ι β, with the first three terms retained, can be
used up to values χ κ 1. 8.

above that ν = 2/3 = 2/3 and that η = 0 (it is known from a
number of examples1173 that the exponent η is quite
small—usually of the order of several percent, and can
perhaps also be equal to zero). In addition, the func-
tion /j was replaced by a constant.

The question of the value of the exponent 77 is con-
nected with the problem of choosing the order param-
eter for helium II. The point is that besides the order
parameter Φ, which determines the observed quanti-
ties vs and p s (or js) in accordance with (1.1)-(1.3),
in the case of helium II we deal also with a quantity
such as the concentration n0 of the helium atoms that
have zero momentum (the Bose condensate). 4t_is pre-
cisely the quantity w0 (and the complex function Φ re-
lated with it by wo = Ι ΦΙ2) which has a clear-cut micro-
scopic meaning and can be regarded as an order
parameter._ According toC 2 e i, if we use this order
parameter ^_(we note that the notation ί η Ε β ] is differ-
ent, so that Φ plays the role of Φ and vice versa) and
put ΙΦΙ=\/ηο~<χε

β andC^cce-0

 a t T < T x , ϋιβηρβ<χ|Φ|2

oce28""". Taking into account one of the relations em-
ployed in similarity theory, namely 2/3-TJI/ = | ( 2 - a),
we obtain at a = 0 (logarithmic variation of the heat
capacity) the value 2/3 =ην = 2/3. Thus, the tempera-
ture dependence of p5 turns out to agree with experi-
ment also at rj*O. Conversely, if fj = O, then the order
parameters Φ and Φ, at least near the λ point, coin-
cide (or, more accurately, are proportional to each
other). Let us make a few more remarks in this con-
nection. The single-particle density matrix of a sys-
tem of Ν particles is by definition (the system is as-
sumed here to be in a pure state, i. e., at any rate if
T = 0)

ρ (r, r') = j ψ· (r, r,) ψ (r\ r,) *„ (2.55)

where ψ(τ, r,) is the true wave function of the system
and depends on the coordinates of all Ν particles (i = 2,
..., Ν; the coordinates of one of the particles will be
designated by r and at another point by r'; of course,
dTt=drz, dr3, ...,drN).

For ordinary liquids or non-superconductors we have
p(r, r') — 0 as I r - r'l — °°, but for a superfluid it can be
assumed that p(r, r') — ρ0Φ 0 as I r - r'l — °°. In any
case, this property means that the system particles
have a non-zero probability of having a zero momentum,
and this precisely corresponds to Bose condensation
(the concentration w0 of particles with zero momentum
differs from zero or, as is customarily stated, is
finite).17' Using the operators ^(r) and φ(τ) for the

17)Insofar as we know, this property of the single-particle den-
sity matrix (p0* 0), as a characteristic of the superfluid
state, was first formulated by L. D. Landau (see'651). This
property was named later "off-diagonal long-range order"
(ODLRO), since it referred to the off-diagonal elements of
the ρ matrix (r = r' for its diagonal elements). Brief men-
tion of ODLRO or of the interpretation of the macroscopic
Φ function (the order parameter) associated with this con-
cept was made already in'2 8 1. This question was subsequent-
ly considered in a large number of articles (see1 6 6·6 7 1 and
the bibliography in1871).
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creation and annihilation of a particle at the point r
we can write down for any temperature p(r, r')
= {(φ*(τ)φ(τ))), where the double brackets << » denote
both quantum-mechanical and statistical averaging.
The macroscopic wave function characterizing the
superfluid (superconducting) system can be naturally
introduced in the formC8e:

P(r. (2. 56)

In (2.56) we write Φ instead of Φ, in order to empha-
size the connection, which is clear from the foregoing,
that exists between just the quantity Φ and the particle
concentration na(t) in the condensate. If the averaging
(( )) is over an ensemble with violated symmetry, for
which the order parameter has a definite (specified)
phase, then we can write *=«$(r)» (see1 2 8·6 7 1).

In the case of helium Π, both ps{t) and no(t) are ob-
servable; however, measurement of no(t), say by neu-
tron scattering, is in fact still very difficult and has
not been carried out at all near the λ point. The ques-
tion remains whether it is more correct to relate ps

or M0 with the modulus of the order parameter and,
accordingly to choose Φ or Φ as this parameter. In
the phenomenological approach to the problem we see
no arguments of fundamental character for such a
choice, and we assume that the choice should be dic-
tated only by considerations of convenience and maxi-
mum simplicity of the equations (and, or course, by
the results of comparison with experiment, since even
the most convenient and simple equations that do not
agree well with experiment are of no value). From
this point of view there is no doubt (at least at the
present stage) that the order parameter in the Φ-theory
of superfluidity should be chosen to be Φ, which is
connected with p s and vs by expressions (1.1) and (1.2).
This is how we shall proceed.

Once the microscopic theory is developed, the ques-
tion of the roles of Φ and Φ should be resolved auto-
matically, since both quantities will be expressed in
terms of microscopic parameters. Here, as we have
seen, the function Φ is expressed directly in terms of
the density matrix p(r, r') and in this sense it is
"closer" to the microscopic theory. But from this it
does not follow at all that the equation for Φ near the λ
point is simpler and more lucid than the equation for
the function Φ, which will be expressed somehow in
terms of p(r, r') and possibly other quantities.18>

It remains to add that the definitions of the order
parameter in terms of Φ and Φ near the λ point are not

18)An analogous problem can arise, in fact, in the case of
superconductivity. Phenomenologically, however, only the
function Φ, which is connected with the depth of penetration
of the magnetic field into the superconductor, was intro-
duced. t 2 e l The same equations for Φ were derived later
on1 6 8 1 from the microscopic theory of superconductivity.
The fluctuations, which are particularly small for super-
conductors, were not taken into account, and the functions
Φ and Φ were in fact assumed to be identical (see the re-
marks connected with relation (2.57) below).

mutually exclusive and may turn out to be identical.
The point is that the quantity ^ps/m = ̂ rT, is set in cor-
respondence, in fact (apart from a possible mass r e -
normalization ra-m"ocr'"', which depends little on the
temperature), with the modulus of the local value of a
certain macroscopic wave function Φ, which already in-
corporates averaging over regions of the order of the
correlation length ξ ν . At the same time, it is natural
to set the square root of the particle density in the con-
densate ·1ΪΓ0 in correspondence with the modulus of the
total average value of the same function Φ, with allow-
ance for arbitrary long-wave fluctuations, particularly
phase fluctuations. These two types of averages, gen-
erally speaking, do not coincide, for when account is
taken of the long-wave phase fluctuations 1 8 9 · 6 1 1 we have

| Ψ I - «Ψ> | = Ι (η**1) I « | Ψ 11 <<""> I = | ΨI exp ( - M - ) , (2.57)

where the angle brackets ( ) correspond to additional
averaging over the fluctuations with wavelengths
A=2ir/qZ%li. In C 7 0 ] , start ing from this difference, a
simple explanation was obtained for the temperature de-
pendence of no(T) at low temperatures, which differs
from the relation n,(T) = pM(T)/m. It was also made
clear, in principle, that w0 differs from the total par-
ticle density n. Near the λ point one can in principle
not exclude the possibility that Ι ΦI differs from Ι ΦΊ
= Ι(Φ)Ι, but, as we have seen (see (2.49a)), in this r e -
gion the quantity ((δςρ)2), at least in the employed ap-
proximation, is small and does not depend on t = Tx-T.
This is precisely why it is quite probable that near the
λ point the parameters Φ and Φ differ only by a nu-
merical factor (in the spatially-homogeneous case) or
practically coincide (at ή = 0). Incidentally, it can be
concluded from the foregoing analysis that for our pur-
poses it is natural to use in fact the local order param-
eter Φ.

Thus, the Φ-theory of superfluidity, formulated in
Sec. 2 . 1 , is actually subject to a number of r e s t r i c -
tions and assumptions. However, for reasons that are
clear from the foregoing and are still discussed in the
concluding Chap. V, we regard this situation as per-
fectly normal and not precluding the extensive use of
the Φ-theory of superfluidity to solve actual problems,
which is the subject of the next Chap. ΙΠ.

III. CONSIDERATION OF VARIOUS PROBLEMS AND
EFFECTS IN HELIUM NEAR THE λ POINT

3.1. Size effects in films, capillaries, and pores (shift of
λ point, decrease of density ps. and change of heat
capacity Cp)

The vanishing of the modulus of the order parameter
Ι ΦΙ =η =Vps/»j on a solid wall (boundary condition (2.24),
and probably also on the free surface of helium II (see
Sec. 3.3 below) leads to the appearance of size effects
in "samples" (films, capillaries, etc.) with characteristic
dimensions L comparable with the correlation length
ξν(ί). In fact, if ΙΦΙ =0 "on the ends" (on the walls or
on the free surface), then the mean value of ΙΦI over
the entire volume of the film or of the capillary will be
less than for helium Π in a large volume. Thus, it is
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directly clear that the mean value ps is decreased, and
this leads, e. g., to a decrease in the velocity of fourth
sound in porous materials. With increasing dimension
L (film thickness, etc.) the λ-point temperature TX(L)
at which ps(Tx) =0 is also naturally lowered. A change
takes place also in the equilibrium value of the thermo-
dynamic potential, and consequently also in the heat
capacity and other thermodynamic quantities. These
effects have been discussed on the basis of the Φ-theory
of superfluidity ini «.".*·.«-«J f and there are also a
number of experimental data" 4 · 7 8 " 8 0 3 (see also refer-
ences to earlier work in the cited articles). [ Ι 7 4 * 7 β · 7 7 : ΐ

But the question of a quantitative comparison of theory
with experiment is in fact still open. We shall there-
fore dwell on size effects in considerable detail.

In this Chap. ΠΙ (with the exception of 3.4), the he-
lium is assumed to be at rest, so that the parameter
Φ can be regarded as positive, real, and satisfying Eq.
(2.20). For convenience, we write down this equation
for the case when φ0 varies only in the ζ direction

ψ0 = * ^ ^ , t=T-T.
(1.43px/m)'''!i"-i λ

Equation (3.1) has as its first integral

(3.1)

(3.2)

and any problem for a plane layer can be solved in
quadratures. We begin, however, with the simplest
case, when a plane layer (film) of thickness d goes
over into the superfluid state at a certain temperature
Tx(d) via a second-order transition, i .e . , ψο = Ο at the
transition point. Then the value of φ0 close enough to
the transition point tends to zero, and we can confine
ourselves in the right-hand side of (3.1) to the first
term, meaning that ψ 0(ζ)=Ο ι sins* + Czcosz+. F o r a
layer, taking the boundary conditions (2.24) into ac-
count, we have

Ψο (0) = 0, ψ0 (d) = 0 (3. 3)

or, in a form that is frequently more convenient

0 · ( 3 - 3 a )

Obviously, under these conditions we have φ'0(ζ)
-C1 sinz*, and a nontrivial solution is obtained only at

d>• dc, where s'midji,)!) =0, i .e . ,

f cm ^J" '

Hence, by virtue of the definition of ξ*(ί), and recog-
nizing that in the foregoing we had everywhere Tx

= 7\(rf-«), we get

2.53-10-"[(3+M)/3|3/4

d3/2

where d is the thickness (in centimeters) of the layer in
question (in this formulation of the problem, when we
determine the temperature Tx(d), it is natural to omit
the subscript V of d). For a round capillary of radius
r 0 and for a spherical cavity (pore or drop) of radius Ro

it is more effective to use in (2.20) cylindrical or
spherical coordinates, respectively, and in (3.1) the "
derivative dziji0/dz% is replaced by

In place of the boundary condition (3.3a) we now have

) = <>, ( $ ) R _ 0 = 0 . (3.5)

Proceeding as before, we obtain (2.4048 is the first
root of the Bessel function I0(r))

(3.6)

(3.7)

A check on the validity of the theory would be satisfac-
tion of the relation 1 9 ' ^Tx^d~3n, and measurement of
the coefficient will make it possible, in principle, to
determine the only remaining free parameter M. Un-
fortunately, at Μ « 1, when a second-order phase tran-
sition takes place and the formulas written above are
valid, the dependence of dc or of Δ2\ on Μ is quite weak
(when Μ varies from 0 to 1 the coefficients in formulas
(3.4a), (3.6), and (3.7) change by only a factor (4/3)4 / 3,
i. e . , by 24%). At M> 1 the transition of a film from
the normal state (helium I) to the superfluid state (he-
lium II) is of first order, as will be shown below, and
the critical value of the thickness dtI corresponding to
the thermodynamic transition point (the point where the
thermodynamic potentials are equal), as well as the
corresponding "shift" Δ7\ = Tx - Ttr(d), depend on Μ
very weakly, as before. Thus, for example, for a
plane-parallel gap we have d t r = 4 . 4 | 0 as M-°°, i . e . ,
it differs from the value of de at Μ = 0 by only a factor
of 1.4. Thus, even very large values of Μ cannot be
regarded as excluded from the known experimental data.
On the other hand, the characteristic relation Δ7\oc<f8/2,
which does not depend on M, is confirmed by experi-

m e n t _ l 4 4 t 74f 78. 81,82, ββ:

One of the most pressing problems of future research
is measurement of ΔΤχ(ά) in rather wide gaps, i .e . ,
close to 7\ = Tx(d — °°). Only in this case is the condi-
tion {,„ » a~ 3x 10"8 cm, which is needed for the theory
to hold quantitatively, satisfied (see (1.4) and (2.21)),
and at the same time it is possible to measure the
thickness d with sufficient accuracy. On the other
hand, such measurements appear to be quite realistic,

(3.4a)

"'More accurately, failure to satisfy this relation would con-
tradict the theory, whereas the relation ΔΤχ<χιί'3/2 should
be satisfied even under simpler assumptions, provided only
that ξ(ί) <χί"2Λ. We shall no longer repeat below the similar
stipulations connected with the universally known "asym-
metry" in the interpretation of experiments that agree or do
not agree with the conclusions of some particular theory.
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since it is possible to work with helium II very close to
the λ point (see, e. g . , t 5 M 1 ] where values t S 10'e °K
were attained). By way of example we note that at
<ί = 1μ=10"4 cm the length is ξν(< =*Tx)=de/v = 3.2
x 10"5 cm and the difference is

(3-12)

it is clear that even gaps with rf = 10"s to 10"e cm, if they
can be produced and their dimensions controlled, are
still perfectly suitable from the point of view of satis-
fying the condition ξΜ » a.

We turn now to the other limiting case of very thick
layers, when it suffices to solve the problem for a half-
space. In this case it is convenient to measure the dis-
tances in units of ξο(ί) = ?j,V3/(3 + M)=2.74 · 10"8Γ8/3

cm. Thus, we put y =2/ξο(ί), after which Eq. (3.1)
and its first integral (3.2) take the form

(3.8)

(3.9)

where i/o = 2M/(M+3) and £ = (M+3)7/6 is a certain new
constant. Equation (3.9) can also be rewritten in the
form

(3.9a)

from which it is clear why it is convenient to measure
the distances of units of ξ0

 a n ^ to replace the param-
eter Μ by v0.

Let us find the solution of Eq. (3.8) under J;he bound-
ary conditions (the helium fills the region 0 * y =; =°)

ψ, (0) = 0, ψ, (oo) = 1.

Of course, as y — °° the derivative dipo/dy — 0. In this
case, obviously, the constant Ε in (3.9a) is equal to 1,
and the equation can be integrated in terms of elemen-
tary functions

(3.10)

In the simplest variant, when Μ = 0, we have

. (3.11)

We note that at large distances from the wall we have

The length & = ξο/^2(1 + ιξ) = £0V(3 + M)/6(l+M), which
has the meaning of the correlation function of the mod-
ulus of the parameter Φ below the λ point, changes
only by V3~ times when Μ is varied from 0 to °°. This
is indeed the cause, as we shall show below, of the
relatively weak dependence of various surface effects
in thick films on the value of M.

Besides the distribution ps(z) itself near the wall,
interest attaches also to the surface "deficit" of the
superfluid mass

to the surface energy

7 Τ
° = \ [ΦΙΙ (Ρ, (*)) - Φπ (P«)] dz = \ [φ π _, (ρ,) _ φ,,_, ( Ρ Μ )] dz,

0 0

(3.13)

and also to certain derivatives of the surface energy, iol
viz., the surface entropy S e = - (9σ/9Γ)μ, the surface
heat capacity Ca = -T(8Pa/B1*)lo and the excess surface
mass ma = -

In addition, in the case of solutions of helium-3 in
helium-4, interest can also attach to the excess sur-
face mass of the He3: m3ia = -(aa/dni)l^T, where μ3 is
the chemical potential of He3.

The thermodynamic potential *n-i(Ps) per unit vol-
ume at vs = 0 is, according to (2.13) and (2.15),

φπ-ΐ(Ρ«) = Φπ(Ρ, Τ, ρ,)-Φι(ρ, Τ)

= UW '
1Μ (3.14)

Substituting the solution (3.10) in (3.12) and (3.13) and
taking (3.14) into account, it being convenient to change
from integration with respect to the coordinate to inte-
gration with respect to φ0 and to use (3.9a), we obtain

Δ (t) = lo (0 P « ( 0 ^ In (v, + VT+vi), (3.15)

&>(0ΦΙ-H(P« n(v

(3.16)

The derivatives of σ with respect to Τ and with respect
to μ, in view of the power-law dependence of σ on
t= Τχ(μ) -Τ, are obviously expressed in terms of σ and
t themselves:

(2-a_.v)t-%(t) = 4-r'a(i), (3.17)

, = - Tt.au (*) = ( 2 - a - v) (1 - a - v) 7\r% («) = — i I i σ if).

, ; . = - σ ; , (ί = Γλ (μ, μ , ) - Γ ) = - ^

(3.18)

(3.19)

(3.20)

In the scheme considered by us, the critical exponents
are a = 0 and i> = 2/3. If M=0, when the solution (3.11)
is valid, the calculation is particularly simple and we
obtain directly, or else from (3.14) as f0— 0,

ί) = 0.81·10"β g/cmJ (3.15a)

ξο(ί)Φΐ-ΐΐ(Ρ.*) = 9.Ο·1Ο-2ί4/3 erg/cm2 (3.16a)

In this case

20>We have already emphasized (see Sec. 2.1) that to solve
static spatially-inhomogeneous problems we must use not
the potential Φ(ρ,Τ) but the potential Ω(μ,Τ).
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TABLE II.

Μ

0
1
2

00

vJ=2M/(3 + M)

0
1/2
4/5

2

1.414
1.317
1.272
1.146

σ/ξο Φ Ι - Ι Ι <P4e)

1.886
1.976
2.026
2.208

Sa = 0.12ί</3 erg/cm2 deg,,
= -8.7-10-2ί-2/» eig/cm2deg,

mo = 1.54-lO-loi'/3g/cmJ

(3.17a)
(3.18a)
(3.19a)

To measure the profile ps(z) we can use a procedure,
albeit not an easy one, of probing with second sound;
this will be discussed in Sec. (3.2). The quantities Δ
and σ (as well as their derivatives) can be measured by
using "thick" films of thickness21»

<*»£„ = 2.74.10-8r2/3cm .

In this case the mean values p, and Φ Ι Ι = $± -Φ1_11

(averaged over the cross section) in the film are equal
to

2Δ
P. = P« j -

2σ

(3.20a)

(3.20b)

The quantity Ζ = Δ(ί, m)/pse(t) is frequently called the
healing length. Analogous formulas hold also for other
quantities. For example,

= S1i (pM) + -§- Γ' -1,

= Cp (p.,) — § ~ £ 1 ,

(3.20c)

(3.20d)

(3.20e)

Measurements of the foregoing quantities, and in the
case of solutions also of m3i<J, can be used in principle
to determine the parameter M, or to check the theory
if Μ is known from other experiments. 'Unfortunately,
the dependence of Δ and σ on Μ (it enters in (3.15) and
(3.16) via v% = 2M/(3 + M) is quite weak, as is clear from
Table II.

For films of arbitrary thickness, the results of ψο(ζ)
and other quantities cannot be expressed in terms of
elementary functions. In a qualitative investigation of
the problem it is convenient to use a mechanical anal-
ogy, for when y is replaced by the time t, and Φο is
replaced by the coordinate of the point*·, Eq. (3.8) de-
scribes the motion of a point having a mass 4 in the
field of a potential (Fig. 1).

V(x) = (2-v») * 2 - ( l _ 2 v o ' ) z 4 - - ( 1 - x 2 ) 2 ( l (3. 21)

On the other hand, Eq. (3.9) has the meaning of an

21)More accurately, as we shall see below, it suffices to have
d larger than the "critical" thickness dc or dtT (in the case
when the phase transition in the film is of first order) by an
amount on the order of 2 |^ = 2|οτ/(3

energy conservation law, the total energy (V+2xz) be-
ing equal to E. The distribution of !po(y) at half the
film thickness (0«y«rf/2|0) corresponds obviously to
the trajectory of the particle on the section from χ = 0
to the turning point xm, where xm is determined from
the solution of the equation

E-V (xm) = 0. (3. 22)

Using this circumstance, the expression for the dis-
tribution !po(y) c a n be immediately written in para-
metric form (y varied in the interval from 0 to ά/2ξ0)

y=] τ dx

Substituting xm as the upper limit in this expression,
we obtain the connection between the amplitude of the
distribution xm = tyo(d/2) and the film thickness

dx

VE-V(x) '
(3.23)

The quantity D has obviously, in the language of the
mechanical analogy, the meaning of the half-period of
the oscillations. Let us analyze (3.23) in somewhat
greater detail. To this end we substitute in it V(x) and
Ε in accord with (3.21) and (3.22), and make the sub-
stitution x/xm= sin<p under the integral sign.

After some transformations we obtain

W.. Φ) = 1(2-vj) - (1 -

(3.24)

sin2φ) *·,
- ν* (1 + sin2 φ + sin' φ) x'm]1/2.

(3.25)
As x\ — 0, the integrand becomes (2 - vl)~1/2, and we
obtain, as we should,

4 = -Dclo = π|0Κ2/(2 - vj) = n^V(3 + M)IZ = π | Μ (ί).

We now obtain the next (first) term of the expansion of

B c ( l+- 8

L ( 1 —

(3.26)
It is seen from (3.26) that at M> 1 the dimensionless
length D first decreases with increasing xm. At the
same time, as xm— 1 the "period" D (the film thickness)
increases without limit. Thus D, as a function of xm,
has a minimum D =Dcl at a certain value xm =xm,e· If
now, conversely, we regard xm as a function of D, then
in the interval Del<D<Dc this function is double-val-

FIG. 1.
V(x).

Plot of the function
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FIG. 2. Dependence of
Ms and of the dimension-
less thermodynamic po-
tential s1 on the film
thickness for the case
M>\.

ued, i .e . , one and the same value of the film thickness
d=Di,Q corresponds here to two different distributions
of Ψα(ν) with different amplitudes xm.

To determine the cause of this ambiguity, we turn to
an analysis of the behavior of the total excess thermo-
dynamic potential of the film referred to a unit surface,
* I I - I = J*ii-i(p,H* = / [*n(p«) - *rkte. The mechanical
analog of f I W (more accurately, of the ratio aP = 5>n.i/
ΦΙ_η(ρΜ)ξ0(ί)) is the action integral of the particle over
a half-period of the oscillations

ξοΦί-ΐΐ (P«) '
= 2 j [2x2-V(x)]dt

= -£0 + 4/2 j YE-V(x)dx.
ο

(3.27)

The derivative frXu) of the action with respect to the
half-period of the oscillation is, as is well known, the
negative total energy of the particle (this can be veri-
fied also by direct differentiation of (3.25), after first
making the substitution x=x/xm under the integral
sign). Since Ε = V(xm)> 0 by its very meaning, this
means that HP· decreases monotonically with increasing
D. It is easy also to determine the sign of the second
derivative of the function &(D). We have

Approximate plots of the functions ^(/J) and MS(D) in
the case Μ * 1, which is simpler to analyze, are shown
in Fig. 3.

Thus, depending on the value of the parameter M,
the phase transition in the film can be of first order
(M> 1) or of second order (M< 1 ) . K 9 > e l ] The value Μ = 1
corresponds to the tricritical point. The parameter Μ
can, in principle be affected by pressure or by intro-
duction of He3 as an impurity. In fact, if the He3 con-
centration in the solution is x3 >x3tt (*z,t ~ 67% at sat-
urated-vapor pressure), then the transition to the su-
perfluid state is of first order also in an unbounded
liquid. In this case certainly Λί>1. The situation is
less clear ntx3<x3it and even in pure He4, since sys-
tematic investigations of the λ transition in sufficiently
thick films or gaps (with di(Q. 1 to 1)μ), with well-con-
trolled geometry, have not yet been carried out, and
it is difficult in practice to distinguish between a sec-
ond-order phase transition and a weak first-order one
(according toL 7 4 :, the transition in thin films is more
likely to be of second order).

In a quantitative study of the behavior of various
thermodynamic functions of a film, the integral in the
right-hand side of (3.27) is best written in a form sim-
ilar to (3.24) and (3.25):

(3.28)

The average thermodynamic potential of the film is in
this case:

(3.29)
AC»

where according to (3.20) and (3.22),

ButE'(jcl)=dV/d(xz)>0. Therefore 3>"{D)<0 if
D"(xl,)>Q, and conversely ef"(D)> 0 if Ζ)"(χ*)<0.
Using the obtained information concerning the signs of
the derivatives, we can easily construct the entire
plot of 5KD). It must be borne in mind here that
&Φ =DC)= 3"φ =DC)= 0, and that at large D the 3>(D)
curve approaches asymptotically the straight line 2o-D,
where σ= σ/(ξ0Φΐ_π(ρθβ)) (see formula (3. 20b)). The
approximate form of the plot of 3HD) is shown in the
lower half of Fig. 2. This plot is typical of first-order
phase transitions. The point 7Jtr where the lower curve
crosses the abscissa axis corresponds here to the ther-
modynamic transition point (the point where the ther-
modynamic potentials are equal), and sections 1 and 2
correspond to the superheated and supercooled states.
The upper branch of the curve (shown dashed in Fig. 2)
corresponds to unstable states. In addition to the plot
of ΨΦ), the upper half of Fig. 2 shows a plot of the
function M4(D) = p~),!p,{z)dz. The fact that this plot is
S-shaped also indicates a first-order transition.

(3.30)

It is convenient to reduce also the expression for ps(d)
to a similar form:

(3.31)

Expressions (3.29) and (3.31) in conjunction with

2SS

FIG. 3. Dependence of Ms and of the dimensionless thermody-
namic potential 3· on the film thickness for the case Af <1.
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(3.28), (3.30) and (3.24), (3.25) define Φη(ά) and ps(d)
in parametric form as functions of the parameter xm,
which has the meaning of the amplitude of the distri-
bution of φο(ζ), i. e., of the maximum value reached by
the function ψο(ζ) at half the film thickness.

Differentiating (3.29) with respect to t = Tx - Τ and
recognizing at the same time, as already mentioned,
that &>'(D) =d/dD(- ED +/2) = - E(D), we obtain an ex-
pression for the average entropy density and for the
average heat capacity of the film

( 1 — 2vJ)

«. 9)

(3.

(3.

(3.

d<f.

32)

33)

34)

Let us analyze the derived relations. We begin with
thick films, of thickness

] i / 2

J

In this case we can put ΛΓ2 = £ = 1 andE'(D) = 0 in (3.29),
(3.31), (3.32), and (3. 33). The corresponding inte-
grals /j and Iz can be easily evaluated at x\ = 1, and
from (3.29), (3. 31)-(3.33) we return, as we should, to
the asymptotic formulas (3.20). We note that the
asymptotic values given by (30) are rapidly (exponen-
tially) reached in the case of thick films, with correc-
tions on the order of exp {- (d - rfo)/?i}> where
do~ min(rftr, d0) (dtT is the critical value of the thickness,
corresponding at M>1 to the equilibrium transition
temperature). Thus, with accuracy better than 5%,
these formulas can be used already at

A few remarks are in order_concerning the tempera-
ture dependences of pa and Cp in thick films. In con-
junction with (3.15), the result (3.20a) means that

(3.35)
i. e., for a thick film the average density ps is simply
"shifted" by an amount KMpse(Tx(d)) in comparison with
the density ρχ{Τ) in a large volume. The constant KM

ranges from 0.90 (at M = 0) to 0. 52 (as Λ/-°°). It is
precisely this kind of "shift" of the function ps(T) which
is observed in experiment (see, e. g., C88-e°i); but it
cannot be used to estimate the numerical value of the
parameter M, since the data obtained in the corre-
sponding experiments refer to channels that are not
wide enough (Δ7\~ 10"2 °K) and are as a rule irregular,
with a great uncertainty in the pore dimensions.

On the other hand, the difference between the heat
capacity Cp of a thick film from the heat capacity Cp{px)

in a large volume no longer reduces to a simple shift,
and according to (3.20d) it increases in proportion to
Γ 2 / 3 with increasing temperature. The maximum value
of the difference ^ ( ρ κ ) -Cp(d), reached at the limit of
applicability of the asymptotic formulas, i. e., at
d^dtr + 2J2£~M, is approximately (0.1-0.2)ACP. Un-
fortunately, we know of no exact measurements of the
heat capacity Cp in "thick helium films."

We turn now to the case of thin films with d~dlr

+ 2V2£«. The analysis is simple enough here only if
Μ «1, i. e., when the phase transition in the film is of
second order. Assume first that Μ <1 . In the limit
when x% « 1, we obtain from (3.26)

3(1-Λ/) \ Dc *y

Using this expression, we obtain from (3. 31 J22'

Tk{d)-T

(3.36)

where the last expression is obviously valid only if

(3. 37)

(d) - 7\ (d). (3.38)

It is clear from (3. 37) and (3. 38) that a linear depen-
dence of ps on the temperature should be observed only
in a narrow region near the temperature Tx(d) at which
superfluidity appears in the film. One can hardly hope
to reveal this effect distinctly by measuring the velocity
of fourth sound in porous materials filled with helium Π.
The uncertainty in the pore dimensions and the need for
taking into account the variation of these dimensions
over distances on the order of ξ0(Ο can lead to sub-
stantial changes of the picture. The available data for
porous materials merely confirm the presence of the
shift ATx(d), but cannot be used for a quantitative veri-
fication of the formulas given above. It must further-
more be added that the pores must in any case not be
small enough to make A7\(rf) > 0.1 °K, for otherwise
the Φ-theory is quantitatively not valid at all (condition
(1.4)). The last remark refers, in particular, to t f l 0 3,
which cites Δ7\ = 0. 22 °K. Both for this reason and on
the basis of Fig. 1 o f l m , we still see no justification
for stating that the theory contradicts the observations.
We note furthermore that inC893, in contrast to t 9 0 ] , a
region (3. 38) in which p, depends linearly on Tx{d) - Τ
has been observed. It is undoubtedly desirable to
measure ps(t) for sufficiently wide gaps.(or capillar-
ies, pores, etc.) with distinctly determined dimen-
sions.

We now calculate the jump of the heat capacity &CP

= Cp.n ~ c * , i i n a f i l m a t T= T\(d)· F r o m (3· 3 3> a n d

791 Sov. Phys. Usp., Vol. 19, No. 10, October 1976

22)The result (3.37) at M = 0 coincides with that given in'7 3 '.

V. L. Ginzburg and A. A. Sobaynin 791



TABLE ΠΙ.

Μ

9/7
2
3
4,5
7

17
oo

2Μ
3+Μ

0.6
0.8
1
1.2
1.4
1.7
2

D t r

ίο

3.735
3.895
4.017
4.101
4.186
4.291
4.404

η =,„! /"3+Μ
0 l· 3

3.755
4.056
4.443
4.967
5.736
8.112

oo

«01- " "C ' Ιο

3.728
3.845
3.898
3.914
3.910
3.882
3,841

-«T(V)
0.20
0.45
0.60
0.69
0.76
0.83
0.88

"u

0.100
0.226
0.304
0.352
0,391
0.434
0.468

AS

Sl_Il(P«)

0,094
0.196
0.248
0.280
0.293
0.308
0.320

4 C P

6.11
2.04
1,36
1.10
1.00
0.91
0.85

E t r

o:28
0.59
0.74
0.82
0.88
0.93
0.96

(3.34), using also (3. 30) and (3. 36), we obtain23'

AC ρ {d)E&Cp, H (Γχ, (<*)) — C P | , (7\(d))

(3. 39)

We note that the "jump" of the heat capacity in the film
is somewhat larger, even at Af = 0, than the "jump" AC,
of the heat capacity in "bulky" helium. In addition, the
quantity AC,(7\(d)) does not depend on the thickness of the
film, in contradiction to the conclusion drawn in" 2 3 . The
interpretationof the experimental data given there seems
therefore doubtful to us. The general picture of the behav-
ior of AC,(T), which follows from the analysis presented
here, is obviously the following: at d>_dc + 2/2"ξ;, when
the film can be regarded as "thick," AC, first decreases
with increasing temperature, in accordance with for-
mula (3^_20d): next, at d~dc + 2V~2 ξ; it reaches a mini-
mum AC,(lnln=* (0. 8-0. 9) AC,, after which it begins to
grow and tends as T— Tx(d) to the value determined by
(3. 39).

As M - 1, the heat capacity C, diverges at T= Tx(d)
because the value M=l corresponds to the tricritical
point. It can be shown that as T—7\(<2) the character of
the singularity of CP(T) is in this case of the square-root
type

-r •C1·

(3. 39b)

The density of the superfluid component also vanishes
in this case in accordance with a square-root law

(3.37a)

At M>1, to assess the positions of the transition
point (the temperature TtT(d) or the "critical" thickness
of the layer dtT) and of the discontinuities that take_place
at T= TtT(d) in the density (Ap#), in the entropy (AS),

23)If the critical exponents α for the heat capacity and ν for the
correlation length are not fixed, the result (3.39) takes the
form

"'P (2—«HI a (3. 39a)

In particular, if the self-consistent variant (2.5-(2. 8) were
used, the relative discontinuity of the heat capacity in the
film would be ACP/ACP = 2/3.

and in the heat capacity (AC,), as well as to determine
the limits of the temperature hysteresis, numerical cal-
culations are needed. Some results of calculations of
this kind are listed in Table III.

The last column of Table III gives the values of the
relative pressure jump £ tr

s[in(7t r(d)-/> I]/O 1 . I I(p i,)
which is realized in the film if the thickness of the film
(layer) is fixed.24) Actually, however, in the case of
films the given quantity is the vapor pressure over the
film, and it is the thickness which changes jumpwise at
Τ = TtT{p). This circumstance must be taken into ac-
count when the predictions of the theory are compared
with experiment. A rapid change in thickness or vapor
pressure over the film takes place at T~ 7\(d) also if
the phase transition in the film is of second order. For
details see" 4 · 7 5 3 .

Unfortunately, it is difficult to compare the thermo-
dynamic parameters of the films as given by the de-
veloped theory and by experiment in the immediate
vicinity of the transition temperature Tx{d) or TtT(d).
The point is that, as already mentioned in Sec. 2.4, the
heat capacity and other analogous quantities (entropy,
thermodynamic potential, etc.) depend on the long-wave
fluctuations. The corresponding contribution was at-
tributed by us to terms of the type Φτ(Ρ, Τ), Sj(£, Τ),
etc., and was assumed to be symmetrical with respect
to replacement of t by - t, i. e., to have no influence on
the difference Φ π - Φ^ In the case of helium in large
volumes this, in general, is confirmed by experiment.
In the case of films, however, the situation can be dif-
ferent, and the contribution of the fluctuations at t<0
and i>0 may turn out to be different (see, e. g., K 2 ] ) .
In this case the considered Φ-theory must definitely be
modified. We note that in the calculation of p,(d) this
difficulty is not so crucial, because the long-wave fluc-
tuations smear out the transition only slightly (so
that there is a certain "para-superfluidity" also at
T>tx(d), see, e.g. " i · 9 " ) . We emphasize that the noted
difficulties encountered when it comes to compare the-
ory with experiment (even for films whose thickness can
be accurately controlled) make the corresponding ex-
periments no less interesting and important.

3.2. Density distribution of superfluid component in
external fields

The effect of the boundaries is not the only factor that
leads to inhomogeneity of the modulus of the order pa-
rameter ΙΦ I =r\ = ylps/m in immobile helium. A similar
result is produced also by the action of various external
fields on the liquid, e.g., the gravitational field, stric-
tion forces of electric and magnetic fields, or the fields
of the van der Waals forces. The field increases the
density ρ of the liquid, and with it the temperature Tx

24)The additional pressure produced in the film as a result of
its transition to the superfluid state is given by the formula

where Ω,.π(ρ«) = (ACu/2Tx)t2,
and Ε is defined in (3. 30).

p = 0. 76 J-cm"3 deg,
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= Τχ(ρ) of the λ transition. As a result, if the potential
V(T) of the field forces is not constant in space, then
the phase transition into the superfluid state occurs not
simultaneously over the entire "sample, " and the first
to become superfluid (with decreasing temperature) are
those liquid regions in which the density ρ is lower. The
regions that have already gone over into the superfluid
state are separated from the neighboring "normal" re-
gions by diffuse phase boundaries, and the width and
shape of the boundary (the character of the distribution
of p ((r) in the transition layer) depend on the field gra-
dient, on the correlation effects that are taken into ac-
count in (2.15) with the aid of the term containing the
gradient of Ψ, and also on the form of the density of the
thermedynamic potential. It is clear even from this
that a study of the distribution of p,(r) in the transition
region is of considerable interest.

The question of the character of the inhomogeneous
distributions of p,(r) in external fields and of the pos-
sibility of experimentally studying distributions of this
kind were considered on the basis of the Φ-theory of
superfluidity i n 0 8 · 9 4 3 . In addition, for the particular
case of the He I - He II boundary in a gravitational field,
a number of preliminary estimates were made also

inC95.363 a n d i n t n e e x p e r i m e n t a l paper£ 9 U. For lack of
space, and in view of the rather complete treatment
in138·94·1, we omit many details in our review of the cited
papers.

When solving spatially-inhomogeneous problems in
which the changes of the density ρ are significant, it is
necessary to consider the thermodynamic potential

Ωπ(μ, 7"; Ψ, p)= j[fno(P, Τ, \ Ψ |2) + -^-| νΨ| 2-μρ] dV (3.40)

and to minimize this potential with respect to Φ*(Γ) and
ρ(τ) simultaneously.

In the presence of an external field G = VV(r) (per
unit mass) it is necessary to add to the integrand of
(3.40) the term pV(r), representing the potential energy
of the particles in the field, and also, generally speak-
ing (if the density changes noticeably over distances on
the order of interatomic ones), the term (6/2){Vpf,
which takes into account the correlations of p. As a
result, by minimizing (3. 40), we obtain the following
system of coupled differential equations for the equi-
librium values of *,(r) and p,(r)

JL
2m

<J | ψ Ρ /ρ, Γ
ψ (3.41)

If however, the gradients of the density ρ are small, as
will be assumed from now on and is assured if the con-
dition (2. 21) holds, then the terms with the spatial de-
rivatives of ρ can be discarded. Furthermore, it is
convenient to change over from the density of the free
energy Fna(p, Τ, ΙΦ I2) to the density of the thermody-
namic potential Ω π ο (μ 0 , Τ, |Ψ| 2) in terms of the vari-
ables μ0, Τ, and ΙΦ I2, where μ0 is the chemical poten-
tial of helium in the absence of an external field

μο=(^£ΐ1»_\ =μ-7( Γ ) . (3 42)

Equations (3.41) are then separable and take the form

>'2

2m

''Mo

(3.43)

(3.43a)

We change over now to the reduced ψ function (3.12)
and to the dimensionless coordinates r (see (2.17)),
and use for Ω^,-Ω! a formula similar to (2.13). Equa-
tion (3. 43a) then takes the form

(3.44)

which is analogous to (2.18), except that the distance to
the λ transition, f = 7\ - T, is itself now, generally
speaking, a function of the coordinates25', inasmuch as
in accord with (3.42) we have

t = Τ,. (μ0) - Τ = Tx (μ - V (r)) - Τ « t0 —"-LL· V (r), (3.45)

where to= T M - Τ+(άΤλ/άμ)(μ - μ Μ ) is the initial dis-
tance to a certain point (7\0, μλ0) on the λ curve in the
absence of an external field, and dTjdy. is the slope
of the λ curve at the indicated point (at saturated-vapor
pressure we have άΤλ/άμ = -1.27x 10'9 degj^-jrg"1).28

We note that if we were G> use for Slu 0 - Ωχ in (2.13)
the more general formula (see D e ] and Sec. 2.4)

then Eq. (3.44) would take the form

Thus, were we to know from experiment the function
φ(ζ) in the region of the transition layer, then by plot-
ting the dependence of y= (ά Ι

y
Ι~*/3 on

χ=φ/\ί\1/3 it would be possible to determine the form
of the function f(x), and hence the form of the density of
the thermodynamic potential, and furthermore for all
χ and t < 0, and not only for χ & 1 and t>0, as is the
case for films. We shall return to the question of the

2 5 )In principle, a changeover to other thermodynamic variables
can lead also to a change in the coefficients of (2.18) (the
numerical value of the parameter Μ and the numerical val-
ues of the scales l 0 0 and Φοο indicated in (2.12) and (2.17);
see also (2. 9)). Actually, however, the corresponding re-
normalization of the coefficients turns out to be very small
and, in particular, on going from the variables (p. Τ, Φ) to
(μο,Γ, Φ) it does not exceed 2% (for more details see1 3 8 1).

26>The equations used in'951 and'361 contain instead of the de-
rivative άΤχ/άμ the derivative p^dT-Jdp. That these two
derivatives are equivalent is implied also in the experimen-
tal paper. " " We note that although the difference between
dTjd\i and (\dTx/dp is quite small (~2%), allowance for it
brings the slope of the λ curve dpx/dT =-113. 9 atm/°K, ob-
tained in'9 1 1, closer to the best experimental value dpx/dT
= - 111. 05 atm/°K[961 (the corrected value that follows
from'911 for dpJdT is - 11. 6 atm/°K).
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FIG. 4. Distribution of the order parameter J(y) near the
He I-HeII interface in a gravitational field. The solid curves
were obtained by numerically solving Eq. (3. 50) for two values
of the parameter s , namely Λί=0 (curve 1) andAf = l (curve 2),
The dashed curve shows the distribution >p{y) =y1 / 3 that would
be obtained without taking correlation effects into account.

methods used to measure the density profile p,(z), but
for the time being, having no information on the com-
plete form of the function/(AT), we assume Eq. (3.44)
and consider a number of concrete problems on its
basis.

We begin with the case of slowly varying fields and
assume first that the field G is entirely homogeneous.
In this case (the ζ axis is assumed directed along the
field)

Va = Gz. (3. 46)

In the particular case of a gravitational field the con-
stant G has obviously the meaning of the acceleration g
due to gravity. It is convenient to measure the co-
ordinate ζ from the plane t = t0 - (dTx/d^)Gz = 0, which
corresponds to the He I-He Π phase separation bound-
ary in a field (without allowance for correlation effects),
and to change over to a new relative ψ function and to a
new dimensionless coordinate y

ψ=_*_, » = -£-, (3.47)

where the characteristic scales * c and lG are equal to

Ψο=( — ) 1 / 2 . Ρ8ο = 1·43ρλ (-^-) =0.21 (-^)g/cm3

(3-48)

In particular, for the gravitational field (G=# = 981 cm/
sec2) we have

8 = 1 .43 Ρ ι - |^ = 8·6·10-' g/cra3,
'β (3.49)

In terms of the variables (3.47), Eq. (3.44) takes the
form

(3. 50)

Solutions of (3. 50) corresponding to the values M=0 and
M= 1 are shown in Fig. 4, where the dashed curve
shows also the φ(y) distribution that would be obtained
without allowance for the correlation effect. Attention
is called to the fact that the curves with M=0 and M= 1
are very close to each other, despite the essentially
different character of the nonlinear term in (3. 50). The

difference in the nonlinearity is most important in the
region where φ £ I y\1/3, i. e., exactly where the ex-
pansion (2.13) ceases to be valid, and where it would
be necessary to expand in powers of ί/\φ I3 (see B S · 3 8 3

and Sec. 2.4)—the corresponding region is circled in
Fig. 4. The close character of the curves with M=0
and M = \ indicates, however, that the exact form of the
balance equation in this region is of no great signifi-
cance, and that the use of (3.44) is in all probability an
adequate approximation of the behavior of pt(z) in the
transition region.

In the case of an inhomogeneous but weakly varying
field, the potential V(z) can be expanded in a series
about the point ζ = z0 at which t= T(z) - T = 0

(3.51)

(3.51a)

In this case, if

then the field in the vicinity of the point z = z0 can be
regarded as homogeneous, as before, and the entire
preceding analysis is valid. The foregoing pertains ob-
viously also to non-planar interfaces, provided that the
curvature radius of the boundary is much larger than
its thickness lG.

From the point of view of experiment, apart from the
force of gravity, interest attaches also to the striction
forces that arise in electric and magnetic fields. In an
electric field, the additional chemical potential of the
liquid is equal to

E 2 (r)
(3. 52)

where Ε is the field intensity, t is the dielectric con-
stant, and a o = 3. l x 10"2 cm3/g is the polarizability of
the helium per gram. A similar formula, but with a0

replaced by the diamagnetic susceptibility aH = - 0. 47
xlO"® cm3/g of helium, holds also in the case of a magnetic
field (E replaced by It). The shifts of the λ point under the
influence of a homogeneous electric or homogeneous
magnetic field, due to the change of p, are quite small.
Thus, at £~£ b r t a l d o w I 1 ~2xl0 e V/cm the λ-point shift is
ΔTX(E) = 7\(0) - TX(E) ~ 1 χ 10"3 °K, and for a magnetic
field the corresponding values are even smaller (at Η
~ 105 Oe the shift is ΔΤλ(Η)~ - 3χ ΙΟ"6 °Κ). Naturally,
even in an inhomogeneous field the distribution p,(r)
changes (with a transition into He Π) only in a relatively
narrow vicinity of the λ transition. Nonetheless, inside
the indicated region the effects of the inhomogeneous
electric or magnetic field are fully comparable and can
even exceed the action due the weight of, say, a helium
column 1 cm high (the λ-point shift due to the pressure
of the helium column is 1. 25x 10"e °K/cm). For this
reason, an investigation of the action of electric and
magnetic fields is also desirable, for by varying the
intensity and configuration of the field it is possible to
change (contract or extend) the width of the transition
region between the helium I and helium Π, produce lo-
cal regions with decreased or increased density concen-
tration of the superfluid part and thus acting as converg-
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ing or dispersing lenses for the second-sound waves , l w

etc. Nor can we exclude the use of local condensations
of ρ in Hell in an electric field to investigate effects
such as the proximity effect or an analog of the Joseph-
son effect. B 4 ] 2 7 ) To illustrate the possibilities of using
electric and magnetic fields, let us estimate, for ex-
ample, the width of the phase-separation boundary be-
tween He I and He II in the field of a charged filament of
radius R. In this case E~ 1/r (r is the distance to the
filament axis) and as follows from (3. 48), (3. 50), and
(3. 52),

r0 (Ό) (3.53)

where ro(fo)= [ \dTjdii\(a0El/2t0)]x'zR, ER is the field
intensity on the surface of the filament, and t0 is the
temperature difference T^g- Τ far from the filament
(for details s e e B 8 ] ) . At ER~106 V/cm, ίο~1Ο-6°Κ, and
R~0. l c m , the length lB~8. 8xlO"3 cm. In the case of
a current-carrying conductor at a field intensity H~105

Oe at the conductor surface and at the same values of
t0 and R, an analogous estimate yields lH~2. 7xlO"3 cm.

We turn now to the case of fields that vary rapidly in
space, for which the condition (3. 51) no longer holds.
Real fields of this type are those of the van der Waals
forces near a solid wall, or the field of microscopical-
ly charged bodies (ions in helium). We consider first
the former case.

The potential acting on the helium because of the
solid is equal toC 9 7 ]

• r M = — 5 - . (3-54)

where ζ is the distance to the wall and θ is a constant
that depends on the wall material (a typical value is θ
~ (1 to 10)x ΙΟ"14 erg-cm'g-1). Without allowance for
the correlation effects, the action of the potential (3. 54)
should lead to the production near the wall of an He I
layer of thickness z0 that increases as Γ—TM in ac-
cordance with the law

Actually, however, no such distinct layer is produced,
and to determine the behavior of ps(z) in the region of
the action of the "wall potential" (3. 54) it is necessary
to solve Eq. (3.44) with

and with the boundary conditions

ψ (0) = 0, ψ (oo) = ·φ, = ψ3.

(3.56)

(3.57)

2 7 'it would also be of interest to use electric and magnetic
fields to eliminate the effect of the inhomogeneity of a liquid
column in a gravitational field near the ordinary "liquid-
vapor" critical points or near the mixture-stratification
critical points, particularly for solutions of 3He in 4He.

We note that when account is taken of the van der Waals
forces, one can dispense with the condition 0(0) =0 on
the wall, and this condition can be replaced (just as in
the vortex problem, see Sec. 3.4) by the physically ob-
vious requirement that there be no exponentially grow-
ing solutions.

Inasmuch as in the region z-z0 the potential (3.54)
varies quite rapidly, for a qualitative investigation of
the problem the t (z) dependence can be replaced ap-
proximately by the expression

t(z) =
to at ζ > zo,

— | άΤ,,/άμ | θ/ζ3 at z<z0.
(3.56a)

The asymptotic form of φ(ζ) at ζ <ζ0, with allowance for
(3. 57), takes the form

Ψ(ζ<ζο) = «βχ Ρ (-Α) ι (3.58a)

where c is the integration constant and

(3.59)
On the other hand, in the region ζ >ζ0, a "free" solu-
tion without a field is valid (see (3.10))

Φ ( z > z o ) = φ,{ί0)- (3.58b)

which is "shifted" away from the wall a certain distance
b. By matching expressions (3. 58a) and (3. 58b) at ζ
=z0 (we require equality of the functions as well as of
their derivatives), we obtain for the constants c and b
the values

b=- Φ. Co)
/2ξο[1+(Ζο/ζο)]

(3.60)

and the condition of the applicability of these formulas
is the requirement

to (zo) = 1·'(Z
Φ Μ

ίο'3«1·
φ Ah) ~ φ ΑΌ) Τ/2ξ0 γΐ ξ,»

(3.61)
It follows from (3.60) and (3. 59) that at small values
of the difference t0 = Τχ0 - Τ, when I0/z0 = (ZoAoo)io/3

« 1, the distance b over which Φ effectively vanishes is
practically independent of temperature and does not ex-
ceed several interatomic distances. This justifies the
use, near the λ point, of the formulas of Sec. 3.2, which
were obtained without allowance for the van der Waals
forces. At the same time, with increasing distance
from the λ point (e. g., for a material with θ~ 10"13

erg-cm3g"1 at <0~2xl0"3 °K), the effects connected with
the influence of the van der Waals forces become gen-
erally speaking significant, as is clear from Fig. 5
(curves 2), and as was in fact observed in experi-
ment. C 8 3 :

In the case of microscopic charged bodies (ions in
helium), the presence of a short-range electrostriction
potential (3.52) also leads to a certain shift of the point
at which we have effectively Φ = 0, away from the bound-
ary of the ion in the interior of the helium. This shift,
however, is quite small and even as T~TXO it does not
exceed the dimension of the ion (i. e., the radius of the
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FIG. 5. Distribution of the order parameter ψο(}>) near a solid
wall with allowance for the field of the van der Waals forces.
The solid curves were obtained by numerically solving Eq.
(3.44) with potential (3. 54) for two values of the parameter M,
namely Μ = 0 (lower curves) andM = l (upper curves). Curves
1 were obtained without allowance for the influence of the field,
but with the boundary condition (2.26). Curves 2 and 3 corre-
spond to the ratio ζο/ξο equal to 1/4 and 1/2, respectively.
The dashed lines show the ψο(>>) distribution that would be ob-
tained with allowance for the van der Waals forces but in the
absence of correlation effects.

"hard core" β J«7 A in the case of a positive ion, or the
radius of the electron "bubble" ϋ;« 17 A in the case of
a negative ion; see c i 5 ] , Sec. 81). Nonetheless, the
presence of this very condition means the existence,
near the ion, of a region with decreased concentration
of the superfluid component, the effective width B e i t of
which, defined by the integral

increases without limit as T~TM. This can lead to a
number of effects. Consider, for example, the ques-
tion of ion mobility.C98] Above the λ point, the ion mo-
bility can be estimated by Stokes's formula for the re-
sistance to the flow of a viscous liquid around a solid
sphere (for positive ions)

(3.62)

or from the Rybchinskii-Hadamard formula for the re-
sistance to flow around an empty cavity (negative
charges)

(3.62a)

Here η is the viscosity of helium I and t>, is the ve-
locity of the liquid flow at infinity. Below the λ point
we can use the same formulas (with η replaced by r^
and ν by vn, the subscript n designating the viscosity
and velocity of the normal component), but it is then
necessary to take account of the fact that the density
of the normal component is not uniformly distributed
around the ion, as a result of which the velocity vn< t

near the ion differs from the velocity vn>«, far from the
ion. As a rough approximation we can assume that

p» (»•) = { p at r<ii e ( (,
at. r>Retl,

whence, using the continuity equation (pn(r)vn(r)
= const), we get

But it is precisely the velocity vni near the ion that
should obviously enter in expressions (3.62) for the
resistance forces. Thus, immediately below the λ
point we have

or,

(3.63)

where μ±>λ is the ion mobility at the λ point. The fore-
going arguments are only qualitative. Nonetheless,
Eq. (3.63) agrees well with experiment.C99]

In conclusion, we dwell briefly on the possibility of
experimentally studying the inhomogeneous distribu-
tions of the density of the superfluid part of helium II
near the λ point by "probing" them with second-sound
waves. t M ] For simplicity we confine ourselves to the
case of slowly varying density, when geometric optics
suffices for the analysis of the wave propagation, and
furthermore we can neglect the effects of absorption
and dispersion of the sound.

Specifically, we consider the normal incidence of a
plane second-sound wave on an He I - He Π interface in
a gravitational field. Then, as shown inC94], at the
optimal choice of frequency ω ~ 200 Hz (when, on the
one hand, the geometric-optics approximation is still
applicable, and at the same time the effects of sound
absorption and dispersion can be regarded as small),
penetration of the second-sound wave into the region
of the "normal" phase (z <0, see Fig. 4) is possible
up to distances

where γ is a certain coefficient determined by the
character of the increase of second-sound absorption
at high frequencies, while the length lg is given by
formula (3.48). IfySO.l, as follows from the experi-
mental data, t l 0 0 ] then zc >, 1. 5 lt, and the phase shift in
the vicinity of the "tail" of the distribution of *(z)(Fig. 4)

J "2 W
(3.64)

is large enough (δφΖ 2π). Here uz{z) =[TSz

Ps(z)/p^f*
«χ ψ(ζ) is the velocity of the second sound.

To measure the phase of the wave (or the delay time
of the sound pulse τ= δφ/ω) it is apparently necessary
to place some wall at a distance I z I < zc and to observe
the reflection of the second sound from it. By vary-
ing, furthermore, the position of the wall or by shifting
(via a temperature change) the phase boundary, we can
find δφ(ζ), and consequently, according to (3.64), re-
construct also the function 9(z) of interest to us.

All the foregoing applies to an equal degree to an
electric (or magnetic) field, except that the character-
istic scale Z,must be replaced here by lE (or lH). This of-
fers an additional opportunity of varying the width of
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the separation boundary and the depth of sound pene-
tration, by varying the field intensity.

Thus, the procedure discussed above can be counted
upon to yield information on the function p5(r) in a weak-
ly varying field. We note, however, that the appro-
priate experiments are not easy to perform, for in the
case, say, of a gravitational field, in order to regulate
the relative position of the phase separation boundary
and of the "mirror" accurate to (1-Ο.1)Ζ,~1(Γ2 to 10"3

cm, it is necessary to regulate the·temperature with
accuracy to (0.1 -1) I, I dTjdn \g~ 10"8 -10"9 °K. None-
theless, such a degree of stability is apparently fea-
sible (seeC 9 U).

In the study of the reflection of second sound from a
wall without a field, and in some other cases, when the
geometric-optics approximation cannot be used, the
complete system of equations of helium II near the λ
point can be verified (see Sec. 4.1), and the behavior
of ps(r) investigated, near a wall, near the boundary of
the helium with its vapor, etc. The use of the methods of
inverse scattering theory for the analysis of a sound
pulse from an inhomogeneous layer can be of definite
interest from this point of view. [ 1 0 1 ]

There are grounds for hoping that study of second-
sound propagation near the λ point in inhomogeneous
helium will become an important method for the study
of superfluidity,

3.3. Surface tension and boundary condition on a free
surface

When evaluating the character of the boundary con-
dition for the macroscopic order parameter (the den-
sity of the superfluid component) on a free surface of
helium II, it is impossible to advance as direct and as
convincing considerations in favor of the condition φ = 0
as in the case of the boundary between helium II and a
solid (see the Introduction and Sec. 2.2). Nonetheless,
a number of conclusions based on the analysis of the
energy of the boundary as a function of the proposed
value of the parameter Φ on it (i. e., the value Φ(0)
= Φ {ζ = 0) can be drawn for this case, too. We begin
with the following simple estimate1 3" (the helium will
henceforth be assumed to be at rest, so that the func-
tion Φ(ζ) is assumed to be real and positive).

The boundary between helium II and its vapor can be
regarded in analogy between the boundary between a
superconductor and a normal metal. It is known in the
latter caseC481 that the macroscopic wave function pene-
trates into the normal metal, but this penetration is
connected with a loss of free energy (per unit area of
the boundary)

№• ψ 2 (0) (3.65)

on the boundary (for simplicity, the function Φ is
assumed to be continuous on the boundary), and λ is a
certain characteristic depth of "penetration" of the Φ
function into the normal ("N") region. In the case of
contact between the superconductor and the normal
metal" 8 3 we have λ~ ξΝ =HvF/kBT, where vF is the elec-
tron velocity on the Fermi surface in the normal metal;
in the case of vapor above a helium surface, on the
other hand, for lack of any other information, we can
assume the length λ to be of the order of the thermal
wavelength of the helium atom in the vapor, i .e . ,

λ _ \T = Y2nhVmkBT χ 5.9 A.

On the other hand, in the superconducting (super-
fluid) phase ("S"), a change of Φ near the boundary is
connected with a surface energy

№• f Ι άΨ\2 «2

2 1/2 Ιο W
(3.66)

where Φ.Ηφβ(ί) is the equilibrium value of the order
parameter far from the boundary and | 0 ( i ) is the tem-
perature-dependent correlation radius (in the variant
of the theory with M = 0).

Adding these two contributions (3.65) and (3.66) and
minimizing with respect to Φ(0), we see that the mini-

mum of the total surface energy
at2 8 '

1/2 Ιο

= as+aK is reached

(3.67)

The corresponding minimal value of the surface energy
is equal in this case to

2 V 2 m|0 (0
~ 10- erg/cm2 (3.68)

We see thus that if the parameter λ is finite at Τ = Tx,
then it can be assumed, with a good degree of accuracy,
that near the λ point Φ=0 on the free boundary. We
have also found in passing that under these conditions
the contribution σΝ can be disregarded in the calcula-

28)In the case of superconductors, besides a decrease, there
is also a "jump" of the value of the parameter Φ on the
boundary. This circumstance can be taken into account
phenomenologically by considering, besides expressions
(3.65) and (3. 66), also the correlation contribution made to
the surface energy by the difference between the values
* s(0) and Φ^(0) of the order parameter on both sides of •';„
boundary

°ss ~ - ( 0 ) - ΨΝ (0)P,

where λ4 is a certain new length. Minimization of the total
surface energy σ = σΝ + σ$ + σεκ with respect to »s(0) and
4-̂ (0) would indeed lead to the appearance of a "jump" in the
parameter Φ, with

Here Φ ( 0 ) Ξ Φ ( Ζ =0) is the already mentioned value of
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tion of the thermodynamic quantities.2 9 )

The problem of deriving the boundary conditions can
be approached also in a somewhat different but essen-
tially equivalent manner by considering, without any
concrete assumptions concerning the meaning of the
parameter λ, the functional already mentioned in Sec.
£ 2C«>*8.103-107]

1^Ι νψ ρ . (3.69)

The second integral takes into account here the entire
genuine "surface" contribution to the energy of the
boundary, i .e. , the sum of the contributions σΝ + σεΝ,
already minimized with respect to 4^(0) (see footnote 28).

Varying (3.69) with respect to Φ(0), we obtain for the
determination of Φ(0) the equation

•*L| ο + λ-'ψ(ο)=ο, (3.70)

or, changing over to the relative φ0 function (2.20) and
using Eq. (3.9b) with J? = l (half-space),

(3.71)

The corresponding total value of the surface energy is
then

(3.72)

29'if the values of the critical exponents were not fixed, the re-
sult (3.67) would take the form1371

· (0) (3. 67a)

whereas the total surface energy would be determined, as
before, by the contribution made by the change of Φ to the
ordered (superfluid) phase

a xcs~ fz~ (3. 68a)

Relation (3.67a) was criticized in" 0 2 1 because it is violat-
ed" 0 3 1 for a semi-infinite two-dimensional Ising model, and
apparently also a three-dimensional model, so that λ can no
longer be regarded as temperature-independent in the criti-
cal region. We note, however, that in the case of the Ising
model we deal in fact with a contact between two media, of
which only one can have magnetic order (i. e. , in fact we
are speaking of a contact between a ferromagnetic system
and a vacuum). In the case of vapor above the surface of
helium, however, both adjacent subsystems could become
superfluid (although, to be sure, in a vapor with given den-
sity ρ,,φ this transition would occur at a much lower temper-
ature), and thus correlations can exist between the values
of Φ on both sides of the boundary (or, as is also said, a
proximity effect is possible). It is obvious that it is mean-
ingless to speak of such correlations in the case of a bound-
ary with a vacuum, and in general in the case of the inter-
face between different materials.

where S is the area of the boundary and the values of
σ(ί) and σο(ί) are given by (3.16) and (3.16a). At
λ//2 ξο(ί)« 1 we obtain from (3.71) the result (3.67),
and it follows from (3.72) that

asa(t) « I,4/3. (3.72a)

in agreement with the expression (3.68) above.

From (3.71) and (3.72) we can determine also the
correction terms for (3.67) and (3.68)

V2|0(l)
Γ.

2(Λί+1)

3 σο(ήλ_ Γ
4 h C)l/2 L

(3.71a)

(3.72b)

Analogous correction terms, which can be of interest
at distances away from the λ point, can be easily ob-
tained also for the other quantities used in Sec. 3.1.
We shall not dwell on them, however.

The functional (3.69) and the expressions (3.71) and
(3.72) that follow from it can be used also in the analy-
sis of more general cases, when, e.g., λ»ξ 0 ( ί)θΓ
when λ is negative. Such situations are possible in the
case of certain other (e. g., magnetic) phase transi-
tions. "8t 103-107330) A S appii e (j to our problem, however,
we assume that λ > 0 and is a quantity on the order of
atomic dimensions (there are simply no other likely
parameters in the problem, since at T**TX all the
lengths α, λΓ, and αΤΜ,=*10<ζ are quantities of the same
order).

It is possible to verify the boundary conditions for the
function Φ by using the measured values of the dis-
placement of the λ point, of the average density of the
superfluid part, and of the thermodynamic quantities
in thin slits, channels, and films of He Π, as already
discussed in Sees. 2.2 and 3.1. However, the condi-
tion on the free boundary can manifest itself perhaps
in the most direct manner in the behavior of the sur-
face-tension coefficient near the λ point. a n The point
is that the inhomogeneity of Φ near the boundary gives
rise to an additional surface energy, by virtue of which
the surface tension of helium II should also contain an
additional contribution δσ=σ π -σΐ = δΦ8, which is miss-
ing from the normal phase. Since the exponent in the
expression for δσ(ί) is close to unity (see (3. 68) and
(3. 72)), the presence of this contribution should
obviously reveal itself in rough measurements as a cer-
tain change of slope on the plot of σ(Τ) at Γ ^ Γλ. The

30)The situation λ»ξο(() occurs, in particular, on the boundary
between a superconductor and vacuum (or a superconductor
and a dielectric). In this case1 4 8 1 λ~|2(0)/α ~ l cm, and
condition (3. 70) is close to the condition d-ti/dz = 0 to within
a very small vicinity of the superconducting transition tem-
perature Tc - Τ < 10~8 °K. The foregoing, of course, does not
contradict the remark in footnote 29, since the parameter
λ can be introduced as a characteristic of the boundary en-
ergy also for those media between which proximity effects
are impossible. We note that it is precisely in the latter
case that one can expect the parameter λ to be temperature-
dependent in the critical region.

798 Sov. Phys. Usp., Vol. 19, No. 10, October 1976 V. L. Ginzburg and A. A. Sobaynin 798



existence of such a change of slope was noted already
i n t l 0 8 ] and was confirmed by subsequent more accurate
measurements'·109'110-1: The experimental value of the
change of slope (d6a/dT),n = 0. 0226 erg-cm^K"1 (esti-
mated in C l l 0 ] at ε =t/Tx^0. 01) is close to that calcu-
lated from formula (3.16), according to which (ώδσ/

'dT\ima<xba/t = Q. 0252-0. 0295 e r g - c m ^ K " 1 at t
= 0. 0217 °K. Some difference between the theoretical
and experimental values, as well as the poor functional
agreement, observed in t l O 9 l U o : l , between the tempera-
ture dependence δσ(£)ϊηthe region t SO.01 °K and
formula (3.16), can be fully attributed to corrections of
the type given in (3. 72b). The corresponding value of
the parameter λ, required to explain the experimental
data, is approximately λ=* ( 1 - 31X^=^6-18 A.

In connection with the foregoing it must be noted,
however, that a behavior analogous to (3. 68) can re-
sult a l so" 0 2 3 in some cases from allowance for the
long-wave fluctuations of the order parameter. The
point is that for a "sample" of finite dimensions (say a
helium layer of thickness L)7 the fluctuating part
δΦ(1(η,, tt L) of the free-energy density contains correc-
tions of the type δΦη(η^, t) £0(t)/L, compared with the
corresponding fluctuating part δΦη(7^, t) of the free-
energy density of a bulk sample (see (2. 50), where in
the case of a finite system the summation must be car-
ried out over the discrete spectrum of the fluctuations).
When multiplied by the volume V= SL of the layer, these
corrections obviously yield the corrections δ Φ 5 ι Ι 1 to the
surface energy.

We emphasize that the existence of fluctuation correc-
tions δ Φ η is also connected with a boundary condition of
a definite t y p e , C m > 1 1 2 ]

 a n d is therefore also of consider-
able interest; to be sure, the boundary condition is im-
posed in this case not on the equilibrium order param-
eter itself, but on its fluctuations. Unfortunately, a
detailed quantitative calculation of the corresponding
fluctuation contribution has not been carried out as yet.
From general considerations and by analogy with the
behavior of the fluctuating part of the heat capacity we
can only state that this contribution should be approxi-
mately the same above and below the λ point, but it can
have different signs at t >0 and i < 0 c l 0 2 ] (see a lso" 0 3 3

a n d t l l l ] ) .

When account is taken of the possible fluctuation cor-
rections to the temperature dependence of the surface-
tension coefficient, the interpretation of the experimen-
tal data still remains ambiguous, in view of the diffi-
culty of separating the regular part of the relation a(t)
- ffr«g + σίι + δσ> w i t h ση = 0 at the λ point and δσ = 0 at
the λ point. In principle, however, the regular part
σΐ·« (by definition, the part having no singularity at the
λ point) can be separated. Further, above the λ point
we have δσ = 0, and this determines thus the contribu-
tion atl(t <0)=σ Μ (Γ> 7\). H, finally, ση(ί)=\ση(~ t)\,
then we can separate the contribution δσ(ί > 0) calculated
above. It is perfectly possible, at the same time, that
ση « δσ and then the already available measurement data
will yield just the surface energy δσ; as already men-
tioned, in this case λ =6-18 A.

Besides the obvious desirability of determining σ(ί)
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with maximum accuracy in the case of pure helium II
at saturated-vapor pressure, it is also desirable to de-
termine the tension a(t) for solutions of 3He in 4He (in
this case it is necessary also to measure the concentra-
tion of the 3He near the surface).

3.4. Critical velocity of superfluid flow. Vortex filament

In addition to the problems considered above under
the assumption that there is no flow, there are many
others in which vs*0. It must be pointed out, first, that
the onset of flow changes the equilibrium value of p s .
As a result, the superfluidity vanishes, or else the su-
perfluid flow loses stability, at a certain velocity vse.
Second, within the framework of the Φ-theory, the vor-
tex filament in helium Π has a structure·, in particular,
ps(0) = 0 on the filament axis itself. The same pertains
to a vortex ring and to some other types of flow.

We begin with a uniform and homogeneous flow in in-
finite helium Π, i. e., in practice in a sufficiently broad
channel. In this case, according to (2.15) and (2.13),
the thermodynamic potential of helium Π is equal to

Τ Ψΐ =

3ACT

L Poo - Poo 3 f

pM = 1.43piw0.21 g-cm-'deg"2'3. (3.73)

For a second-order phase transition we have ps = 0 at
the transition point, and the transition point Γλ(νΛ;2) it-
self is determined from the condition that the coefficient
of p s vanish. Thus, the transition takes place at a ve-
locity

(3. 74)

We recall that according to (2.12), (2.17), and (2.19),
the correlation length is

t I 3+M\</2

and consequently

We note that in the self-consistent variant (2.5),
(2.8)

2ACO

\Ti.\dp,eidT\
4.5.10V/3 cm-sec"

(3.75)

This expression was derived already in [ 2 0 : prior to the
development of the Ψ-theory; since the relation p^^t
is in fact no longer valid in a sufficiently wide tempera-
ture interval, we shall not use (3. 75) below. For su-
perfluid 3He, however, and probably also for solutions
of 3He in 4He near the tricritical point, it is perfectly
reasonable to use just an expression such as (3.75).

Relation (3. 74) can, just as in the case of (3.4a), be
"inverted," i. e., it is possible to find the shift of the
λ-point temperature occurring in the course of the flow
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ΔΤΧ (υ.) a 2\ (ι;, = 0) - 7\ (ι;,) (3.4), the equation (see also 3. 74))

(3.76)
In principle it is possible to measure not only ο κ or
ΔΤλ, but also the change of the density p s with changing
vs. Thus, using (3.73) and the condition 2Φπ/2ρ 5=0,
we have

(3. 77)

where we put Λί=0 for simplicity.

It was assumed above that the velocity of the normal
part of the liquid is vn = 0. But if νπΦθ, then it follows
both from general considerations and from the actual
expressions given in Sec. 4.1 that it is necessary to
make in formulas (3.74)-(3.77) the substitution

d 0 - ( ^ ) T ^ « w=8-6

I V , V n (3. 78)

One of the possibilities of observing the shift ΔΤλ or
the change of p^iw) due to the presence of the velocity
w= I v s-vBl is to measure the transition temperature
7\ in the presence of heat flow. A lowering of Tx in the
presence of heat flow is actually observed (see,
e. g . , l l l i l ) t but the interpretation of the corresponding
measurements is not clear enough. In any case, we
are not dealing with uniform flow in the absence of vor-
tices, so that the formulas given above cannot be used.
On the other hand, it is clear that near the λ point the
dependence of different effects and quantities on the
velocity vn or on the heat flow can be considered on the
basis of the equations discussed in Sec. 4.1 (see also
Sec. 4.2).

The experimentally observed15'1143 critical velocities
for broad channels and gaps are much lower than the
velocity (3.74). This is quite understandable, inas-
much as in broad channels vortices are produced al-
ready at velocities vs« tiSc2. For thin channels and
gaps, vortex production is difficult, and the critical
velocity can be determined by the effect discussed here.

Assuming that vn = 0 for very narrow channels and
gaps, we shall use Eq. (2.20). We direct the ζ axis
perpendicular to the gap, and the y axis along the gap
and along the direction of the velocity v s. The velocity
v s can be regarded as constant along the gap (it is as-
sumed that the gap width is constant). We put *(y, z)
= exp[i(w/#)i>s;y]*(z), which corresponds exactly to
flow with velocity vs (see (1.2)).

We then obtain from (2.20) for φο(ζ) =
m)1/zt1/3] the equation

(3.79)

It is obvious that this equation differs from (3.1) only in
the term (yJv^ipQ, which is proportional to t%.
Therefore all the results obtained in Sec. 3.1 at vs=0
can be readily generalized to include the case vs*0.
Thus, for a gap of width d we obtain as the condition for
the appearance of a solution with ps*0, instead of

Γ". ί
(3. 80)

Hence

(3.81)

where 7\Ξ τλ(ά-°°, vs=0), the thickness d is in cen-
timeters, and v3 is in cm/sec·, of course, Eq. (3.81)
goes over into (3. 76) or (3.4a), respectively, as d - «
or at vs = 0.

Given d and f, the critical velocity vscZ at which p s

= 0 is, according to (3.81),

, Μ № = Γι _ 7 . 4 . i o - u j ^ f 2 ^ , (3.82)

where, of course, vsoZ = vaa(d-'<x>) is given by (3.74).

We have labeled the critical velocity vscZ with a sub-
script 2, since this velocity can be said to be the high-
est critical velocity—the density p s - 0 as vs~vScZ.
However, even if we disregard the possibility of for-
mation of vortices or of some other "excitations," the
superfluid flow becomes unstable at a certain critical
velocity vscl < v^. The point is that the flux of the su-
perfluid part of helium Π, j s = psvs, has a maximum as a
function of vs. In fact, for uniform flow (wide gaps) we
have, according to (3.77)

(3.83)

(3.84)

/. = Ps (v.) v, = prf*/» (1 - -^ξ^ „.· ) ι,.,

and djjdvs = 0 for the velocity

=

(see (3. 74); just as in (3. 77), we confine ourselves in
(3.84) to the case Μ = 0).

At vs> s c l the flux j s decreases with increasing va, and
this is indeed an indication of the onset of instability.
The appearance of instability can be verified by con-
sidering the law governing the variation of small per-
turbations with time. In our case, however, there is no
need for this, since the superfluid flow can be assumed
to be in thermodynamic quasi-equilibrium. It suffices
therefore to calculate the second derivatives of the
thermodynamic potential and to ascertain whether the
potential has a minimum. It is such a simple calcula-
tion (see, e.g.,C39:i) which leads to the conclusion that
flow with djs/dvs<0 is unstable.

As applied to narrow gaps and channels, the calcula-
tion of vsci makes it necessary to use for ps(z) solutions
of the type obtained in Sec. 3.1. The flux j s , of course
is here not homogeneous in ζ {js= 0 on the wall and is
maximal at the midpoint of the gap). It is therefore not
clear whether the instability condition djJdvs<0 should
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FIG. 6. Solution of Eq. (3. 86) for the function Φ0(ζ«).

the contour, i .e. , it would not be constant. Hence,

and also from the arguments advanced at the end of Sec.

2.1, it follows that we f t = m in (2.15) and (2.16).

For a vortex filament, Eq. (2.20) takes the form

be used locally (at each z) or averaged over the gap.

We shall therefore not present here the results of some

published calculations. t39: It is still necessary to gen-

eralize these calculations (particularly to include the

case ΜΦΟ) and, principally, test the flow for stability

by the method of small perturbations. It is necessary

to compare next the obtained values of vscl with esti-

mates based on the concept wherein the critical veloc-

ity of superfluid flow is regarded as a threshold of vor-

tex formation, etc. (it must be borne in mind here that,

as will be made clear below, in helium Π vortices near

the λ point are in general substantially different from

the vortices far from the λ point). The problem of the

critical velocity near the λ point has thus not yet been

completely solved even under the simplest conditions

(uniform gap). The same can be said of effects in

porous media, of channels that are inhomogeneous in

cross section, of the "proximity effect,"etc."1·115·1181

(the statements made above pertain to the presentation

of the sufficiently complete picture, and are of course

not meant to negate the value of the qualitative or even

quantitative considerations advanced in the cited papers

and in a number of others).

The second most important class of superfluid flows,

besides one-dimensional linear flow, which will be

considered below, are flows connected with rotation.

The simplest and at the same time most important ob-

ject is evidently an isolated vortex filament. We now

proceed to consider the corresponding problem. l z s :

On the basis of Eq. (2.20) with M=0, we represent

the function

in the form

ψ (r, φ) = Ψ (r) ι*»*,

where « = 1,2,..., and r and φ are cylindrical coor-
dinates with ζ axis coinciding with the axis of the vor-
tex filament. The velocity vs has only one component
vsv = fin/mr, and the circulation is

= 0. (3.86)

> v s dl = '2ππ,·ίφ =
2.ιιιΛ (3. 85)

We note that were the helium-atom mass m in the ini-

tial expressions (2.15)-(2.16) to be replaced by a cer-

tain effective mass metl(p, T), then the circulation

would be equal to 2mK/jmm,tt. But the circulation

cannot change with changing temperature. At the same

time, formula (3.85) is also valid at T= 0 . I U 7 ] In ad-

dition, under inhomogeneous external conditions (say

in a gravitational field) the circulation, were m to be

replaced by mett (/>, T), would depend on the choice of

As r* — 0, the function Φο takes the form Qr*1"

tions with Φο~ Qri'"' have no physical meaning,
Solu-

since

as r - 0. We must thus choose the solution Φ ο (^
- 0) = Cr*nl, and consequently ps= 0 on the filament axis.
As r* — », the density ps = m Ι Φ12 = »?Φ2 should equal the
unperturbed density pse, i. e., Φ ο ( ^ - « ) = 1. It is eas-
ily seen that the sought solution of Eq. (3; 86) at large
r* takes the form

Φ; = Ι - £ . r.»i. (3.87)

In the entire interval 0 « r* «°°, Eq. (3.86) cannot be
integrated in quadratures. The results of its numerical
solution for η = 1 are shown in Fig. 6.

The thermodynamic potential per unit filament length
(we have in mind the difference between the thermody-
namic potentials in the presence and in the absence of
velocity circulation) is equal to

j
ο

fi/So

J
fi/So

(3.88)

Here Λ is a certain maximal integration radius (the
diameter of the vessel, the distance between the vortex
filaments), which must be introduced if an infinitely
long filament is considered. If the density p3 = pse is
constant, as would be the case if the gradient term
were not taken into account, then N=Ne = nzln(R/a),
where α is a certain distance of atomic scale. In our
problem, however, numerical calculation yields

41η(θ.59-?-),
V So '

91n (θ.38-£-).

(3.89)

It is clear therefore that at sufficiently large R (iso-
lated filament) the difference between Ne and Ν is rela-
tively small (the reason is that the main contribution to
/ is made by the far, "classical" region). The energy
is here approximately proportional to r? and states with
η > 1 need not be taken into account (it is more efficient
to form two filaments with η = 1 than one filament with
n>l).

Differentiating an expression of the type (3. 88) with

respect to the temperature, the chemical potential, or

the chemical potential of the 3He impurity, we can ob-

tain the contributions made to the density by the vortex

filament, and also find the corresponding change of the
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sHe concentration near the filament.

Since ξο = 2.74χ1Ο"βί"2/3, it is clear that as the λ
point is approached the filament becomes thicker and,
for example at t= Τλ~ Τ= 10'3°K, the density ps near
the filament axis differs significantly from the equilib-
rium value p M , up to distances r ~ (3-4) ξο~ 10"5 cm
from the filament axis (see Fig. 6). At still lower
values of t, the filament thickness may turn out al-
ready to be commensurate with the widths of even mac-
roscopic channels and gaps. It is precisely under these
conditions that the Φ-theory of superfluidity must be
used. Unfortunately, the problems encountered here
(vortex ring·, short vortex filament between walls per-
pendicular to its axis; vortex filament in gap with walls
parallel to the filament axis·, rotation of the drop, t U 8 ]

and others) have not yet been solved (for some results,
incidentally, seeC U 9 : i). W won't even speak of the vari-
ous nonstationary problems connected with the forma-
tion and oscillations of vortex filaments and vortex
rings (to solve problems of this type it is necessary to
use the equations given in Sec. 4.1, since we have con-
sidered above only stationary flow of the helium Π).

It is known that rotating helium Π is one of the basic
objects in the study of superfluidity (see the re-
views [ l e > 1 2 0 > 1 2 1 ]). As the λ point is approached, some
problems involving rotation require, naturally, the use
of the Φ-theory of superfluidity (see c l 2 0 : , Sec. 12). We
confine ourselves here to such an example: a vessel
with helium Π is rotated with angular velocity ω, and
the radius of the vessel is R » ξ0. With increasing ω,
the distance between the vortex filaments becomes of
the order of ξ0, i. e., of the order of the thickness of
the filament, and the average density ps in the vessel
is greatly decreased. With further increase of ω, the
density pa vanishes completely, i . e . , the superfluidity
vanishes. According to1-273, the corresponding critical
value is o)cZ — 10 u < 4 / 3 sec"1, meaning that the rotation
has lowered the λ-point temperature by an amount

Μ λ = Γ λ (ω = 0) - Τχ (ω = 5.4·10-8ω3/4.

Unfortunately, this effect is quite small, for even at
ω~ 10* the shift is Δ7\~ 5x 10"6 °K. On the other hand,
in this problem we are dealing with a "gross" effect—
complete suppression of superfluidity. More delicate
changes in rotating helium Π, due to the non-constancy
of ps in vortex filaments, may turn out to be significant
also at much smaller values of ω, but at t < 10'3 °K.

IV. GENERAL Ψ-THEORY OF SUPERFLUIDITY
NEAR THE λ POINT (MOTION OF SUPERFLUID
AND NORMAL COMPONENTS, NONSTATIONARY
STATE)

4.1. Fundamental equations

We have considered above either helium Π at rest
or its stationary superfluid motion. It is obvious that
the Φ-theory of superfluidity near the λ point should
apply in general also to cases when not only the super-
fluid but also the normal component of helium Π are in

motion (the normal component has a density pn = p-ps

and a velocity vn). The motion can be also nonstation-
ary, and dissipation and relaxation of the order pa-
rameter must be taken into account. The correspond-
ing theory has been the subject of only relatively few
studies,"22-125,93] m a n y questions have not yet been
clarified, and the encountered concrete problems have
not been solved. The present section will of necessity
be rather short.

We start with stationary motion, but with Vn*0.
Moreover, we assume that the velocity vn is homoge-
neous in space, so that

divvn=0, -^- = 0. (4.1)

In this case, in a reference frame if that moves with
. velocity vn relative to the laboratory frame K, the mo-
tion of the helium Π is purely superfluid and cannot dif-
fer in any way from that considered above. This means
that the thermodynamic potential for the macroscopic
wave function Φ' of helium Π in the system if takes the
form (2.15). We now carry out a Galilean transforma-
tion in the system K, whereby, as is well known (see,
e.g. , [ 1 2 e : Sec. 17):

(4.2)
Ψ (r) = ψ' (r-ν η ί) exp (i- mv.r) ,

where we consider a certain particle with mass m and,
naturally, the primed quantities pertain to the system
K' and the unprimed ones to K.

Transforming in (2.15) from Φ' to Φ, in accord with
(4.2), we obtain directly

Φ π = τ | ( ~ ~ Ί ^ ν ~ ν " ) ψ Γ + φΐΐο(Ρ. Τ, Ι Ψ Ρ). (4.3)

The same result can also be arrived in the following
way: The energy density of the helium Π in the labora-
tory frame Κ can be naturally expressed in the form

(4.4)

where pn = ρ - m.\tp\2 = ρ — ps is obviously the density of
the normal part of helium Π. We find now the energy
density E' in the system Κ', in which v'n = 0. It is known
that, in accord with (4.2) if m is replaced by p, that

v s — v n ) ,
(4.5)

where J = p sv s + pnvn = j s + Jn is the total momentum den-
sity in the Κ system.

From (4.4) and (4. 5), on the other hand, we obtain
directly

(4.6)

The transition to (4.3) is a transition to other variables
and to another thermodynamic potential, and is subject
to no doubt, at least if ρ is constant.
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Varying the integral !$ndV with respect to Φ* by
using expressions (4.3), at a specified velocity vn, we
obtain the sought equation for Φ:

(4.7)

which goes over, of course, into (2.06) at ν =0.

An equation equivalent to (4.7) was derived inc l 2 2 : l by
variation (minimization) of (4.4), but under the condi-
tion that J be constant, i. e., at a specified total mo-
mentum of the liquid. This requirement is equivalent
to an energy release E'; on the other hand, minimiza-
tion of the energy Ε without the condition j = const would
mean minimization also of the kinetic energy of the liq-
uid as a whole, having no bearing on the thermodynamic
properties of the system.

Separating the real and imaginary parts of (4. 7), we
obtain two equations, which we express in terms of ps

= W772 and Vs= (7z/

- η β ' Φ u lp.T~ \ Sps ί,

div [ρ, (ν, - vn)l = 0.

(4.8)
(4.9)

Of course, Eq. (4. 9) can be obtained also by an equiva-
lent method—by multiplying (4.7) by Φ*, multiplying
the conjugate equation by Φ, and subtracting the equa-
tions from each other.

We note that on going from (4. 7) to (4.8) and (4.9),
we did not use the condition divvn = 0. On the other
hand, if the conditions divvn = 0 and Vcp = O, under which
Eq. (4. 7) was derived above, then (4. 9) becomes iden-
tical with the continuity equation

div j = div (p, v, + pn vn) = 0.

We have gone into such detail in the derivation (by
three methods!) of Eq. (4. 7), because this equation is
regarded as incorrect in [ 1 2 ! n (see also1151, Sec. 33), and
another equation is proposed, differing by the term

div (j - pvn) div p. (v. - vn)

and obtaining by varying /Φπ«/ξν with Φ π according
to (4. 3) at a fixed difference v s - vn. But it is precisely
the last requirement that seems to us completely un-
founded. Besides the arguments above, the inconsis-
tency follows also from the fact that the equations
proposed in c l 2 3 : do not lead to the continuity equation.

This pertains, in particular, to the case when vn = 0
and, consequently div (J-pVn) = div psvs; then the equa-
tion given in t l 2 3 : in place of our Eq. (3.16) is

ih div (ρ,ν,) ψ _ Q (4.10)

This equation and its conjugate do not lead to any con-
servation law; in other words, the imaginary part of
(4.10) vanishes identically. There are therefore no
grounds for assuming that div psvs = 0. On the other
hand, postulation of this law from independent consid-

erations is both contrary to nature and returns us to
Eq. (2.16). Since the Φ-theory of superconductivityc2e:

follows from the microscopic theory, it can also be
noted that it corresponds exactly to Eq. (2.16) and not
to (4.10).

An analogous situation obtains also at vn*0: the
equation proposed in t l 2 3 ] does not lead to the momentum
conservation law, whereas such a law, divj = div(J
- pvn) = 0, follows directly from (4.7) at div vn = 0 and
Vp=0, as we have already seen (incidentally, it is
stated in c l 2 3 ] that the condition div(J - pvj = 0 is super-
fluous and there are no grounds for it whatever).

In what follows, however, we must have an equation
of the type (4.7), suitable at both divνηφ 0 and VpΦ 0.
If we add to the left-hand side of (4.7) the term

(4.11)

then the imaginary part of such an equation takes the
form div j = 0 both for div νπ Φ 0 and Vp Φ 0. On the other
hand, the term (4.11) contains Φ* in the denominator,
which is not likely (this of course, pertains also to
(4.10) and to the entire variant proposed in t l 2 3 ] ) . Fur-
ther, at divvn#0, effects such as second viscosity ap-
pear, and there are no grounds for the Φ function to be
defined by an equation such as (4. 7), which contains no
dissipative terms. Taking all the foregoing into consid-
eration, we shall use Eq. (4. 7) to change over to a gen-
eral system of equations suitable both in the nonsta-
tionary case and when divvn*0, just as was done in c l 2 2 ] .

Referring the reader for details to t 1 2 2 1 , we write
down directly the corresponding complete system of
equations for the function Φ = η e'*, for the normal-
component velocity vn, and also for the density ρ and
the entropy per unit volume S:

(4.12)»•-№)..

ρ,ν, = • — VL ( ψ · ν Ψ - ΨνΨ·),

Μι
at

(4.13)

(4.14)

where p = -ElI0+ TS+ μρ+ μ ^ is the pressure, rjn is the
first viscosity coefficient for the normal component of
helium Π, and the dimensionless real coefficient Λ de-
termines the value of the second viscosity in the con-
sidered vicinity of the λ point. It will be made clear
later that the order-parameter relaxation time τ is giv-
en by
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_1 2Am 3μ, __ 2Aro
τ~ h p» dp, = ~ Λ ~ (4.16)

We note that in the expression for IT(ft in (4.14) we have
discarded terms connected with second viscosity, which
is independent of the relaxation of p s (the point is that
the second viscosity due to the relaxation of p5 turns
out to be predominant near the λ point).

The real part of (4.12), after dividing by mr\ and
taking the gradient, takes the form

£ £ + 4 d * i p < " v ) i } 0

(4.17)

On the other hand, the imaginary part of (4.12), after
multiplication by 2τηη/Η, is given by

2Am (4.18)

In spatially homogeneous helium Π, and at v i = vn, we
get from (4.18) for small deviations from equilibrium

2Am

inasmuch as in this case

(4.19)

tion for which there are some grounds, "°·122»·1231 then
Λ~Γ 1 / 3.3 1>

Under the assumptions mentioned above, the entire
system of equations (4.12)-(4.15) goes over into the
set of equations of two-fluid hydrodynamics,32' as is to
be naturally expected (we see none of the difficulties
mentioned concerning this question at the end of arti-
cle1 1 1 1 1).

Beyond the scope of the Landau theory, but under the
assumption that the gradients of p s are small, as can
be the case in the case of sound propagation in the in-
terior of helium Π, the system (4.12)-(4.15) simplifies
to

(4.21)

(4. 22)

(4.23)

(4.24)

(4.25)

•f- + div(Psv s+pnvn) = 0,

•§- + div(5vn) = ± di -1 { ̂  [div p. (v,-y

The system (4.21)-(4.25) is of the same form as the
equations of two-fluid hydrodynamics, with the chemical
potential μ replaced by

(4.19) leads precisely to the relation (4.16). \ dp dp. )t,a

Far enough from the λ point we can assume that the
relaxation sets in instantaneously, i. e., τ - 0 , or for-
mally, Λ - » . It is just this limit which corresponds
to the Landau hydrodynamic theory of superfluidi-
ty, t l 4 ~ i e ] in which we put, in terms of our variables,
ps = ps(p, S) and μ 4 +(ν 5 -ν π ) 2 /2 = 0 (see, e.g., Eq.
(4.8) with the gradient terms neglected). In addition,
Landau's theory does not take into account, of course,
the gradient terms proportional to ft2. Taking the fore-
going into account it is clear that as Λ-°° Eq. (4.18)
remains indeterminate, i .e . , it imposes no restric-
tions whatever on p s, as should indeed be the case under
similar conditions. On the other hand, Eq. (4.17) goes
over into the corresponding equation of two-fluid hy-
drodynamics

(4.20)
where

2mp s 4m2p| (ίμ,,/dps) t

is one of the second-viscosity coefficients (seec 1 5 3,
Sec. 18); we cannot put Λ-°° in the expression for ξ3,
for then the second viscosity would become infinite.
If Λ is constant (is independent of ί= 7 \ - Τ), then the
relaxation time is r~ f*n (see (4.16) with dns/dps

= const· i 2 / 3 ) . On the other hand if τ~ t~l, an assump-

and with the expression for the second-viscosity coef-
ficient ξ3 spelled out concretely. Besides, of course,
the equation (4.25) is added and determines the relaxa-
tion of the density p s, which is no longer regarded as a
specified function of ρ and S.

4.2. Sound propagation. Thermal resistance near a solid
wall

The complete system of hydrodynamic equations of
helium near the λ point, which was obtained in Sec. 4.1,
has been used relatively little so far. Its most impor-
tant application is in an investigation, based on (4.21)-
(4.25), of the character of sound propagation in homo-
geneous immobile helium Π (and furthermore in the
simplest situation, when the sound wavelength \=2it/k
is much larger than the coherence length iM(t), and
consequently the gradient terms with respect to p s can

3llWe present an estimate of the parameter Λ in (4.12), (4.16),
and elsewhere, based on the absorption of first sound. It is
assumed that in the considered region ω τ « 1 the absorption
is determined entirely by the relaxation mechanism (see
Sec. 4.2). The data of M. Barmatz and I. Rudnick (Phys.
Eev. 170, 224, 1968) yield Λ~2.4 (at TA - Τ = 1<Γ4 °Κ), while
according to C. Buchal and V. Pobell (Phys. Rev. B14,
1103, 1976) Λ = 5 (likewise at Tx-T = 10H°K).

32>One of the fundamental equations of the hydrodynamic theory
of superfluidity, the condition curl vs = 0, follows obviously
from the very definition vs = (R/m)V(p (see Eq. (1.2)).
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be disregarded). However, even in this case the ques-

tion cannot be regarded as fully answered. The point

is that [ 1 2 3 > 1 5 ] contain only estimates aimed at establish-

ing the temperature dependences of the dispersion and

absorption of the sound. What is of interest, however,

is also a quantitative comparison of the predictions of

the theory with experiment. c l 2 7 3 Furthermore, the sys-

tem of equations used differs m

c l 2 3 - 1 5 3 from (4.21)-

(4.25) in the absence of a term of the second-viscosity

type, such as is contained in the left-hand side of (4.21)

(see Sec. 4.1). Yet allowance for this term, at least

in the problem of second-sound absorption, may turn

out to be essential. Finally (and perhaps most impor-

tantly), only the relaxation mechanism of the absorption

of first and second sound was considered in : 1 2 2 : andc 1 2 3 3,

and no account is taken at all of the interaction be-

tween the sound and the fluctuations of the parameter

Φ (see" 2 8 " 1 3 0 3 ). Yet the "fluctuation mechanism"

(which estimates show to have the same temperature

dependence as the contribution from the relaxation of

Φ), can play a noticeable role even in the hydrodynamic

frequency region ω τ « 1; in the region ω τ » 1, and also

at T> Tx, this mechanism becomes in fact decisive.

An attempt to examine the effect of flucutations on

the absorption (dispersion) of first sound and on the

thermal conductivity of helium was made in 1 9 3 ' 1 2 5 3 for

the temperature region above the λ point. In" 3 3 , how-

ever , a highly simplified variant of the theory was

used, and while the results of the calculations inc933 are

probably correct from the qualitative point of view,

their connection with the approach developed in Sec.

4.1 still calls for an evaluation. I n c l 2 5 \ to the con-

trary, the initial equations were precisely of the type

(4.12)-(4.15), but in a variant" 2 4 3 in which a critical

exponent η = 1/2 was used so that the connection be-

tween the Φ function and the density ps was given by the

expression ps = {n?/m*)\ * I 2, with m*cc tl'\ in [ 1 2 5 ] ,

furthermore, just as in c l 2 3 ] , the second-viscosity term

was left out of the equation for Vs, and a number of

other assumptions, the validity of which is still to be

verified, have been made.

By virtue of the foregoing remarks, and also for lack
of space, we shall not dwell on the results of the cited
and other papers. We indicate only that from the qual-
itative point of view, for the hydrodynamic frequency
region ω τ « 1 , the expressions obtained jJ1[93i123,i25:
agree in the main with experiment11273 and with other
more rigorous calculation methods (see" 0 ' 1 3 0 3 and the
references in t 1 3 0 3), in which the ideas of the dynamic
similarity theory and the ε-expansion method are used.

We note that a more detailed study of sound propaga-
tion (primarily first and second sound, and also the
thermal conductivity above the λ point) in homogeneous
helium can cast more light on the question discussed in
Sec. 4.1, whether the additional terms, which are
clear from (4.10) and (4.11) are present or absent in
Eq. (4.7).

In light of the foregoing it becomes clear that the

study of the singularities of sound propagation in homo-

geneous helium, and all the more in inhomogeneous

helium (particularly an investigation of the reflection
and transformation of sound waves on the boundary of
helium Π with a solid or with vapor) is, generally
speaking, a very complicated problem. Some idea of
the character of the singularities that are possible here
can be gained from a solution of the particular problem
of the "interaction" of a static heat flux (ω = 0) with an
inhomogeneous distribution ps{z) near a solid wall.
This problem is of independent interest, since it leads
to the conclusion that a helium Π layer next to a wall
has an internal boundary-layer thermal resistance that
increases sharply near the λ point.

Consider" 1 · 1 3 1 3 a helium-II half-space bounded by a

solid, and assume a stationary small heat flux q into

the helium from the solid. At large distances ζ from

the wall, this flux causes opposing convective flows of

the normal and superfluid components. At short dis-

tances, however, if the condition ps(0) = 0 is satisfied

on the wall, the convective component of the heat flux

is absent. Indeed, from the condition p s = 0 and from

the condition that the perpendicular component of the

total mass flux vanish {jL= psvsi + pnvni = 0) it follows that

vnl_ also vanishes on the boundary. The condition vnL = 0

remains in force, obviously, also in the case of arbi-

trary flow. Thus, at small distances from the wall,

the heat exchange between the solid and the helium Π

proceeds, as in ordinary liquids, only as a result of

the normal thermal conductivity.

To estimate the distance lT over which the thermal-
conductivity component of the heat flux is attenuated and
the convective counterflow is produced, we turn to Eqs.
(4. 7)-(4.12). The linearized form of these equations
for the stationary case of interest to us is

y=pi°'",+pi"»n. (4.26)

T«»S"»va-x-^- = q, (4.27)

άμ' d I ffl <βτ\' ΓιΑ dp«nvn \
dz ~ as \2m2tl<0> dz* μ < 2mp?>» dz / '

(4. 28)

(4.29)

(4. 30)

The primes denote here small increments, and the su-
perscript 0 labels the unperturbed quantities. We note
that in all these equations the perturbations μ'3 and η'
enter in the form of the combination, MJ-(# 2 /2W 2 TJ ( 0 ) )
y.dzr)'/dzz. This makes it possible to eliminate, with
the aid of (4. 30), the variable η from the first four
equations. Eliminating furthermore with the aid of
(4.27) and (4. 29) the derivatives of the thermodynamic
quantities άμ'/dz and dT/dz from the third equation,
we obtain for vn{z) the equation

dp;?-vn \

(4.31)

Near the λ point we can put p<0) * p ( 0 ) « px and S(0> ^ S>.
Further, we can neglect in (4. 31) the term containing
the first viscosity, since the coefficient ηπ has no
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anomaly at the λ point. Finally, it is convenient to
change over from the velocity vn to the thermal-conduc-
tivity component of the heat flux qT = q - SmTmvn.
With all these simplifications, Eq. (4.31) takes the
form

where

where

2Αηψββ

(4. 33)

In the case of temperatures relatively distant from
the λ point, the change of the density Ps(z) near the wall
can be neglected, and it is then evident that it is pre-
cisely the length I which has the meaning of the char-
acteristic distance over which the thermal-conductivity
component of the heat flux attenuates and the convective
counterflow is produced (see also c l e ' 1 3 2 ]). The temper-
ature Τ has in this case the following distribution near
the wall:

Γ (*) = r(0) +if (1- (4. 34)

We see that heat exchange between helium Π and a solid
(or vapor) is accompanied by the onset of a temperature
gradient localized in a layer (of thickness I) at the wall
inside the liquid. The total temperature drop is ΔΓ
= 1\z = °°) - Τί,ζ = 0) = lq/γ.. The quantity Rint = &T/q=v./l
can be naturally called the internal boundary-layer
thermal resistance.3 3 ' In the critical region, even if
the parameter Λ varies with the distance to the λ point
like Λ= Λ,,Γ1'3 (see Sec. 4.1), the length I increases
like 1= lot'

1/z, i.e., in accord with a power law weaker
than that of the correlation radius, and thus the change
of p*0)(z) near the boundary becomes appreciable. Var-
ious forms of the pfKz) distribution near the wall are
given in Sec. 3.1. We shall use the simplest of them,
corresponding to retaining only the first two terms in
the phenomenological expansion of the thermodynamic
potential density

>Γ-

For this profile, it is possible to solve (4.2) in explicit
form. The solution is expressed in terms of a hyper-
geometric function

: ( 4 · 3 5 )

33)fl i l l t must be distinguished from the "acoustic" thermal re-
sistance Ra, which is also present on the boundary and is
connected with singularities of phonon exchange between the
media (see1 1 5 1, Chap. 12). The latter mechanism is not pe-
culiar to superfluid liquids, but is the predominant one far
from the λ transition. Consequently at low temperatures
flut, in the case of an Hell-solid boundary, yields only a
small correction to the total thermal resistance RK = Ra

+ filat. In the immediate vicinity of the λ point, to the con-
trary, and also in the case of heat exchange between the
Hen and the vapor, the main contribution may be that of

and Β is defined by the relation Β2 = 2ξ2(ί)//2(ί). Inte-
grating (4.35), we obtain also a general expression for
the thermal resistance

m t

AT T(c-a)T(c-b)TW2)TUI2)
»

, Β B+i
—

(4. 36)

We consider two limiting cases:

1) B« 1 (i. e., ξ0 -Γί « D. In this limit 3.F2(a, b, B/2;
c, (£+ l)/2·, 1) - 1 , Γ(Β/2)- 2/Β, and all the remaining
Γ functions cancel out. As a result we get Rlat = l/y., in
agreement with (4. 34) and" 6 · 1 3 2 3 .

2) B» 1. At large values of B, we have 3Fz(a, b, B/2,
c, (B+ l)/2); l)-(9/4B) 1 / 4 , and the factor containing the
Γ functions tends to the value 2Γ(5/4)Β1 / 4(2/£)1 / 2. AS
a result, in this limit, which corresponds to T— Tx, we
obtain for Riut the asymptotic formula

Thus, at l« ξ0, the convective flux is effectively formed
not over a length I, but over the geometric mean of the
lengths I and ξ0. The temperature dependence of RlBt

as Γ — 7\ is given by

flint <t
r'/2, Λ = const,
( . , / 1 2 i Λ = Λ ο ί . 1 / 3 .

We note that the character of the temperature depen-
dence of Rlnt depends also on the form of the employed
equations. In particular, when the system of equations
of:1233 is used we have

„ / r>/2, Λ = const,
flint α { ( . s / i 2 > Λ = Λ ο ,- , ,3.

Substituting the numerical values, we find that JRlnt at
t~ 0.1 °K is smaller by 3-4 orders of magnitude than
typical values of the "acoustic" thermal resistance on
the boundary between Hen and a solid (at T~ 2 °K).
This makes it difficult to observe the anomalies of the
thermal resistance in the case of heat exchange be-
tween the helium Π and the solid. Nonetheless, when
heat passes through the boundary between helium and
the vapor, and possibly also in the case of "soft" crys-
tals with low Debye temperatures, observation of the
indicated anomaly is feasible in principle even at
t~Q.

The presence of exponentially damped solutions of the
type (4. 34), (4. 35) can manifest itself also in a number
of other effects. In particular, they must be taken into
account in the reflection, transmission, and transfor-
mation of second-sound waves at helium-Π boundaries,
in the calculation of the mobility of small particles
(ions) in Hell, and in other problems. It is also pos-
sible that the experimentally observed"3 3 3 abrupt de-
crease of the coefficient of second-sound reflection from
a free helium Π surface near the λ point is due precise-
ly to this circumstance. This group of problems is of
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great interest and it would be appropriate to consider
them in the future.

One of the interesting applications of the complete
system of time-dependent equations (4.12)-(4.15) is
also the calculation, near the λ point, of the mutual-
friction forces acting on vortices in rotating helium
Π . [ 1 2 2 a : Unfortunately, we learned of[122a] only after
completing this paper, and are unable therefore to dis-
cuss it here in any detail.

V. CONCLUDING REMARKS

The Φ-theory developed above for the superfluidity of
helium II is, first, a generalization of two-fluid hydro-
dynamics of a superfluid liquid to include the region of
the λ point. Second, the Φ-theory describes phenome-
nologically the λ transition itself in liquid helium, with
definite boundary conditions taken into account (we have
in mind in fact the condition ps =0 on the wall and pre-
sumably on a free surface). As a consequence, various
dimensional and hydrodynamics effects are predicted
and can be quantitatively considered. The Φ-theory of
superfluidity has much in common with the Φ theory of
superconductivity. £ 2 6 · 4 8 ' 6 8 · 1 3 4 · 1 3 5 ] Related schemes have
been developed and are discussed as applied to super-
fluid 3He (see1 6 3·1 3 8·1 3 1"), in the case of superfluidity of
neutron and proton liquids in neutron s tars , [ 1 3 ] for the
description of an aggregate of excitons,C11] in laser
theory,C 1 3 8 ] as well as in the analysis of domain
walls c i 3 9 ] and surface effects in ferromagnets.1·103"1073

Mention must be made of the known close relation be-
tween the Φ-theory and investigations of the quasi-hy-
drodynamics of a non-ideal Bose gas c l 4 0 ' 1 4 1 ] and of a
"dense" superfluid liquid.C142) We shall not refer here
to the numerous recent articles in which analogous con-
cepts and formalisms are used in quantum field theory.

Like any phenomenological theory (apart from those
that are derived more or less consistently from the mi-
croscopic theory), the Φ-theory of superfluidity is
based on a number of assumptions that are justified
either by using the experimental data, or by striving to
make the initial equations and the calculations with them
as simple as possible. Accordingly, we specify before-
hand the critical exponents, putting β = 1/3, ι> = 2/3,
a=0 and ή = 0, i .e., we use the relations

I t | -2 In \t I, G,,(r-*0)

(see in particular (2.9)-(2.10), (2.19), (2.39)). All the
other assumptions (i. e., discarding terms of order
higher than ΙΦΙ6 in the expansion of the thermodynamic
potential) likewise seem quite natural, at least at the
present stage, and are apparently not connected with
any essential restrictions or conditions that limit the
accuracy or even the very possibility of comparing the
theory with experiment. Incidentally, it would be use-
ful and desirable to investigate in all the actual prob-
lems (see Chaps. Ill and IV) the possible influence of
various conceivable modifications of the theory (change
of the critical exponents, allowance for terms of order
ΙΦΙ8, etc.). It is clear, however, that at present the
most justified procedure is to employ just the simplest
scheme that does not contradict the experimental data, and

such is precisely the Φ -theory of superfluidity of helium
Π near the λ point, whichis disucssed in the present article.

We emphasize that this theory, as well as its possible
extensions (as applied to helium II under pressures and
to 3He-4He solutions) and generalizations (among which
the most interesting is the analysis of the superfluidity
of 3He), is much farther reaching than the existing
theory of second-order phase transitions, in which one
establishes for a homogeneous system only the limiting
relations (as t = (7\ - Τ) — 0) and connections between the
critical exponents. Indeed, the general system of equa-
tions given in Sec. 4.1 is complete and makes it pos-
sible, in principle, to find the dependence of all the
quantities (ps, vs, vn, as well as ρ and S or any other
pair of variables) on the coordinates and-on the time.
By the same token, the predictions of the theory are
also rich in content and can be verified in experiment.
It is precisely the last problem which is at present, of
course, the central one, and the main purpose of the
present article is to help in its solution. Those con-
crete experiments that should be performed are clear
in part from the statements made in Chap. Ill and Sec.
4.3. Here we wish to emphasize particularly the need
for working sufficiently close to the λ point. Thus, for
example, the correlation length is ξο = (2.73χ1Ο-8)ί-2/3

~3χ10"7 cm-10α at ί~(1/30) °Κ. Thus, the main con-
dition of the applicability of the theory, ξ » a ~ 3 χ 10"8

cm (see (2.21)), is satisfied even formally only at
t < 1/10 to 1/30 °K. Actually, however, it is desirable
to have a larger "margin" and to carry out the measure-
ments ati<10- 2 o K.

On the other hand, according to (3.4b) withAf =0, for
a gap of width, say, 10"4 cm, which can be reliably
regulated, the shift of the λ-point temperature is ΔΤλ

~3xlO"5°K, i .e. , very small. Briefly speaking, in
order for both the theory to be easily applicable (if, of
course, it is valid at all!) and for the employed gaps,
channels, etc. to be of macroscopic size, it is actually
necessary to concentrate on the immediate vicinity of
the λ point. It is just the failure to satisfy this condi-
tion which has led, in the main, to the uncertainty that
must always be mentioned when theory is compared
with experiment. What are principally lacking are
measurements made close enough to the λ point and at
the same time under strictly controllable conditions
(we have in mind an accurate determination of the gap
or film thickness, etc.). Only after the appropriate
data are obtained will it be possible to ascertain to what
degree and with which accuracy the discussed Φ-theory
of superfluidity corresponds to reality. If it is reliably
established that theory and experiment do not agree
then, depending on the character of the discrepancies,
it will be possible to consider concretely ways of ex-
tending the theory. We assume, however, that the Φ-
theory of superfluidity described here will retain a cer-
tain value even in this case. Incidentally, it is quite
possible that the accuracy of this theory is high enough,
and requires no significant extension whatever.

In conclusion, we are glad of the opportunity to thank
L. P. Pitaevskii for a discussion of a number of prob-
lems and remarks.
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SYMBOLS AND SOME NUMERICAL PARAMETERS

1. Atomic and other constants

m = w4 = 6.6464x 10"24 g—mass of He4 atom,

Mk = 4.0026 g/atom—atomic weight of He4,

' 2nK/m = h/m = 0.997X10"3 cm/sec—circulation quantum in superfluid Hell,

a o = 3. lx 10"8 cmVg—dielectric susceptibility of He4,

aH = - 0.47x 10"e cm3/g—diamagnetic susceptibility of He4,

g= 980.665 cm/sec2—acceleration due to gravity.

2. Parameters of λ point of pure He4 at saturated-vapor pressure

Tx = 2.172°K—temperature of λ point (°K = g deg),

px = 0.05 atm—pressure

Px = 0.14617 g/cm3—density at λ point,

Sx = 1. 56. 107 erg-g"1 "Κ"1 ("Κ"1 =g deg'^-entropy

dpx/dT= - 111. 05 atm "Κ"1

dpx/dT= - 0.2425 g-cm"3 T 1

dSx/dT=2. 558x 107 erg-g-1 "K"1 S l ° p e ° f λ C U r V e i n t e r m S ° f d i i f e r e n t

άμχ/άΤ= - 78.54 · 107 erg-g-1 "K"1

AC,= 5.2 · 107 erg-g"1 " I T 1 = 0. 76 · 107 erg-cm"3 T 1 - " j u m p " of heat capacity at λ point,

Co= 1. 30· 107 erg-g"1 °K'l = Q. 190· 107 erg-cm"3 °K''-coefficient of the logarithmic part of the heat capacity
(C i = c o n s t - C 0 l n | T - r x | ) ,

pM = pW)(Tx~ Tfn, ρο ο=1.43ρλ = 0.209 g-cm"3 "K"2'3—temperature dependence of the density of the superfluid part in
"bulky" Hell near the λ point.

3. Some characteristic lengths

λΓ= /2π#ζ/mfeB7\ = 5. 92 · 10"8 cm—thermal wavelength of He4 atom at T= Tx>

a=(m/px)
V3 = 3. 57· 10"8 cm—average interatomic distance in liquid helium at T=TX,

tu~F>i= ?o(3 +M/3)VI! = 2. 74 · 10"8(3 +M/3)1'21 Tx - T\ " 2 / 3 cm—temperature-dependent correlation length for region
above the λ point (see (2.17) and (2.19)),

Z~ti= ξ0 v3+Af/6(i +M)—the same length for the region below the λ point (see (2.47)),

£o= £<κ>(Γλ - Τ)"*'3, £oo= (^Ροο^λ/2™2^*)172 = 2. 74 · 10"8 cm °Κ2'3—correlation length in the theory variant with M= 0
(see (2.17) and (2.19)),

ξ, =kBTxm
z/4irK2pt,= (a3p\/2X%p00)(Tx- T)"2/3 = 0.453· 10"8(Γλ- Τ)"2/3 cm—correlation length for phase fluctuations

(see (2.41a)),

Ιι=£οο5(1/£\α11\/άΤ\)ζ/* = 6.6ΤΧ 10'3 cm—characteristic width of Hel-Hell phase separation boundary in a gravita-

tional field,

λ—length parameter in the boundary condition (2.26).

4. Most important among the remaining symbols

*=7je*·—complex order parameter ("effective wave function"),

ps = m ΙΦ12 = mrf—density of superfluid part of helium Π,

•vt = (K/m)Vcp—velocity of superfluid part of helium II,

U = P*v» = t&fv<P = - «#/2(Φ* V* - ΨνΦ*)—flux of superfluid part of liquid,

p = ps + pn—total density of helium,

pn—density of normal part of the liquid,

vn—velocity of the normal part of the liquid,
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Ρ—pressure,

S—entropy per unit volume,

μ—chemical potential (usual in erg/g),

x3, μ3—concentration and chemical potential He3 (in the case of He3-He4 solutions),

C—heat capacity, Cp—heat capacity at constant pressure, C^—heat capacity at constant μ,

Φ(ρ, Τ, Φ)—density of thermodynamic potential,

Ω(μ, Τ, Φ)—density of thermodynamic potential for variable μ of the chemical potential,

F(p, Τ, Φ)—free-energy density,

E(p, S, Φ)—internal-energy density,

*πο(Α T< I*I2)—density of thermodynamic potential for homogeneous helium Π at rest,

*i(A ^)—the same for helium I,

μ, = (8Φ1το/δρ,)ρ,τ—chemical potential of superfluid part of liquid (see (2.16a)),

*n(P«)—equilibrium value of the density of the thermodynamic potential &uo,

*r-n(P») = * i - *n(P«) = (ΔΟρ/2Tx)tz—difference between the equilibrium values of the densities of the thermodynam-
ic potential for He I and Hell (after subtracting the regular part),

Ω ΐ- ΐ ΐ (ρ ί β ) 2 Ω Ι -Ω π (ρ Μ ) = (Δ011/2Γλ)ίΕ«(Δ0/>/2Γ)ι)ί2—the same for the variables μ and T,

* I I = / *n<W—thermodynamic potential of helium II,

M=Co/Aorfoo—parameter of the theory (see (2.13), (2.14), (2.18), (2.20)),

fjj = 2M/M + 3—different form of the same parameter,

*« = 77«= Vpie/w = * o o i 1 / 3 , where Ψοο = JpOo/m, —equilibrium value of the Φ function in homogeneous helium at rest,

φ = Φ/Φ,,,,—reduced Φ function,

ψ,= ίυ3—its equilibrium value (at constant Φ) in helium II,

φο= Φ/Φβ—reduced Φ function used in the solution of boundary-value problem φ^ = 1 (at equilibrium for homoge-
neous helium II); a reduced function is used also in Sec. 2 of Chap. ΙΠ (see (3.47) and (3.48)),

ϊ* =T/£U, r+ =τ/ξΜ—dimensionless radius vector and its modulus,

r** =Γ/ξ00—relative coordinates; ζ, ζ+, ζ+φ —distances in one-dimensional problems,

y = z/io(f)—distances measured in units of the length ξ0,

q—wave vector of fluctuations,

Qmax-Ic = Q/^u—cutoff wave vector, Q is a parameter of the theory,

α, β,γ, δ, ζ, η, ν—critical exponents (see, e.g., [ 1 7 · 1 9]),

d—thickness of film or gap,

Tx(d)—λ-transition temperature of helium in film, gap, or capillary,

Tlr(d)—the same, but for first-order transition,

Δ7\= Τχ - Tx(d)—shift of λ-transition temperature of helium in a film,

dc = vt,u(f)—minimum film thickness for which superfluidity is still possible,

dtr—film thickness at the point of the first-order equilibrium phase transition,

D = d/£.0(t)—dimensionless film thickness,

Δ—surface "deficit" of superfluid mass (see (3.12)),

σ—"excess" surface energy of helium II (see (3.13)),

Sa, Cff, ma, m^—derivatives of this energy; surface entropy and heat capacity, excess surface mass, excess He3

concentration,

P~s = Ps(d)—averaged (over the cross section) density of the superfluid part in a film, gap, or capillary,
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*ΐ-π = *i-n(rf)> S I - I I = 5Μ1(<Ζ), C,j., =CIUi(<i)—the same for the differences between the densities of the thermodynam-
ic functions of He I and Hell (after subtracting the regular part),

£ = βΜΙ/Ω,.ΙΙ(ρΜ),

c—potential of forces of the field G acting on a unit mass of helium,

= 5· 8* 103(3/3 +M)vztzn cm/sec—critical velocity of superfluid flow, corresponding to the vanishing

of P,,

w lcl = v«2/V3"(at M= 0)—velocity at which the superfluid flow becomes unstable (see (3. 74), (3.84)),

Λ—dimensionless parameter of the theory, used in the time-dependent equations,

τ = [(2Am/K)ps(8μ^Βρ^]-1—relaxation time of the parameter Φ,

%—first viscosity,

£,(t = 1, 2, 3, 4)—second viscosities,

κ—thermal conductivity,

«2= V T(&ps/ppnCp)—velocity of second sound.
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