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Work in which electromagnetic excitations in metals and semimetals in a strong magnetic field have been
studied is reviewed. For the analysis of the spectrum of the numerous electromagnetic excitations, the
collisionless-damping regimes which determine the limits of the existence of weakly-damped excitations and
make it possible to carry out a natural classification of the spectrum of electromagnetic waves in quantizing
and classically-strong magnetic fields are derived with the aid of conservation laws. In addition, the
collisionless-damping regimes give an intuitive picture of oscillatory effects in the propagation of other,
nonelectromagnetic excitations. All types of quantum waves in electron and electron-hole plasmas and also
the effect of magnetic quantization on the spectrum of the classical electromagnetic excitations, are
considered in the review. The conditions for which quantum waves and oscillations of the damping of
classical excitations can be observed are discussed. The last section of the review summarizes the results of
work in which electromagnetic waves in metals with a complicated Fermi surface have been studied. The
connection between the geometry of the Fermi surface and the spectrum of the electromagnetic normal
modes is analyzed.
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1. INTRODUCTION

In the last decade a new area of solid-state physics
has been formed—the electrodynamics of conductors
situated in a strong magnetic field. The investigations
of the electromagnetic-excitation spectrum, which form
the basis of this field, are reflected in the well-known
reviews""43 and monographs. C5~9]

The spectrum of the electromagnetic excitations in
classically-strong magnetic fields is extremely di-
verse in form. In a quantizing magnetic field, because
of the multi-component character of the electron-hole
system, it becomes more complicated, since, as a
rule, new types of collective excitations correspond to
the numerous electronic transitions between the Landau
levels. Moreover, the quantization entails changes in
the spectrum of waves which already exist in classical-
ly-strong magnetic fields. In recent years a series of
papers have been published in which different types of
electromagnetic waves in a quantizing magnetic field
have been discovered and studied theoretically.

The spectrum of electromagnetic excitations in solids
is intimately connected with the geometry of the Fermi
surface. Because of this, in metals and semimetals
excitations can propagate that do not exist in a gas-dis-
charge or ionospheric plasma or in metals in which the
carriers have an isotropic quadratic spectrum. The
problem of the electromagnetic-excitation spectrum in

metals having a complex Fermi surface has also at-
tracted the attention of theoreticians and experimental-
ists in recent years.

Work devoted to the study of electromagnetic waves
in both quantizing and classically-strong magnetic fields
is included in this review. To investigate the electro-
magnetic-excitation spectrum we have made use of the
conservation laws that are fulfilled when electrons in-
teract with the Bose excitations. With the aid of the
conservation laws, the regimes of collisionless damp-
ing of excitations interacting with electrons in a mag-
netic field are derived in the "frequency-wavevector"
plane for different models of the electron spectrum.
In pure metals and semimetals at sufficiently low tem-
peratures, these regimes determine the limits of exis-
tence of undamped collective excitations. Since selec-
tion rules establish a connection between the polariza-
tion of a wave and the type of resonance transitions
between the Landau levels, it is not difficult to deter-
mine the regimes of existence of waves with a specific
polarization. Using the regimes of transparency a
natural classification of the possible solutions of the
dispersion equation for waves with a given polarization
can thereby be made. To determine the solution it is
now sufficient to consider only a certain "window" in
the collisionless-damping regimes, in which the ana-
lytical expression for the conductivity acquires a suf-
ficiently simple form.
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FIG. 1. Landau-damping regimes in a quantizing magnetic
field (ΔΗ = Ο). (Four Landau levels are occupied (nF = i). The
spectra of the longitudinal quantum waves and of the plasmon
are shown in the figure. The Landau-damping regime in the
absence of magnetic quantization is depicted in the upper part
of the figure.)
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FIG. 3. Regimes of anomalous cyclotron damping in a quantiz-
ing magnetic field (Δη = - 1, nF = 4). (The spectra of the right-
polarized quantum waves and the high-frequency wave are
shown in the figure. The regime of anomalous cyclotron
damping in the absence of magnetic quantization is depicted in
the upper part of the figure.)

The collisionless-damping regimes also give an in-
tuitive picture of the different resonance effects as-
sociated with other elementary excitations. There-
fore, such an approach is methodologically appropriate
in the study .of resonance effects such as giant quantum
oscillations of sound absorption, oscillations of the
sound velocity, geometric resonance, oscillations of the
damping of optical phonons, etc.

The review is constructed as follows. In Sec. 2 we
consider the collisionless-damping regimes for excita-
tions of different polarizations. The shift of the damp-
ing regimes with change of the magnitude and direction
of the magnetic field illustrates the different oscilla-
tion effects.

In Sec. 3 the basic equations of the electrodynamics
of conductors situated in a quantizing magnetic field
are given. The conductivity tensor for electrons in a
quantizing field is found. The scales of the space and
time dispersion, and also the question of the form of
the collision integral, are discussed. In Sec. 4 the
spectrum of the electromagnetic excitations in a de-
generate magnetically-active plasma is analyzed in the
simplest model of a quadratic and isotropic dispersion
law for the electrons. All types of classical and quan-
tum waves in electron and electron-hole plasmas are
considered. The fine structure of the windows in the
collisionless-damping regimes (see Figs. 1-3 below)
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FIG. 2. Cyclotron-damping regimes in a quantizing magnetic
field (Δη = 1, nF = 4). (The spectra of the helicon, the left-
polarized quantum waves and the high-frequency left-po-
larized wave are shown in the figure. The regime of normal
cyclotron damping in the absence of magnetic quantization is
depicted in the upper part of the figure.)

is extremely sensitive to the thermal smearing-out of
the distribution function. In addition, the boundaries
of the regimes can be smeared out on account of elec-
tron collisions. This leads to damping of the excita-
tions. Each region has its own criterion for weak
damping of a wave, imposing bounds on the tempera-
ture and collision frequency. In connection with this,
the conditions for the existence of quantum waves are
discussed.

Section 5 is devoted to a discussion of work in which
electromagnetic excitations in metals with a complex
Fermi surface have been studied in classically-strong
and quantizing magnetic fields. Here, as in the pre-
vious sections, we consider the selection rules, the
regimes of collisionless damping in metals with an
anisotropic spectrum, the singularities of the conduc-
tivity tensor, and also the principal types of electro-
magnetic waves and their connection with the geometry
of the Fermi surface. We have directed our attention
principally to the origin of the electromagnetic excita-
tions and their classification, without going into the
details of the spectrum of the waves.

2. COLLISIONLESS-DAMPING REGIMES

The propagation of electromagnetic excitations in a
solid in a classically-strong or quantizing magnetic
field is described by the Maxwell equations and the
classical or quantum equation of motion of the charged
particles. As is well-known, the excitation spectrum
is found from the dispersion equation, which, because
of the multi-component nature of the system under
consideration, the space and time dispersion and the
strong anisotropy, turns out to be rather complicated.
In order to visualize the entire multiplicity of excita-
tions, in the present section we turn to the conserva-
tion laws that are fulfilled when an electron interacts
with a Bose excitation. The conservation laws determine
the thresholds for creation of electron-hole pairs by
different Bose excitations and, consequently, indicate
the limits of existence of the undamped excitations.
On one side of the threshold—the side where the transi-
tions are virtual—the imaginary part of the dielectric
permittivity is equal to zero, and beyond the threshold
it is nonzero. By virtue of the Kramers-Kronig dis-
persion relations this leads to a singularity in the real
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part of the dielectric permittivity at. the threshold.
Therefore, collective excitations whose spectrum lies
near the corresponding resonance frequencies can cor-
respond to resonances.

We shall consider the collisionless-damping regimes
for an isotropic quadratic electron spectrum. The
damping regimes in metals with a complex Fermi sur-
face will be considered in Sec. 5.

In the case when the motion of the electrons is de-
scribed classically, the mechanism of the collisionless
damping can be elucidated in the following way. A
longitudinal wave interacts strongly with those particles
whose velocity is approximately equal to the phase ve-
locity of the wave. Such particles "see" an almost
constant electric field in the wave, while particles
moving faster than the wave give up energy to it and
particles lagging behind the wave absorb energy. Since
in the equilibrium state the number of slow particles
is always greater than the number of fast particles,
the wave is damped. This mechanism for collisionless
damping of longitudinal waves is called Landau damping.
If the electron gas is degenerate, the Landau damping
has a natural threshold <i>/q = vF.

A circularly polarized wave propagating parallel to
a magnetic field can also experience collisionless
damping. To understand the physical cause of damping
of transverse waves, we change to a system of coordi-
nates in which the velocity of the particle along the mag-
netic field is equal to zero. If the frequency of the
wave in this coordinate system is equal to the frequency
of rotation of the electron, the electron "sees" a con-
stant electric field in the wave, lying in the plane of its
rotation, and absorbs energy. Such damping is usually
called cyclotron damping. In a degenerate electron gas,
when the maximum electron velocity is equal to νF, the
thresholds for normal and anomalous cyclotron damping
are determined by the condition ω = ± (Sl±vFq).

If the wave propagates at an angle to the direction of
the constant magnetic field, the interaction of the par-
ticle with the electric and magnetic fields of the wave
becomes more complicated. For example, in the prop-
agation of a helicon at an angle to the magnetic-field
direction, transfer of energy from the wave to par-
ticles occurs on account of the joint action of the var-
iable electric and magnetic fields lying in the plane per-
pendicular to the constant magnetic field, and the en-
ergy of the motion of the particle in the direction of the
constant magnetic field is changed. As a result, mag-
netic Landau damping arises in the region u)/q,<vF.

C1·91

We turn now to the quantum interpretation of col-
lisionless damping. An elementary excitation with fre-
quency ω and wave-vector q is damped if it can create
an electron-hole pair. This process must be allowed by
the conservation laws for the energy and longitudinal
component of the momentum:

is the energy of an electron in the quantizing magnetic
field, η labels, the Landau level, p, is the component of
the momentum in the magnetic-field direction, Κ is
Planck's constant, Ω is the cyclotron frequency and m
is the electron mass.

In addition, for the process to be allowed the Pauli
principle must be satisfied: at zero temperature, the
electron must be below the Fermi surface in its initial
state and must have an energy greater than the Fermi
energy in its final state.

In the system under consideration there also exist
other conserved quantities, leading to certain selection
rules with respect to the quantum number η. Η the
wave propagates along the magnetic field, then Δ« = 0
for longitudinal polarization of the excitation and Δ« = 1
(Δ«= -1) for a left(right)-polarized excitation. A dis-
cussion of the conservation laws from which these
selection rules follow is given in t 1 0 · " ! . if the wave
propagates at an angle to the magnetic field, electron
transitions with an arbitrary change in the Landau-
level number are allowed.

Using the above considerations, we derive the re-
gimes of collisionless damping of elementary excita-
tions in a quantizing magnetic field. For this we solve
Eq. (2.1) for p, and, using the inequalities tn(p,)« eF,
εη.(ρ,+ Kq,) a e,, we find

(2.3)

where

= εη- ( (2.1)

(2.2)

where vn = ̂ 2[e.F- (n+i)Kn]/m is the Fermi velocity at
the «-th Landau level and tF is the Fermi energy. The
inequalities (2.3) determine the collisionless-damping
regimes for arbitrary Δυ = η' - η. They are depicted
in Figs. 1-3. Fig. 1 shows the collisionless-damping
regimes for transitions with no change in the Landau-
level number (Δ« = 0); Figs. 2 and 3 correspond to the
cases when Δ»= 1 and Δ« = - 1.

We shall discuss these figures. The propagation of
a longitudinal excitation along the magnetic field in
crystals with an isotropic quadratic dispersion law for
the electrons is accompanied by transitions with Δ« = 0
and, consequently, the regime of collisionless damping
of the excitations will be the region shown in Fig. 1.
The dashed lines in the shaded region show the bound-
aries of the damping for transitions within an individual
Landau level (n = nF). The complete picture of the
damping is obtained by superimposing the damping re-
gions corresponding to transitions in all Landau levels.
As can be seen from the figure, as a result of this
superposition "windows" in which damping is absent
appear in the (ω, #)-plane. Conventionally, one can dis-
tinguish two types of windows. One type emerges from
the coordinate origin, and the others are located in the
region of larger q up to 2k F. It is essential that all
windows lie below the cyclotron frequency. The number
of areas of transparency of the first type is smaller,
by one, than the number of filled Landau levels, and the
number of windows bordering on the <7-axis is equal to
nF. The characteristic momenta 2Kkn defining the lim-
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its of the windows at ω = 0 correspond to electron transi-
tions from states with momentum - Kkn to a state with
momentum Hkn with no change in energy. For the sub-
sequent discussion, we note that the width of the damp-
ing areas is proportional to q* for small q. Bordering
on the q-axis in the range (0, 2kn J is the transparency
regime formed by electron transitions in the highest
Landau level. Its height is equal to Kk%r/2m.

The regions derived indicate those values of the fre-
quency and wave-vector at which undamped excitations
can exist. These excitations are considered in Sec.
4(A). It should be emphasized that waves do not exist
in all the windows. The position of the dispersion curve
in the (ω, ^)-plane is determined by the dynamics of the
motion of the electrons.

The shift of the damping regions with change in the
magnitude and direction of the magnetic field illustrates
the change in the spectrum of the electromagnetic
waves, and the different oscillation effects. On in-
crease of the magnetic field the Fermi momenta Hkn at
the individual Landau levels vary in accordance with
the law Kkn = -<J2m[eF- (n+i)RQ\. As a result, the di-
mensions of the windows along the q-axis, and also
their height, which is proportional to Ω, increase.
When the number of filled levels changes (when 2knjr

tends to zero) the number of windows changes and the
pattern of the damping regions near the coordinate ori-
gin changes sharply. This leads to oscillations of the
absorption and velocity of a helicon112-1 and of sound.C13'14]

The shift of the damping regimes on variation of the
angle θ between q and Η reduces, as follows from (2.1),
to extending the scale along the q-axis by the factor
cos'1 θ, and this explains the giant oscillations in the
absorption"" and velocity i W of sound on variation of
θ. In discussing other resonance effects C17~191 we shall
also turn to Figs. 1-3.

If the excitation has left circular polarization and
interacts with electrons, then, as it propagates along
the magnetic field, transitions with Δη=1 are allowed
by the selection rules. The corresponding damping re-
gimes are depicted in Fig. 2. As can be seen from the
figure, the pattern of the damping regimes is different
in this case. For example, at zero frequency the
boundaries of the windows are determined by the dif-
ference and sum H(kn ± fen+1) of the Fermi momenta at
neighboring Landau levels. As in the first case, the
windows can be divided conventionally into two types:
one type begins at ω = Ω and q- 0, and the others ad-
join the 0-axis. The total numbers of windows of the
two types are nr— 2 and nr— 1, respectively. With in-
crease of the magnetic field the sum kn+k^ decreases
and the difference kn- ftwl increases. This determines
the change in the pattern of the damping with variation
of the magnetic field. Increase of the angle between
q and Η leads to an extension of the scale along the q-
axis by a factor of cos"1 θ. At θ = π/2 the collisionless-
damping regimes degenerate into the line ω = Ω.

Figure 3 shows the collisionless-damping regimes for
Δ» = - 1 transitions. Such transitions are allowed for
right-polarized waves interacting with electrons and
propagating along the magnetic field. The structure of

the collisionless-damping regimes, as in the preceding
two cases, makes it possible to distinguish windows of
two types and an intermediate region of transparency.
The characteristic momenta and the number of windows
are the same as in the case Δ«=1. However, the form
of the damping regimes is different. The regions shown
in Figs. 2 and 3 characterize the spectrum of electro-
magnetic waves in a quantizing field (cf., e.g., Sec.
4(B)) and illustrate the different resonance effects for
transversely polarized excitations.

It should be kept in mind that, if a certain excitation
with circular polarization interacts not with electrons
but with holes, the selection rules allow transitions
with Δ«=1 for right-polarized waves and with Δ« = - 1
for excitations with left circular polarization. There-
fore, Fig. 2 gives the pattern of the regimes of damp-
ing of right-polarized waves in a hole gas and Fig. 3
corresponds to the regimes of damping of left-polarized
excitations.

On all the boundaries of the damping regions depicted
in Figs. 1-3 the real part of the dielectric permittivity,
as will be shown in Sec. 3, has logarithmic singularities
while the imaginary part experiences a finite discon-
tinuity.

If the electromagnetic wave propagates at an angle to
the magnetic field, transitions with an arbitrary change
in the quantum number η are possible. Because of this,
the form of the damping regions becomes more com-
plicated, and they can be obtained by a simple super-
position of the damping regimes for Δ« =0, ±1, ±2,
etc. It is not difficult to convince oneself that the
damping regions corresponding to transitions An = ± 2,
± 3 , . . . are similar to the regions for Δ« = ± 1. If we
neglect the quantum effects in (2.3), then, for an ar-
bitrary direction of propagation of the wave, the bound-
aries of the damping regimes have the form u> = Δ«Ω
± vFq, where Δη = 0, ± 1, ± 2 , . . . In the upper parts of
Figs. 1-3 the damping regimes for longitudinal, left-
polarized and right-polarized waves in classically-
strong magnetic fields (Ω » v) are shown. At θ = ir/2
the damping regions are transformed into the lines
ω = ΔκΩ. Without going into details, we point out that
an idea of the collisionless-damping regimes for ar-
bitrary Δ« can be obtained from CEO:|. Waves propagat-
ing at an angle to the magnetic-field direction are con-
sidered in Sec. 4(D).

We now take the spin splitting into account. It leads
to a doubling of the number of magnetic tubes and to a
"splitting" of the boundaries of the collisionless-damp-
ing regimes. In turn, the latter leads to the appear-
ance of additional excitations and causes splitting of the
resonances in the corresponding oscillation effects.
The characteristic dimensions of the areas of trans-
parency are determined by the relationship between the
cyclotron frequency and the spin frequencyC20]

where g is the spin-splitting factor and μ0 is the Bohr
magneton.

In a series of papers, Zyryanov, Okulov and Silin
have studied quantum waves in an electron Fermi liquid.
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In particular, quantum spin waves were treated in β 1 - 2 3 ] .
The regimes of collisionless damping of these excita-
tions can be found using the conservation law for pro-
cesses with change in the projection of the spin. The
approach proposed can also be useful for analyzing the
spin-wave spectrum. However, spin waves in a Fermi
liquid are not considered in this review.

The characteristic sizes and numbers of windows in
the damping regimes are essentially different in metals
and semimetals. This is connected with the fact that
in metals the number of filled levels, even in fields
H~10s Oe, is not less than 103-104, while in semi-
metals and semiconductors a few Landau levels may
be filled. As a result, in metals it is not possible to
resolve all the windows when observing resonance ef-
fects. The uncertainty in the energy-conservation law,
associated with electron collisions, and the thermal
smearing-out of the distribution function lead to blur-
ring of the boundaries of the collisionless-damping re-
gimes and, in weak magnetic fields, to the complete
disappearance of the quantization effects. The neces-
sary and sufficient conditions for the existence of the
different resonance effects in metals and semimetals,
and also the conditions for the observation of quantum
electromagnetic waves, will be discussed later. Here,
we remark only that if the magnetic-quantization condi-
tion

Γ<ίΩ, ν < Ω (2.4)

is not fulfilled there are no windows in the collisionless-
damping regimes. Here, Τ is the temperature in energy
units and ν is the collision frequency.

3. BASIC EQUATIONS

The spectrum of the electromagnetic excitations in
conductors in a quantizing magnetic field can be found
from Maxwell's equations and the equation for the den-
sity matrix:

the momentum operator,
in A we have

In the approximation linear

,otH . ^ J + l ^ .

« O . E - - 1 - .

(3.1)

(3.2)

(3.3)

here Ε and Η are the intensities of the electric and
magnetic fields, j is the current density, c is the ve-
locity of light, ρ is the single-particle density matrix
and(#is the Hamiltonian of the system. Equations
(3. l)-(3.3) are connected by

j(r0, i)=Sp{—i e[v0-r-^A(r, ί)] 8(ΓΟ-Γ)?+H.c.} , (3.4)

where v0 is the velocity operator and e is the electron
charge. In a constant external magnetic field and in
the field of an electromagnetic wave the Hamiltonian of
our system has the form

-eq·. (3.5)

where Ao= (0, Hx, 0) and Η is the intensity of the con-
stant magnetic field directed along the ζ-axis; A and
φ ~ exp [ϊ(ωί - q · r)] are the vector and scalar potentials
of the oscillating electromagnetic field and p= - iTz V is

v,=±(p" + fA0)

The eigenfunctions
gauge are

(«A

of

2c) (i

the

:

0A + Avr)-a,

operator^ifcin the

(3.

(3.

(3.

chosen

6)

7)

8)

| v),-. | n. kt, k,) = V" l / 3 exp [i (k,y + kzz)\ un (x -f- ΙΉΚ), (3.9)

and the eigenvalues of $&0 are given by the expression
(2.2). Here V is the normalization volume, un(x) is a
harmonic-oscillator eigenfunction and la=(cH/eIt)lli is
the magnetic length. We note that the interaction of
the intrinsic magnetic moment of the electron with the
constant and oscillating magnetic fields is not taken in-
to account in the Hamiltonian (3.5).

To determine the current it is necessary to solve
Eq. (3.3) for the density matrix. First we shall dis-
cuss the form of the collision integral. It is shown
in t 2 4- 2 6 1 that in the τ-approximation the collision in-
tegral for the system under consideration should be
written in the following form:

ld£\ _ p'—Po (<flf, μ)
\ dt /coll τ '

where

, μ) « [ « p

(3.10)

(3.11)

τ is the constant relaxation time and μ is the local
chemical potential, dependent on r and t, the value of
which is determined from the particle-number conserva-
tion condition

Sp {6 ( r - r0) [p*0 {St. μ) - ρ]) = 0. (3.12)

According to (3.10), the nonequilibrium density ma-
trix relaxes to the local-equilibrium density matrix,
which depends on the total Hamiltonian and on the local
value of μ. The collision integral, as follows from
(3.12), conserves the number of particles. The re-
quirements imposed on the form of the collision integral
by other local conservation laws have been discussed
in Κ 4 · 2 " . we remark that in a quantizing magnetic
field the τ-approximation cannot be rigorously justified.
In certain cases it gives a clearly incorrect result.
For example, it is impossible to obtain by means of the
τ-approximation the correct expression for the static
conductivity in a quantizing field in a direction per-
pendicular to Η. Β 8 ] However, as a rule, the τ-ap-
proximation turns out to be adequate for the study of
phenomena in the high-frequency regime ω τ » 1.

In order to solve the system (3. l)-(3.3) it is neces-
sary to find the nonequilibrium correction to the density
matrix and then, by means of (3.4), determine the cur-
rent and conductivity tensor. For an arbitrary orienta-
tion of the vector with respect to the magnetic field the
expression for the current density has a cumbersome
form (see the Appendix).

The simplest expressions for the conductivity tensor

57 Sov. Phys. Usp., Vol. 19, No. 1, January 1976 V. Ya. Demikhovskii and A. P. Protogenov 57



σ,Λ and the diffusion tensor d{k are obtained in the sym-
metric geometries q II Η and q l H. In this case, as
follows from the formulas given in the Appendix, cer-
tain matrix elements and the corresponding components
of the tensor vanish.

In this review we shall consider resonance phenomena
in the high-frequency regime1' ωτ » 1 . Therefore, we
shall give explicit expressions for the conductivity ten-
sor only for ωτ » 1 and q II Η. Ο 0 · 3 1 3 From the expres-
sions (A. 27)-(A. 30) we have

where

(3.13)

(3.14)

(3.15)

2 ± = y In ( Γ "η?—№°/2'") —(Q ± ω) Ί" H Γ vnq-(/iq"-/2m) - (a = ω) Ί'< 1

(3.16)

Σ ο = V In

where nF= [(zF/HU) - i ] is the number of filled Landau
levels ([x] is the integer part of x). For τ - «β the
imaginary part of Σ ο is equal to π in the collisionless-
damping regimes shown in Figs. 1-3. It can be seen
from the expressions (3.13), (3.15) and (3.16), (3.17)
that, in accordance with the selection rules discussed
in Sec. 2, transitions in which the Landau-level num-
ber changes by unity (An = ±l) make a contribution to
the components σ^ and axy, while transitions with no
change in the Landau-level number (Δ»=0) contribute
to the longitudinal component of the conductivity tensor.

The system under consideration is characterized by a
large number of resonance frequencies and wave-vec-
tor values, this being connected with the multi-com-
ponent character of the system. The resonance values
of the longitudinal component of the wave-vector (2.3),
which are obtained from the conservation laws for the
energy and the longitudinal component of the momentum,
determine the position of the logarithmic singularities
of the conductivity-tensor components (3.13)-(3.15).
Resonance values also exist for the transverse com-
ponent of the wave-vector. Because of the absence of
exact conservation of this component, the character of
the resonances here is different: instead of the loga-
rithmic singularities, maxima of the function /Π,Π»ΔΒ

arise at the resonance values of qL. The function
fn, Π+ΔΠ n a s a maximum at qL »Rml = Cl/vF if n = nF, Δ« = 1,
or at qL<*t$ if »=1, Δη = 1, or at q±~kF if n = l, An = nF.
One can convince oneself of this by considering the
explicit expression (A. 18) for the function/η#π*Δπ. We
return to Eqs. (3.1) and (3.2). Eliminating the mag-
netic field, after Fourier transformation we obtain

"in the low-frequency regime ωτ« 1, using formulas (A. 25)
and (A. 26) one can obtain the correct criterion for the exis-
tence of giant quantum oscillations of the coefficient of ab-
sorption of a helicon and of sound. : 2 9 ]

in,Ei* (ω, q) = bih + -r- (aih (ω, q) -(- dih (ω, q)) (3.19)

is the dielectric permittivity of the system. From
(3.18) follows the dispersion equation determining the
spectrum of the electromagnetic excitations in con-
ductors in a strong magnetic field:

= 0. (3. 20)

In the following sections the different solutions of the
dispersion equation (3. 20) will be discussed.

4. CLASSIFICATION OF ELECTROMAGNETIC

EXCITATIONS

The collisionless-damping regimes derived in Sec.
2 determine the limits of the existence of undamped
electromagnetic waves and make it possible to carry
out a classification of them in the simplest, isotropic
model of the electron spectrum. Such a model cannot
be used to calculate the excitation spectrum in real
metals. However, an investigation of this kind is nec-
essary for an understanding of the general structure of
the spectrum of electromagnetic waves.

A. Longitudinal electromagnetic waves

First we shall consider longitudinal waves propa-
gating along the magnetic field. The collisionless-
damping regimes for these are shown in Fig. 1. In
the unshaded regions the imaginary part of the longi-
tudinal dielectric permittivity is equal to zero and (ac-
cording to (3.15) and (3.20)) the dispersion equation
for τ"1 = 0 has the form

ε,ζ = 0,

4ne"-
2 In

[vnq— {

(4.1)

(4.2)

A solution of Eq. (4.2) does not exist in all windows.
At a fixed frequency the left-hand side of Eq. (4.2) is a
monotonic function of q. Therefore, if the right-hand
side of (4.2) varies from - °° to + » with variation of
the wave-vector within a certain window, a solution
exists in the window. Such a situation is realized in
the windows located near the coordinate origin. If the
sign of the singularity of the right-hand side is the
same along the boundaries of a window, a solution may
not exist. The windows bordering on the q- axis, where
there is no solution of the dispersion equation, are an
example of this.

As shown in [ 3 2 · 3 3 3 , the solutions for qR «1 and ω < Ω
have the form (cf. also C34·3")

o)=un?, un = vn + av'nFivF, (4.3)

where a ranges from unity, if vn*vF, to i , if vn*>vnf.;
vn =KSl/m, 0<n<nF. The excitations (4.3) are usual-
ly called longitudinal quantum waves. We note that
for n<nF the deviation δ«η of the velocity (4.3) of the
longitudinal quantum wave from vn is much smaller
than the spacing δνη between neighboring Fermi ve-
locities in the Landau levels, i. e., the dispersion curve
passes near the lower boundary of the window. If η
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« η , , then 6un~6vn. In the region of large ω it is not
possible to obtain so simple an analytical expression.
However, it is clear that a solution exists in each win-
dow up to ω = Ω and q = kn- S w l . The number of branches
in correspondence with the number of windows, is one
less than the number of filled Landau levels. The spec-
trum (4.3) of the longitudinal quantum waves is shown
in Fig. 1. The existence of plasma waves of the acous-
tic type in a charged Fermi system is connected, ob-
viously, with the multi-component character of the sys-
tem. Relative oscillations of the components, with no
essential change in the total charge density, are pos-
sible only in this case.

When the temperature and mean free path are finite
the longitudinal quantum waves are damped. The damp-
ing of the excitations will be small if the dispersion
curve is distant from the boundary of the collisionless-
damping regime by an amount greater than the distance
over which the damping region is smeared out. From
this follow the conditions for weak damping in the «-th
window033:

r <r -i£L ν<z ω v̂ "" (A A)

which are valid in the region qR«n'lri~vn/vr. It can
be seen from (4.4) that the conditions for the existence
of weakly damped waves in different windows are not
the same. The bounds on the temperature and collision
frequency depend in different ways on the Landau-level
number η and n,. It is clear that the most favorable
conditions are realized in semimetals, when nr>l.

In addition to the quasi-neutral oscillations (4.3), in
the system under consideration there exists at <j>>voq
the well-known solution of Eq. (4.1)—the plasmon.
When the plasmon propagates along H, the region of its
existence is the same as in the absence of the field, if
we disregard the weak oscillations of the velocity v0.
The spectrum of the longitudinal plasma oscillations
has been studied in t s e > 3 7 ] . The influence of the mag-
netic quantization on the plasmon reduces to small cor-
rections (~Μΐ/ΐΓ)

ί3Ί1 in the coefficient of qz that takes
the spatial dispersion into account, if q«wt/vF and
q II H. In this geometry the limiting frequency ω(0) does
not depend on the magnetic field.

It is not only the spectrum of the electromagnetic
natural oscillations in unbounded space that is shaped
by the singularities of the dielectric permittivity. In
boundary problems these singularities lead to the phe-
nomena of anomalous penetration of an external field into
the conductor. The strengthening of the singularity of the
dielectric permittivity in a quantizing field substantial-
ly alters the screening of the electric field. As shown
in the paperc38], at large distances the potential of a
constant electric field falls off like

ι sin 2knz (4.5)

where ζ is the distance from the surface of the conduc-
tor and the magnetic field is directed along the z-axis.
Thus, if the frequency of the external field is equal to
zero, the period of the Friedel oscillations (4. 5) is de-

termined by the height 2feB of the Landau tubes. It is at
these values of q that the dielectric permittivity εΜ(0, q)
has singularities (see Fig. 1). The screening of the
field of a point charge in a quantizing magnetic field
was considered in c s e · 4 0 1 .

B. Transverse electromagnetic waves

We turn to the discussion of the dispersion law for
circularly polarized electromagnetic waves in a quantiz-
ing magnetic field. According to (3.13)-(3.20), the
dispersion equation for these in the regions where
damping is absent (cf. Figs. 2, 3) has, for τ~ι = 0, the
form

(4.6)

'nq— (liq' 2m)— (Ω =i= ω) | " + ι | u n ; - r
'n9 — (''92/2//ι)— (Ω 3- ω)

— (Ω Τn ) ( )
vnq—(nq"i2m)+(a Τ ω)>> I /

(4.7)

where the signs + and - correspond to right- and left-
polarized waves. In accordance with the selection
rules, transitions with Δη = — 1 and, Δ» = 1 give a con-
tribution to the dispersion equation for right- and left-
polarized waves.

First we consider left-polarized waves. In the region
ω < Ω - voq+ Hqi/2m there exists the well-known left-
polarized excitation—the helicon.t413 For qR « 1 and
ω « Ω the spectrum of the wave, as follows from (4.7),
has the form

ω = -£ίν. (4.8)

The conditions for observation of helicons can be ful-
filled comparatively easily in pure metals and doped
semimetals and semiconductors, since the damping as
a result of collisions is proportional to ν/Ω and there
is no collisionless damping for q II H. A detailed
analysis of work devoted to the study of helicons in
solids is contained in the review by Maxfield, a i to
which we refer the reader who is interested in the
details.

If the helicon frequency approaches the collision-
less-damping threshold u> = Q—vOq + Kqs/2m (see Fig.
2), spatial dispersion of the dielectric-permittivity
tensor becomes important and the dispersion depen-
dence u)(q) becomes more complicated. In metals,
this happens at qR ~ 1, and in semimetals at qR « 1 .
In nonquantizing fields, at the threshold there exists a
weak (Kohn) singularity in the helicon spectrum.c n

Beyond the threshold there exist the left-polarized
quantum waves first studied in the work of Glick and
Callen.CW1 In order to convince oneself of the existence
of a solution of Eq. (4.7) in each window, it is suffi-
cient, as in the case of longitudinal quantum waves, to
analyze the variation of the sign of the logarithmic
singularities on the boundaries of the windows at a
fixed frequency. To obtain an analytical expression it
is necessary to separate out the resonance terms in
the left-hand side of (4.7) and take the contribution of
the other terms into account by replacing the summation
over η by an integration. The authors of the aforemen-
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tioned paper14*1 confined themselves to a graphical in-
vestigation of the dispersion equation (4.7). Analytical
expressions for the spectrum of left-polarized quantum
waves for qR « 1 and ω ~ Ω are given in №Z\ We shall
not give the rather cumbersome analytical expressions
for the spectrum, but, following H 2 3, we depict the solu-
tions schematically in Fig. 2.

The dispersion branches are furthest from the damp-
ing boundaries in the windows associated with transitions
between Landau levels with n~nr, and, at frequencies
corresponding to the frequencies of a helicon continued
beyond the classical damping threshold, the solution
passes approximately through the middle of a window.
Unlike the longitudinal quantum waves, left-polarized
quantum waves exist in all the windows, including
when q is of the order of 2k0.

ml The frequency of the
quantum waves in these regions vanishes near the
points q=kn+kmi.

We shall consider the spectrum of right-polarized
excitations. The pattern of the collisionless-damping
regimes (see Fig. 3) tells us the regions of the (ω, q)-
plane in which solutions are possible. As is well-
known, for qR «1 for left- and right-polarized waves
there exists a high-frequency solution of the dispersion
equation (4.6):

(4.9)

This wave belongs to the region ω> vFq— Ω and, there-
fore, does not experience collisionless damping. In
the region of frequencies ω « Ω in nonquantizing fields a
right-polarized excitation does not exist.

As can be seen from Fig. 3, for qR > 1 and ω < Ω
right-polarized quantum waves can exist in quantizing
magnetic fields.C43] An investigation of the sign of the
logarithmic singularities of the left-hand side of Eq.
(4.7) shows that they exist in all windows in the range
R'1 <q<2k0 at frequencies ω<Ω. It is not difficult to
obtain an analytical expression for the spectrum of the
right-polarized quantum waves near q=kn- kml by
separating out the resonance term in Eq. (4. 7):

) = vnq— (vn., — vn) q exp [ — (4.10)

here f(q) = 4nzlt

Bn0q and q=q- (kn-knti). In corre-
spondence with the number of windows, the number of
solutions of (4.10) is equal to nF- 1. The schematic
form of the solutions in other regions is shown in
Fig. 3.

The conditions for observing right-polarized quantum
waves can be found in the same way as for longitudinal
excitations: the distance in frequency between the dis-
persion curve and the nearest threshold should be
greater than the thermal and impurity broadening of the
threshold. This leads to the following inequalities

Γ <<«2e*p [-'-£>], v < f l l e p [ . i a ] (4.11)

00)

ι-

We note that the conditions for observing left-polarized
waves at the frequencies of a helicon continued beyond
the damping threshold are less stringent than (4.11).

FIG. 4. Spectrum and regimes of collisionless damping of
left-polarized electromagnetic waves in an electron-hole
plasma ina quantizing magnetic field (n2 >nt). (The dispersion
curves of the quantum waves are shown, as is the excitation
(4.16), which goes over into a fast magnetosonic wave and then
into a quantum doppleron.)

The conditions (4.11) can be satisfied in pure metals
and semimetals at temperatures T^l K, collision fre-
quencies i>~109 sec"1 and wave frequencies ωϋΙΟ11

sec"1. The magnetic field in semimetals can be of the
order of 104-105 Oe, while in metals stronger mag-
netic fields (ff>3xlO5 Oe) are necessary. Evidently,
the means for observing right- and left-polarized
quantum waves should be different in metals and semi-
metals. In a metal, in which the skin-depth δ ~ 10"β cm,
quantum waves with q~l'g (H> 10s Oe) should be effi-
ciently excited. In this case surface-impedance singu-
larities associated with resonance excitation of the
quantum waves will be observed. A detailed theory of
such oscillations of the surface impedance is lacking
at the present time. In semimetals the skin-depth is
of the order of 10"4 cm and quantum waves are inef-
ficiently excited. Therefore, the method of study can
be based on the phenomenon of the resonance interac-
tion of the transverse quantum waves with high-frequency
(ω£10η sec"1) acoustic phonons:44: or other excitations.

It is well-known1453 that singularities of the dielectric
permittivity for q II Η lead to the phenomena of anoma-
lous penetration of the electromagnetic field (of the tra-
jectory type). The phenomenon of anomalous penetra-
tion of the field in classically-strong magnetic fields
was predicted in [ 4 β 1. The numerous thresholds for
collisionless damping of transverse waves, which are
shown in Figs. 2 and 3 and which correspond to sin-
gularities of the dielectric permittivity ετ, clearly in-
dicate the existence of analogous effects in a quantiz-
ing magnetic field. However, a detailed calculation of
these effects has not yet been carried out.

C. Waves in an electron-hole plasma

In this section we shall discuss the spectrum of elec-
tromagnetic excitations in a two-component electron-
hole plasma. The spectrum of the transverse waves
and the regions of their existence are shown in Figs.
4 and 5. First we consider the solutions in the clas-
sical region qR«l. The dispersion equation for trans-
verse electromagnetic waves propagating along the
magnetic field,
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ω = vaq.

FIG. 5. Spectrum and regimes of collisionless damping of
right-polarized electromagnetic waves in an electron-hole
plasma in a quantizing magnetic field (n2 >«,). (The dispersion
curves of.the quantum waves and of the helicon, which goes
over into an Alfven wave and then into a quantum doppleron,
are shown.)

(4.12)

can be written in the following form:

(4.13)

The subscripts 1 and 2 correspond to electrons and
holes, and the upper (lower) sign corresponds to left
(right) circular polarization of the wave.

If the electron and hole concentrations are not equal,
the solutions of Eq. (4.13) for the condition

=£Λ ( 4 · 1 4 >

are the helicon

- _ Μ*
(4.15)

4JW Ι ΠΙ — nj | *

and an excitation with the opposite polarization"73:
IT I 1 _ 1 » _ ftfrA

i \ eft 1 1*4 ""-* /*a Ι Π jrilf ^ - n^Tlj eti tf g m Λ £S\

The damping constant of the helicon is equal to

(4.17ntm t — n2»t2

 veff

y ~ «(Hi.—lljm, ω(0) '

while for the excitation (4.16),

where

(4.18)

(4.19)

The limiting frequency ω(0) of the wave (4.16) is pro-
portional to the imbalance n2 - n t, and the coefficient of
qz differs from the corresponding coefficient in the
helicon spectrum by the factor (nt mx + «2 m2)/(«i wi2
+ rtj »!,). The polarization of the excitation (4.16) is
opposite to that of the helicon: the wave is right-
polarized in an electron («^«j) plasma and has left
circular polarization in a hole plasma (pi>nl).

If the electron and hole concentrations are equal,
the solution of Eq. (4.13) is an Alfven wave and a fast
magnetosonic wave, which, fora>«O l t 2 ) as is well-
known, have the same dispersion law

and damping constant equal to

V = = ~

1 j

mt+mt

(4.20)

(4,21)

(4.22)

The theoretical and experimental work devoted to the
study of Alfven waves in semimetals is reflected in the
review by Edel' man.t43

In uncompensated semimetals, in the region qk « q
«R~x a helicon goes over into an Alfven wave, and the
excitation (4.16) into a fast magnetosonic wave. The
change from a helicon spectrum to an Alfven spectrum
has been studied experimentally in uncompensated bis-
muth in W 8 3 . The wave (4.16) has not yet been observed.
Apparently, this is the only excitation in the classical
regime that has not been detected experimentally.

In the region of strong space and time dispersion the
spectrum of the considered excitations in quantizing
fields undergoes substantial changes. Near the elec-
tron and hole collisionless-damping'thresholds (cf.
Figs. 4 and 5) new branches—quantum dopplerons, ap-
pear in the spectrum.C49] Unlike dopplerons in metals
with a complicated Fermi surface (see Sec. 5) a quan-
tum doppleron arises because of the strengthening of the
singularity at the damping threshold in a quantizing
magnetic field. Estimates show that it is perfectly pos-
sible for a quantum doppleron to be observed in semi-
metals, e. g., in bismuth in fields Η~ 10*-105 Oe and
at temperatures T^IK.

The character of the spectrum of the quantum waves
that exist in a two-component plasma beyond the clas-
sical damping-boundary ω = ± (Ω - vrq) is illustrated by
Figs. 4 and 5. The collisionless-damping regimes
shown in Figs. 4 and 5 are derived taking into account
the electron and hole transitions that are allowed for
left- and right-polarized waves with q II H. Longitudinal
quantum waves in a two-component plasma have been
studied in the work of Konstantinov and Perel'. B S 1 The
differences from the case of a one-component plasma
reduce entirely to the appearance of a second series
of longitudinal quantum waves, associated with the hole
system. We note also that in a two-component system
there exists the longitudinal Pines-Schrieffer wave,1"·513

which can experience giant quantum oscillations of the
damping.

D. Electromagnetic excitations propagating at an angle
to the magnetic-field direction

It is well-known that electromagnetic excitations
propagating at an angle to the magnetic-field direction
differ substantially from excitations with q II H. Indeed,
the polarization, spectrum and damping are changed
and new branches appear. The corresponding disper-
sion equations acquire an extremely complicated form.
Therefore, to study the solutions it is useful to turn
again to the conservation laws.

In the propagation of electromagnetic waves at an
angle to the magnetic-field direction, transitions with
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arbitrary Δ» occur. Additional resonances arise as a
consequence of the nonuniformity of the electric and
magnetic fields of the wave in the plane perpendicular
to H. The collisionless-damping regimes in this case
are obtained as a result of superimposing the damping
regimes corresponding to all possible transitions be-
tween Landau levels. Because of this, the regions of
existence of the electromagnetic excitations are changed
(they decrease). The points at which the branches of
the spectrum of quantum waves terminate can be found
without solving the dispersion equation. For this it is
necessary only to determine the points of intersection
of damping boundaries having dielectric-permittivity
singularities of opposite signs. The essential point is
that three types of quantum wave exist in each window.
By carrying out an investigation of the singularities of
the different components of the conductivity tensor in
the dispersion equation, it can be shown that in windows
associated with, e.g., transitions Δ« = 0, solutions cor-
responding to one almost longitudinal and two almost
transverse polarizations arise. In this case it turns
out that the dispersion curves of the transverse waves
are positioned nearer to the boundaries than are the
dispersion curves of the longitudinal quantum waves.
Here we shall not analyze the general case, but con-
fine ourselves to discussing some of the most important
effects.

The most interesting effects are those associated
with the influence of the magnetic quantization on the
spectrum of the classical electromagnetic waves: the
helicon and the Alfven and fast magnetosonic waves. In
the region of existence of the waves (ω < Ω - vr q) these
effects are associated with resonances Δ« = 0 (see Fig.
1). In £12:l, giant quantum oscillations of the damping
of helicons were predicted and the conditions for observ-
ing the oscillations were carefully analyzed. Experi-
mentally, these oscillations were first observed in
aluminum. t № 1 The interaction between a helicon prop-
agating at an angle to the magnetic field and longi-
tudinal quantum waves was studied in lS3\ where it was
shown that quantum waves whose velocities are close to
the phase velocity of the helicon change their polariza-
tion and become almost transverse.

We now discuss the effect of quantization on the spec-
trum of the Alfven and fast magnetosonic waves. In
semimetals, because of the low carrier concentration,
according to (4.20) the velocities of these waves are
greater than the Fermi velocity and, therefore, reso-
nance interaction with electrons with no change in the
Landau-level number (Δ» = 0) is absent. In compensated
metals in real magnetic fields, va«vF. For this rea-
son, without magnetic quantization Alfven waves in met-
als are unobservable even for q II H, since, for an ar-
bitrary orientation of Η with respect to the crystallo-
graphic axes, Landau damping exists because of the
anisotropy of the electron spectrum.

It was shown in H 9 ] that, in a quantizing field, Alfven
and fast magnetosonic waves can propagate if they lie
in the windows depicted in Fig. 1, i .e . , if their veloc-
ity belongs to one of the intervals (vn cos5, v^ cos5).
With change in the angle between q and H, the velocity

of a fast magnetosonic wave remains constant but the
damping regions are shifted, as was shown in Sec. 2.
If the velocity of the wave falls in the intervals Δυπ

= tlq cosd/m, the fast magnetosonic wave is damped.
The velocity of an Alfven wave is proportional to cos5,
and therefore, having fallen in a region of transparency,
this wave does not experience giant oscillations of the
damping with change of the angle.

Inasmuch as the Alfven and Fermi velocities at the
«-th Landau level are different functions of H, for
Alfven and fast magnetosonic waves giant oscillations in
the absorption will also be observed on variation of the
magnetic field. The period of the angular giant oscil-
lations in the absorption of a fast magnetosonic wave
is equal to

A#=ctgdcos2*—P-, (4 23)
"a

and the period in the magnetic field, for Alfven and
fast magnetosonic waves, is

Ag,..- , , , * , 2 „ (4.24)

νη

where cos3 > vtt /vn, vz

npl = 8Ώ, /mx, ι^ι = ιή, cos83 and
v\z = vz

a. We note that angular oscillations of the damp-
ing and velocity, analogous to (4.23), also exist in the
propagation of sound oscillations. [15>1β: ι The depen-
dence of the period in Η (4.24) of the giant quantum
oscillations differs substantially from the correspond-
ing dependences in de Haas-van Alphen oscillations
and in the giant oscillations of Gurevich, Skobov and
Firsov. The angular oscillations of a fast magneto-
sonic wave cease at angles cos3 « va /υη. The prop-
agation of a fast magnetosonic wave in this range of
angles, without magnetic quantization, was considered
by Skobov. l5 i l The criterion for the existence of giant
oscillations of the absorption of fast magnetosonic and
Alfven waves in a metal can be found if we require that
the thermal and impurity spread {T/m1 vnl and v/q) in
the longitudinal electron velocity be small compared
with the interval 5vnl. Taking into account that δι>η1

= KQl /m1 νΛ (6w01 = ftfij /w?! vn for « ~ 1 and δνη

= KTg/tn for n~nr), we obtain

(4. 25)

We note that these conditions are weaker than the con-
ditions (4.4) for observation of longitudinal quantum
waves. The conditions (4.25) can be satisfied in pure
metals, where ν ~ 108-109 sec"1, in magnetic fields Η
~ 10s Oe and at wave frequencies ω ~ 10 u -10 l z sec' 1.
We recall that to study Alfven waves in metals it is
necessary that the thickness of the plate in which the
standing wave can be observed be less than (Im?)"1 = va /
vett, and this creates additional difficulties.C4]

For θ = ΤΓ/2, as already pointed out, transitions with
arbitrary Δη are allowed. The energy conservation
law in this case has the form ω = Δ«Ω and, therefore,
the damping regimes degenerate into a series of lines.
Of the classical waves the ones that survive are the
fast magnetosonic wave in a compensated plasma and
the excitation (4.16), if η^Φη^.C1·*93 In addition, near
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the cyclotron-resonance lines ω = Δ«ΩΛ, there exist the
longitudinal and transverse cyclotron waves that were
described in detail in the well-known review by Kaner
and Skobov. C13 These waves arise as a consequence
of the power singularities of components of the con-
ductivity tensor at ω = ΔΜΩ. A graphical illustration
of the spectrum of the waves, and also of the damping
regimes in metals with isotropic and anisotropic elec-
tron dispersion laws, is given in the review111.

The spectrum of electromagnetic waves propagating
at an angle to the magnetic-field direction reflects the
singularities of the conductivity tensor that are as-
sociated with the approximate character of the con-
servation law for the transverse component of the mo-
mentum. The dependence of the conductivity on qL is
contained in the matrix elements in (A. 10), and the
resonance values of qL correspond to the spacing be-
tween the Landau tubes in a direction perpendicular to
Η (cf. Sec. 3). Because of this, the frequency and
damping of waves propagating at an angle to the mag -
netic-field direction have an oscillatory dependence on
qx. Such oscillations are usually called geometric.
Geometric oscillations in the spectrum of cyclotron
waves were studied in C 5 S ]. For an arbitrary orientation
of q with respect to H, resonance effects associated
with the exact conservation laws for the energy and
longitudinal component of momentum and, simultaneous-
ly, with the approximate conservation law for the
transverse component of momentum are also possible.
It the angle θ is close to JT/2, then, in the region
o)<vrqcosd in a nonquantizing magnetic field, for qR
= π(η + i), when the matrix element vanishes, collision-
less Landau damping is absent. At such values of q,
as shown in the paper t s e i by Kaner and Skobov, waves
with a discrete spectrum can exist. Effectively,
these waves are the continuation, into the short-wave-
length part of the spectrum, of a helicon propatating in
a direction almost perpendicular to H. A detailed de-
scription of the dispersion and damping of waves with a
discrete spectrum is given in the review113.

5. ELECTROMAGNETIC WAVES IN METALS WITH
AN ANISOTROPIC ELECTRON SPECTRUM

As a rule, the electron spectrum of real conductors
is far from the model we have considered above. The
nonspherical and nonquadratic character of the spec-
trum, and also the fact that the Fermi surface is multi-
ply connected and open orbits exist, lead to a change in
the dynamics of an individual electron and, because of
this, to a substantial change in the spectrum of the col-
lective electromagnetic excitations. Calculation of the
conductivity tensor for a fairly complicated model of the
electron spectrum is possible only in individual cases,
and is carried out by approximating the real spectrum
by a function such as will make it possible to obtain
analytical expressions for a(k. In conditions when it
does not appear possible to calculate the conductivity
tensor, the use of the conservation laws to analyze the
different resonance effects in classically-strong and
quantizing fields in metals with an anisotropic spectrum
may turn out to be useful to a still greater degree than
in the previous cases.

To what qualitative changes in the electromagnetic-
excitation spectrum does anisotropy of the electron
spectrum lead ? First, because of the change in the
symmetry of the ground state, even for q II Η the selec-
tion rules do not forbid electron transitions with
Δ« Φ 0 for longitudinal waves or transitions with Δη
φ ± 1 for circularly polarized waves. Therefore, in
metals with a complicated Fermi surface, electro-
magnetic excitations shaped by additional singularities
of the conductivity tensor can exist. Secondly, new
branches can appear as a result of the'multi-component
character of the system, i .e . , because of the exis-
tence of several closed parts of the Fermi surface,
inequivalently located with respect to the magnetic
field. It is also necessary to keep in mind that, in real
metals, the singularities of the conductivity tensor at
the collisionless-damping thresholds can be stronger
than in a model with a quadratic spectrum. The
strengthening of a singularity of the conductivity leads
to a substantial change in the pre-threshold spectrum
of the different excitations. Thus, near a Doppler-
shifted cyclotron resonance, helicon and Alfven waves
go over into a doppleron. Interesting resonance effects
can exist in metals with open Fermi surfaces. For
example, motion of electrons in the direction perpen-
dicular to the magnetic-field direction and the direc-
tion in which the Fermi surface is open (in p-spa.ce)
leads to a shift of the cyclotron frequency because of the
Doppler effect, and, because of this, to a radical re-
arrangement of the spectrum of the cyclotron waves.

A. Electromagnetic waves in conductors with an
anisotropic quadratic spectrum

Many characteristic features of the spectrum of elec-
tromagnetic waves in metals with an anisotropic qua-
dratic spectrum are conveniently traced using the ex-
ample of bismuth. In this subsection we shall not con-
sider the electromagnetic excitations which already
exist in metals with an isotropic electron spectrum.
The effect of the anisotropy of the electron spectrum
of bismuth on the spectrum of the electromagnetic ex-
citations that exist in the isotropic model has been con-
sidered in detail in the reviews11'43.

The Fermi surface of bismuth is well-known (cf.,
e. g., [ 5 7 ] ) . It consists of one hole ellipsoid oriented
along the trigonal axis and three strongly anisotropic
electron ellipsoids2 *, positioned in the plane perpen-
dicular to the Cj-axis. The hole and electron ellipsoids
are positioned at the Brillouin-zone boundaries, the
longest axis of the electron ellipsoids being inclined at
an angle ~ β ° to the basal plane. The contribution to
the conductivity tensor from one ellipsoid is equal t o 1 " 3

(5.1)ε ρ — e a — Λω—ϊδ

where j is the valley index, ot{k is the dimensionless
tensor of the inverse effective masses,

2>The energy spectrum and the shape of the Fermi surface of
bismuth are described in more detail by the model of Cohen.B83
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FIG. 6. Spectrum of the longitu-
dinal (1) and transverse (2) waves
in bismuth (q II HI! C3). (The dis-
persion curves of the Alfven wave,
the fast magnetosonic wave and
the Pines-Schrieffer wave are not
shown in the figure.)

and I a) is a solution of the Schrodinger equation for a
particle with an anisotropic quadratic dispersion law. t e 0 ]

First we shall consider electromagnetic excitations
in nonquantizing magnetic fields, w l ] propagating along
directions defined by the crystal symmetry: q ιι Η nC,
or q IIΗIIC2. In the first case it follows from the sym-
metry that the nonzero components of aik have the
form1 6 8 1

= SL (a>xx + a{y),

(5.2)

where r} is the number of equivalent valleys. If
q ιι Η ιι C 2 , the components σ ^ ,
nonzero, and ο,^ = τ,ο{%.

. and σ,, are

Suppose that a circularly polarized wave propagates
along the C3-axis. Then, as follows from the expres-
sions (5.1) and (5. 2), for q — 0 electron transitions with
Aw = ± 1 are allowed for each circular polarization, as
are hole transitions with An = - 1 for left circular po-
larization and An -1 for right circular polarization.
The simultaneous existence of electron transitions
with An = 1 and An = - I for each polarization is
connected with the fact that the electron parts of
the Fermi surface are nonspherical. The collision-
less-damping regimes in bismuth, depicted in Fig. 6,
determine the boundaries of existence of the new right-
polarized excitation associated with the electron and
hole transitions with An= 1. The dispersion equation for
the transverse waves for q-Ό has the form

αϊ+αξ (5.3)

here Ωβ = Ω^ a f a f , ΩΛ=α*Ω, αχχ=α1, α^=αιζ, aMt

= a 3 and atv=ai. It follows from Eq. (5.3) that, along
C3 in the range Ω 4 < ω < Ω β , there exists a right-polarized
electromagnetic excitation having the spect rum c e 2 :

ω = ω(0) + ^

(5.4)"'

In the region ω < Ωβ>Λ, (5.3) gives the spectrum of the
Alfven and fast magnetosonic waves. The imaginary
part in (5.4) is of the order of the collision frequency.
The solution (5.4), as already noted, arises only be-
cause of the fact that, together with the hole transi-
tions with An = 1, electron transitions with An = l are
also allowed.

In other semimetals (antimony, arsenic), where the
hole parts of the F e r m i surface do not lie on the C3-
axis and, consequently, a r e not surfaces of revolution,
electron and hole transitions with An = ± 1 a r e allowed
and there exists both a right-polarized and a left-
polarized excitation of the type (5.4).

In the propagation of longitudinal waves along the
C3-axis in bismuth, because of the declination of one of
the principal axes of the electron ellipsoids from the
basal plane, besides the transitions with An = 0 there
ar i se additional resonances with An = ± 1, which form
the spectrum of a new longitudinal excitation. The
solution of the dispersion equation

0, (5.5)

where e°u is the dielectric permittivity of the lattice,

TV ω" Τ ά|Ω| ') '

has, ior q-Ό, the form

(5.6)

(cf. Fig. 6). Here,

_ (aj)',_ H*v* ι ai ι
5ω*(0) \ω»(0) 3 '

In the isotropic model, in the propagation of a wave at
an angle to the magnetic field, transitions with arbi-
trary An are allowed. But their contribution to the con-
ductivity is proportional to some power of q and,
therefore, solutions analogous to (5.4) and (5.6) do
not arise.

If the magnetic field is directed along a two-fold
axis, then two inequivalent electron groups and one hole
group of carriers exist in bismuth. In this case the
principal axis of one of the electron ellipsoids and of
the hole ellipsoid is parallel to H. The principal axes
of the other two electron ellipsoids do not coincide with
the magnetic-field direction. Thus, the electron sys-
tem is a two-component system and is characterized by
two cyclotron frequencies Ωβ1 and Ωβ2. It is not dif-
ficult to convince oneself that, for qvr« Ι ω - Ω, I in the
range ΏΛ < ω < Ωβ8, even in the isotropic model, in a
two-component plasma with the same types of carriers
there should exist a transverse electromagnetic excita-
tion for which the polarization vector rotates in the
same direction as the electrons. It is not surprising,
therefore, that in bismuth, with Η parallel to the C8-
axis, there exists such an electromagnetic wave. Its
spectrum can be found by writing the dispersion equa-
tion for qvT « Ι ω - Ω̂  Ι:

(5.7)

where θ is the angle between ΗII C2 and the vector q,
which lies in the (x, 2)-plane. The expressions for the
tensor components t{J and the dependence ω(<?) are ex-
tremely cumbersome. Therefore, following the
paper1·833, we give only the numerical values of the co-
efficients, in the function v(q). For q II Η ιι C2, the solu-
tion of (5. 7) in the range Ωβ1 < ω < Ωβ2 has the form
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{ΐ + [θ.34 + Ο.27|

If q l H H C g , q H C 3 ) then

ω = 5.35Ω,, { 1 + [ 0.25 + 0.37 |

(5.8)

(5.9)

SX/δΗ

The spatial dispersion of the conductivity tensor has
been taken into account in these expressions.

The excitations (5.8) and (5.9) have been observed
through the oscillations of the surface impedance of
plates of bismuth. I M 1 The dependences 9R/9H and
dX/dH (the surface impedance Z = R + iX) are given in
Figs. 7 and 8. The experimental conditions are indi-
cated in the captions to the figures. The dependence
u)(q) found experimentally practically coincides with
(5.8) and (5.9), if we assume that for q II ΗII C2 Rayleigh
resonances are observed («λ = d where d is the thickness
of the plate and λ is the wavelength) while for Η l q II C3

Fabry-Perot resonances are observed (ηλ/2 = <ί). The
limiting frequency ω(0) of the excitations (5.8) and (5. 9)
was also determined in the paper c e t ], in which the
transmissivity of bismuth was studied in the infrared
region. That the frequency ω(0) exists for q l H had
been pointed out in W 5 ] , in which this phenomenon was
called a dielectric anomaly.

A longitudinal wave whose origin is explained by the
anisotropy of the electron spectrum can also propa-
gate along the C2-direction. In fact, in a magnetic
field directed along the C2-axis, for one group of elec-
trons and for the holes, transitions with Δη = 0 are al-
lowed. For the other two electron ellipsoids, for which
none of the principal axes coincides with the direction
of H, transitions with Δη = ± 1, giving rise to an addi-
tional singularity, analogous to (5. 5), in the component
t,,, are allowed. This leads to the existence of a solu-
tion of the equation εΜ = 0 in the range 0 < ω < Ωβ1.

From the point of view of observing quantum waves,
semimetals are the most promising. This is explained
by the happy conjunction of the parameters determining

5J> 5.5 6.0 S.5 a/Qh

FIG. 7. Rayleigh resonances and the dependence k(u/il/) ob-
tained for a bismuth plate of thickness 0.47 mm at temperature
T« 1.5 K. (The points are experimental; the curve of k(t*>/
ilh) is constructed from formula (5.8).)

5.3

FIG. 8. Fabry-Perot resonances and the dependence *
obtained for a bismuth plate of thickness 2 mm at temperature
Τ «0.6 Κ. (The points are experimental and the curve of
&(ω/Ωλ) is constructed from formula (5.9).)

the spectrum and damping of the excitations in the semi-
metals. The low carrier concentrations and small ef-
fective masses in semimetals appear in conjunction
with a long carrier lifetime. In addition, the strong
anisotropy of the electron spectrum leads to the exis-
tence of quantum waves with longitudinal and transverse
polarization in all windows.

Longitudinal and transverse quantum waves associ-
ated with transitions Δη = 0 in semimetals were first
studied in the papers Ο 3 · β 1 . Here, following16", we
consider transverse quantum waves. In bismuth and
antimony, longitudinal and transverse waves propagate
independently along the C3-axis. As already noted, a
contribution to the conductivity tensor σί for circularly
polarized excitations is given not only by transitions
with Δη = ± 1 but also by those with Δη = 0. This leads
to the appearance of circularly polarized waves in the
windows depicted in Fig. 1. According to (3. 20) and
(5.1), the dispersion equation for these has the form" 2 3

(5.10)
t , Λ

where u = ω/q, ωτ = e.H/47rn0 epz ~ Ωιή, /vz

F (at frequencies
ω>ωΓ, spatial dispersion becomes important in the
spectrum of the Alfven and fast magnetosonic waves£ββί),

ρ-ρί-ρί, - f *,,«,,), (5.11)

va is the velocity of the Alfven wave in the semimetal,
and the coefficient μ = Ζητίοεra\/a\ff is equal in order
of magnitude to the ratio of the Fermi-energy density
to the magnetic-energy density. The function G(u) is
equal to

' + Δ > <»

(5.12)

(5.13)

where Δ is the noninteger part of the ratio eF/KQ, Eq.
(5.10) is valid under the condition \u-vn\ »Kq/2m,
which allows us to expand the logarithms in the tensor
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component e ^ . In the opposite case, when the solution
Μπ(ω) lies near vn, the singularities in the right-hand
side of (5.10) are logarithmic.

The left-hand side of Eq. (5.10) vanishes at the spec-
trum of the Alfven or fast magnetosonic wave3'. For
va<vF, because of the smallness of the coefficient μ,
solutions of Eq. (5.10) that correspond to quantum
waves exist only near the classical solutions, in the
windows nearest to the one in which the left-hand side of
(5.10) is equal to zero. Thus, quantum waves appear
in the neighboring windows as satellites of the Alfven
and fast magnetosonic waves. If va<vF, the left-hand
side of (5.10) is large in all the windows and quantum
waves are absent. We note that, in bismuth, the in-
equality va> vF is fulfilled even in nonquantizing fields.
Therefore, the conditions for observing transverse
quantum waves associated with ΔΜ = 0 transitions are un-
favorable in bismuth. The most favorable conditions
for observing the quantum waves under consideration
are realized in antimony, where, because of the rela-
tively high carrier concentration, the requirement
va<vr is fulfilled in quantizing magnetic fields.

We shall establish the criterion for the existence of
transverse quantum waves. For quantum waves to exist
it is necessary that the magnitude of the right-hand side
of Eq. (5.10) at a singular point for finite ν and Τ be
greater than the left-hand side of the equation. More-
over, the quantum waves will be damped only as a re-
sult of collisions, if the corresponding dispersion curve
is distant from the boundary of the window by an amount
greater than the impurity and thermal smearing-out of
the boundary.

If the inequality \u-vn\ »Kq/2m is not fulfilled and
the velocity κπ(ω) of the quantum wave is close to vn~va,
then these two conditions coincide and have the form

In

I In- Τ
('*£-£) (5.14)

The conditions for the existence of quantum waves in the
windows adjoining the window where the Alfven wave is
located are less stringent than (5.14). As follows from
Eq. (5.10), the velocity difference un{u>) - vn in this
case is of the order of aHO./mvn, where α < 1 . (The
exact value of this coefficient can be found by solving
Eq. (5.10) numerically.) By requiring that the dif-
ference Μπ(ω) - vn be greater than the thermal and im-
purity broadening of the damping boundaries, we obtain

(5.15)

We note that these conditions are sufficient for ob-
servation of giant quantum oscillations in the absorption
of the Alfven and fast magnetosonic waves (cf. (4.25)).

3)The nonresonance terms in the right-hand side lead to a re-
normalization of the velocity of the magnetoplasma waves.
Below we shall assume that such a renormalization has been
carried out and that only resonance terms remain in the right-
hand side.

It follows from (5.15) that in quantizing magnetic fields
corresponding to μ-1-10"1 and va<vF, for T<1 Κ and
ω ~10n-101 2 sec"1, weakly-damped transverse quantum
waves associated with An = 0 transitions can propagate
in antimony in a few windows nearest to the one in which
the Alfven wave is situated.

B. Electromagnetic waves in metals with a complicated

Fermi surface

1) We now consider the spectrum of electromagnetic
excitations in metals with a more complicated Fermi
surface. The conductivity tensor in classically-strong
magnetic fields in metals with an arbitrary electron
dispersion law has the form111

««(»,,. 11) = i j dp,| mc Σ (5.16)

where mc(p,) = (l/2ir)dS/St is the cyclotron mass, Ω
= eH/mec, S(e, p,) is the area of the section of a con-
stant-energy surface cut by the plane p, = const, the
magnetic field is directed along the z-axis,

2π τ

fi». i = "£T ] ν, (τ) exp { — I j {q [ν ( Ό - ν ] + ΔηΩ} df } dx, (5. 17)
0 0

JS_
• aPz

(5.18)

V{(T) is a component of the electron velocity at the Fermi
surface and ν is the value of the velocity averaged over
a cyclotron period. We note that the summation over
harmonics in (5.16) corresponds in the quantum case
to summation over transitions Δη. Which Δ« are al-
lowed now ?

We shall consider a circularly polarized wave propa-
gating along the magnetic field, which is directed along
a symmetry axis of high order. Suppose that the elec-
tron orbits on a certain part of the multiply-connected
Fermi surface have an m-th-order symmetry axis. In
this case, C6T: the selection rules for V£n = V^m ± νΔη)> can
be found from (5.17) by expanding the function ν,{τ) and
the exponent in a Fourier series. It is not difficult to
see that the function V£n is not equal to zero if

An^=ms ± 1 , s = 0,±l,±2 (5.19)

For hole orbits the upper sign in the selection rules
(5019) corresponds to right, and the lower sign to left
circular polarization. As we already know, Δ« = ±1
corresponds to an axially symmetric Fermi surface.
The selection rules for an arbitrary wave in the same
geometry have the form

(5. 20)Δη = ms. = 0,±l,±2, . . .

For an arbitrary orientation of the vectors q and Η with
respect to a symmetry axis of the Fermi surface,
transitions with any Δη are allowed,

The denominator in the integrand of (5.16), for i/ — 0,
vanishes on the straight lines

ω = Δη ·Ω (ρ,) ± νζ (ρ2) qz. (5.21)

This is the condition for resonance absorption of the
wave by electrons with a specific pt. Clearly, the col-
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lisionless-damping boundary can be found as the enve-
lope curve of the family of straight lines (5.21). in
other words, the damping boundaries are obtained from
Eq. (5.21) and the equation

(5. 22)

after elimination of the variable p,. Consequently, to
construct the collisionless-damping boundaries it is
necessary to find first the cyclotron frequency and the
orbit-averaged velocity as a function of pt. Η the family
of straight lines (5.21) does not have an envelope, the
boundaries of the collisionless-damping regimes are de-
termined by the expression (5.21) with the extremal
values of the cyclotron frequency and longitudinal elec-
tron velocity. Thus, the shape of the boundaries turns
out to be intimately connected with the geometry of the
Fermi surface.

On the boundaries, determined by Eqs. (5. 21) and
(5.22), of the collisionless-damping regimes, the con-
ductivity has singularities which form a spectrum of
new electromagnetic excitations. In particular, for this
reason, near the boundary of the Doppler-shifted cyclo-
tron resonance there appear the modes first considered
in [ β β ι β 9 ] and afterwards called dopplerons.C70] The char-
acter of the singularity depends on the geometry of the
Fermi surface.

With the aid of the expression (5.16) it is possible to
carry out a general analysis of the singularities of the
conductivity tensor on the collisionless-damping bound-
aries. Here, for simplicity, we shall confine ourselves
to treating two cases: ω —Ο and q~0. The hierarchy of
singularities of the conductivity for ω — 0 was studied in
C 7 U for different models of the Fermi surface. The
authors of this paper started from the conductivity ex-
pression1-'2 -1

(5.23)

which is obtained from the expression (5.16) for ω « Ω,
ν and Δ«=1. Here,

I fS
2neH dpz

ν, (ρ,)
Q (p.)

(5. 24)

is the average displacement of electrons in the direction
of the magnetic field in a cyclotron period and η= ν ΙΩ.

The type of singularity of the conductivity is deter-
mined by the behavior of the function S(p,) near the point
pQ at which the displacement u(pt) of the electrons in a
cyclotron period is extremal. It is clear that the sin-
gularity will be stronger in the case when the numerator
of the integrand in (5.23)—the area of a section of the
Fermi surface—does not vanish at the point pQ. By ex-
panding the area S and the derivative BS/BpM about pa,
we can find, after calculations in (5.23), that""

(5.25)

if S(po)*O, BS(po)/dp^O and B«s(po)/dp", = 0 but
Βρ^ΦΟ, « » 2 . For example, for an electron spectrum
with a Fermi surface of the pinched-cylinder type:

(5.26)

if the magnetic field is directed along the axis of the
cylinder, « = 2 (ε0 is the width of the energy band and 2k
the size of the Brillouin zone). Consequently, σ4 has a
square-root singularity. For the parabolic model of
Chambers and SkobovC73]:

(5.27)

« = =° and the conductivity has a first-order pole. If the
section of the Fermi surface vanishes at the point p0

) = 0), while 9S(po)/Bp,*O, B»S(po)/BpM = O, 8"*xS(/)0)/
^ and «>2, the conductivity has singularities of

the form"11

a±~[i-u(p0)q ± ίη]-ι» (5.28)

For η = 2 (elliptical limiting point) the singularity of σ±

is of the type χ In x. It can be seen from the expres-
sions given that the singularity is stronger if the area
of the section at the point where the displacement in a
cyclotron period is extremal is not equal to zero. This
was first pointed out by McGroddy, Stanford and SternCM:i

and Overhauser and Rodriguez, c e e ] who studied the be-
havior of the helicon spectrum near the boundary of the
Doppler-shifted cyclotron resonance in a model for the
electron spectrum of a metal in a state with a periodic
spin-density distribution.c74] Because of the strengthen-
ing of the singularity of the conductivity, the helicon
spectrum near the threshold was altered: the helicon
went over into a doppleron.

A doppleron exists as a weakly damped excitation in
the case when its dispersion curve is at a sufficient
distance from the collisionless-damping boundary. This
means that dopplerons are well-defined in metals in
which the geometry of the Fermi surface leads to a suf-
ficiently strong singularity of the nonlocal conductivity.
In fact, if the maximum velocity (displacement during
a cyclotron period) is reached at an elliptical limiting
point, then, for a helicon or for Alfven waves, the spec-
trum is cut off at the damping threshold. If the conduc-
tivity singularity is logarithmic, then, as follows from
the dispersion equation, the dispersion curve lies at an
exponentially small distance. A power-law singularity
of the nonlocal conductivity gives the greatest distance
from the threshold.

2) In recent years, dopplerons in metals having a
complicated Fermi surface have been investigated in
the work of Konstantinov, Skobov, Fisher, and others.
To calculate the conductivity tensor, sufficiently simple
models of the Fermi surface have been used,- these, on
the one hand, have made it possible to find analytical
expressions for a t, and, on the other, have given a
qualitatively correct description of the Fermi surface
as known from other experimental and theoretical work.
A survey of work on dopplerons is given by Skobov in the
Appendix to the monograph03. In the present review,
without going into the details of the experiments and
theory, we shall discuss only certain characteristic
features of the doppleron solutions. We shall be in-
terested principally in the origin of dopplerons and
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their relationship to the geometry of the Fermi sur-
face, and also in the place of dopplerons in a unified
system of electromagnetic excitations.

The doppleron in cadmium"5·76·1 is formed by elec-
trons from the third Brillouin zone; the Fermi surface
of these electrons resembles a lens t 7 7 ] and the reso-
nance for q ii Η il C6 is associated with the electrons at
the limiting point. In addition, in cadmium there exists
a hole doppleron due to the resonance at the hole orbits
located near the maximum (central) section of the mon-
ster in the second Brillouin zone. The functions Sg(pt)
and Sh(p,) and their derivatives, found in C781, were
approximated inC753 by simple analytical expressions
leading to a logarithmic singularity of the electron and
hole conductivity. The parameters of the spectrum of
the dopplerons discovered experimentally inC 7 5 ] agree
well with the proposed model.

In copper the doppleron spectrum is highly distinc-
tive. c 7 9 ] This is explained by the fact that, on moving
along p, with Η directed, e. g., along the two-fold axis,
we first encounter hole orbits, then electron orbits,
and arrive at open trajectories. By letting Η deviate
from the two-fold axis by an angle greater than 2% it is
possible to get rid of the open trajectories. The hole
parts of the Fermi surface do not lead to a singularity
of the nonlocal conductivity, since, in the model taken
for the Fermi surface in c 7 9 ], u(p,)~BS/dp, changes
monotonically from - <*> to + ». This means that col-
lisionless damping exists for all q and there are no
thresholds.

The crossing from hole orbits to electron orbits is
accompanied, at a certain value of p,, by a finite dis-
continuity in the area S(p,) and by the divergence of the
derivative &S/dpt to + ». The singularity is connected
with the fact that the limiting orbit passes through a
saddle point. These functions behave analogously when
we go from closed electron orbits to open ones. Con-
sequently, at a certain value of p, within the range cor-
responding to the electron orbits, the derivative 3S/
Bpt has a minimum, and this leads to collisionless
damping at low q, up to a certain qmtx=2neH/c(dS/
dp,)mla, and to its absence for q>qmtx. At the threshold
the electronic conductivity in the model used in C79] has
a root singularity and, therefore, a doppleron exists
here. When Η is directed exactly along the twofold
axis, because of the open orbits the helicon is strongly
damped. №0} Therefore, the doppleron spectrum in
copper m i in the long-wavelength region does not go
over into a helicon spectrum. If the direction of the
magnetic field is such that open trajectories are absent,
both excitations exist. The graphs of the functions
S(pt) and BS/dp, for other directions, constructed by
Powell and given in K l : , make it possible to find the
thresholds and analyze the possibility of the existence
of dopplerons propagating along other crystallographic
directions.

All the models considered up to now have possessed
axial symmetry, which, in a number of cases, did not
correspond to the actual symmetry of the Fermi sur-
face. The defect of these models is that they do not
take into account all the electron transitions allowed by

FIG. 9. Spectrum and regimes of collisionless damping of
left-polarized (a) and right-polarized (b) waves in aluminum
for q II Η II C 4 . (The damping boundaries in Fig. 9a corre-
spond to resonances with ΔΗ = 3 and un = —1, and in Fig. 9b
to resonances with Δη = 1, 5 and Δη = - 3. The dispersion
curves of the helicon, dopplerons and anisotropons are de-
picted schematically.)

the selection rules (cf. (5.19), (5. 20)) and, consequent-
ly, do not describe the electromagnetic excitations as-
sociated with the additional resonances. In a paper t 8 2 ]

devoted to the study of multiple dopplerons in aluminum,
a Fermi-surface model with a fourth-order symmetry
axis was used and gave qualitatively correct agreement
with the result of a numerical calculation of the func-
tions S(pM), dS/dpt and Q(pg) found by Larsen and Grei-
s e n . l e n The Fermi surface in aluminum, as is well-
known, consists of a large hole surface in the second
Brillouin zone and a small electron surface in the third
zone. Since the electron concentration is small (less
than 3% of the hole concentration), the electron contri-
bution to the conductivity was not taken into account
in1 8 2 1. In accordance with the selection rules (5.19),
right-polarized dopplerons associated with resonances
Δ« = 1, 5, 9 and left-polarized dopplerons formed by
transitions with Δη = 3, 7 should propagate in the [100]
direction in aluminum. The theory of multiple doppler-
ons in aluminum, developed in C82], gives a qualitatively
correct description of the experimental results. Of
course, besides the dopplerons, in aluminum there
exists the helicon studied in detail by Larsen and
Greisen. c 6 7 ] The collisionless-damping regimes and the
schematic form of the dispersion curves of the helicon,
dopplerons and anisotropons in aluminum are shown in
Fig. 9. The damping thresholds are constructed from
formulas (5.21) and (5.22) using the functions Ω(/>£)
and v,(pt) from c e 7 ] . Dopplerons in indium, in which
the Fermi surface is similar to that of aluminum,
were discovered in : 8 3 : . We note also that Konstan-
tinov and Skobov184·853 predicted doppleron solutions of
the Maxwell equations, with q almost perpendicular to
H, for alkali metals in which the Fermi surface is
practically isotropic. The appearance of the solution is
due to the strengthening of the conductivity singularity
in this geometry.

The singularities of the dielectric permittivitity not
only shape the spectrum of the characteristic electro-
magnetic waves in a metal, but are also intimately con-
nected with the phenomena of trajectory penetration of
an electromagnetic field into a metal.C 4 5 1 The connec-
tion between natural modes whose spectrum lies near
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resonances and the anomalous-penetration effects is
most clearly manifested in the example of the doppler-
on. Since the doppleron is positioned near to the bound-
ary of the Doppler-shifted cyclotron resonance, the
wavelength of the doppleron differs insignificantly from
the maximum displacement of electrons along the field
during a cyclotron period, which determines the period
of the Gantmakher-Kaner radio-frequency size effect.
Therefore, the surface-impedance oscillations as-
sociated with resonance excitation of a doppleron and
with the size effect have similar periods in the mag-
netic field. The magnitude of both types of oscilla-
tion of the impedance depends on the geometry of the
Fermi surface. This dependence has been discussed in
detail in the already mentioned papers " 5 > 7 9 ΐ β 2 ~ 8 " , The
collisionless-damping thresholds shown below in Fig,
12 make it possible to find the period of the size effect
for different An at a finite frequency.

Dopplerons exist in a region where time dispersion
is unimportant. Therefore, in theoretical papers in
which dopplerons have been studied, it has been as-
sumed that ω « Ω and that the experiment is performed
at radio frequencies. Electronic transitions that are
absent in a model with an isotropic spectrum and are
allowed by the selection rules (5.19) and (5, 20) give
rise to the existence of other electromagnetic waves in
metals. In order to demonstrate this, we shall con-
sider the region where time dispersion of the conduc-
tivity is important and spatial dispersion is absent. In
(5.16) we put ω*0 but q=0. Then,

(5, 29)

In the isotropic model, for q ιι Η and q — 0, the conduc-
tivity σ4 as a function of frequency has a single singu-
larity of the form (ω- Ω)"1. In an anisotropic model the
denominator of (5. 29) vanishes, for v-0, at frequencies
ω - ΑηΩ(ρ,) = 0. The integration over p, weakens this
singularity» We shall be interested in the region
Awr2min<jj< AnQmix, in which the collisionless damping
is equal to zero and undamped circularly polarized ex-
citations can exist. It is obvious that frequency ranges
in which damping is absent exist only for sufficiently
small values of An. The behavior of the function σ±(ω)
as ω — AnQtxtT can be found analogously to (5. 25) and
(5. 28), If at the extremal point pQ the function Ω(ρ,)
has the form Ω(ρ,) = J2Mtr+ a(p-po)

z" and the numera-
tor of (5, 29) does not vanish, then the conductivity has
a singularity of the form

_ iHn— 1)

<5,30)

It is not difficult to convince oneself that the singulari-
ties of at have opposite signs in the windows near
Anftmln and ΑηΩτηΛΧ. This means that a solution of Eq.
(4.6) exists in the interval ΑηΏη1η< ω < ΑηΩπΐΛΧ, It is
natural to call excitations of this type, associated with
the anisotropy of the electron spectrum, anisotropons.
In an analogous way, we can convince ourselves that in
the frequency ranges AnUmiI< w < ΑηΩη,^-with An from
(5.20), longitudinal excitations should exist. It fol-

FIG. 10. Pinched-cylinder model of the Fermi surface.
(Closed and open orbits and a self-intersecting trajectory are
shown.)

lows from what has been said that the existence of
transverse and longitudinal anisotropons is essentially
connected with the fact that in metals with an anisotropic
spectrum the electrons move in noncircular cyclotron
orbits in an external magnetic field. In the case when
the orbit has an w-fold symmetry axis, the coordinate
and momentum of the longitudinal motion of the elec-
tron contain harmonics of the cyclotron frequency that
are multiples of m, since the longitudinal motion is
modulated by the cyclotron rotation. Resonant inter-
action with the longitudinal wave arises under the con-
dition ω = »ηβΩιζ(Γ. Because of the modulation of the
rotation of the electron, resonant interaction with the
transverse waves arises at frequencies u) = (tns±i)SitJ.tT.
It is these resonances which form the longitudinal and
transverse anisotropons,

Anisotropons in aluminum was studied in [ 8 6 ] . The
spectrum of the right-polarized waves (which lies near
the hole resonance An= 5) and that of the left-polarized
waves (near the hole resonance An = 3) were calculated
with a computer. The calculation showed that the de-
parture of the initial frequency of the wave from the
damping threshold amounts to a few per cent of the
cyclotron frequency, The spectrum of the anisotropons
is depicted schematically in Fig. 9.

Up to now we have considered resonances for elec-
trons belonging to one part of the Fermi surface, Res-
onances at different parts of a multiply-connected
Fermi surface can lead to the existence of additional
transverse and longitudinal excitations. As already
noted in Sec. 5(1), such waves have been studied the-
oretically and experimentally in bismuth, Μ ι · · 3 ]

3) We shall consider the electromagnetic excitations
in metals with open Fermi surfaces in the presence of
open orbits. First we shall analyze the-condition for
resonance absorption of a wave in metals with open
Fermi surfaces in classically-strong magnetic fields.
The motion in coordinate space corresponding to infinite
motion of the electrons in momentum space in the di-
rection of the />r-axis is motion in the direction of the
y-axis with average velocity vv(p£, pj (Fig, 10), The
condition for resonance absorption therefore contains
an additional term, proportional to vy:

ω = ΛΗΩ ± v, cos ftq ± v,_, sin ϋ sin <fq. (5.31)

The notation in (5. 31) is clear from Fig. 10. The cyclo-
tron frequency and the components vy and v, of the aver-
age velocity depend on p, and py. Another feature of the
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FIG. 11. Dependence of the cy-
clotron frequency on pM in a
magnetic field perpendicular to
the axis of the pinched cylinder.
(p0 is the radius of the cylinder
neck.)

ω = ΔηΩ^ χ ± vy m a i sin <pg,

where vvmax=Kil£lx/pk~vI

situation considered is that the cyclotron frequency
vanishes logarithmically at a certain value of p, corre-
sponding to a self-intersecting trajectory. A typical
dependence of Ω on p, is drawn in Fig. 11.

Let the wave-vector be perpendicular to the mag-
netic-field direction. For closed orbits the velocity vy

is equal to zero. Since the minimum cyclotron fre-
quency is equal to zero, collisionless damping at closed-
orbit electrons exists in the whole (ω, <y)-plane. The
thresholds in the damping for transitions with a fixed
Δ« are determined by the condition ω = Δ«Ω<^. The
regions of damping at electrons belonging to open orbits
also fill the whole (ω, qO-plane, for the same reason.
However, the thresholds here are different:

(5.32)

, = Hax /2lz

H and ax is the
lattice constant in the χ direction. The condition (5.32)
points to the existence of resonance effects in the prop-
agation of electromagnetic waves and sound.

Up to now, comparatively few papers have been
published in which electromagnetic waves in metals with
open Fermi surfaces, in the presence of open orbits,
have been studied. As shown by Buchsbaum and
Wolff, C803 the helicon and Alfven waves cannot propagate
in such metals. This is explained by the fact that in the
y direction, perpendicular to the open direction and to
the magnetic-field direction, the average velocity of the
electrons is not equal to zero and the conductivity am

is finite in zeroth order in H~l and does not depend on
the magnetic field. The appearance of a large dissi-
pative current in a direction perpendicular to the vector
q IIΗ leads to strong damping of these excitations.

The condition (5.32) for resonance absorption tells us
the regions in the (ω, q)-plane in which the propagation
of electromagnetic excitations is possible. Weakly-
damped electromagnetic waves in metals in the presence
of open orbits were studied in : 8 7 · 8 8 3 . in the first of
these, a model of the pinched-cylinder type was used as
the model of the open Fermi surface and the solutions
of the dispersion equation for a "normal" wave were
found. It was found that the excitations propagating in
the direction perpendicular to Η and to the open direc-
tion have a spectrum that is confined near the thresholds
(5.32). In t 8 e ], a corrugated-cylinder model consisting
of slightly overlapping spheres was taken as the model.
It was shown that, in the vicinity of the threshold of the
Doppler-shifted cyclotron resonance (5.32) due to elec-
trons on the open part of the Fermi surface, weakly-
damped electromagnetic excitations, similar to dop-
plerons, can also exist. Unlike in C87], here the dis-

persion equation for excitations with the "wrong" po-
larization was solved and it was established that a
doppleron localized near the threshold with Δη = 1 exists
only under certain conditions on the electrons on the
closed parts of the Fermi surface.

4) To investigate the spectrum of the electromagnetic
excitations and the different resonance effects in quantiz-
ing magnetic fields in metals with an anisotropic Fermi
surface, it is useful, as previously, to construct the
collisionless-damping regimes and determine the
singularities of the conductivity. Below we shall show
that for a sufficiently complicated Fermi surface the
magnetic quantization can lead to the appearance of new
thresholds and can strengthen the conductivity singulari-
ties. We shall assume that the energy of a Bloch elec-
tron in the magnetic field is known and is a function of
only two quantum numbers, η and pt. For an arbitrary
dispersion law £„(/>,), as in the simplest model of the
spectrum, collisionless-damping thresholds of three
types should exist. One of these types corresponds to
processes in which electrons from states with the Fer-
mi momentum pn, by absorbing a quantum of the field,
undergo transitions to some state above the Fermi
level, another corresponds to transitions from a state
with momentum - pn to states with momentum greater
than pn, and the third is due to transitions from states
below the Fermi level to a state with pn.

In metals with an anisotropic spectrum, additional
collisionless-damping thresholds can exist. We shall
show this. For simplicity, we shall consider electron
transitions with no change in the quantum number n.
The corresponding contribution to the conductivity is
proportional to

' h fen (Pz-L- f'1t)]—h [t-n (/>»)!
e n (ft-i-«?i)—e, (Pi) — n<s>—16

dp,. (5. 33)

Suppose that, for fixed ω and q, the denominator in
(5.33) vanishes at a certain point p',. We expand the
energy difference in (5.33) about this point, in a series
in ^p,=p,-p',. Η Ρ', coincides with the limits of inte-
gration in (5.33) and the difference of the first deriva-
tives in the expansion of the denominator is not equal
to zero, then the real part of (5.33) has a logarithmic
singularity. According to (5.33), the position of the
logarithmic singularities is determined by the condi-
tions

ft(O = en (Pn ± 7i?i) — εη (Ρη)ι ^ω==ε/ι(Ρη) — Rn{Pn— ^9z)· (5 .34)

These are the boundaries of the collisionless-damping
regimes and correspond to the three absorption pro-
cesses indicated above.

If the point p't is inside the region of integration and
the difference of the first derivatives in it is equal to
zero, the conductivity has a root singularity. The posi-
tion of this threshold can be found from the equations

U|i£il (5.35)

after eliminating p't. The threshold (5.35) corresponds
to electron transitions from states below the Fermi
level to states lying above the Fermi level, such that the
electron velocities in the initial and final states are
equal.
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FIG. 12. Landau-damping regime in the model (5.36) of the
electron spectrum. (The damping regimes corresponding to
electron transitions in a weakly filled Landau level (2&η<π/α)
(Fig. 12a), a strongly filled level (2ft,, >7r/a) (Fig. 12c) and in
a half-filled level (2kn = π/α) (Fig. 12b). The conductivity has
a logarithmic singularity on the damping boundaries repre-
sented by a thin line. On the boundaries represented by a thick
line the singularity is of the root type.)

The reasoning given above is conveniently illustrated
using the example of an electron spectrum of the cor-
rugated-cylinder type (5.26), in a magnetic field directed
along the axis of the cylinder:

Using the expressions (5. 33)-(5.35), we shall deter-
mine the positions of the logarithmic and root singulari-
ties of the longitudinal conductivity. If the height of the
Landau tube is less than half the size of the Brillouin
zone, i .e. , kn<ir/2a, then, as follows from (5.34), the
Landau damping is not equal to zero in the range ω.
« ω « ω», in which the threshold values of the frequency
at which the conductivity has a logarithmic singularity
are equal to

ω± = ωο(?) I sin (&„ ± -jq (5.37)

For q> (π/α) - 2kn, when the processes (5.35) become
possible, a new Landau-damping regime ω, < ω < ω 0

appears and the new root threshold is (Fig. 12a)

af-|. (5.38)

In the case when the height of the Landau tube is greater
than half the size of the zone (kn> ir/2a), the Landau-
damping boundaries at which the conductivity has a
logarithmic singularity are determined by the expres-
sions

ω ± = o>0 (q) | sin (*„ (5.39)

At the point q = 2kn - (π/α), as in the preceding case, the
root threshold (5.38) splits off (see Fig. 12c). If the
height of the Landau tube is equal to half the size of the
zone, the root threshold starts at q = 0 (see Fig. 12b).
We shall not give here the analytical expressions for
the conductivity in the model (5.36). They are com-
pletely analogous to the expressions obtained in the re-
cently published paper t 8 9 ] for the conductivity of quasi-
one-dimensional systems of the TCNQ type.

The principal result of the example given is that, in
the region of small velocities ν of the Bose excitations
and of q< Ι π/α- 2kn\, the behavior of the imaginary and
real parts of the conductivity in metals with a fairly
complicated spectrum is the same as in the model with

t=pz/2m: the singularities of the nondissipative part
of the conductivity are logarithmic while the discon-
tinuities of the dissipative part are finite. Therefore,
the character of the giant quantum oscillations in the
absorption of sound or of a helicon in metals with an
anisotropic Fermi surface is as before. The minimum
velocities in the model (5.36) correspond to electrons
at weakly and strongly occupied levels, i. e., to elec-
trons at the extremal sections of the Fermi surface.
However, in the propagation of excitations with veloc-
ities close to the maximum electron velocity, the res-
onances can be strengthened even in the region of small
q. These resonances are associated with electrons in
half-filled levels. The strengthening of the conductivity
singularity can be reflected, e. g., in the spectrum of
the fast magnetosonic wave in an inclined field, when va

Generally speaking, the energy of an electron in a
quantizing magnetic field and in the periodic field of the
lattice depends on three quantum numbers. This is
valid in the case.of both intraband and interband (cf.,
e. g., C90]) magnetic breakdown. If a closed orbit makes
a close approach to the boundaries of the Brillouin
zone, a tunneling transition from one orbit to another
becomes possible. When the transition probability is
small the energy depends only on η and pt. If the
transition probability is not small, then it is necessary
to take into account the dependence of the energy on the
third quantum number. This means that a certain range
of energies corresponds to specific values of η and p,—
a Landau level is transformed into a magnetic band.
For closed orbits the broadening of the Landau levels
is exponentially small.C B 1 ] If there are open orbits in
the metal, the spacing between the magnetic bands is
exponentially small. In the intermediate region, cor-
responding to trajectories that approximate to a self-
intersecting trajectory, the width of the magnetic band
is of the order of the spacing between the Landau levels.

From what has been said, the character of the reso-
nances for electrons corresponding to the three
enumerated groups of orbits is clear. Resonances on
closed trajectories with Δκ = 0 and for q-Ό correspond
to narrow damping regions and broad areas of trans-
parency. Trajectories lying close to a self-interesect-
ing trajectory correspond to broader maxima in the
absorption and narrower windows. Open orbits do not
lead to singularities in the conductivity tensor. By
varying the angle between the wave-vector of the elec-
tromagnetic wave or sound1 9 2·9 3 3 and the magnetic-field
direction, the different types of resonances can be
successively observed in metals with open Fermi sur-
faces.

6. CONCLUDING REMARKS

In this review we have attempted to examine the
spectrum of electromagnetic excitations in conductors
in a strong magnetic field from a unified point of view.
We have been interested chiefly in the origin of the
characteristic electromagnetic modes and in their con-
nection with the spectrum of Fermi excitations. An
analysis of the conservation laws made it possible to
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determine the positions of the different branches of the
spectrum of electromagnetic excitations in the (ω, q)-
plane and gave a natural classification of a number of
resonance effects in the propagation of electromagnetic
waves and other Bose excitations.

Despite the fact that the flow of papers in which elec-
tromagnetic excitations in metals and semimetals have
been studied has not declined in recent years, a number
of the waves have still not been observed experimental-
ly. This applies primarily to the quantum electro-
magnetic waves. In the review, therefore, we have at-
tempted to attract the attention of experimentalists to
the as-yet unobserved electromagnetic excitations of a
solid-state plasma.

The present state of the theory makes it possible to
carry out a calculation of the spectrum of the electro-
magnetic waves in specific metals using realistic mod-
els of the Fermi surface. Evidently, the electromag-
netic excitations in those metals in which the electron
spectrum has been sufficiently fully investigated will
be analyzed in detail in the next few years.

In metals with a simple electron dispersion law, from
the theoretical point of view the detailed study of the
resonance phenomena in the pre-threshold region is of
extreme interest. Up to the present, threshold effects
have been studied in the framework of the self-consis-
tent field approximation. An exception is C94], in which,
in a calculation of the vertex part and polarization opera-
tor in the pre-threshold region in a quantizing magnetic
field, the principal logarithmically divergent diagrams
in the perturbation theory series were summed.

Only resonance effects that are linear in the wave
amplitude have been discussed in the review. With in-
crease of the field amplitude the pattern of the threshold
phenomena can change substantially. A number of the-
oretical C95~99:| and experimental t l00~102: i papers have been
devoted to the study of nonlinear resonance effects in
strong magnetic fields. It should be noted that the ap-
proach used in this review for the analysis of linear
resonance effects can also be useful for the study of
nonlinear resonance phenomena.

The authors are grateful to E. A. Kaner and M. I.
Kaganov for useful discussions.

APPENDIX

Here, following ai\ we give a derivation of the con-
ductivity tensor of an electron gas in a quantizing mag-
netic field. We shall seek the nonequilibrium density
matrix in the form

where

(A.1)

(A. 2)

The matrices pt and p 2 are linear in the amplitudes of
the potentials A and θ, μ0 is the equilibrium value of
the chemical potential and ρο($£ο, μ0) is the density
matrix at thermodynamic equilibrium. It is not diffi-
cult to convince oneself that in the representation de-

fined by the operator §£, 0 (3. 7) the matrix elements of
the operator pz are equal to

<v | p. | V)-*' 1?
ε,.,

here,

μι = μ ("·•') — μ0

(Α. 3)

(Α. 4)

is the correction to the chemical potential, l inear in the
external field, and/„(£„) is the distribution function.
Substituting (Al) into Eq. (3.3) and taking (3.10),
(3.11) and (A2)-(A4) into account, we obtain

-Ι μ, IV), (A. 5)

(A. 6)

where

ίωτ , i •„,

-Vv ι _j_ , · ω τ 'Vv r ι j_ ί ω τ <vv. ·

The matrices Λ<}> and Λ,^ are equal to

/ο(εν<) — /o(ev)
Λ!Μ,

/o(e,.)-

V — ev

(A. 7)

(A. 8)

To calculate the current (3.4) it is necessary to cal-
culate the trace. After a number of transformations
and going over to the Fourier representation with re-
spect to the space and time variables in (3.4), we obtain

/((ω, q) = -^-[-4i(a>, q ) - / l f A (ω, q) + /qi><p (ω, q)+i-(J^-iTf) μ, (ω, q)] ;

(A. 9)

here u)l = 4vn0e
zfm is the square of the plasma fre-

quency, n0 is the concentration, Ν is the number of par-
ticles,

| k = Ί Γ Σ Vv <v' I v> <* I v> <v' I ̂  (i) I v>*·

V (q) = y exp (iqr) v o + -j ?o

K = "IT" Σ V v <v'l v <1> I v> <V Ι « p VV) | ν·>,

(

f

a) = Τ Γ Σ Λ <ν"ν < v ' I
v> < v ' ! CX tf I v >*·

(A. 10)

(A. 11)

(A. 12)

(A. 13)

The matrix elements contained in these expressions
have the following form:

|», *„, M

T h e funct ion /„.„(<?,,) i s equa l t o

Un'^n, then

.<*>. (A. 16)

/„.„<„„). (A. 17)

(A. 18)

(A. 19)

where £=-l%<fi/2 and L% is a Laguerre polynomial. But
if n' < n, we must use the relation
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(Α. 20)

We return to the expression (A. 9) and eliminate μ1

in it. By making use of (3.12), we have

φ (ω, q) μι (ω, q) = j :— j , \i\.» Cx)

iti(«-<T-«.,)=JET(» + iT-i.q). (A. 22)

i a = ?=L! 2 A<?> | (V | exp (,-,Γ, ν; |.. (Α. 23)

νν'

After obvious transformations, having substituted μ^ω,
q) from (A. 21) into (A. 9), we write the current density
in the following form:

i, = fr,k+<i*)£*. (A. 24)

2
ΰϊ)ί = -/—— (fyji~r^iJ?)> /A OKA

4.π(1-ίωτ) /-,4-ίωτΔ2 ' (Α. 26)

The term dnEk in (A. 24) is the density of the diffusion
current, which vanishes as τ — «, and aJft is the con-
ductivity tensor of the electron gas in a quantizing mag-
netic field. We give expressions for the nonzero com-
ponents of the conductivity tensor and diffusion tensor
for finite ωτ in the symmetric geometry q II H:

< Ί ι > = -

X 2 C ^ 1/2 ± 1/2) l/o (e r l ± 1 , ftj+ ) —/o (en, k >]

ίωτ 1 "Μ
e n (*z + iz) - e n (*z) — Λ (ω + Ω — ίτ->) + ε η l*j-,-fc) — ε η (λ·,) ± ΛΟ) J / '

(Α. 27)

"•kyh:

'"τ 1 "11 (\ θα)

g L - f , (A. 29)
-ίωτ)- Z.t ;-ionLo

Με» fe--!,))-/„ [ε-№j) . (A.30)

here ω = ω-ιτ'1 and L2 = i 1(0, qr). The nonzero com-
ponents of the conductivity and diffusion tensors in an-
other geometry (ql H) are given in c 2 5 3 . A proof of the
gauge invariance of the expressions cited is also given
there.
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