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The conservation laws which follow from the field equations and their relation to the energy and
momentum conservation laws are discussed. On the basis of the electrodynamics of slowly moving bodies,
an expression is derived for the density of the force which acts on an isotropic inhomogeneous medium in
an electromagnetic field. Attention is concentrated on elucidating the difference between the energy-
momentum tensors of Minkowski and Abraham. It is emphasized either of these can be used in practice to
consider the exchange of energy and momentum between an emitter and a medium in which the emitter is
placed. However, to analyze the processes in the medium itself, Abraham's should be used because it takes
into account Abraham's volume force, which acts even on a homogeneous medium (whereas according to
Minkowski no force acts at all on a transparent, homogeneous medium with density-independent
permittivity in an electromagnetic field).
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METHODOLOGICAL NOTES

The problem of the energy-momentum tensor in mac-
roscopic electrodynamics has been discussed compara-
tively recently in this journal.C l > 8 ] Nevertheless, for a
number of reasons we believe it is appropriate to re-
turn to this problem. First, Abraham's force has fi-
nally been measured experimentally133 almost seventy
years after the theoretical expression for it was ob-
tained. li~*1 Second, in recent years (in particular, after
the publication of t l l 8 ] ) much material relating to these
questions has appeared (apart from the literature cited
in 1 1 · 8 3 see, for example, C 7 ~ 2 2 ] ) . Third, we wish, be-
sides taking into account this material, to make some
additional remarks in connection with lzi, which may
help to remove some misunderstandings. In view of the
methodological nature of the note, we cannot strive for
too great brevity, and we shall therefore give once
more expressions that occurred earlier inC2:.

1. In macroscopic electrodynamics (and, for that
matter, in electrodynamics generally) the energy-mo-
mentum tensor is in a certain sense an auxiliary quan-
tity. The fundamental quantities are the volume forces
(or, as they were called earlier, the ponderomotive
forces), and also the energy density and energy flux.
It is the forces that occur in the equations of motion for
a medium or individual charges and can, in principle,
be measured. We shall consider a macroscopic medium
characterized by real permittivity ε and real magnetic
permeability μ (in fact, some of the expressions will
correspond to a more general case). We shall ignore
both frequency and spatial dispersion. Nor shall we
take into account anisotropy. Of course, this approxi-
mation has a very restricted field of application (essen-
tially, to low-frequency fields), but it happens to be
this situation in which we are interested. Besides the
Lorentz force with density

(1)

an isotropic medium at rest (a fluid) in a static field is
subject to a further force whose density im is equal to
the sum of the densities of two forces:

(2)

In Eqs. (1) and (2) and below, pe is the charge density,
j is the current density, ρ is the density of the medium,
Ε and Η are the electric and magnetic field intensities
and D and Β are the electric displacement and magnetic
induction. In Eqs. (2) it is assumed that

D = eE, B=.uH, (3)

and e and μ are assumed to be functions of the point r
and the density ρ of the medium.

In a fairly slowly varying electromagnetic field the
total expression for the force density is obtained by add-
ing to (2) the density of "Abraham's force"

(4)

(5)

and, thus, the density 4 " of the total force is

Both the static force (2) and the total force (5) are ob-
tained usually in a somewhat inconsistent manner (here,
and sometimes below we shall merely refer to the force
and not the force density for brevity).

Thus, one first considers the variation of the energy

"We omit here the force density - Vp, where ρ is the pressure
in the medium.
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under displacements of the medium,, which enables one
to find fm (see Sees. 15 and 34 of C 2 3 ] and Sees. 32 and
66 of B 4 ] ) ; the force iA is then added to fm on the basis
of the field equations and general arguments (Sec. 56
ofC23]). However, it would be desirable to obtain the
forces and other expressions (energy density, energy
flux, momentum density) in a unified manner on the ba-
sis of the field equations. Let us consider such a deri-
vation.

2. We write the field equations in the usual form

c u r l H = ± L 5 + l £ , ( 6 )

curlE= -7-^- . W

(8)
(9)

These equations can also be regarded as valid for mov-
ing bodies (media) by dispensing with constraints of the
type (3). For our purposes, it is sufficient to consider
slowly moving bodies (neglecting terms of the order
v?/cz, where u is the velocity of a body or the medium
with respect to the "laboratory" frame of reference that
is used). This case is considered in detail in the
course t 2 4 ] (see Ch. VIII). In a discussion of the energy
conservation law it is natural to consider moving media
since the force fm acting on a medium does "work" only
if the velocity u of the medium is not zero. In addition,
the striction force imi depends on 8 ε/8ρ and is asso-
ciated with the possibility of changing the density of the
medium, which is controlled by the continuity equation
8p/9i + divpu = 0, which contains the velocity u.

divB = 0.

In a slowly moving medium (see Sec. I l l of B 4 3 )

(10)

(ID

where it is assumed that in a medium at rest the con-
straints (3) hold; in addition, the velocity u of the medi-
um is constant by assumption in space and time or,
rather, the derivatives with respect to r and t can be
ignored everywhere (only the divergence divu in the con-
tinuity equation will be retained).

Multiplying Eqs. (6) and (7) scalarly by Ε and H, re-
spectively, and then subtracting the expressions and us-
ing the identity Ε curl Η - Η curl Ε = - div(E x H), we ar-
rive at Poynting's theorem2 ':

(12)

We now calculate the derivative

ΤΓ-^ΓΙΓίΟ'Ε + Β-Η),

using Eqs. (10) and (11).
we use the relation

To calculate de/dt and θμ/8ί

and the analogous one for άμ/dt, where we have used
the continuity equation dp/dt + divpu = 0, by virtue of
which

In addition, it is obviously assumed that the variation of
ε (and also of μ) for a given element of the medium is
due solely to the change in its density p. Then

(13)

and by virtue of the constraints (10) and (11),

βε
dt

(14)
Using (14) and taking into account once more (10) and
(11), and ignoring, as before terms of order «*/c*, we
obtain

(15)
Finally, combining (15) and (12), we obtain

a Ρ>·Ε + Β·Η\_ δω*1

«V 8π /~ ~*~
=j-E + imu + div|S — u—^ — p^E2 — u± ( i tp)f f i j ,

(16)
where fm is the expression (2) and fm · u is the work of
the force on the medium.3) Obviously, Eq. (16) has the
meaning of the energy conservation law, in which to" can
be regarded as the energy density, and the total energy
flux is

S'=S-±{(^)pE*+(^pW}. (17)

By itself, the appearance of the additional energy flux
proportional to the velocity u of the medium need not
provoke surprise. However, we are not yet sure that
allowance for the correction to S proportional to u does
not go beyond the accuracy of the calculation made here.
However, this remark does not apply to the term fm · u
in which we are here interested. The expression for
this term determines the force im. Essentially, our
derivation of the expression (2) for the force im is equiv-
alent to the usually employed static calculations. But
the derivation is suitable not only for the static case,
and is therefore more general. We also feel that it is
more consistent.

But why does not Abraham's force iA appear in (16)?
If this force really exists, it should do work on an equal

2)The relation obtained from Eq. (12) by integrating over the
volume is also sometimes called Poynting's theorem.

3)The derivative here differs from that in Sec. 115 of the third
edition (1946) of Tamm's book'241 only by allowance for the
terms with 9ε/8ρ and δμ/dp (Tamm assumed that 8ε/8ρ=0
and 9μ/8ρ=0; note that Sees. 115 and 116 of the 1946 edition
were removed by Tamm from later publications in connection
with his dissatisfaction of the treatment of the Minkowski and
Abraham energy—momentum tensors).
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footing with the force tm. It would therefore appear that
(16) should contain the total force

The answer to this perfectly natural question is that
the conservation law (16), like other similar relations,
by no means uniquely determines all quantities. For
suppose that the medium is also subject to Abraham's
force (4), which we write in the more general form

ala (21)

1==4Si-i- {(DXB)-CEXH)} (18)

Then nothing prevents us writing down the relation (16)—
the energy conservation law—in which we replace im by
the total force fj,*' =im + tA and, simultaneously, the en-
ergy density w* by the density

(19)

Thus, it we take Minkowski's expression vcf for the
energy density, the force fA should not be taken into ac-
count—one must assume that it is absent. Conversely,
the assumption that the force lA does exist entails a
choice of Abraham's expression wA in (19) for the ener-
gy density in a slowly moving medium.

What we have said also applies to the momentum con-
servation law and, naturally, the energy-momentum
conservation law. None of these conservation laws can
uniquely determine the quantities they contain; concrete-
ly, they cannot determine the energy-momentum tensor
fik. Even if the divergence of this tensor is zero, one
can add to it an expression with vanishing divergence.
But if, as in our case, we consider the energy density,
the stress tensor, and the momentum density of the
electromagnetic field in the medium, the divergence of
the energy—momentum tensor STik/dxk is not zero at
all—all that must vanish is the divergence of the total
energy-momentum tensor τ}^ =ΤΙΛ+Τ{*>, where T\f} is
the energy-momentum tensor of the medium. It is
clearly impossible to decompose T^' into Tlk and TJJ'
solely on the basis of the conservation law hT\^/dxk=Q.

Before we make some more remarks about this point—
they refer to the choice of Tik in the Minkowski or Abra-
ham form—let us consider the derivation of the con-
servation law for the momentum of the electromagnetic
field on the basis of the field equations. More precise-
ly, we consider the conservation law that acquires the
meaning of the momentum conservation law after the
meaning of the quantities contained in it has been settled.

3. To this end, we multiply Eq. (6) vectorially by B,
Eq. (7) by D, and add the resulting expressions. We
immediately obtain

- ^ | - DXB. (20)

This is the only relation connected with the momentum
conservation law that can be obtained from the field
equations. Because of the uncertainty discussed above
in the derivation of the «express ion for the force on the
basis of the conservation (12) alone, the relation (20)
can be given the form of the conservation law

with the individual terms particularized only if one in-
vokes additional arguments relating to the form of the
total force i, the stress tensor σβΛ, and the momentum
density g of the field. We certainly have f =fL+fi, ( t ),
where the density f£ of the Lorentz force is known [see
Eq. (1)], but i ; U ) must still be determined. We there-
fore add to the right- and left-hand sides of Eq. (20)
the identical terms - p,E = - Ε divD/4«r [see Eq. (8)].
Then Eq. (20) can be written in the form

l (20a)

We now introduce the Minkowski stress tensor

0 » - ^ {EaD>+HaB>)-^ « t l l l J ! . (22)

As a result of differentiation and simple transforma-
tions (given in detail in Sec. 105 of the book B 4 1 ) , we
obtain

- -^ {(D X curl E) + (B X curl Η) - Ε div D } a

/SES n τ, dDf>\ . l d H 0Bt

(23)
Combining (23) and (20a), we can write the momentum

conservation law in the form (21):

(24)

where the second expression in the curly brackets in
(23) has been transformed with allowance for the con-
straints (3), which are valid for a medium at rest.

If we cast the expression for the force into the form
(5), Eq. (24) must be modified further. We must intro-
duce the stress tensor of the striction forces:

and the momentum density of the electromagnetic field:

EXH (26)

Then the momentum conservation law (24) takes the fi-
nal form

δ * £ _ , L , M (27)

where σοβ =σ^ + σ"β> and tL and ί£," are the forces de-
fined in (1) and (5).

It is obvious that if we were to take the momentum
density of the field to be

then the momentum conservation law would have the
form

(29)
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where im = fj) -iA is the force (2) acting on the medium.

Thus, in agreement with what we have said earlier,
we see that on the basis of a conservation law alone one
cannot uniquely choose the expression for the momen-
tum density of the field in the medium. Of course, all
that we have said applies equally to the use of the en-
ergy—momentum tensor Tik, whose conservation law
simply combines the conservation laws for the energy
and momentum.

For the convenience of the readers, we give here the
expressions for the energy—momentum tensors of Min-
kowski, T"h, and Abraham, Tfk (i,k = l, 2, 3, 4; x^x,
xz=y> #3= z> Xi=ict). Their form for the case of a me-
dium at rest—it is clear from (16), (27), and (29)—is4>:

= ^ S . S = £(EXH), ( 3 0)

} ^ /i = -i(j'E). (31)

= ^ S · S = ^ E X H · 0 2 )

,A _ eu — 1 ό
la - - £ f T 3T

(33)
/*=o.

The three-dimensional force fm in (31) and (33) is deter-
mined by the expression (2). The fourth components of
the force density fmii and the f o r c e / f defined in the
usual manner a re equal to (t/c)(f · u), and vanish for a
medium at rest , i . e . , /m,4 = 0, fA =0.

In addition, in a medium at re s t

„• = „··•</ = U-A = i£!+ii£l. (34)

The expressions (30) and (33) differ from those given
in m only by the fact that in C2] it was assumed that μ = 1
and only a homogeneous medium (ε = const) with 8ε/8ρ = ο
was considered, as a result of which the force f m =f m i
+ fm2 was in fact ignored. If the constraints (3) are not
used, then in (30) it is necessary to replace %" by the
expression (28) and in (33) to use the expression (18) for
fA; in addition

w = ( E - D + B-H)/8TT

and the tensor σαβ must be chosen, respectively, in
Minkowski's form or Abraham's form [σα β with neglect
of the friction forces; see (22) and (26)].

We see that the entire difference between the Minkow-
ski, T*k, and Abraham, Tfs, tensors in this case of an
isotropic medium at res t depends on whether in the
equation &Tik/dxk = fi one sets the force of the type of
Abraham's equal to zero, and then takes the momentum
density of the field in the medium to be g = g " (Minkow-

4'The strictloo forces are frequently ignored, and therefore
the tensors Tfk and Tft are frequently taken equal to the ex-
pressions in which σαβ is replaced by the tensor σ^' [see
(22)-(24)]. In addition, in a medium that is at rest but ani-
sotropic Abraham's stress tensor differs slightly from the
tensor (22), a point to which we shall return below [see
Eq. (36)].

ski), or one takes the momentum density of the field in
the medium equal to g A = S/c2, assuming that a force
with density tA also acts on the medium (Abraham).

4. The choice between the Minkowski and Abraham
tensors, i. e., the problem of finding the "true" energy-
momentum tensor of the field in the medium, thus re-
duces to the reality of Abraham's force. Since this
force acts on a medium, to measure it one must con-
sider motion of a medium and, generally speaking, pro-
cesses in a medium. Theoretically, there can be no
doubt about the existence of Abraham's force (or, rath-
er, a force of this type). For if this force were absent,
a homogeneous medium with 8 /dp = 0 (and for pe = 0,
j = 0) would not be subject to any force; in particular,
not even in the presence of the polarization current

j

But the Lorentz force (l/c)(JxB) acts on the conduc-
tion current. Thus, the displacement current would not
be on an equal footing with the conduction current, which
contradicts the spirit of Maxwell's theory and electron
theory. Essentially, it was for this reason that from
the very start objection was madeC43

; to the choice of
Minkowski's tensor and the corresponding expression
for the forces acting on a medium. It is true that Ab-
raham's force f* is not equal to the Lorentz force acting
on the polarization current:

but these forces are related to one another and the ap-
pearance of the expression lA rather than tp is due to
the allowance for certain other terms in the expression
for the forces. Let us demonstrate this for the example
of a nonmagnetic medium of dipoles. In this case, the
force acting on unit volume of a polarized medium in a
field Ε is

f = (PV) Ε = Ϊ ^ Ι (EV) Ε = Ϊ ^ Ι V£2 - ^ (Ε Χ curl Ε),

since the polarization is

The second term here is, by virtue of the equation
curl Ε = - (l/c)8H/8i, equal to the force

inc V <W / c V Λ / '

Obviously,

Of course, this example is not a proof; it merely illus-
trates the connection between Abraham's force and the
Lorentz force acting on the polarization current.

The most general expression (18) for iA follows from
the "momentum conservation law" (20)-(20a), in which
the term (l/4ffc)(8/8i) [DxB] automatically appears,
and from the fact that the force acting on the medium
must of course vanish on the transition to vacuum. One
can put this differently as follows: To obtain the force
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acting on the medium, subtract from the corresponding
total expression for the force and the change in the mo-
mentum, (l/4irc)(8/8f)[DxB], the change in the momen-
tum of the field itself: (l/47rc)(8/8/)[ExH]. The fact
that for this one must take the expression we have writ-
ten down follows from the requirement of relativistic
invariance and the law of conservation of the angular
momentum, by virtue of which the energy flux density
S = (C/4JT)[EXH] must (to within a factor c2) be equal to
the spatial density of the field momentum (see, for ex-
ample, Sec. 56 in t a > 3 ) . But it cannot be claimed that
any of these arguments unambiguously single out the
expression (18) for a force of the Abraham type. The
whole point is that it is only the field and the medium
which together form a closed system; division of the
total quantities (momentum, energy, etc.) into parts
corresponding to the subsystems (the field and the me-
dium) cannot but contain an arbitrariness. Therefore,
for example, it is not a priori clear why the energy-
momentum tensor of the field should be symmetric,
whereas such a requirement is unexceptionable when
applied to the complete system because of the need to
guarantee angular momentum conservation.

We shall not dwell on these questions in more detail,
but in the light of what we have already said it is clear
that an experimental measurement of Abraham's force
is far from superfluous. Unfortunately, the force fA is
very small and, in addition, can be measured only with
a rather special arrangement of the problem11'*5·1 (in the
majority of cases, the force acting on a medium cannot
be directly measured and the use of the Minkowski and
Abraham tensors leads to the same results; see a s i for
more details). Recently, however, it proved possible
to make such measurements, t 3 3 and, apparently, with
complete success. In the experiment, a disk made of
barium titanate, for which ε was equal to about 4000,
was used. In the center of the disk there was a small
opening, while the edges were aluminized, so that a
cylindrical condenser was obtained. The disk played
the role of the mass in a torsion pendulum and was hung
between the poles of an electromagnet (with field Β =Η
* 10 kG). An alternating voltage of amplitude 150 V was
applied to the disk condenser (the field frequency was
not specified in the brief communication, a : but it is
clear that it was very low and could be tuned to the
characteristic frequency of the torsional vibrations).
The constant field Β was perpendicular to the alternating
polarization Ρ = [(ε - 1)/4ττΐΕ and the density of Abra-
ham's force was equal to (l/c)[8P/8f *B]. The ampli-
tude of the vibrations of the pendulum was very close to
the value expected from a calculation using Abraham's
force. There is hope that in the near future Abraham's
force will be measured with high accuracy. But already
one can apparently no longer doubt the existence of this
force on the ground of experimental data, to say nothing
of theoretical arguments. Thus, there is now no doubt
that Minkowski's tensor cannot be regarded as the
"true" one, and the choice of Abraham's tensor corre-
sponds to reality for fairly simple cases.

5. It is, however, a fact that, in the theory of emis-
sion of charges and other sources moving in a medium,
the use of Minkowski's tensor is particularly effective

and, one may say, direct. More precisely, we are
speaking of the use of the expression (28) for the field
momentum density in a medium. Namely, assuming
that the momentum of a wave train is equal to GM

= Jg"dV, we arrive at the connection G* = (Wn/c)tyk,
where η = VT/T is the refractive index and W is the field
energy in the train (here, averaging with respect to the
high frequency is performed; for details see B ] ) . At
the quantum level, this connection corresponds to
choosing for the momentum of a "photon in a medium"
the expression #k = (#u)n/c)k//fe, where Κω is the photon
energy and k is its wave vector. It is these expressions
that must be used to obtain correct results on the basis
of the use of the energy and momentum conservation
laws; an example is the Vavilov-Cerenkov radiation
condition. Naturally, the problem of why the use of the
"false" Minkowski tensor should be successful was dis-
cussed very fully in the paper t 2 ] .

The problem reduces to this. The field in a medium,
assumed to be nondispersive, obtains, not the momen-
tum G*, but the momentum

W k w

which corresponds to the use of Abraham's tensor.5 ' At
the same time, in connection with the existence of Ab-
raham's force

the emission of a wave train by an emitter in the medi-
um imparts to the medium the impulse

Therefore, the emitter changes its momentum by -G",
and G* =G X + F A , which is exactly the same as if one
has assumed that the Minkowski momentum is trans-
ferred solely to the field in the medium (and not to the
field and the medium).

In t 8 1 this result was derived and discussed only under
a number of assumptions. The medium was assumed to
be at rest, nonmagnetic, and homogeneous; the equa-
tion D=eE was used. However, we are concerned here
with a very general relation, which must have universal
nature. This is in reality the case.

The conservation laws (12) and (20) were directly ob-
tained from the field equations (6)-(7), and are there-
fore valid without any further assumptions. Introducing
further, the stress tensor σαβ, we can reduce Eq. (20)
to the form

·/'•*.. (35)

where t'm is the force acting on the medium.

5 )For a dispersive medium, it is clear from general considera-
tions that the electromagnetic momentum of the wave train is
Q*=iW/c2)vo= (WVc2)<Wrfk, where να=άω/άΚ is the group
velocity. It is curious that for an isotropic plasma with
= «2 = 1— (ωο/ω2), when vc=en, the equation G*= (Wn/c)k/k
= G* holds. Note that in all the above the total energy is W
= iw"dV= JupAV, since we are dealing with a medium at rest.
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If Minkowski's expression (22) for aaS is used, the
form of the force f̂  is clear from Eq. (23), and if we
also use the constraints (3) we have i'm = imi [see (2) and
(24)]. In addition, the force tml for a homogeneous me-
dium is zero. If for σαβ for a medium at rest we take,
not Minkowski's expression (22), but Abraham's sym-
metric stress tensor, which differs from (22) only by
the replacement of EaDB by (ΕαΏ& + ΕβΌα)/2 and similar-
ly for HaBB:

) - 6^ (D · Ε + Β · Η)}

(36)

then in an isotropic medium at rest [the constraints (3)]
we nevertheless have σΑ

β =ai' s. The addition to the ten-
sors cA

e or σ%ί) of the striction tensor σ̂ β [see (25)], or
any other equal terms, clearly does not affect the dif-
ference σ* β-σΑ

β .

We now consider a medium on which the force iL + f'm
acts in the presence of a field. Then the change in the
momentum density gm>v of the medium is described by
the equation6'

Μ —l ' lm^°> Kill

where h is the density of the forces that are not directly
related to the presence of the field (for example,
h = ~Vp+p&, where p is the pressure and a is the ac-
celeration due to gravity).

We subtract the expression (35) written in the vector
form from (37) and we then integrate over the whole of
space under the assumption that the field "at infinity"
decreases fairly rapidly. The term with the divergence
does not then play a role (it is transformed into a sur-
face integral and vanishes), and we obtain

-^(Gm, .v - G") = j h dV, (38)

where

Gm,M= \ gm,.v<W, G"1/ = 4Hi f(DXB)<iF= \ g3IdV.

In Eq. (38), the partial derivatives with respect to
the time are replaced by total derivatives, since the
integrals over the whole of space depend only on /; of
course, for a closed system, we have in addition

Equation (38) is the momentum conservation law for
the system consisting of the field and the medium. But
to assert, as seems natural on the first glance, that
GmiW is the momentum of the medium and G" is that of
the field, would be wrong. For suppose that the term
(l/477c)(3/9i)[DxB] in Eq. (35) is not the change in the
field momentum, but is equal to

(39)

where fA is the density of some volume force which acts
on the medium and gA is the momentum density of the

"\Ve assume that the velocity of the medium is zero or so small
small that rfgm/di=Ogm/3i)+(uV)gm«3gm dt, etc.

field (the superscript A does not yet necessarily mean
that we identify fA and gA with Abraham's expressions).
Then on the right-hand side of Eq. (37) one must also
add the force fA; of course, the momentum density
Km,A °f t ° e medium is then different—its variation is
now determined by the equation

(40)
at

Subtracting now the expression (35) from (40) and
then integrating over the whole of space with allowan
for (39), we obtain

dt
(41)

where

Gm. Λ = jgm.Ai/r. G*=\ g-^Γ.

The most natural thing, of course, would be to iden-
tify gA with Abraham's expression (26), and then fA is
determined by Eq. (18). However, as is clear from
what we have said, the choice of the expression for gA

or fA must be based on experimental data or calcula-
tions outside the scope of the actual equations for the
macroscopic field, from which there follows only the
conservation law (20) or its direct consequences.

As is obvious from (39) and (40),

Sgrn, Μ . (42)

but this is true only under the assumption that two vari-
ants of the theory with the same forces t'm and h are
compared. In the case of the integral quantities, the
equation

ldV (43)

does hold for variants of the theory with different i'm and
h provided

j (im..«-I",,,.ι)<Π' = 0 and \ (ky,-hA)dV = 0,

where the subscripts Μ and A correspond to the forces
in the variants Μ and A of the theory. (Of course, if
the volume forces fj, and h are expressed in terms of
θσαβ/3.νβ, the corresponding volume integrals become
surface integrals and, in general, vanish.)

It is clear, finally, from (38), (41), and (43) that the
equation

lAdtdV (44)

has a very general nature and does not entail particular
assumptions.

In particular, it holds for a moving medium.

Of course, by virtue of the relativistic invariance of
the field equations it is immediately clear that on the
transition from a medium at rest to one moving uni-
formly no general relations can be affected. However,
it is helpful to examine this for the example of the Min-
kowski and Abraham tensors.

According to Minkowski, for both a medium at rest
and a moving medium the expressions for σ%Β, g", and
!<•„ are determined by (22), (28), and (34), and the stric-
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tion forces, solely for the sake of simplicity, are not
considered here. According to Abraham, in a medium
at rest the expressions for σΑ

β, gA, and w" are given
by (36), (26), and (34). In a moving medium7*

g ^ C P - E + B-H)- fau^,..,,) ((DXB)-(EXH)),

>- 1 - t U («-(PXB)-u-(EXH))| . (45)

Of course, if the expression for Tik (i.e., for w, g, S,
and σαβ) in the medium at rest is given, the correspond-
ing expressions for a medium moving with velocity
u = const can be obtained uniquely by relativistic trans-
formations.

For a moving medium, by what we have said earlier,

(46)
In a medium at rest (or one moving slowly when terms

of order uz/cz can be ignored) the expression (46) is
identical to (18), in which Abraham's force was intro-
duced for a medium at rest and it was only on the tran-
sition to (19) that the medium was assumed to move
slowly.

Forming the balance of the energy and momentum
when a wave train is emitted in a moving medium and
using Abraham's tensor, we must bear in mind that the
field energy is written in the form

«"*= J v*dy = W"- 4 . , ^ ; ^ ) I {(DXB)-(EXH)}dF. (47)

In addition, under the influence of the force fA defined
in accordance with (46) the medium receives the energy

J
(48)

Thus, the total change in the energy of the emitter is
equal to - (WA +RA) = - WM. Of course, this result is
also clear without integration since divM/Bt = BwA/dt
+ tA · u, which for a slowly moving medium was already
reflected in (19).

The change in the momentum of the emitter is also
determined as before by the expression (44). [When
applied to a wave train and with averaging with respect
to the high frequency, this relation was used in t i J ; see
Eqs. (38) and (39).]

The difference between the tensors σ^β and σΑ

β for a
moving medium does not here play a role, as we have
seen [in expressions of the type (44) and (48) integration
is performed over the whole space, and in the integra-
tion with respect to the time the period of time when the
wave train is already sufficiently "separated" from the
emitter is taken into account]. Therefore, in accor-
dance with our general arguments, we arrive at the
same results when considering emission processes in a
moving medium as for a medium at rest. In particular,
in the quantum treatment we can use the expressions
Ιϊω and # k = (Hu>n/c)lt/k for an emitted and an absorbed
"photon" in a moving medium as well, although we know

that (as in a medium at rest) we are concerned, not with
the energy and momentum of the field itself in the me-
dium, but with the changes in the energy and the mo-
mentum of an emitter in the medium. For this reason,
/zk is, in fact, sometimes called the photon quasimo-
mentum. And if Ηω is the photon energy in a medium at
rest, the energy Ηω in a moving medium is rather the
quasienergy, in the sense that it is the sum of the field
energy WA and the work RA of Abraham's force on the
medium [see (47) and (48)].

6. Above and in B ] , as in the earlier papers of one of
the authors,C263 attention was entirely concentrated on
the exchange of energy and momentum between the emit-
ter and the medium. But of course it is also of interest
to analyze processes taking place in the medium itself.
Here, the differences between Minkowski's and Abra-
ham's approach become very significant and lead to dif-
ferent results. Indeed, according to Minkowski no force
at all (ignoring the striction force) acts on a transparent
and homogeneous uncharged medium in an electromag-
netic field (for example, when a wave train propagates).
According to Abraham—and this corresponds to reali-
ty—the medium is subject to a force with volume density
fA [see (4), (18), and (46); Eqs. (18) and (4) follow from
(46) under the appropriate special assumptions].

Under the influence of the force iA the motion of the
medium is of course changed, but no universal conclu-
sions about this can be drawn apart from the conserva-
tion law of the total momentum (41). The point is that
the momentum density gm acquired by the medium de-
pends on the equations that describe the motion of the
medium and, concretely, on the force density h in the
equation of motion (37) or (40) of the medium. In addi-
tion, besides Abraham's force f A , the striction force
(2) also acts on the homogeneous medium in general:

(we ignore the force proportional to Βμ/dp, which in the
majority of cases is considerably smaller).

The density of the momentum imparted to a medium
through which a train of electromagnetic waves propa-
gates was calculated for various models of a medium
in 1 1 · 1 2 · 2 0 · 8 2 3 . For example, for a gas of heavy dust par-
ticles111 the momentum density acquired by the gas is
exactly equal to8 >: g" - gA = ( n 2 - l ) g A . Therefore, the
total momentum density of the field and the medium is
g". For a very rigid solid, the effect of the force fA

at a not too high frequency in a quasistationary regime
is almost completely compensated by forces of elas-

"See 1 ' 4 1 in the third edition (1946), Sees. 115 and 116; see also
Appendix 4 in m OF Sec. 36 in I e l.

81 For an equilibrium gas

υ * | ^ = -|£-4-, ε = 1 + 4πα.Υ, ρ = Λ·Μ\
dp dp dp d.\ Μ '

p=NM, where a is the polarizability of the particle (molecule)
Τ is the temperature, Λ' is the concentration, and Μ is the
mass of the particles. Obviously, dp/dp=kT/M—0 as Μ
— °°. Thus, in this case the striction force is equal to zero
and the medium is subject to only the force with density fA

= (re2 - DBgVat, which imparts to unit volume of the gas the
momentum JfVi = in2 — Dg1* as a result of the passage of the
front of the wave train.
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ticity (but, of course, the medium as a whole receives
the momentum HAdtdV). This assertion can be illus-
trated by the example of an oscillator whose equation of
motion has the form m {dzx/dtz) + kx = f = dg/dt, where /
is the effective force. If the coefficient of elasticity k
is very large, the displacement is x~ f/k for the great-
er part of the time, and dx/dt~ (df/dt)/k, so that the
oscillator momentum tends to zero, mdx/dt-' 0, as
k— °°; but in the limit k— 0, we have mdx/dt = Ifdt =g.

For the model of a medium consisting of dipoles, the
value obtained in ί ζ η for the momentum density of the
field and the medium—it is intermediate between gM and
gA—is also in no way universal, and characterizes in
the first place the model of the medium that is used. A
more detailed discussion of the question of the density
of the momentum that arises in a medium under the in-
fluence of the electromagnetic field goes beyond the
scope of the present paper (in particular, see C 2 E : ) .
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