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The problem is outlined of how to approach the description of partially coherent multiple scattering of

waves by ensembles of particles in terms of the photometric theory of radiation transport in a scattering

medium. The treatment is carried out with the example of a scalar monochromatic wavefield. The

apparatus of equations of the Dyson and Bethe-Salpeter types is used. This apparatus is shown to be

adequate for the fundamental concepts of transport theory. In particular, correspondence is established

between an effective inhomogeneity of an ensemble of correlated particles and the volume element of

transport theory. It is shown that neglect of the effect of mutal illumination of correlation groups of

particles within a given inhomogeneity leads to spatial localization of the inhomogeneities, while the

additional hypothesis that the localized inhomogeneities lie close to one another in the Fraunhofer zone

gives the transport equation. The contribution is estimated of the effect of mutual illumination of

correlation groups of particles within a given inhomogeneity to the partially coherent scattering of waves by

the volume of the medium. The role of the detector of the scattered radiation in making this estimate is

discussed.
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1. INTRODUCTION

The set of phenomena that arise from multiple scat-
tering of waves by an ensemble of particles is very
broad. For example, it includes light scattering in dis-
persed substances'-1'2-1 such as pigments, powders,
colloids, polymers, aero- and hydrosols, emulsions,
mineral textures, and snowlike and paperlike materials.
Multiple scattering of light occurs in astrophysical1-3'4-
objects (stellar and planetary atmospheres, gaseous
nebulas, and the interstellar medium), geophysical ob-
jects (soils, waters, and their deposits), and in gases
and liquids near the critical point. [ 5 ' 6 ] Multiple scatter-
ing of waves also includes processes such as the scat-
tering of electromagnetic waves in a plasma, ^ scatter-
ing of electrons by impurities in a crystal structure, '-8-1

neutron transport in objects of varied shapes and dimen-
sions, [!ξ1 passage of charged particles through
matter, E10>n] and the interaction of cosmic rays with

matter.
[12]

The phenomenological and statistical approaches have
been applied for treating multiple-scattering processes.

The gist of the phenomenological approach is embod-
ied in the theory of radiation transport in a scattering
medium. Its apparatus is the transport equation, C 1 ' 1 3 ' 1 4^
which expresses the law of conservation of the radiation
energy or the condition of balance of intensities of light
beams with account taken of their polarization.

In the statistical treatment of multiple scattering of
waves, one starts with the stochastic wave equation or
with a system of such equations, for which one poses and
studies the problem of diffraction of waves by a statis-
tical ensemble of particles.

The problem of the statistical basis of the theory of
radiation transport using the theory of multiple scatter-
ing of waves by an ensemble of particles belongs to the
set of fundamentally important and as yet not fully solved
problems of theoretical physics. The formulation of this
problem arises from the following factors.

Transport theory has existed for about a hundred
years. Nevertheless, it hasn't yet been tested experi-
mentally, owing to difficulties1123 that involve the limited
nature of the models of a scattering medium that are
amenable to fully valid mathematical analysis, and the
imperfection of the known methods of measuring the co-
efficients that enter into the transport equation. Yet the
transport theory gives no hint of the method for calculat-
ing these coefficients, apart from determining them ex-
perimentally.

In connection with the rise laser technique of creating
wavefields of a high degree of coherence, the topic has
arisen of elucidating the conditions that should be im-
posed on the properties of the medium and of the incident
wavefield, as well as the methods of detecting the scat-
tered wavefield, such that transport theory proves to be
applicable.

It has become possible in recent years to find exact
solutions [ 1 5"1 9 : i of the steady-state problem of scattering
of a monochromatic wave for a one-dimensional model
of a scattering medium by starting with the stochastic
wave equation of Helmholtz. The results obtained there-
by considerably disagree [ 2 o : i with those that stem from

[ 1 4^the solution[14^ of the transport equation.

A review by Rozenberg1-1-1 and the review1-21-1 have
been concerned with the problem of the statistical basis
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of the theory of transport of radiation from the stand-
point of the theory of multiple scattering of waves. The
first of these reviews systematically formulates the
problem, and reveals the physical principles of its solu-
tion. However, the theory of multiple scattering of waves
was not yet sufficiently developed when this review was
written. The second of the cited reviews paid major
attention to the methods of solving problems of wave
propagation in a randomly-inhomogeneous medium having
smooth fluctuations of the refractive index, and did not
fully treat problems of transport theory.

This review pursues the aim of a generalizing presen-
tation of how one solves the problem of the statistical
basis of transport theory by using the modern theory of
multiple scattering of waves by an ensemble of particles,
and of how far people have as yet succeeded in solving
this problem. In order to construct a theory of multiple
scattering of waves, this review uses the method of
Green's functions and Feynman diagram technique, which
leads to equations of the Dyson and Bethe-Salpeter types.
This method is marked by the advantage that it is phys-
ically pictorial and more adequate than transport theory.
Moreover, it includes as special cases many other known
methods. The studies have recently made it possi-
ble to impart to the method of the Dyson and Bethe-
Salpeter equations a mathematically rigorous corrobora-
tion in problems of non-steady-state multiple scattering
of wave packets in a randomly-variable medium.

2. THE PROBLEM OF THE STATISTICAL BASIS OF
TRANSPORT THEORY

The concept of the volume element ^ ' 25~27-1 of a scat-
tering medium plays an important role in the theory of
radiation transport. This theory is constructed on the
notions of geometrical optics111'2'283 and it assumes
total incoherence of scattering events.i27^ The objects
of transport theory are the photometric quantities'-27'28-1

that describe the light beam, and which satisfy the trans-
port equation.

The concept of the volume element of a scattering
medium is rather complex. This volume attenuates and
scatters the radiation incident on it; quantitatively, the
attenuation and scattering are proportional to the size of
the volume.i2sl The optical properties of the volume
element are characterized by the extinction and scatter-
ing coefficients, or when the polarization of the light
beams is taken into account, by the extinction and scat-
tering matrices, t™'30'1 Transport theory essentially as-
sumes that the light beams scattered by different volume
elements are mutually incoherent, i.e., their intensities
add together.1-1-1 The light beams propagate according to
geometric optics between two successive scattering
events by volume elements.

Transport theory deals with the photometric quantity
of radiance, t26-28^ which defines the flux of radiation en-
ergy through a unit area in a unit solid angle per unit
time. When we account for the polarization of the light
radiation, the four-component Stokes vector-
parameter C13'29'303 replaces the radiance. Here the
first component is identical with the radiance of the light
beam, and the three others define its polarization. One
draws up a radiation transport equation for the radiance
in the scattering medium. L13'1*3 The source of this equa-
tion in physics in its original form is due to O. D.
Khvol'son, and it dates back to the seventies of the past
century, and is also due to Schwartzschild and Schuster.

The physical content of the equation is that the change
in radiance of the light beam per element of length is
composed of attenuation due to absorption and scattering,
and of intensification owing to scattering in the given
direction of light that illuminates the corresponding vol-
ume element from all other directions.

The transport equation with account taken of polariza-
tion of the radiation was first formulated simultaneously
and independently by Chandrasekhar[13] and Rozenberg '29]

for an isotropic scattering medium, for which the ex-
tinction matrix is scalar, and somewhat earlier by
Sobolev,[31-1 who treated the special case of Rayleigh
scattering. Rozenberg [30'32:i has derived a more general
transport equation for polarized light radiation. It per-
mits one to solve all problems of optics of anisotropic
scattering media, including application of the theory to
electro- and magnetooptic phenomena in colloids. Instead
of the extinction coefficient, the dispersion matrix figures
in this equation, and it is composed of the sum of the ex-
tinction and phase matrices. Of these, the extinction
matrix describes the attenuation of a light beam of a
given polarization owing to absorption and scattering,
while the phase matrix describes the change in polariza-
tion of the light beam owing to the difference in veloci-
ties of propagation of the two oppositely polarized com-
ponents.

The transport equation for light radiation as written
with the Stokes vector-parameter proves to be a matrix
equation, and it looks far more complex than the class-
ical transport equation for the radiance. However, in
studying multiple scattering of electromagnetic radiation,
one must adopt such a complex transport equation, since
the many terms of this equation, which account for polar-
ization effects, are generally of the same order of mag-
nitude as the terms that contain only the first component
of the Stokes vector-parameter. Strictly speaking, the
classical transport equation for the radiance is applica-
ble only in the case of scalar radiation, e.g., in describ-
ing neutron transport. '-9·1

In the statistical approach, one deals directly with the
wavefields and their multiple scattering by the ensemble
of particles, and here the properties of this ensemble
are assumed to be given. In other words, one assumes
that one is dealing with weak fields in which the effect of
the field on the state of the matter can be ignored or
taken as a small perturbation. This permits us to treat
the medium and the field as being independent systems,
and to restrict the object of study to the action of the
matter on the field.i2'"2

Several complex, fundamental problems stem from
this on the pathway to the statistical basis of transport
theory.

One of these consists in elucidating the photometric
concept of the radiance from the standpoint of statistical
wave theory.'-26"28-1 This problem arises also even in the
absence of a scattering medium when one tries to des-
cribe photometrically a given partially-coherent wave-
field.

Perhaps the most complex problem is the possible
introduction of the concept of the volume element of the
scattering medium, starting with the statistical theory
of multiple scattering of waves.[26' ̂  The proof that
this can be done would give a theoretical solution to the
problem of determining the optical parameters of the
volume element (the extinction and scattering coeffi-
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cients) by expressing them in terms of the result of
solving the problem of diffraction of waves by a set of
small number of particles and in terms of the correla-
tion functions of the particles.

The problem of the relationship between this theory
and the theory of cooperative effects [ 2 β ' 2 7 ' 3 ζ : ι proves to
be no less complex in the statistical basis of transport
theory. Here the phases of the waves scattered by the
particles of the medium and the correlations of the par-
ticles play a substantial role.

The statistical theory of multiple scattering of waves
by an ensemble of particles (see the reviews1-1'33' 3 4 ] ) 1 )

is currently far from being perfected. Mathematically, it
boils down to studying a stochastic wave equation with a
random effective scattering potential. As a rule, one
solves this equation by asymptotic methods that use ex-
pansions in small parameters. Here one estimates only
certain ones of the terms to be dropped in these expan-
sions. Rigorous methods of solving the stochastic wave
equation with special assumptions on the properties of
the scattering medium have begun to appear only in re-
cent years . [ 1 5 ' 2 2 " 2 4 ' 3 ^

The imperfection of the statistical theory of multiple
scattering of waves hampers the final solution of the
problem of the statistical basis of transport theory.
Nevertheless, a number of interesting results that are
rather convincing from the physical standpoint have been
obtained on the way toward solving this problem, and
they are presented in this review. Among them, we shall
especially distinguish the physical principles that mark
the path of approach to solving the studied problem, and
also certain experimental studies involved with it.

Rozenberg!-1'32-1 has made a fundamental contribution
to the study of the problem of the statistical basis of
transport theory. He has established from physical con-
siderations that the mutual effect of particles in the
scattering of waves from them is divided into two com-
ponents: coherent and incoherent. Here the coherent
component, for which only the nearest neighbors of a
given particle are responsible, is manifested exclusively
in two cooperative effects that are responsible for a set
of dispersion phenomena, namely, in the variation of the
effective complex refractive index (in the general case
of a matrix), and in the difference of the scattering co-
efficient (or matrix) of the volume element from its
value for an isolated particle. At the same time, the
incoherent component of the interaction, which originates
from the entire volume of the scattering medium, arises
in the form of multiple scattering, and it becomes the
object of transport theory.

Rozenberg[26"28^ has studied the problem of the
statistical-electrodynamics content of the photometric
quantities and the rules in applying them to describe a
partially coherent wavefield. He has shown that the in-
troduction of photometric quantities as observables (in
the quantum-mechanical sense of this word) assumes
that one uses light detectors that perform square-law
detection, and which have finite dimensions and a finite
time constant.

One of the cooperative optical effects in scattering
media that lies outside the limits of applicability of
transport theory is coherent forward scattering. This

effect has been discussed in a number of studies, £32'37-393
and it has been experimentally detected by Ivanov,
Khairullina, and Khar'kova. [ 4 0 ] Khairullina and
Ivanov'-41-1 have reported that, when a scattering medium
is illuminated with radiation having a high degree of
spatial coherence, the light field formed by interference
of the waves scattered by the particles will be inhomo-
geneous in space (the so-called grain structure) and
fluctuating in time. The nature of the grain structure
that is formed is due to the optical and geometric param-
eters and relative arrangement of the particles, while
the frequency of the fluctuations of the light field is de-
termined by the mobility of the particles, e.g., by their
Brownian movement.

Rozenberg'-27-1 has given a general physical analysis
of the conditions for applicability of transport theory in
describing multiple scattering of a partially coherent in-
cident wavefield in a scattering medium whose proper-
ties vary randomly with time owing, e.g., to Brownian
movement of particles. He has elucidated the criteria
for choosing the time and space scales for averaging
the quadratic functions of the field to give the photome-
tric quantities. He has examined the limiting case in
which the propagation of the field in the medium can be
considered to be steady-state from the optical stand-
point, and the case in which this process is non-steady-
state.

The review to be presented contains the results of the
theory of multiple scattering of waves by a statistical
ensemble of particles, which directly bear upon the
problem of the basis of the photometric theory of radia-
tion transport. I shall pay major attention to the case in
which one can consider the medium to be constant in
time, and the incident field is purely coherent in space
and in time. The results to be given were derived for a
scalar wavefield. Their known generalizations to an
electromagnetic field are noted in passing.

3. THE MODEL OF A DISCRETE SCATTERING
MEDIUM

A discrete scattering medium comprises a set of par-
ticles. By analogy with quantum mechanics, we can con-
veniently characterize each particle with a certain
scattering potential. The potential V(r) of the discrete
scattering medium equals the sum of the potentials of its
particles:

Ν
v \ T ) — Δι νο\τ—Tjt> ("·•*•/

i = l ν

Here Vo(r - r . ) is the potential of the j-th particle, j = 1,
..., N, having its center at the point r-, and Ν is the total
number of particles.

The Helmholtz equation for the scalar wave mono-
chromatic field ψ (r) in a scattering medium having the
potential V(r) has the form

ΙΔ + ί:0

!-7(Γ)]ψ(Γ) = 0, (3.2)

where k0 is the wavenumber in free space. If the wave-
field and its normal derivative are continuous at the
surfaces of the particles, then the solution of the
Helmholtz equation with account taken of the radiation
conditions at infinity reduces to the wave integral equa-
tion

''The reviews [21>35] treat the statistical theory of propagation of waves
in a randomly-inhomogeneous continuous medium.

ψ (r) = ψ0 (r) + j Go (r - r') V (r') ψ (r') ;
(3.3)
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Here the inhomogeneous term ^0(r) constitutes the inci-
dent field created by the assigned distribution of sources,
and Go(r) = -exp(ikor)/4jrr is the Green's function for
free space. In the case in which the scattering medium
occupies a limited volume, and the source lies at infin-
ity, the incident field has the form of the plane wave
ΨΟ(Γ) = exp(ik 0 s 0 ' r) , which propagates in the direction
of the unit vector So. For a point source concentrated at
the point r ', the incident field φο(τ) is equal to G0(r - r ' ) ,
and the solution of the integral wave equation (3,3) gives
the Green's function G(r, r ') of the scattering medium.

a) The Scattering Operator and the Optical Theorem

In solving the diffraction problem for some particle,
one usually restricts the treatment to calculating the
scattering amplitude that determines the scattered field
at long range. However, in studying multiple scattering
of waves, one must know the scattered field at any dis-
tance from the particle, since in the statistical ensemble
the particles can approach one another considerably.

One can conveniently represent the complete solution
of the diffraction problem by using the scattering opera-
tor T. '-42-' This concept is borrowed from the quantum
theory of scattering. The solution of the integral wave
equation (3.3) for the field ψ(Γ) is expressed in terms of
the kernel T(r, r ') of the scattering operator by the re-
lationship

ψ (r) = ψ0 (r) + j Go (r - Ο dV Τ (r", r') dV ψ (r'). ( 3 · 4)

We shall designate the Fourier transform T(k, k') of
the kernel of the scattering operator T(r, r '), when cal-
culated on the spherical surface k2 = k = k2, of wave-
numbers (ko being the surface), as T(s, s0), where the
unit vectors a and s 0 lie along the wave vectors k and k'.
Apart from a constant coefficient, it gives the scattering
amplitude of the scatterer being studied; the latter could
be an individual particle, a certain set of particles, or
the entire volume of the scattering medium. This prop-
erty of the scattering operator explains its physical
meaning.

In studying electromagnetic waves, one writes the
Helmholtz equation for the electric field intensity in
vector form (see, e.g. C 4 3 > M ] ). The Green's function of
free space and of the scattering medium, and also the
scattering operator for the electric field have tensor
dimensionality.

The law of conservation of energy in wave scattering
gives rise to the optical theorem.

In the case of a non-absorbing scatterer having a real
potential, the optical theorem is formulated as a rela-
tionship involving its scattering operator:

If the scatterer can absorb the energy of the wave
incident on it because it has a complex potential, then
the formulation of the optical theorem changes. Here the
left-hand side of (3.5a) proves to be larger than the
right-hand side. That is, the extinction cross-section is
larger than the total scattering cross section. The dif-
ference between the extinction and the total scattering
cross sections is called the absorption cross section.1-46-1

The optical theorem for an absorbing scatterer states
that the extinction cross section equals the sum of the
total scattering and the absorption cross sections. In
other words, the energy extracted from the incident
wave goes into scattering and absorption.

Rozenberg [ 1 ' 3 2 ] has studied the meaning of the optical
theorem for an absorbing scatterer of electromagnetic
waves.

b) The System of Multiple Wave-Scattering Equations

If a volume of a discrete scattering medium exists
with a potential V(r) equal to the summation of (3.1),
then we can conveniently deal also with the scattering
operators t. of the isolated particles having the poten-
tials Vo(r - r . ) , as well as with the scattering operator
of this volume. The relationship between Τ and all the
t, (j = 1 N) is established by the system of multiple

wave-scattering equations:

(3.5)

Here the asterisk indicates that we take the complex con-
conjugate. In the Fourier representation, the optical
theorem (3.5) takes on its customary ^4 5 1

ί - ^ Λ Ι ?(.,.,) I' (3.5a)

Tj=tJ+tfi0 2
j ' K J

The quantities on the left- and right-hand sides of this
relationship are called the extinction and total scattering
cross sections.[46-1 These cross sections are equal to
one another for a non-absorbing scatterer.

(3.6)

Here each operator T^ describes the scattering by the
j-th particle in the presence of the remaining (N - 1)
particles. As we see, Tj equals the scattering operator
tj of the isolated particle having the given number j plus

the effect of the rest of the particles. We can completely
reveal the physical meaning of the system of equations
(3.6) by writing its solution in the form of a series of
successive approximations. Each term of this series
describes a wave-scattering process such that the wave
travels from one particle to another, yet can return to
each particle, while undergoing repeated scattering by it.

Watson I-**! has derived a system of multiple wave-
scattering equations in the form (3.6). Rozenberg[32-1

had formulated this system earlier in the representation
of inhomogeneous plane waves.

c) Distribution Functions and Correlation Functions of
the Particles

Foldy1-47-1 introduced into the multiple wave-scattering
theory the concept of the configurational average over a
statistical ensemble of particles randomly arranged in
space. This concept is applied for calculating the aver-
ages of such quantities as the wavefield and its bilinear
combination. Like the statistical theory of gases and
liquids, it is based on the probability density of con-
figurations of centers of particles in space, as normal-
ized to unity and symmetrical with respect to interchange
of its arguments.2' One constructs from the probability
densities of the particles their class distribution func-
tions fn(ri, ..., r n ) of different orders η = 1, 2, ...
(see1-48-1, p. 81). Here the class distribution function of

2>We restrict the treatment to identical, spherical particles.
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the n-th order determines the probabilities of configura-
tions of any η particles out of the total number of N. In
addition to the distribution functions for describing the
ensemble of particles, one also uses their correlation
functions gn(Ti, ..., r n ) , η = 1, 2, . . . . They are related
to the class distribution functions by relationships of the

. [33,49,50]type1

h
ft (').

Si (Γι> ft (3-7)

The class distribution function and the correlation
function of the first order coincide, and they give the
density of particles. The correlation functions of order
η > 2 have the property of attenuated correlation, ac-
cording to which they rapidly (exponentially as a rule)
approach zero as the distance between the points in even
one pair of their arguments increases by an amount ex-
ceeding the scale of the correlations of the particles.
The two-particle correlation function g2(Ii, Γ2) is espec-
ially important in the statistical theory of gases and
liquids. It has been applied by Lax '-51-1 and by Fiirth and
Williams'-52-1 (see also^4"3) for studying molecular scat-
tering of x-rays in liquids and of light in liquids near
the critical point (the critical-opalescence phenomenon).
The two-particle correlation function is used in treating
the effect of an electrostatic interaction on scattering of
electromagnetic waves by atmospheric aerosols. '-53-1

d) Discrete and Continuous Scattering Media

The system of multiple wave-scattering equations
(3.6) and the set of distribution functions or correlation
functions of the particles define a model of a discrete
scattering medium. When a wave enters such a medium,
then it is said to undergo multiple scattering by the en-
semble of particles. In addition to the theory of multiple
scattering of waves in a discrete medium, there is a
theory of propagation of waves in a randomly-inhomo-
geneous medium that has been developed by Bourret, t"-1

Furutsu, [ 5 5 ] Tatarskii, [ 5 β ] Fr i sch, [ 3 5 ] Finkel'berg, Ε5°3

et al. (see the review1-213).

The model of a randomly-inhomogeneous medium,
which is sometimes also called a continuous random
or scattering medium, is defined by the law of the
spatial fluctuations of its potential. This law is fully
defined by the set of moment or cumulant functions
of the potential.1 3 5 '4 9 '5 0 1 In the simplest case of
Gaussian potential fluctuations, it suffices to fix
its first two cmulants. Generally one must know the
entire set of cumulants of different orders of the po-
tential of the medium.

Instead of the system of multiple wave-scattering
equations (3.6), which pertains to the model of a discrete
scattering medium, one writes for the model of a con-
tinuous random medium a Born series of perturbation
theory for the field. The latter is obtained by solving the
wave integral equation (3.3) by successive approxima-
tions in terms of the potential of the medium. The terms
of this series describe the multiple scattering of waves
by the elements of volume of the continuous medium.

Frisch[·33-1 has discussed the relationship between the
models of discrete and continuous random media. If one
knows the distribution functions or correlation functions
of the particles of a discrete medium, one can calculate
by the formulas of '-49-1 the moment and cumulant func-
tions of its potential, which is given by (3.1). This indi-

cates that the propagation of waves in a discrete scatter-
ing medium can be studied by the same method as for a
continuous medium.

Yet the transition from the discrete to the continuous
model of a medium assumed that scattering events by
elements of volume of separate particles and by those of
a certain given particle are equivalent to one another.
This assumption is justified if the particles of the med-
ium are weak or "soft" scatterers. For each of such
isolated particles-, the scattering operator t fits a Born
series of perturbation theory in powers of its potential
Vo· In this case, the model of a discrete medium has no
advantages over the model of a continuous medium.

Yet if the particles have sufficiently highly marked
scattering properties (strong or "hard" scatterers), for
which a Born approximation for the scattering operator
of the isolated particle is inapplicable, the transition
from the model of a discrete to a continuous medium is
not justified, either from the physical or the practical
standpoint.

It is sometimes convenient to use a combined model
of discrete and continuous scattering media. Ovchinni-
kov1-57-1 has applied this approach for studying radiation
transport in the visible range in a turbulent atmosphere
containing an aerosol.

4. THE CONCEPT OF AN EFFECTIVE
INHOMOGENEITY

In order to elucidate the conditions of applicability of
the theory of radiation transport within the framework
of the multiple-scattering theory, it suffices to restrict
the treatment to the averages over the ensemble of field
values (ψ(τ)) and the bilinear combination of the field
(Ψ<Ρι)Ψ*(ν2)), which is also called the covariance, and
which is the mutual spatial coherence function of the
field.

There are several asymptotic methods for calculating
the mean field and the covariance of the field. The most
pictorial of them from the physical standpoint and most
general from the standpoint of getting concrete results
is the Green's function method and the diagram technique
of Feynman, which lead to equations3' of the Dyson (D)
and Bethe-Salpeter (BS) types.

In the case of a discrete scattering medium4', the D
and BS equations have been formulated through the stud-
ies of Foldy,C 4 7 ] Lax,L 5 1 3 Gnedin and Dolginov, [59]

Frisch, [ 3 3 3 and Finkel'berg. [ 5°3 Fr i sch [ 3 3 ] has derived
exact D and BS equations. They contain unknown kernels,
which are called the mass operator Μ and the intensity
operator K. They are equal to the sums of all possible
strongly connected one-row and two-row diagrams with-
out external lines of propagation. Approximate D and BS
equations having assigned approximate values of the
kernels Μ and Κ are of great interest in applications.
The most general equations of this type were derived by
Finkel'berg1-503 by the method of correlation groups with
the kernels Μ and Κ in the single-group approximation.

The D and BS equations in symbolic-operator form
are written respectively as (see the review [ 2 1 3):

3*See the review of Apresyan [58] for the derivation of the D and BS

equations without using the diagram technique.

"'See the review [21] for the D and BS equations for a continuous
medium.
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(ψ χ ψ·> = (ψ) χ (ψ*> + (G)x (G*> Κ (ψ χ ψ*); (4>1)

In the BS equation, (G(r, r')) denotes the average of the
Green's function of the scattering medium, and the multi-
plication sign χ denotes the bilinear combination of the
values of the field or of the kernels of the operators (of
the average Green's function). These equations are
macroscopic in nature in the sense that all of the in-
formation on the optical and statistical properties of the
ensemble of particles is contained in the kernels Μ and
K.

The D and BS equations are integral equations, and
they describe coherent and partially coherent scattering
of waves. The physical meaning of the kernels Μ and Κ
is revealed by representing the solution of the D equa-
tion as a series of successive approximations in powers
of the kernel M, and the solution of the BS equation in
powers of the kernel K. We shall associate with the
kernels Μ and Κ the concept of an effective inhomogeneity
of the scattering medium. Then the terms of the series
for the D and BS equations describe the consistently
coherent and partially coherent scattering of waves by
the effective inhomogeneities. The kernel M(r, r ') is a
two-point kernel that serves to express the spatial dis-
persion of the waves of the mean field. It gives the opti-
cal properties of an inhomogeneity with respect to co-
herent scattering of waves. The kernel K(rx, r[; r2, r'2)
is a function of four points, and it shows that an inhomo-
geneity plays the role of a quadrupole-type converter of
the mutual-coherence function. In order to find the mean
intensity of the field scattered by an inhomogeneity, we
must generally know the mutual-coherence function
(rather than the mean intensity alone) of the incident
field. This indicates that the inhomogeneities act as par-
tially coherent (instead of incoherent) scatterers, and
the kernel Κ gives the optical properties of the inhomo-
geneity with respect to partially coherent scattering of
the waves.

a) The Optical Theorem for an Inhomogeneity and for the
Entire Scattering Volume

In transport theory, the extinction and scattering co-
efficients of a volume element (or the extinction and
scattering matrices for electromagnetic radiation) are
connected by a relationshipi30^ that expresses the law of
conservation of energy. An analogous relationship exists
also in the theory of multiple scattering of waves. It is
formulated as an optical theorem for the kernels Μ and
K. For a medium having no true absorption, it is written

effective inhomogeneity lies within the scattering med-
ium, and is surrounded by other inhomogeneities.

It is customary to characterize the wave scattering
by the volume of the medium in terms of the amplitudes
and cross-sections for coherent and partially coherent
scattering. The quantities (-l/4]r)Cf(e, s0)),
( l / k ) ( > 2 2

as
[so].

(4.2)

|<G(r2, T,))-(G'(

This relationship establishes the connection between the
imaginary components of the kernel M, the mean Green's
function <G>, and the kernel K.5)

The optical theorem (4.2) expresses the law of con-
servation of energy for an effective inhomogeneity. Its
right-hand side contains the mean Green's function,
rather than the Green's function of free space, as in the
optical theorem for the entire volume of the scattering
medium, which one gets by averaging Eq. (3.5) over the
ensemble. This distinction stems from the fact that each

g q
(-l/ko)Im(T(So, so)>, and , 8o)>|2are the
amplitude, the extinction cross section, and the differ-
ential coherent-scattering cross section. The difference

(4.3)

between the attenuation cross section and the total
coherent-scattering cross section is called the absorp-
tion cross section for coherent radiation.[46- It serves
to measure the fraction of the energy of the coherent
radiation that goes into partially coherent scattering, or
can also undergo true absorption.

Partially coherent scattering is characterized by its
differential cross section (47r)~2U(s, S0), where we have
denoted

U(s, s0) = ( | Τ (s, s,,) |»> - | <f (s, so)> P,
to be equal to the mean square of the scattering ampli-
tude fluctuations of the medium. According to the optical
theorem for the entire volume of a medium lacking true
absorption, the absorption cross section for coherent
radiation equals the total cross section for partially co-
herent scattering:

(4.4)

This equality means that the energy taken from the wave
incident on the volume goes into coherent and partially
coherent scattering.

If the medium shows true absorption, then one intro-
duces the cross section C t r for true absorption of the
total wave, along with the absorption cross section C for
coherent radiation. In this case, the optical theorem for
the entire volume of the medium is written in the form
of the equality

c=H + ctI, (4.5)

According to this, the energy extracted from the incident
wave goes not only into coherent and partially coherent
scattering, but also into true absorption.

b) The Method of Group Expansions for the Mats Operator
and the Intensity Operator. The Single-Group
Approximation

The pictorial quality of the Feynman diagram tech-
nique consists in the fact that it depicts each elementary
process of coherent and partially coherent scattering of
waves in a medium with the aid of diagrams (see,
e.g.,C5o:i). These diagrams are derived by expanding the
scattering operator Τ of the ensemble of particles and
its bilinear combination Τ χ Τ* in series in terms of the
number of scattering events. Then one averages these
over the ensemble by using the class distribution func-
tions. A further essential step is to transform from the
class distribution functions of the particles to their
correlation functions6' by formulas like (3.7). This

5)Rosenbaum [61] has also tried to derive such a relationship, as has
Rozenberg [32] for the special case of an infinite, planar thin layer.

6)Germogenova [62] has proposed a method of group integrals in prob-
lems of scattering of electromagnetic waves that is based on expanding
the Gibbs distribution for the ensemble of interacting particles in terms
of the correlation functions of Jursel (see [ 4 e ], p. 125).
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permits one to classify all the diagrams as being strongly
or weakly connected. Among these, the strongly connec-
ted diagrams that enter into the kernels Μ and Κ des-
cribe the scattering of waves by an individual effective
inhomogeneity. However, the weakly connected diagrams
portray the successive scattering of waves by several
inhomogeneities.

All of the diagrams constituting the kernels Μ and Κ
are classified into single-group and multigroup dia-
grams. The single group diagrams are constructed from
particles that belong to one correlation group, and which
are linked by one correlation function. These diagrams
depend linearly on the correlation functions of the par-
ticles, and they give contributions to the kernels Μ and
Κ that decline with increasing distance between their
arguments at the rate of the correlation functions of the
particles. Diagrams of this type decrease rapidly. i3i^
The multigroup diagrams contain several correlation
groups of particles, and these groups interact with one
another only by means of their mutual wave illumination.
Hence the contributions of multigroup diagrams to the
kernels Μ and Κ decline with increasing distance be-
tween their arguments as some integral power of the
Green's function of free space. Such diagrams are
slowly declining. Since the kernels Μ and Κ give the
optical properties of an effective inhomogeneity that is
correlated with the volume elements of transport theory,
then at first we can naturally keep in the kernels Μ and
Κ only the single-group, rapidly declining diagrams, and
reject the multigroup, slowly declining diagrams. Here
one gets the single-group approximation that
FinkerbergC 5 0 ] has treated.

In the single-group approximation, the kernels Μ and
Κ have the form

(4.6)

Here the gn(l ... n) are the correlation functions of the
particles having their centers at the points 1, ..., n, over
whose coordinates the integration is being performed.
The superscript gr indicates the group scattering opera-
tors, which are defined by

T l . . . n (Τι = *ι)> η = 1> 2> ··· ' denotes the scattering
operator of the system of η particles.

In the single-group approximation of (4.6), the kernels
Μ and Κ satisfy the conservation law in the form of an
optical theorem like Eq. (4.2), but with the Green's func-
tion Go of free space on the right-hand side of this re-
lationship instead of the mean Green's function (G).
This means that one neglects in the single-group ap-
proximation (4.6) the effect whereby an inhomogeneity
lies in an environment of other inhomogeneities when one
is expressing the law of conservation of energy for the
inhomogeneity.

The single-group approximation (4.6) is very general,
and it combines many other known approaches to the
theory of multiple scattering of waves. If the particles
are not correlated, then the single-group approximation
(4.6) leads to a model of independent scatterers, accord-
ing to which

Ml = ttgl{i), AT.-i.xiJg^l). ( 4 i 7 )

Foldy [ 4 7 : ι has treated this model in the case of a
scalar field for point, isotropic scatterers, and Gnedin
and Dolginov[59- have applied it for studying quantum-
mechanical scattering of a flux of particles by independ-
ent centers of force. For an electromagnetic field, the
model of independent scatterers of (4.7) is used in the
molecular optics of a rarefied gas, where the scatterers
are taken to be point dipoles.

The independent-scatterer model of (4.7) takes no
account of correlation of particles. The model of corre-
lated scatterers with weak mutual illumination is more
exact. If the effect of mutual illumination of the parti-
cles in each correlation group is small, then one can
expand the scattering operators of the groups in terms
of the number of scattering events. Here the formulas
of the single-group approximation (4.6) in the second
order of multiplicity of scattering take on the form

A',= h χ iTg,(l) + (ί, Χ (12),
(4.8)

Here additional terms of the third order of smallness
have been included on the right-hand side of the equa-
tion for Κχ. They cause the expressions (4.8) exactly to
satisfy an optical theorem of the type of (4.2) with the
Green's function of free space. The expressions (4.8)
are the basis of study of the molecular scattering of
x-rays in liquids and light in liquids near the critical
point, C4 8·5 1 '5 2]') and t n e v are also used in taking account
of the effect of electrostatic interaction on scattering of
electromagnetic waves by atmospheric aerosols. '-53·1

In the single-group approximation (4.6), the kernels
Μ and Κ decline with increasing distance between their
arguments at the rate of the correlation functions of the
particles, while in the independent-scatterer model of
(4.7), they have a scale of non-locality of the order of
the dimensions of the particles.

If the linear dimensions of the volume of the scatter-
ing medium are large in comparison with the inhomo-
geneity scale, then the kernel Mi(r, r ') of the mass
operator can be represented in the form ΛΊ(Γ - r') out-
side a narrow zone of the volume near the boundary that
has a width of the order of the inhomogeneity scale.
Analogously, the kernel Κχ(Γχ, rl; r 2 , r'2) of the intensity
operator can be written as jfi(R — R', r, r '), where
R = (Γχ + r2)/2, and r = Γχ - r 2 are the coordinate of the
center of gravity and the difference coordinate for the
points Γχ and r 2; R' and r ' pertain to the points r i and r 2.

Let the linear dimensions of the studied volume of the
scattering medium be small in comparison with the ex-
tinction length, and let a plane wave be incident on it.
We can take such a volume as the unit volume of trans-
port theory. If we neglect the change in the incident wave
throughout the chosen volume, its extinction and scatter-
ing cross sections have the form1-34-1 of Ω/U and
Ωί(β, So), where Ω is the size of the volume, and l/d
and f (s, So) denote

(4.9)

In these equations, Jfi(k0) is the Fourier image of the

7)Molecular light scattering in a liquid has been treated in [6:wi5] from
the standpoint of fluctuations of the dielectric constant of a continuous
scattering medium.
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kernel uii(r) as calculated on the k§ surface; 3Ί(Β, s0) is
the Fourier transform of the kernel Jfi(R, r, r') in the
difference coordinates r and r' as calculated on the kl
surface and integrated over the coordinates R of the
center of gravity. As must be the case, the extinction
and scattering cross sections of the volume element are
proportional to its size. The quantities l/d and f (β, s0)
are the extinction and scattering coefficients of the vol-
ume element. They satisfy the law of conservation of
energy in the form of the relationship that is customary
in transport theory.

As we see from the formulas of the single-group ap-
proximation (4.6), we can calculate the extinction and
scattering coefficients of the volume element of (4.9) if
we know the scattering amplitudes of a plane wave for a
system of one, two, etc., particles, and the correlation
functions of the particles. Here the contributions of the
correlations of the particles to the extinction and scat-
tering coefficients depend nonlinearly on the density of
particles. This leads to breakdown of the law of additiv-
ity of transverse cross sections'-1-1 for monochromatic
light, and it constitutes one of the manifestations of the
cooperative effects. For a medium that consists of
spherical particles, in calculating the extinction and
scattering coefficients of (4.9) for light for the volume
element, one can use Mie's so lut ion^ of the problem
of scattering of a plane electromagnetic wave by a
spherical particle, and also the results of Trinks1-86·1

and Germogenova'-87-' from studying the scattering of a
plane electromagnetic wave by two spherical particles.

The single-group approximation (4.6) has one defect
concerning the law of conservation of energy, as noted
by Frisch^6 8 ] and Howe. i6Bl This involves the fact that
the kernels Μ and Κ in the single-group approximation
satisfy an optical theorem of the type of (4.2) with the
Green's function of free space, rather than the mean
Green's function. Hence the solutions of the D and BS
equations with these values of the kernels Μ and Κ do not
satisfy the optical theorem for the entire volume of the
scattering medium exactly, but only approximately. The
reason for this defect in the single-group approximation
(4.6) for the kernels Μ and Κ was revealed in1-60-1.
Namely, this approximation is derived in the first order
of the expansion of the exact values of the kernels Μ and
Κ in terms of the small parameter of the group expan-
sion. [ 5 0 ] Here the optical theorem (4.2) for an inhomo-
geneity is also expanded in terms of the small param-
eter of the group expansion. This gives relationships
that play the role of the optical theorem of the first,
second, etc., orders. Among these, the first-order
optical theorem has the form of (4.2), but with the
Green's function of free space. Hence the solutions of
the D and BS equations with the single-group kernels Μ
and Κ satisfy the optical theorem for the entire volume
of the medium to the accuracy of the two-group terms.

The fact that the optical theorem for the entire vol-
ume of the scattering medium is satisfied only approxi-
mately in the single-group approximation (4.6) can be
understood provisionally as being a manifestation of
some effective "true absorption." The size of its cross
section Ceff,tr

 c a n b e obtained by using a relationship[7o:i

that connects the optical theorems for an inhomogeneity
and for the entire volume of the medium, and it equals

Ctff.tr

—i- f Im[g(r,, i^-Goi^-T^dh.d^Kdr,, r'v 'a, "·')d%d»r?D(rj, r;);

* (4.10)

Here S?(r, r') and •(n, r2) denote the mean Green's
function and the covariance of the field that satisfy the
D and BS equations with the kernels Μ and Κ in the
single-group approximation (4.6). One of the conditions
for applicability of the single-group approximation must
be that we can neglect the value of the effective "true
absorption" cross section of (4.10),

The formulas (4.6) of the single-group kernels Μ and
Κ pertain to a model of a discrete scattering medium.
One can deriveCso-1 analogous formulas of the single-
group approximation also for the model of a continuous
scattering medium. In contrast to (4.6), the right-hand
sides of these formulas contain the cumulants of the
potential of the medium and the products of values of
the Green's function of free space. If the potential of the
continuous medium fluctuates according to a Gaussian
law with a zero mean value, then the single-group ap-
proximation for the kernels Μ and Κ goes over into the
approximation of BourretC54] and the ladder approxima-
tion/"""[56]

Whenever the particles are weak scatterers, there is
a simple relationship between the single-group kernels
Μ and Κ in the discrete and continuous models of the
scattering medium. It is established by expanding the
scattering operators of the particles in the formulas of
(4.6) in a Born series of perturbation theory in powers
of their potential, and by using the formulas'^ for ex-
pressing the cumulants of the potential of the discrete
medium in terms of the correlation functions of the par-
ticles.

5. COHERENT AND PARTIALLY COHERENT
SCATTERING OF WAVES IN THE FRAUNHOFER
APPROXIMATION

Effective inhomogeneities having the kernels Μ and Κ
in the single-group approximation (4.6) are spatially
localized. There is a physically graphic approximate
method t ? 1 ] of treating the coherent and partially coher-
ent scattering of waves in a medium containing such
inhomogeneities. This method is based on the assump-
tion that the main contribution to the scattering of the
waves comes from the long-range configurations of the
inhomogeneities, in which they lie in one another's
Fraunhofer zone. For coherent scattering, the Fraun-
hofer approximation is equivalent to neglecting the
spatial dispersion of the waves, and for partially coher-
ent scattering, it is equivalent to going over to transport
theory.8'

a) Neglect of Spatial Dispersion of Waves. The Van de
Hulst Approximation

The D equation in the Fraunhofer approximation re-
duces to the Helmholtz equation with the effective com-
plex wave number ki, whose square equals

k't = *;-#,№,)• (5.1)

If the scattering medium is infinite, and a point source
lies at the origin, then the mean Green's function
in the Fraunhofer approximation equals

(5.2)
4sir

Under the condition

8)A derivation is proposed in [72·73] of the transport equation from the
D and BS equations that doesn't use the Fraunhofer approximation.
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(5.3)

the effective complex refractive index of the medium
differs but little from unity. This permits one in calcu-
lating ki to take the approximate square root in the
right-hand side of Eq. (5.1). Then, two times the imag-
inary component of the effective complex wave number
equals the extinction coefficient 1/d of the volume ele-
ment, which is equal to (4.9). The quantity d is called
the extinction length. The mean Green's function (5.2) in
the Fraunhofer approximation leads to an exponentially
declining intensity of the mean field with a distance that
corresponds to Bouguer's law [ 2 ' 2 s : i in transport theory.

The problem of the effective refractive index of the
scattering medium, the effective acting field, and the
effective dielectric-constant tensor is one of the prin-
cipal problems in the theory of multiple scattering of
waves, and a large number of studies has been devoted
to solving it. In molecular optics, this problem has been
studied by Ewaldl-74-1 and Oseen1-75-1 (for their studies,
see the book by Born and Wolf1-76·1). They have estab-
lished an "extinction theorem" that leads to the Lorentz-
Lorenz formula. Sharapov'-77 has applied the Ewald
method for calculating the interference of light in thin
plates. Debye'-78-1 has introduced the effective dielectric
constant of a solution of low concentration. Maxwell
Garnett'-79-1 (see also1-80-1) has extended the Lorentz-
Lorenz formula from molecular optics to the optics of
colloidal solutions. Rozenberg has studied the

optical properties of a two-dimensional colloidal coating
that has a nature different from the underlying medium.
The cited studies, beginning with Ewald and Oseen, have
treated cases of a medium showing dipole (Rayleigh)
scattering by the particles. Rozenberg ί 3^ has shown
that the effective complex refractive index of the scat-
tering medium can also be introduced in the case in
which each particle of the medium is characterized by
some scattering matrix. Finkel'berg [ 4 3 3 has derived a
generalized variant of the Lorentz-Lorenz formula
(more exactly, that of Maxwell Garnett) for the effective
static dielectric constant of an emulsion with account
taken on the right-hand side of the formula of the terms
that are quadratic in the density of drops.8 '

The conditions for applicability of the Fraunhofer ap-
proximation for solving the D equation with the single-
group kernel Μ impose limitations on the properties of
the scattering medium (and on the distance traveled by
the wave or the dimensions of the volume of the medium).
In order to elucidate these conditions, let us examine
separately the two cases in which the scattering medium
is infinite, or it occupies a half-space or a plane layer.

In an infinite scattering medium, the exact solu-
tion1-33 'B0^ of the D equation for the mean Green's func-
tion leads to the dispersion equation

k2 = kl — aMi(k). (5.4)

This equation generally has several roots. However, let
us assume the derivative of the Fourier transform of the
kernel Μ with respect to the square of the wave number
to be small:

(5.5)

Then the main root is k l 5 which is closest to the wave

number k0 of free space. i B 0 1 Under the condition (5.5),
the square of this root kx is approximately equal to its
value (5.1) in the Fraunhofer approximation. When we
use only one root kx of the dispersion equation (5.4) as
calculated in the Fraunhofer approximation (5.1), this
implies neglect of the spatial dispersion of the waves.

According to the condition (5.5) for neglecting spatial
dispersion of the waves, the Fourier image of the single-
group kernel Μ must be a sufficiently smooth function of
the wave vector. This requirement can be satisfied,
since the kernel Μ of the single-group approximation
declines rapidly as the distance between its arguments
is increased. One can establish the concrete value of the
conditions for neglecting spatial dispersion of the waves
with the example of a continuous scattering medium
having the kernel Μ in the Bourret i 5 4^ approximation
with an exponential cumulant of the potential. Here the
solution of the D equation found by Tatarskii and
Gertsenshteih1-56'83^ implies that the dispersion equation
(5.4) has two roots ki and k2. The condition (5.5) of
smallness of the derivative of the Fourier image of the
kernel Μ takes on the form

(5.5a)

Here I is the effective-inhomogeneity scale, for fine-
scale inhomogeneities (k.ol <C 1) and coarse-scale in-
homogeneities (koi 5s> 1). According to the inequality
(5.5a), the inhomogeneity scale / is small in comparison
with the extinction length d. Under this condition, the
wave having the wave number k2 is exponentially small
in intensity at a distance r from the source that exceeds
the inhomogeneity scale /, when r 2> /.

Whenever the scattering medium has a boundary, the
transition from the D equation to the Helmholtz equation
with an effective complex refractive index faces the
problem of the boundary conditions for the mean field. '-84-1

This problem admits a simple solution if the effective
complex refractive index of the medium differs little
from unity. Let us assume a continuous scattering med-
ium occupying a half-space, with a plane wave incident
on its boundary. Then, according to the exact solution of
the D equation with the kernel Μ in the Bourret approxi-
mation that was obtained by using [ 8 5 ], 1 0 > the refracted
mean field in the medium is equal to the sum of two
waves that propagate from the separation boundary.
Under the condition (5.5a) that the derivative of the
Fourier image of the kernel Μ should be small, one of
these refracted waves is exponentially small in intensity
outside a narrow zone near the boundary zone near the
boundary whose width is of the order of the inhomogeneity
scale /. Under the additional condition (5.3) of smallness
of the deviation of the effective complex refractive index
from unity, the other refracted wave has the same form
as the solution of the Helmholtz equation having the same
effective refractive index in the geometrical-optics ap-
proximation with neglect of reflection and refraction of
the waves at the separation boundary. Here the effect of
the medium is reduced to an additional complex phase
shift of the wave. Van de Hulst [ 4 6 : i has used this case of
the geometrical-optics approximation together with the

9)See the review of Ryzhov and Tamoikin [82] on the effective dielectric

constant of a continuous scattering medium.

10)The problem of the mean field in a medium having a separation boun-
dary has been treated by many authors (see, e.g., [3 2 > 5 9 '7 6]). Exact
solutions of the D equation for a continuous medium in the form of a
plane layer or sphere with the kernel Μ in the Bourret approximation
have been found in [84>86>87]. The D equation for a plane layer has
been brought in [8S] into a form in which it is easily solved.
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Huyghens principle for studying attenuation and anomal-
ous diffraction of light by large spherical particles
having a complex refractive index close to unity.

The Van de Hulst approximation permits a simple
solution of the problem of coherent scattering of a plane
wave by a bounded volume of a scattering medium. If
the volume has the shape of a sphere whose radius L is
large in comparison with the extinction length d, L » d,
then its absorption cross-section for coherent radiation
will approach the geometric cross-section ττΐΛ This
means that such an optically deep sphere will behave
like a black body. [ 4 e J In the black-body limit, the ex-
tinction cross-section and the total coherent-scattering
cross-section are 2ffL2 and JTL2.

If the scattering medium is weakly inhomogeneous on
the average on the scale of the wavelength and the effec-
tive inhomogeneity, then one can apply Kravtsov's1-88-1

geometrical-optics method for media having spatial dis-
persion for solving the D equation.

b) Distinguishing the Effects of the Distribution of
Inhomogeneities in the Close- and Long-Range Regions
in Partially Coherent Scattering

In a medium whose effective inhomogeneities are
given by the kernels Μ and Κ of the single-group ap-
proximation (4.6), the partially coherent scattering of
waves is described by the solution of the BS equation for
the covariance of the field Φ(Ε, τ), where R and r are
the coordinates of the center of gravity and the differ-
ence coordinates of the points of observation. If the
scattering medium occupies a bounded volume, it suf-
fices to solve this equation within the medium, where-
upon the covariance of the field outside the medium is
found by quadratures. Let us denote by Φ0(ΙΙ, r) the in-
homogeneous term of the BS equation. It constitutes the
coherent component of the covariance of the field, and it
is expressed in terms of the mean field, which is calcu-
lated in the van de Hulst approximation in the problem
of a plane wave incident on the scattering volume. One
calculates the average Green's function s?(r, r') in the
same approximation for the radiation propagating in and
exiting from the medium.

The integral term of the BS equation for the co-
variance of the field within the medium contains the
bilinear combination of the average Green's function. It
describes the propagation of mutual coherence of the
field between successive events of partially coherent
scattering by the inhomogeneities of the medium. If the
inhomogeneities lie in one another's long-range zone,
then the bilinear combination of the average Green's
function is represented by a Fraunhofer expansion in the
form of Aiken11893:

[ (£) { & ) ( £ ) ]
(5.6)

Here the unit vector s lies along the vector R. The prin-
cipal term of this expansion gives the Fraunhofer ap-
proximation. The remaining terms constitute the Fresnel
corrections. Let us transform in the integral term of the
BS equation to the Fraunhofer approximation for the bi-

linear combination of the average Green's function, and
also neglect the change in the covariance of the field
Φ(Ε. r) as a function of the coordinates of the center of
gravity R on the effective-inhomogeneity scale. Conse-
quently, the covariance of the field within the medium
will admit a representation in the ^ ^

Φ (R, r ) = Φ 0 (R, r) + f e<'">"/s (R, s) d?-&; (5.7)

">Rozenberg [26] has derived a relationship of the type found by Dolin
for a partially coherent wave field by spatially averaging the mutual-
coherence function of the field over the coordinates of the center of
gravity of the observation points.

Here IS(R, s) denotes the radiance of the scattered
radiation. It satisfies the transport equation in integral
form with the known inhomogeneous term that corre-
sponds to single partially coherent scattering of the
covariance Φοφ, r) of the mean field, and with the ex-
tinction coefficient 1/& and scattering coefficient f(s, s0)
of the volume element equal to (4.9).

Equation (5.7) shows that the correlation function of
the field within the medium is expressed in terms of the
radiance of the scattered radiation by a relationship like
that found by Dolin.[eo] u >

The problem is not obvious of the conditions for ap-
plicability of the Fraunhofer approximation for multiple,
partially coherent scattering of waves, in which the
mutual coherence of the scattered field in each elemen-
tary scattering event by an effective inhomogeneity suc-
ceeds in acquiring its asymptotic form before the next
scattering event. According to Gnedin and Dolginov[5e:i

and Borovoi,Cw] these conditions for an ensemble of
uncorrelated particles reduce to the requirement that
the amplitude of the scattering by an isolated particle
should be small in comparison with the mean distance
between particles. Ryazanov'-92-' assumes for the same
type of ensemble that the amplitude of scattering by an
isolated particle is small in comparison with the extinc-
tion length. According to Watson,[7] who treated an en-
semble of correlated electrons in a plasma, the wave-
length should be small in comparison with the extinction
length.

Elucidation of the conditions for applicability of the
Fraunhofer approximation for treating partially coherent
scattering of waves is reduced to estimating the contri-
bution of the Fresnel corrections of the Aiketi expansion
(5.6) to the solution of the BS equation. The size of this
contribution determines the accuracy of the Fraunhofer
approximation, which can be estimated, e.g., from the
error of calculating in the Fraunhofer approximation the
differential cross-section for incoherent scattering by
the volume of the medium.

In every sequence of events of partially coherent
scattering by inhomogeneities, one can distinguish the
effects of the distribution of inhomogeneities in the
close- and long-range regions with respect to one
another by using some parameter Ro of the scale of the
close-range region. An estimate'-93] shows that the size
of the effect of the close-range region of the inhomo-
geneity distribution is proportional to the ratio R0/d of
the scale Ro of this region to the extinction length d. One
uses the Fraunhofer approximation for the bilinear com-
bination of the average Green's function for calculating
the size of this effect on the long-range region of the
inhomogeneity distribution, Here one drops those
Fresnel corrections in the Aiken expansion (5.6) whose
relative contribution is of the order of the largest of the
three quantities: kor

3/Ro, r2/Rod, or rVR2*

Neglecting the effect of the close-range region of the
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inhomogeneity distribution and the Fresnel corrections
to the effect of the long-range region transforms the
partially coherent into incoherent scattering, and it im-
poses upper and lower bounds on the scale Ro of the
close-range region. In turn, this leads to restrictions
on the scattering medium.

The final solution of the problem of the accuracy of
the Fraunhofer approximation for partially coherent
scattering can be found by estimating the resolvent of
the BS equation within the scattering medium. One can
make such an estimate for an optically deep volume of a
medium12) by using the solution of the homogeneous BS
equation in an infinite medium[94-1 and the theorem of
Goursat on the simple pole of the resolvent.'-95-1 Let us
take an optically deep volume of a discrete scattering
medium in the form of a sphere of radius L, whose par-
ticles are uncorrelated and are weak scatterers. More-
over, let upper bounds exist for the ratios Koro (of-the
radius of the particles of the particles to the wavelength)
and L/d (of the dimension L of the volume of the medium
to the extinction length d). Then the relative error of
applying the Fraunhofer approximation for calculating
the differential cross-section for partially coherent
scattering by the volume of the medium proves to ap-
proach zero at the rate of the ratios ro/d13' and Γ ^ φ 0

of the radius r 0 of the particles to the extinction length d
and to the spatial-inhomogeneity scale ί φ of the coher-
ent component Φο(ΙΙ, r) of the covariance of the field as
a function of the coordinates R of the center of gravity.
At fixed ratios ro/d and το/ΐ·φο, the accuracy of the
Fraunhofer approximation declines with increasing k o r o

and L/d, according to the resolvent method1-93-' of esti-
mating it.

The representation (5,7) of the covariance of the field
within the scattering medium in terms of the radiance
establishes the nexus between the theory of multiple
scattering of scalar waves and the classical transport
theory. The derivation of the transport equation for
polarized radiation from the multiple-scattering theory
of electromagnetic waves has been treated in part by
Rozenberg[32^ in the case of a dispersed medium, and in
greater detail by Watson1-7-1 for a plasma with account
taken of electron correlation; by Dolginov, Gnedin, and
Silant'ev1-96-' for a model of independent scatterers; and
by Apresyan'-97-' in a continuous scattering medium with
account taken of interconversion of longitudinal and
transverse waves.

An unstudied problem of special interest is that of the
applicability of transport theory for electromagnetic
radiation in a discrete scattering medium having close-
packed particles. ω This is realized, e.g., in powders,
minerals, biological objects, snow, and also under con-
ditions of critical opalescence. A peculiarity of this
case is that the particles lie in a highly inhomogeneous
field (in the non-wave zone), and one must take account

12)We note that the total incoherent scattering cross-section of an opti-
cally deep volume of a medium in the form of a sphere of radius L
(L > d) as calculated in the Fraunhofer approximation approaches
the geometric cross-section vL2 of the sphere, according to the approx-
imation of van de Hulst for coherent scattering and the optical theorem
(4.4) for the scattering volume.

13'According to B. I. Stepanov (see [']), the condition ro/d ^ 1 renders
the transport equation inapplicable, e.g., to strongly absorbing powders.
Yet in Rozenberg's opinion, ['>"] the transport equation can remain
true even in this case if the quantities entering into it are subjected to
a special averaging.

of the longitudinal component of the field of the scattered
wave, while mutual-shielding effects of the particles are
also very substantial.

c) Estimating the Effective "True Absorption"

The effective "true absorption" cross-section Ceff t r ,
which is equal to (4.10), was introduced in connection'
with the defect of the single-group approximation (4.6)
concerning the law of conservation of energy (see Sec.
4, b). It is expressed in terms of the difference between
the imaginary components of the average Green's func-
tion and the Green's function of free space. When divided
by the wave number in free space, this difference is of
the order of the deviation of the effective refractive index
of the scattering medium from unity. Let us take an
optically deep volume of a discrete medium in the form
of a sphere of radius L whose particles are uncorrelated
and are weak scatterers. Then a more detailed estimate
shows that the ratio of the cross-section Ceff tr f ° r

effective "true absorption" to the total cross-section
jrL2for incoherent scattering by the volume approaches
zero at the rate of the deviation of the effective refrac-
tive index from unity, provided that upper bounds exist
for the ratios k or o (of the radius of the particles to the
wavelength) and L/d (of the dimension L of the volume to
the extinction length d). This implies that the conditions
for neglecting the effective "true absorption" are of the
same nature as those for applying the Fraunhofer ap-
proximation for partially coherent scattering.

d) Scattering Medium Having Large-Scale Inhomogeneities

Whenever the scale of the inhomogeneities of a dis-
crete scattering medium, as defined by the dimensions
of its particles and the scale of their correlations, is
large in comparison with the wavelength, one can start
with the parabolic equation of Leontovich'-98-' in treating
the partially coherent scattering of waves.

The parabolic equation is an approximate substitute
for the Helmholtz equation (3.2), and it has the form of
a non-steady-state Schrodinger equation (see the re-
view '-21-'):

ρ, t)]u(p, t). (5.8)

Here u(p, t) is the complex amplitude of the field; the
"time" variable t is equal to t = x/2k0, where χ is the
longitudinal coordinate with respect to the initial direc-
tion of propagation of the wave; ρ represents the trans-
verse coordinates; Δ is the Laplacian in the transverse
coordinates; and V(p, t) is the potential of the scattering
medium, which proves to be a random function of the
transverse coordinates ρ and the "time" t. The problem
is set up for the parabolic equation (5.8) with "initial"
data for the complex amplitude of the field.

Chernov and Dolin (see the reviewC 2 1 ]) first applied
the parabolic equation for studying the propagation of
short waves in a continuous scattering medium. By
starting with this equation and applying asymptotic per-
turbation theory, they derived an equation for the mutual
transverse coherence function of the complex amplitude
of the field that coincides in its spectral representation
with the transport equation in the small-angle approxi-
mation. [ 9 9 ' 1 0 0- 1 Transport theory in the small-angle ap-
proximation is simply related to the Green's function
method and the Feynman diagram technique.

Let us denote by γ(Ρι, P2, t) = u(Pi, t)u*(p2, t) the
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bilinear combination of the complex amplitude of the
field. It satisfies a Liouville equation (see, e.g., [ 1 0 l ]).
By starting with the Liouville equation, we can write a
Dyson-type equation (a tensor D equation) with a mass
operator (a tensor kernel M) in a single-group approxi-
mation like (4.6). In cases of models^5^ of a discrete or
continuous scattering medium, we can write an equation
for the approximate value of the mutual transverse
coherence function (y(pi, Pz, t)) of the complex ampli-
tude of the field, equivalently, for the density matrix. t l 0

As always, the angle brackets denote averaging over the
ensemble of fluctuations of the potential of the medium.

Let us assume that the medium is continuous, and its
potential V(p, t) fluctuates according to a Gaussian law,
homogeneously in the space ρ and the "time" t, and is
delta-correlated in the "time" t. Then the equation for
the density matrix of the complex amplitude of the field
derived by Chernov and Dolin acquires the form of a
tensor D equation with the tensor kernel Μ in an ap-
proximation of the Bourret type.C54:i Tatar sku [ 2 2 : i was
able to use the Furutsu-Novikov formula to show that
this equation is exact under the given assumption that
the potential of the medium is delta-correlated.

Tatarskfi's result has stimulated an entire series of
studies on propagation of short waves in a randomly -
inhomogeneous medium that start with the parabolic
equation. On the one hand, the approximation that as-
sumes delta-correlation of the potential of the medium
has been widely developed by the studies of Klyatskin
and Tatarskii (see their reviews £1O2~1O43). On the other
hand, Papanicolacu^23^ has taken as a basis his joint
studies with HershC l 0 5 ) 1 0 6 ; i and has used the method of
time-averaging (see also Papanicolaou and Keller'-16-1 on
the two-time method of averaging) in order to obviate
the assumption that the potential of the medium is delta-
correlated in "time". This has also been done

in[24,107-W9] b y t h e m a j O r a n t - p r o c e s s method. Closed
approximate equations were derived for the density ma-
trix of the complex amplitude of the field with a rigorous
estimate of their limits of applicability.

According to'-107-', such an approximate equation for
the density matrix in the case of an arbitrary fluctuation
law of the potential of the medium in space and in "time"
has the form of a tensor D equation with a tensor kernel
Μ in a single-group approximation of the type of '-50·1 for
a continuous-medium model. With the aid of this equa-
tion, while using the relationship mentioned in Sec. 4, b
between the single-group approximations for the mass
operator in the discrete and continuous models of the
medium, one can study the conditions for applicability of
transport theory in the small-angle approximation from
the standpoint of the theory of multiple scattering of
waves in a discrete medium that consists of particles
that are large in comparison with the wavelength.

According to 1 1 2 4 ' 1 0 8 ' 1 0 9- 1, the applicability of transport
theory in the small-angle approximation as based on the
parabolic equation for a continuous medium having
Gaussian large-scale fluctuations of the potential is
limited by the condition that the ratio of the effective -
inhomogeneity scale to the extinction length should be
small enough, while an upper bound should exist for the
ratio of the distance traversed by the wave to the extinc-
tion length.

From the quantum-mechanical standpoint, the
Liouville equation that follows from the Schrodinger

equation (5.8) describes the non-steady-state, partially
coherent scattering of a de Broglie wave packet in a
randomly-variable medium. [ 1 O 9 '1 1 O3 in this problem, the
assumption of delta-correlation of the potential of the
medium with respect to time implies [109: l that the fluc-
tuations of the potential are rapid, i.e., ŵ to <fC 1, where
wj is the frequency of the de Broglie wave in free space
with a wavelength of the order of the spatial scale / of
the potential fluctuations, and t'o is the time scale of the
potential fluctuations.14' At the opposite limit of slow
(or quasistatic in the sense of Chernov'-111-1) potential
fluctuations where the condition[109:l wjt0 S> 1 is satis-
fied, one obtains a Boltzmann kinetic equation for the
density matrix of the wave packet in the mixed coordin-
ate-momentum representation of Wigner. [1123 P e i e r l s ^
has applied this equation in studying electron scattering
by crystal-lattice impurities.

6. ON THE APPLICABILITY OF THE SINGLE-GROUP
APPROXIMATION

The problem of the conditions for applicability of the
single-group approximation (4.6) for the kernels Μ and
Κ is the most difficult one in the statistical basis of
transport theory. It is currently amenable to study only
by carrying out an asymptotic expansion in a small
parameter.

There are several approaches 1 1 3 3 ' 5 0 ' 5 6 ' 5 9 ' 7 0 ' 1 1 3 ' 1 1 4 ] to
studying the conditions of applicability of the single-
group approximation for the kernels Μ and K. They all
ultimately boil down to comparing the magnitudes of the
Feynman diagrams that are dropped in the single-group
approximation with those that are taken into account.
One of the approaches'-70-1 consists in constructing trans-
formed perturbation-theory series. These series, when
written for the exact value of the mean field (ψ(τ)) and
the covariance of the field (Ψ(ΓΙ)Φ*(ΓΖ)) have the follow-
ing appearance in symbolic form:

ίΠ' (6.2)

Here the principal terms φ(τ) and Φ(Γ 1 ? r2) are obtained
by solving the D and BS equations with the kernels Μ
and Κ in the single-group approximation, the rest of the
terms are correction terms, and μ is the small param-
eter in powers of which the correction terms are
ordered. In a discrete medium, it is convenient to take
μ to be the small parameter of the expansion in terms
of multiplicity of scattering by the particles of the
medium.

The correction terms of the transformed series (6.1)
and (6.2) are expressed in terms of the multigroup,
slowly declining diagrams of the exact values of the
kernels Μ and Κ that are not taken into account in the
single-group approximation. We can estimate those
terms by assigning some quadratic functional of the
average field and a linear functional of the covariance of
the field. In other words, the correction terms of the
series (6.1) and (6.2) are estimated by using certain
square-law detectors t2 6-2 7] of coherent and partially
coherent radiation. If the scattering medium occupies a
limited volume upon which a plane wave is incident, then
one can arrange the detectors in the remote zone of the

14)The variable t = (h/2m) t', where t ' is the time, h is Planck's constant,
and m is the mass of the particle being scattered.
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volume. Here it is convenient to select for coherent
scattering a detector that measures the absorption
cross-section C for coherent radiation.

There are two fundamentally different types of detec-
tors for partially coherent scattering: 1) those that
average over scattering directions, and 2) those that
don't. The first type includes a detector that measures
the total cross-section Η of partially coherent scatter-
ing, and the second type includes one that measures the
differential cross-section U(S, So) of partially coherent
scattering. The fundamental distinction between the two
cited types of detectors of partially coherent radiation
stems from the fact that the contribution of the correc-
tion terms of the series in (6.2) to the differential cross
section for partially coherent scattering can vary rapidly
as a function of the scattering direction. Here it is not
ruled out that these contributions for certain scattering
directions are so large that they must not be neglected.

a) Energy Equivalence of the Conditions of Applicability
of the Single-Group Approximation for Coherent and
Partially Coherent Scattering

According to the optical theorem (4.4) for the entire
volume of a scattering medium showing no true absorp-
tion, the exact values of the absorption cross section C
for coherent radiation and the total cross section Η for
partially coherent radiation are equal to one another.
The analogous cross sections that are found by solving
the D and BS equations with the single-group kernels Μ
and K, which we shall designate by Cj and Hi, are inter-
related by an equation of the type of (4.5). In this equa-
tion, we must replace the cross section C^r for true
absorption on the right-hand side by the cross section
Ceff.tr ^ 0 Γ effective "true absorption". Subtracting these
two equations gives

the idea that the conditions for applicability of the sin
single-group approximation for partially coherent scat-
tering may prove to be the same as for coherent scatter-
ing. These ideas have been confirmed by Gnedin and
Dolginov, [-59-! who say that the conditions for applicability
of the D and BS equations with the kernels Μ and Κ found
in the model (4.7) of independent scatterers are the same.

Let us estimate the relative error 6C/Ci of calculat-
ing the absorption cross section for coherent radiation
in the single-group approximation for a volume of a dis-
crete scattering medium in the shape of a sphere of
radius L that consists of independent Rayleigh scatter-
ers. At the same time, we shall estimate the relative
values Ceff t r /Ci of effective "true absorption." Here
we expand the quantities 6C and Cgff^r in series in
multiplicity of scattering. The volume of the scattering
medium is considered to be deep, so that Ci « ΉΙ,Ζ. The
absolute error 6C is of the fourth order of smallness in
terms of multiplicity of scattering, and the relative
error 6C/Ci is equal in order of magnitude to

SC = 6H, (6.3)

Here we have denoted 6C = C - Ci + Ceff,tr>
 a n d δ Η = Η

— Ηχ. Eq. (6.3) implies coincidence of the absolute errors
6C and 6H in calculating the absorption cross-section
for coherent radiation and the total cross section of par-
tially coherent scattering by using the D and BS equations
with the single-group kernels Μ and K. This expresses
the energetic equivalence of the conditions of appli-
cability of these equations.16'

In line with Sec. 4, b, we must impose the requirement
for the applicability of the BS equation with the single-
group kernels Μ and Κ that the effective "true absorp-
tion" cross section Ceff.tr should be small in comparison
with the absorption cross section Ci for coherent radia-
tion or with the total incoherent-scattering cross section
Hi as calculated in the single-group approximation. Here
the requirements on the quantities Ci and Hi practically
coincide. This leads to energetic equivalence of the con-
ditions of applicability of the D and BS equations with
the single-group kernels Μ and Κ also in terms of the
relative errors of calculating the absorption cross-sec-
tion for coherent radiation and the total cross section for
partially coherent scattering.

When one uses a detector of partially coherent radia-
tion that averages over a rather broad range of scatter-
ing directions, the stated energetic equivalence favors

gc (6.4)

Here d is the extinction length in the model of indepen-
dent Rayleigh scatterers. The expansion of the cross
section Ceff,tr for effective "true absorption" in terms
of multiplicity of scattering begins with terms of the
third order of smallness. When the terms of the fourth
order of smallness are also taken into account, its rela-
tive value Ceff.tr/Ci is equal in order of magnitude to

(6.5)

The relative error in (6.4) of calculating the absorp-
tion cross section for coherent radiation in the single-
group approximation approaches zero at the rate of the
ratio l/kod of the wavelength to the extinction length d,
if there is an upper bound to the ratio L/d of the dimen-
sions L of the volume of the medium to the extinction
length d. Gnedin and Dolginovl-59] have given16' the re-
quirement that the wavelength should be small in com-
parison with the extinction length as the condition for
applicability of the D and BS equations with the kernels
Μ and Κ taken in the independent-scatterer model of
(4.7). The relative value (6.5) of the effective "true ab-
sorption" approaches zero at the rate of the deviation of
the effective refractive index of the scattering medium
from unity when an upper bound exists for the ratio of
the dimensions of the volume of the medium to the ex-
tinction length. This condition is more rigid that the one
under which the relative error (6.4) is small for calcu-
lating the absorption cross section for cohered radiation.

b) The Effect of Cyclic Diagrams for Partially Coherent
Scattering in the Backward Direction

One gets a completely different result in estimating
the accuracy of the BS equation with the single-group
kernels Μ and Κ in terms of the error of calculating the
differential cross section for partially coherent scatter-
ing by the volume of the medium than When one estimates
it from the error of calculating the total cross section.
This involves the fact that the expression for the kernel

15)Here we must make the qualification that the error of applying the D
equation in the single-group approximation is actually equal to the
difference C — C1 ; rather than 5C.

16)They give in their study a typological classification of a broad class
of diagrams for partially coherent scattering, and estimate them in
order of magnitude.

1 7 'In connection with this study by de Wolf, see the articles of
Vinogradov, Kravtsov, and Tatarskn. ["··"»]
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Κ in the single-group approximation takes no account of
abroad class of cyclic^115-1 multigroup, slowly-declining
diagrams that contribute substantially to the partially
coherent scattering in the backward direction. Gnedin
and Dolginov1-59-1 have noted such a role of the cyclic
diagrams in phenomena of quantum-mechanical scattering
of a flux of particles by independent force centers.
Roffine and de Wolf[1ιβ] have noted it in scattering of
electromagnetic waves by a turbulent plasma; Watson '-7-1

has done so in scattering of electromagnetic waves by
pairwise-correlated electrons of a plasma; and
de WolfCll7]17) has done so in the scattering of short
electromagnetic waves by a turbulent medium (Fig. 1, 2).

Figure 1 illustrates the cyclic diagrams. In this dia-
gram, the two crosses joined by a dotted line depict the
intensity operator Ki of the single-group approximation,
and the horizontal solid lines of the upper and lower
rows represent the average Green's function ^that
satisfies the D equation with the mass operator Mi of
the single-group approximation, and its complex-conju-
gate S7*. The linking of the crosses of the upper and
lower rows is carried out by the cyclic substitution
written to the right of the diagram. Upon assigning to
the number η the values η = 2, 3, ..., we get the whole
set of cyclic diagrams.

The cyclic diagrams, just like all the others that fig-
ure in the intensity operator, are strongly connected.
Yet they have the property of being equivalent to weakly
connected diagrams in a certain sense. This equivalence
is established by adding to the cyclic diagram the outer
horizontal lines 37 and 37*. This gives diagram (a) in
Fig. 2, where we have set η = 2 for simplicity. By using
the properties of reciprocity for the average Green's
function $ and the kernel Ki, we can perform an inver-
sion of the upper or lower rows. In such a transforma-
tion, e.g., of the upper row, the lower row remains fixed,
while the upper row is rotated by 180° in a plane per-
pendicular to the plane of the drawing without breaking
the dotted lines. Thereupon the diagram of Fig. 2a is
transformed into Fig. 2b.

Let us denote by (47r)*2UCyCl(s. 8o) the contribution of
the cyclic diagrams to the differential cross-section for
partially coherent scattering by the volume of the med-
ium. In the perturbation-theory approximation, this
contribution for the backward scattering direction,
s = -So, has the single form[7'115-'

( — βο, s0) = «?;(— s0, 8»), (6.6)

Here Ui(s, s0) is the differential cross-section for par-
tially coherent scattering as calculated by using the BS

equation with the single-group kernels Μ and Κ after the
single partially coherent scattering has been subtracted.

Equation (6.6) implies that the BS equation with the
single-group kernels Μ and Κ gives too low a value for
the partially coherent scattering cross section in the
backward scattering direction. This defect of the single-
group BS equation is fully revealed in a one-dimensional
model of a scattering medium, where the wave is scat-
tered only forward or backward in each elementary scat-
tering event. As Gazaryan1-15-1 and the authors of [1β~ ιβ]

have shown, the mean of the square of the modulus of
the reflection coefficient of a layer of a one-dimensional
scattering medium approaches unity exponentially, ac-
cording to the solution of the Helmholtz equation, as the
thickness of the layer is increased. However, it in-
creases as a power function according to the solution of
the BS equation with the single-group kernels Μ and Κ
and the solution[14:i of the transport equation.

In the three-dimensional scattering problem, the total
contribution of all the cyclic diagrams to the differential
partially-coherent scattering cross section varies
rapidly as a function of the scattering direction.[11S]

Let the effective inhomogeneities of the scattering med-
ium for the kernels Μ and Κ in the single-group approxi-
mation be small in scale. Then, with a deviation by the
angle θ from the backward scattering direction, the rela-
tive contribution of the cyclic diagrams to the differen-
tial partially-coherent scattering cross section of the
volume of a medium whose dimension L is small in
comparison with the extinction length d, L Ĉ d, will de-
cline as l/(0koL). That is, it is small outside a cone of
backward scattering directions having a width of the
order of the ratio of the wavelength to the dimensions of
the scattering volume. The relative contribution of the
cyclic diagrams to the total partially-coherent scatter-
ing cross-section of a volume of small optical depth is
estimated to be of the order of the ratio l/k0L of the
wavelength to the dimensions of the volume. If the scat-
tering medium occupies a half-space, and a plane wave
is normally incident on its boundary, then the relative
contribution of the cyclic diagrams to the flux density of
scattered radiation energy will decline as l/(0kod)2 upon
deviation from the backward scattering direction by the
angle Θ. That is, it is small outside a cone of backward
scattering directions of width of the order of the ratio of
the wavelength to the extinction length. The relative
contribution of the cyclic diagrams to the total flux of
energy of the radiation scattered by the half-space is of
the order of (kod)~2ln(kod), and it approaches zero at
the rate of the ratio of the wavelength to the extinction
length.

These results of estimating the relative contribution
of the cyclic diagrams to the differential and the total
cross section of partially coherent scattering by a vol-
ume of a medium favor the idea that, when one uses a
detector of partially coherent radiation that averages
over a rather broad range of scattering directions, the
effect in the three-dimensional multiple-scattering prob-
lem of the multigroup diagrams of the kernels Μ and Κ
to the partially coherent scattering will be just as sub-
stantial as in the one-dimensional scattering problem.

7. CONCLUSION

The method presented in this review of group expan-
sions of the optical properties of an effective inhomo-
geneity of a random medium in multiple scattering of
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waves, which leads to the photometric theory of radia-
tion transport, is very general in nature, and it permits
one to treat a large number of phenomena in a unified
way. Thus, e.g., Bourret t 5 4 ] has treated by this method
the propagation of waves and molecular diffusion in a
turbulent medium. Kubo,[12o:] who has essentially used
Bourret's method, [ 5 4 ] has proposed an approach to
studying Brownian movement (in particular, of a parti-
cle that interacts with a systems of free scatterers of a
thermostat) by starting with a stochastic liouville equa-
tion. In1-121-5 (see also^16^), the group-expansion method
has been applied for studying parametric resonance in
an oscillatory system with random parameters without
using the assumption'-103-' that these parameters are
delta-correlated in time. One can also treat with the
group-expansion method the problem of reciprocity re-
lationships in the transport theory of light radiation in a
randomly-variable medium, which Rozenberg1-122-1 has
studied by another method.

It is of considerable interest to study C l O 9 ' l l o : l non-
steady-state partially-coherent multiple scattering of
wave packets in a randomly-variable medium in the limit
of quasistatic'-111-' fluctuations of its potential. The re-
sults of these studies seem to reveal the fundamental
potentiality of rigorous justification of the method of
group expansions as applied to steady-state partially-
coherent multiple scattering of waves in a randomly-
inhomogeneous medium.

The author expresses deep gratitude to G. V. Rozen-
berg for thorough conversations on the fundamental
problems of transport theory and substantial critical
comments on the manuscript, as well as to S. M. Rytov,
L. A. Chernov, V. I. Tatarskif, and Yu. A. Kravtsov for
discussion of certain problems touched on in the review.
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