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This review is devoted to the development of the statistical model of matter over the last twenty years. The
ranges of applicability of the model for electron-nuclear systems (atoms, solids, plasmas) are considered.
Effects lying beyond the scope of statistical model (exchange, correlation, quantum and shell effects) are
analyzed. The relative roles of the effects enumerated are estimated in different regions of temperature and
pressure. The possibility of taking these effects into account as small corrections in the region of
applicability of the statistical model is demonstrated. Here a procedure for expanding the physical
quantities in series in the small parameters characterizing the corresponding effects is used. Allowance for
the corrections considerably extends the possibilities of the statistical model in the study of the structure of
matter and makes it possible to obtain new qualitative and quantitative results. It is found, e.g., that
allowance for shell effects in the thermodynamics of highly-compressed matter leads to the existence of first-
order phase transitions associated with the "squeezing-out" of discrete shells into the continuous spectrum.
The refinement of the statistical model at short distances from the nucleus, and other applications to
atomic physics, are discussed. The application of the statistical model to the description of the dynamical
properties of matter is also considered. In particular, the problem of the collective oscillations of the
electron cloud of an atom is treated and the results of a numerical calculation of the corresponding
frequencies and widths are given. The method of the density functional is briefly described.
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I. INTRODUCTION

The statistical model of matter (the Thomas-Fermi
method or model—the TFM for short) forms the basis
of a special approximate approach which is widely used
to describe the properties of matter in its hierarchy of
different levels (the atomic nucleus, atom, molecule,
solid, etc.). Applications of the TFM to the theory of
the extremal states of matter that arise under the ac-
tion of high pressures, high temperatures or strong
external fields have achieved particular development.
The corresponding fields of physics and related sciences
(astrophysics, quantum chemistry and a number of ap-
plied disciplines) constitute the field of application of
the TFM. The popularity of the TFM is connected with
its simplicity, clarity and universality. The latter
means that the result of a calculation by the TFM per-
tains immediately to all the chemical elements; the
change from one element to another is effected by a
simple transformation of scale. These features of the
TFM make it an extremely convenient instrument for
qualitative, and in many cases quantitative, analysis.
They arise, of course, as a consequence of the approxi-
mate nature of the TFM, which is able to give an exact
description of reality only in particular limiting situa-
tions. Namely, for the TFM to be applicable as a quan-
titative theory it is necessary that the density or tem-
perature of the substance have a sufficiently high value.

It is not surprising, therefore, that in the course of
the almost half-century history of the TFM attempts
have continually been made to improve it, with the pur-
pose of extending the range of applicability of the model
while preserving its achievements. In the twenty years
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that have passed since the publication of the well-known
book by Gombas[1] considerable progress has been
achieved in this direction. An account of the correspond-
ing range of questions forms the principal content of
this article (Chaps. II, III, V). Additional information
can be found in the monographs and reviews t1"81, and
also in the original articles cited below.

Another line of development of the TFM that has al-
ready reached a certain degree of completion pertains
to the description of the dynamical properties of
matter—the response of a nonuniform system to external
perturbations varying in time, the characteristics of the
normal (collective) oscillations, etc. An account of these
questions is given in Chaps. IV and V (see also the
monographs and reviews[1<s>9>101 and the literature cited
below). Finally, in recent years a new approach to the
theory of condensed media—the density-functional
method, which borders closely upon the TFM—has been
developing rapidly. The theory of this method is briefly
described in Sec. 15, where the corresponding biblio-
graphy is also indicated.

In this review we describe the theory of the TFM as
applied to ordinary electron-nuclear systems (atoms,
solids, plasmas), without touching at all upon applica-
tions of the TFM to the theory of the atomic nucleus.
The latter problem lies outside the scope of our account,
both physically and methodologically (cf.[5>u'131). As is
usual, the electronic component of matter for a given
state of the nuclei serves as the object to which the
TFM is applied. In conditions of applicability of the
TFM, phonon effects can, to a considerable extent, be
described independently (cf., in this connection/7»1*1).
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The results of the development of the TFM show that
the statistical model of matter is, in its modern form,
an effective method in the theory of the structure of
matter, having well-defined and fairly broad limits of
applicability. The possibilities of this method are still
far from completely opened up. However, it is now
already clear that in a number of problems the TFM
can successfully replace traditional numerical quantum-
mechanical calculations, as it has over the latter the
undoubted advantage that belongs to any analytical ap-
proach. It is indisputable that the range of such prob-
lems will be widened still further in the future develop-
ment of the TFM.

We dedicate this argicle to the memory of Aleksandr
Solomonovich Kompaneets, our teacher in two genera-
tions, who did much to develop the statistical model and
extend its range of applications.

I I . THOMAS-FERMI MODEL AND ITS LIMITS OF
APPLICABILITY

1. Thomas-Fermi model (general information)

The TFM was proposed originally by Thomas1 1 5 ] and
Fermi [ i e ' to describe the electron cloud of a heavy
atom, which is characterized by a comparatively uni-
form electron-density distribution.

The TFM is based on the well-known relations of
quantum statistics1 '

(1.5)

a) P>F
b) μ—τ-,

where η is the particle-number density, and P F and μ
are the momentum and energy at the boundary of the
Fermi distribution. These relations refer to an ideal,
uniform, degenerate electron gas. If the gas is weakly
nonuniform, it is natural to retain (a) as a local rela-
tion2»

. . Pf w /•* 4 \

and add to the right-hand side of (b) the potential energy

U(x) = jrfx' ^2·\ +£Μχ) ί 1 · 2 )

of an electron in the field of the other electrons and the
external sources (the nuclei):

μ = ]ψ-+υΜ. (1.3)

Taking into account the Poisson equation corresponding
to (1.2):

external source (1.4)

it is easy to arrive at a nonlinear differential equation
(the Thomas-Fermi equation) for p§· or U. By solving
this with the appropriate boundary conditions it is pos-
sible to obtain a full description of the "cold" electron
system.

The local characteristics of the system are described
by the distribution function

''Here and below we use atomic units: e = h = m = k = 1.
2)The statement that the properties of a weakly nonuniform system at a

given point in space coincide with the properties of the uniform system
with the same local value of the density is called the "principle of quasi-
liHiformity." We shall discuss its limits of applicability below, in Sub-
jections 3, 5 and 6.

where β(χ) = 1 (χ > 0), θ (χ) = 0 (χ < 0). In particular,
the densities in coordinate and momentum space are
given by the formulas (d3p = dp/(8?r3))

η (x) = 2 j d*pf (χ, ρ), η (ρ) = 2 j dx/ (χ, ρ) (1.6)

(the first of these leads to (1.1)). The thermodynamic
properties of the system are described by the expres-
sion for its energy (E = Efc + E e + Ei), where

To generalize the TFM to the case of finite tempera-
tures it is necessary to replace (1.5) by the correspond-
ing quantum-statistical expression

Then (1.6) gives

where I n

(1.8)

(1.9)

I n is the special Fermi-Dirac function, whose
properties are given in Appendix 1, and λ = ρ|·/2Τ. The
expression (1.9) replaces (1.1); as regards (1.2)—(1.4),
these equalities remain valid but by μ we now mean the
chemical potential of the " h o t " system. Having avail-
able the solution of the Thomas-Fermi equation for
Τ * 0, and the expression for the free energy:

F = -^_r 5 ' 2 $&(λ/1/2(λ)—§-/8/2(λ))+£.4-£,, (1.10)

we can obtain a complete thermodynamic description of
the " h o t " system. In particular, the chemical potential
and pressure are obtained from (1.10) by differentiation
with respect to the number of particles and the volume
of the system, respectively.

This calculation is substantially simplified if L | s

= 0 at the boundary of the system. In this case,

The expression for the pressure Ρ can be regarded as
the result of applying the principle of quasi-uniformity
and the virial theorem (P = %Ek/V) at points where the
electron gas is locally ideal. This is precisely the situ-
ation in the widely used model of spherical Wigner-
Seitz cells (cf., e.g.,[1>51). In this model a substance is
divided into an assembly of spherical cells, each of
which contains one nucleus and is electrically neutral
as a whole; the latter condition determines the radius
R of the cell:

f dxn (x) = Ζ

and the behavior of U(x) (cf. (1.2)) near the boundary of
the cell:

U (χ) ~ (ff - r)!. (1.12)

Use of the cell model makes it possible to go over from
a many-center problem to a spherically symmetric
single-center problem, and this makes it very much
simpler to solve the Thomas-Fermi equation.

An explicit solution of a many-center problem is
possible only in that region of high pressures or tem-
peratures in which the TFM differs little from the
model of an ideal uniform gas [ 5 ] (in the following we
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shall call this region the region of uniformity); the
limits of this region are indicated below in Sec. 2. In
the zeroth approximation (the ideal gas) the relations

(1.13)X-JL-lL
Τ ~ 2Τ '

In the next approximation, which takes into account the
small effects of the Coulomb interaction,

x) = 28μ - In - 2Ue (x),

where Eo is the energy of the Coulomb interaction of
the external sources with each other. Taking into ac-
count the electrical neutrality of the system over scales
~(Z/n) V 3 , we have

&F = -aZ^n^V, (1.14)

where a is the analog of the Madelung constant and de-
pends on the concrete structure of the short-range
order in the system; in the cell model, a = (/ΊΟ)(4ΤΓ/3)1/3.
Correspondingly,

6μ=-4αΖ 2 / 3» 1 / 3. 6P=--2-Z2'V/3. (1.15)

The TFM can also be easily generalized to the rela-
tivistic case. However, the corresponding effects would
be appreciable only under conditions (near the nuclei, at
ultra-high pressures or temperatures) such that the
TFM is either completely inapplicable or differs little
from the ideal-gas model.

The TFM possesses the important property of self-
similarity: the atomic number Ζ appears in any physi-
cal relation only in the form of the combinations

«Z-\ ΕΖ-Ί', PZ-W'\ nZ-\ (1.16)

where χ is the length, ω the frequency, ρ the momen-
tum, Ε the energy (free energy) per particle, Τ the
temperature, Ρ the pressure and η the density. The
universality property of the TFM, which we mentioned
in the Introduction, is connected with precisely this
property.

The derivation of the TFM was based on the assump-
tion of a small degree of nonuniformity of the system.
Below we shall need a quantitative measure of this
quantity. For this we use a characteristic "nonuni-
formity length" L over which the characteristics of
the system change noticeably, In the region of applica-
bility of the TFM this quantity can be found directly
from Eq. (1.4) by omitting the term with the external
sources3 ' and replacing Δ by l/L2:

L~ PF (1.17)

This quantity coincides with the Debye radius r£> ~ ν/ω
for the electron subsystem, where ν is the character-
istic velocity and ω is the characteristic (plasma) fre-
quency.

3)In the region where the TFM leads to nontrivial results (to the left of
curve 3 in the Fig. 1 given below), the quantity L is less than the average
distance between the nuclei. Therefore, the nuclei do not participate
in the screening and their contribution to (1.4) need not be taken into
account.

2. Limits of applicability of the TFM (correlation effects)

From the semi-intuitive derivation of the TFM given
above it is difficult to understand how this model can be
written into the general scheme of quantum mechanics
and statistics. The answer to this question was given by
Dirac [ 1 7 ], who showed that the "cold" TFM is the semi-
classical limit with respect to the Hartree self-con-
sistent field equations in quantum mechanics; the " h o t "
TFM was found to be the analogous quantum-statistical
limit.

Accordingly, the approximate character of the TFM
has a twofold nature. Beyond the scope of the model
there remain, firstly, correlation effects, reflecting the
inexactness of the Hartree method and associated with
the deviation of the true interaction from the self-con-
sistent (averaged) interaction. Secondly, in the TFM,
quantum-mechanical effects corresponding to the ap-
proximate character of the semi-classical description
itself are not taken into account. In this and the follow-
ing subsections we consider a theory of the effects
enumerated that enables us to find the limits of applica-
bility of the TFM in its original form and to generalize
the model beyond the corresponding limits.

We begin by considering correlation effects, which,
in turn, are divided into two classes. These are, first
of all, the effects of statistical correlation (exchange
effects), which describe the effect of the Pauli principle
on the interaction of the particles. Under otherwise
equal conditions, electrons with parallel spins are kept
at a greater distance apart than electrons in a singlet
state, and the range of this correlation coincides with
the de Broglie wavelength χ·~ 1/PF of the electron.
The corresponding weakening of the Coulomb repulsion,
which is equivalent to an additional effective attraction
between the particles, is of the order of magnitude of
(*/L)2U ~ n/pfr (cf. (1.4), (1.17)). The ratio of this
quantity to the mean kinetic energy p|· of the electron
gives the dimensionless parameter

Sexc--^. (2.1)

which determines the relative contribution of exchange
effects. They do not violate the independent-particle
picture characteristic of the Hartree method, but lead
only to a certain modification of the self-consistent po-
tential (the Hartree-Fock method).

A generalization of the TFM, the Thomas-Fermi-
Dirac model11»1'1, which arises when the semi-classical
limit is taken in the framework of the Hartree-Fock
method and takes into account exchange effects of all
orders in the parameter (2.1), has been frequently dis-
cussed and used in the literature. However, we shall
see below that the quantum-mechanical effects are
characterized by the same parameter (cf. (3.1)). It is
clear, therefore, that the use of this model constitutes
an inadmissible excess of accuracy. The only consistent
approach is to take the exchange and quantum-mechani-
cal effects into account simultaneously and commensu-
rately41.

The second class of correlation effects (these are
called dynamical-correlation effects or, simply, corre-
relation effects) reflect the inexactness of the independ-
ent-particle picture itself, i.e., the impossibility of

4'This important conclusion, which invalidates the results of a number of
papers on applications of the TFM, is due to Kompaneets (cf. ["]).
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speaking of the state of an individual electron in an ef-
fective average field of the other particles (because of
their influence on each other, which lies outside the
scope of the self-consistent description). Being dynami-
cal in nature, correlation effects are characterized by
the perturbation-theory dimensionless parameter

Pi·
(2.2)

equal to the ratio of the mean Coulomb-interaction en-
ergy of a pair of particles to their mean kinetic energy.
Therefore, the relative contribution of these effects
should be determined by a certain positive power of the
parameter (2.2):

6ml~&o- (2.3)

The dynamical effects of first order in δ0 are al-
ready taken into account in the framework of the Har-
tree method (e.g., the Hartree equations in the case of
a uniform system correspond exactly to the zeroth and
first order in the perturbation-theory parameter
(2.2)[5]). Therefore, for the exponent v in (2.3) we
might expect the value 2. However, the long-range
character of the Coulomb forces complicates the situa-
tion : the higher orders of perturbation theory contain
infrared (corresponding to large distances) divergences.
A more accurate calculation, reducing in essence to
taking the Debye screening into account, leads to the
result that the divergences are "cut off" at distances
of the order of VQ (cf. (1.17)), or, in dimensionless
variables, at the value rrjn1/3 ~ δ'0

ί/2. The result is that
the exponent ν decreases to a value less than 2 (but
greater than unity).

This value depends on the degree of degeneracy of
the electron gas, i.e., on the size of the parameter
n2/s/T (see curve 1, corresponding to η 2 ' 3 ~ Τ, in Fig.
1). In the regime of degeneracy

"'"> T, pF~n>l\ θο-η- 1 ' 3 (2.4)

the infrared divergence is found to be strongly sup-
pressed because of the Pauli principle, which decreases
the phase volume for virtual transitions151; the diverg-
ence turns out to be logarithmic, at most, and so ν = 2.
Correspondingly, (2.1) and (2.3) give

As already mentioned, the contribution of the quan-
tum-mechanical effects is determined by the same
parameter (2.1). Therefore, the region of applicability
of the TFM in the "cold" case is given by the inequality

»» 1. (2.6)

The curve 2 in Fig. 1 delimits the region of applicabil-
ity of the TFM; its upper part corresponds to η - 1.
We emphasize that, by virtue of (2.5), in the degeneracy
regime the exchange and quantum-mechanical effects,
while being relatively small, play a dominant role com-
pared with the correlation effects.

For a classical electron gas

η2/3<ζΤ. pF~TU2, (2.7)

the infrared divergence turns out to be of the linear
type, as in the usual Debye-Huckel theory (cf. Sec. 5
below) and ν = 3/ζ. Hence,

FIG. 1. Limits of applicability of
the TFM. 1-degeneracy curve, 2—
boundary of applicability of the TFM,
3—curve along which the exchange,
quantum-mechanical and correlation
effects are equal, 4-boundary of the
uniformity regime. I—region in which
exchange and quantum-mechanical
effects dominate for a degenerate gas,
II-the same for a Boltzmann gas, I l l -
region in which correlation effects are
dominant. The region in which the use
of the TFM is justified is shaded.

The region of applicability of the TFM corresponds to
the inequality

« < r 3 (2.9)

and is bounded by the lower part of curve 2. From the
estimates given (cf. (2.8)) it follows that for η « Τ cor-
relation effects are dominant while for η » Τ exchange
and quantum-mechanical effects are dominant; the
curve η ~ Τ is shown in Fig. 1 (curve 3).

As can be seen from (2.3), for the TFM to be applica-
ble it is necessary in all cases that the interaction en-
ergy of a pair of electrons be small compared with their
kinetic energy. This does not yet imply, however, that
the TFM is close to the ideal-gas model: in a nonuni-
form system (and real matter is such a system), the
electrons interact with the nuclei and also with a large
number of their partners situated in the sphere of
radius equal to the effective range of the Coulomb
forces. For Ζ » 1 these interactions are far from
small, even in the region of applicability of the TFM.
For example, the characteristic parameter δζ deter-
mining the interaction of the electrons with the nuclei
is obtained from (2.2) by multiplying it by Ζ and re-
placing η by the number density n/Z of the nuclei:

az~z<*8.. (2.10)

The same estimate is obtained for the collective inter-
electronic interaction. The curve δζ ~ 1 (curve 4 in
Fig. 1) delimits the region in which the TFM is indeed
close to the ideal-gas model; this region has already
been considered in the preceding Subsection and has
been called the uniformity regime. The region in which
application of the TFM is justified and leads, at the
same time, to nontrivial results is shaded in Fig. I.5'

3. Limits of applicability of the TFM (quantum-

mechanical effects)

When the conditions (2.6). (2.9) are fulfilled we can
go over from the many-particle Schrbdinger equation to
the Hartree self-consistent field equations. To obtain
the TFM it is necessary to take one further step, i.e.,
to go over to the semi-classical approximation. With
this step is associated an extra source of inexactness
of the TFM.

The applicability of the semi-classical description
is determined by the dimensionless parameter ξ
~ 1/pF L. The relative contribution of the quantum-

(2.8) s'See, however, Sec. 14.
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mechanical effects is characterized by the square of
this parameter a

°exch- (3.1)

That this quantity coincides with (2.1) is not accidental:
both the range of exchange correlations and the dis-
tances over which the wave nature of a particle is mani-
fested are of the order of the de Broglie wavelength.

If the parameter (3.1) is sufficiently small we can
expand the Hartree-approximation expressions for the
physical quantities in this parameter. The zeroth term
of such an expansion corresponds to the TFM, and the
other terms describe the quantum-mechanical effects.
It turns out that these effects too are divided into two
classes. Effects describable by terms of the expansion
that are powers of the parameter (3.1) belong to the
first class; these are called quantum effects. They de-
scribe the "diffuseness" of the Bohr orbits, associated
with the uncertainty principle, On a more formal plane,
the quantum effects reflect the violation of the local
character of the relationship between the density and
potential (cf. (1.1), (1.11)), which is unavoidable because
of the finite value of the particle wavelength. The situa-
tion reduces to the appearance, in the right-hand side
of the relations indicated, of gradients of the potential
that are of higher order the higher is the expansion
term being considered. Therefore, quantum effects play
the role of corrections for the nonuniformity and estab-
lish the limits of applicability of the quasi-uniformity
principle used in the derivation of the TFM (cf. Sec. 1).

It is found, however, that the change-over from the
Hartree approximation to the TFM entails not only
neglect of quantum effects, From a study of the simplest
exactly-soluble models (noninteracting particles in a
uniform or oscillator field)71 it has been elucidated[19)

that the expressions for physical quantities in the
Hartree method are nonanalytic functions of ξ at the
point ξ = 0. It was found that the nonanalytic correc-
tions to the power series in ξ are such (trigonometric
and more complicated periodic functions of l/ξ) that
their contribution to the Taylor series in ξ is equal to
zero. However, this series is asymptotic in character
and is far from conveying the behavior of the quantity
being expanded.

The above has an entirely general character, and
applies to the case of an arbitrary self-consistent field
in which there is at least one turning point for the
classical motion of the particle. We shall consider the
simplest case of a one-dimensional "cold" system. The
semi-classical wavefunction of the particle has the
form

Ψ,ι = <=„/>-''·-sin (5,, + -5-), (3.2)

where c n is the normalization constant and Sn and p n

are the classical action and momentum. Substituting
(3.2) into the expression η = 2 £/ \-pnf gives

Εη<μ

«= 1 \c,,\-p-n

l(l+sin2Sn). (3.3)

After replacement of the summation by integration the

6)The condition that the physical quantities be real leads to the result that
they can be expanded in series containing only even powers of £.

7)The analysis performed in [20] also lies, essentially within this class of
problems.

first term leads to the TFM, and the second gives the
nonanalytic dependence (see Sec. 7 below)

sin (25μ -}- const), 5 μ ~ - (3.4)

(in the usual units the argument of (3.4) has the form
(28μ/Κ) + const). Expressions corresponding to the
TFM and the lowest-order quantum effects have been
established in many papers by precisely this method of
direct summation over the levels. However, since the
pioneering work of Brillouin on the WKB method, the
rapidly oscillating terms have simply been discarded.

The effects under discussion, which are called shell
(oscillation) effects, have a simple and clear physical
meaning, The action function in (3.4) determines the
energy spectrum of the system by the Bohr-Sommerfeld
quantization rule Sn = π(η + %). Therefore, the shell
effects describe those irregularities (oscillations) of
physical quantities that are associated with the dis-
creteness of the energy spectrum and that arise when
an energy level crosses the Fermi energy μ. Such ef-
fects include, e.g., the well-known de Haas-van Alphen
effect (oscillations of the magnetic susceptibility of an
electron gas on variation of the magnetic field, because
of the Landau quantization). Another example, about
which more will be said below, in Subsection 14, is the
nonmonotonic dependence of the properties of matter on
its composition, as expressed by Mendeleev's periodic
law. The TFM, because of its inherent universality
property, cannot, in principle, describe this dependence.

We note that, unlike the quantum effects, shell ef-
fects are sharply reduced by averaging the physical
quantities over the external parameters of the problem
or over the atomic number. The well-known fact that
the TFM quite often gives a satisfactory description of
the averaged characteristics of matter without reflecting
the details of its behavior is connected with precisely
this circumstance.

We emphasize that shell effects are already de-
scribed in the lowest semi-classical approximation for
the wavefunction, and this approximation thus contains
substantially more information about the system than
does the TFM. On the other hand, it might appear from
the form of formula (3.3) that the contribution of the
shell effects is of order unity with respect to the TFM
itself. Actually, however, the result of the summation
in the second, rapidly oscillating term of (3.3) leads to
the appearance of additional positive powers of the
parameter ξ. It turns out that, in a real three-dimen-
sional case, leaving aside the oscillatory dependence,
the contribution of the shell effects is determined by
the parameter (3.1) and is essentially the same as for
the quantum effects (see Sec. 7).

Returning to the quantum effects, we cannot fail to
notice that their contribution is always significant in
regions r < Z"1, i.e., near the nucleus, and r > 1 (on
the periphery of an isolated atom). Correspondingly, in
quantities for which these regions play an important
role, this contribution can turn out to be considerably
greater than would follow from the estimate (3.1). Thus,
e.g., application of the TFM to the calculation of the
total energy of a heavy atom, for which, according to
(2.5) and (3.1),

7 -2/3 Ζ" 1 ' 3 , (3.5)

will actually lead to a substantially greater error. We
shall return to this question in Chap. V.
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I I I . EFFECTS BEYOND THE SCOPE OF THE
THOMAS-FERMI MODEL

4. Exchange effects

The preceding chapter contained a general qualitative
treatment of the effects limiting the applicability of the
TFM. We proceed now to a systematic account of the
quantitative theory of the effects. First of all we shall
give several useful general relations (for their deriva-
tion see Appendix 2).

The effects under discussion lead to violation of the
simple relationship, characteristic of the TFM, be-
tween the density and potential, and to the appearance
in the right-hand sides of (1.1) and (1.11) of an additional
term:

n->-n(pi.) + n'. (4.1)

The quantity n' is assumed to be relatively small, and
therefore interference between the different effects is
absent; a separate term in n' corresponds to each of
them. The correction to pf- associated with n' is deter-
mined by the equation

(Δ—κ2(χ))δ/ψ = 8πη'. (4.2)

where κ = (4πθη/3μ)1/2 is the inverse Debye radius of
the electron subsystem. The corrections to the chemi-
cal potential, potential energy and density are given,
respectively, by the expressions8>

δ μ = - (4.3)

The correction to the free energy is determined by the
simple formula

μ

6 F = - j άμ\ dm'. (4.4)

The quantity δρρ does not appear in this, and, there-
fore, to derive the thermodynamics there is no need to
solve the complicated equation (4.2). The correction to
the pressure can be written in the form

8P-- (4.5)

(for other representations of 5P see [ 5 > 2 1 ]).

We shall begin by treating the exchange effects. The
study of these as applied to the "cold" TFM was begun
by Dirac [ 1 7 ]; for the generalization to the case of arbi-
trary temperatures, see [ 2 1 ' 2 2 1. As already pointed out
in Sec. 2, exchange effects consist in the appearance of
an additional effective attraction between the electrons,
associated with the Pauli principle. If in a volume V
there are two free electrons with parallel spins and
momenta ρ and p', the exchange attraction corresponds
to a potential energy -477/(V| ρ - p' |2) (the Fourier
transform of the Coulomb interaction). In the general
case when the electrons are described by a distribution
function f(x, p), there arises an exchange of "potential"

(4.6)

supplementing U in the single-particle Hamiltonian.

The exchange correction to the distribution function
is equal to

/(,, p) = U ( , ,p) ,

and, when (4.6) is taken into account, the correction to
the density has the form

where

C (x) = j ffipf (x, p) A (x, p) = - | 1 | d% (Ι\ιζ (λ))», λ = ψ (4.7)

(for the calculation of this integral, see Appendix 3).
Hence,

, IT (4.8)

The correction to the free energy is found from (4.4):

— oo

In the case of low temperatures,

(4.10)

and

An exact solution of the problem in explicit form is
possible in the regime of uniformity of the electron gas
(Sees. 1 and 2), in which (4.2), (4.5) give9'

(4.12)

In the limits of low and high temperatures, respectively,
we have

6 p = _ j 3 ^ i i 4 / 3 > 6 j P = __7^L. (4.13)

We note that the exchange effects violate the self-
similarity characterizing the TFM: when expressed in
the variables (1.16), the exchange corrections have a
factor Z''43 left over.

5. Correlation effects

We turn now to a consideration of correlation effects,
which reflect the inexact character of the idea of the
self-consistent field that lies at the basis of the Hartree
method. We shall concentrate on the simplest case of
the classical electron gas; this case is, at the same
time, the most important one, since it is precisely for
this case that correlation effects are the "sticking
point" of the TFM (region III in Fig. 1).

We note immediately that, although the relations
given below outwardly resemble the formulas of the
well-known Debye-Huckel theory (cf., e.g.,[i!31), the
latter theory is inapplicable in the region of pressures
and temperatures of interest to us (not too far from the
outer boundary of the shaded region in Fig. 1). This

8)The argument "<*·" corresponds to a point lying outside the (neutral)
system.

9 )To avoid confusion we point out that the quantity fipp in (4.2) has the
meaning of a correction to the potential energy and not to the Fermi
momentum (cf. [ s]).
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theory applies to a weakly nonideal plasma, in which
the Coulomb interaction between the nuclei is relatively
small, and can be used only in the region η » Τ3/Ζ5,
which, for Ζ » 1, lies substantially below the above-
mentioned boundary. Our treatment applies to condi-
tions when the electron gas is nonideal and nonuniform,
and the nuclei form a given distribution and do not par-
ticipate in the Debye-screening process (see the end of
Sec. 1).

Correlations in a classical gas (cf . [ 2 4 ] and Appendix
4) are conveniently described by means of the n-particle
distribution function with respect to the coordinates10',
which, in the case of small correlations, has the follow-
ing form:

/„(*„
Ν

i- 2 ' v(x,, x,)], (5.1)
" i 11

where the single-particle function f ι is connected with
the density by the relation

and the correlator ν satisfies the equation

(5.2)

(5.3)

The result of the straightforward calculations has the
form

(5.4)

where, according to (1.11),

The correction to the free energy is

(5.5)

Correlation effects also violate the self-similarity of
the TFM; in the variables (1.16) a spare factor Z"1 is
associated with them.

In the uniformity regime of an electron gas,

δμ=— Ϋ^-ψ-, 6 ρ = _ 1 ι / ϋ ^ . . (5.6)

Using the virial theorem, we can show that (5.6) are
particular cases of the more general relations

which are valid outside the uniformity regime as well.

The expression (5.5) can be regarded as the result
of applying the principle of quasi-uniformity to a Debye
plasma of electrons in a background of "inert" positive
charge (cf. the Debye-Huckel theory). It is important to
stress that this is possible only for a classical gas: in
the case of partial or complete degeneracy we cannot
use the above principle to calculate correlation effects.
The point is that these effects display anomalous sensi-
tivity to the nonuniformity of the system125»*1.

In fact, for the principle of quasi-uniformity to be
applicable it is necessary that the nonuniformity length
L (cf. Sec. 1) be large compared with all the character-
istic quantities with the dimensions of length for the
given problem. In the framework of the TFM there is
only one such quantity—the mean distance n"1/s between
the particles. In the conditions we are considering, the
parameter LnV 3 ~ ξ"1 is indeed large compared with
unity and it is legitimate to use the principle of quasi-
uniformity. However, when we turn to the correlation
effects a further characteristic length (the Debye radius
TD), associated with dynamical effects, appears in the
problem. According to (1.17), this quantity coincides
in order of magnitude with L, and this excludes the
possibility of using the principle of quasi-uniformity.
In the case of a classical gas, however, the dependence
of the physical quantities on the ratio TQ/L disappears
and the simple answer given above is obtained.

As regards the case of partial or complete degener-
acy, a solution to the problem of calculating the correla-
tion effects has still not been found. The results cited
at various times, which were derived on the basis of the
principle of quasi-uniformity, can be regarded as quali-
tative at best. This pertains, in particular, to the well-
known formula of Gell-Mann and Brueckner[26], derived
for a strictly uniform system,

6£ Vn In n,

which has been applied frequently to real systems by
replacing η by n(x), and V by an integral over the
volume. Additional information on correlation effects
in a "cold" system can be found below, in Sec. IV.

6. Quantum effects

In this section we consider effects reflecting the in-
exactness of the semi-classical approximation to the
equations of the Hartree method and corresponding to
the first term of the expansion of physical quantities in
a power series in the semi-classicality parameter (3.1).
The first attempt to describe these effects was due to
Weizsacker[27). However, the inadequacy of his method
led to an overestimate (by a factor of 9, as was shown
later) for the coefficient in his formula111. That this
coefficient was too large was noted by a number of
authors on the basis of empirical arguments, before a
quantitative theory of the quantum effects was estab-
lished. Such a theory was proposed almost simultane-
ously12' by several authors1"»29'*01 (cf. also[31'), who
used different methods for the expansion in powers of
the semi-classicality parameter. Below we shall use
the most direct route for this purpose (cf. also1-5').

Here and below we shall start from the expression
for the single-particle Green function of an electron in
the self-consistent field:

p, e) «« ^ ^ " , (6.1)

where φη and en are the wavefunction and energy of the
particle in the Hartree method. The Green function
satisfies the equation

10)The distribution with respect to the momenta has the trivial Maxwellian
form.

"'However, Weizsacker's formula becomes valid in the opposite limiting
case of large £, ["] when it leads to the usual Schrodinger equation
(see Sec. 11 below).

n ) The first publication with an account of the theory of the quantum
effects is due to Kompaneets and his student Pavlovsku [ " ] .
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( e — ^ U(x))G(x, Χ', ε)-δ(χ-χ') (6.2)

and leads to the expressions for the distribution function
and density:

μ

/(x, p)-JL j <fc(G(x, p, e)-G'(x, - ρ , ε)),

μ

η(χ)=—£ j rfeImG(x, χ, ε). (6.3)
— oo

The relations given pertain to a "cold" system. For
Τ * 0 it is sufficient to make the replacement

j &(...)-* j Λ/(ε)(...), /(ε) = [βχρ(-5=Κ-) + ΐ ] " ' . (6.4)

It has already been noted, in Sec. 3, that the quantum
effects correspond to expanding in increasing powers of
the gradient of the potential. Confining ourselves to
treating the lowest-order quantum correction, which
corresponds to the second power of the gradient, we
can represent the quantity G(x, ρ, ε) in (6.1) in its only
possible form:

G = G0+A (pV) pt + Β [(pv) pW2 + C (VpH2 + D (pV)2 P'F+£Δρ*.

where Go = 2/[2(e - U) - p 2 + ie]. Substitution into Eq.
(6.2) gives explicit expressions for the coefficients
A , . . . , E. As a result we obtain the following expres-
sions for the "cold" quantum corrections to the distri-
bution function:

/(x, p) = -i"(*Pl+ 2«pVpl·) δ' (pi·- p2)

and to the density:

"' = — 9 β ^ | Γ Ι(νρΙ·)2-4ρ1- Δρ}.].

From this the correction to the energy is

fi£= —SET f j t [(VP«2+4p}-Ap^].

By means of (1.1) we can rewrite it in the form

(6.5)

(6.6)

(6.6a)

For a regular function n(x) the last term in this ex-
pression drops out and the Weizsacker formula is ob-
tained, but with a coefficient nine times smaller.

At finite temperatures the relations (6.5) and (6.6)
are replaced by the following relations (λ = ρ|./2Τ):

[I'm (λ) (νλ) 2 + 2/̂ /2 (λ) Δλ], (6.7)+ 2/1/2 (λ) Δλ],

ι2 + 2/'1/2(λ)Λλ].6F= —

Using the identity

and the Thomas-Fermi equation (cf. (1.4), (1.11))

external source

(6.8)

it is not difficult to bring (6.8) to the form

6F = - -g;- j dx Itr. (>·) l\ii (λ) + ...;

h e r e , . . . denote terms 1 3 ' that are nonzero only at the

"'Actually, these terms diverge, and this is connected simply with the
inapplicability of the semi-classical description at short distances from
the nucleus (cf. Sec. 3).

positions of the nuclei. Inasmuch as these terms do not
change with change of volume of the system, they drop
out from the expression for the quantum correction to
the pressure:

' * ' f l\n. (6.9)~~ dV 6 f "~"3U3~ «V j '

We shall compare this quantity with the exchange cor-
rection to the pressure, which, according to (4.9), is
equal to

π* «Γ J J (6.10)

Using the asymptotic forms of the Fermi-Dirac func-
tions (see Appendix 1), it is easy to see that the ratio
of (6.9) to (6.10) is 2/9 for a degenerate electron gas
and 1/3 for a classical electron gas t 5 | Z 1 ] . This is a
further argument against the Thomas-Fermi-Dirac
model (cf. Sec. 2).

In the regime of uniformity of an electron gas it is
not difficult, using the formulas of Sec. 4, to arrive at
the expressions

(6.11)

Comparing with (4.1), we can check that the numerical
relationships indicated above are fulfilled.

It seems at first glance that the expressions (6.11)
are valid for any, arbitrarily large, values of the den-
sity or temperature, lying beyond the boundaries of the
shaded region in Fig. 1. At the same time, there is no
doubt that perturbation theory, which gives the expres-
sions (1.13), (1.15), (4.12) and (5.7) but does not contain
the quantum corrections (6.11), becomes valid at suf-
ficiently high values of the density or temperature. To
resolve this paradox and determine the boundaries of
applicability of (6.11) on the high-pressure or high-
temperature side, we must bear in mind that in the
Coulomb field of the nucleus the semi-classical descrip-
tion is applicable only when the condition Z/pp » 1 is
fulfilled. Therefore, it is meaningful to expand in the
parameter (3.1) only when the conditions

«< Z3, r < Z\ (6.12)

referring to the degenerate and classical regimes, re-
spectively, are fulfilled. This is the condition for the
formulas (6.11) to be applicable.

With the opposite inequalities to (6.12), when Z/pp
« 1, on the other hand, perturbation theory becomes
applicable in the Coulomb field and the quantum effects
disappear. Actually, therefore, (6.11) ought to be multi-
plied by a certain function of Z/pp that tends to zero
at small values of the argument and to unity at large
values. We shall not give its explicit expression (it is
represented by a combination of Whittaker functions) in
view of the small magnitude of the quantum effects in
the region under consideration.

7. Shell effects

As already pointed out in Sec. 3, the shell effects re-
flect the irregularities of physical quantities due to the
discrete energy spectrum; however, these effects can
appear in the case of the continuous spectrum also, as
a result of interference of de Broglie waves. In the
semi-classical regime (ξ « 1) the shell effects are
described by expression that are periodic functions of
l/ξ. The first important stride in the theory of shell
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effects was made by Kohn and Sham[32114). However, in
this paper, as in later papers [ 3 3 ] also, only the one-
dimensional case was considered, and the smallness of
the semi-classicality parameter was not used through-
out (e.g., hypergeometric functions appeared in the
answer in place of trigonometric functions). A theory
encompassing the three-dimensional case and taking
the necessary account of the smallness of the parame-
ter ξ was constructed in [ 3 4"3 6 ], which we follow below.

A direct way of constructing such a theory has al-
ready been noted, in essence, in Sec. 3, and consists in
the explicit calculation of the irregular terms of (3.3)
by changing from the summation to an integration with
the help of the Poisson formula (see Appendix 5). Con-
fining ourselves in this Subsection to the case Τ = 0,
we shall represent the shell correction to the density
in the form

n' = n\-\-n, + n'3. (7.1)

The quantity ηΊ arises from the first term of (3.3) as
the correction in the replacement of the sum by an in-
tegral, and describes the irregularities that appear
when the individual energy levels cross the Fermi level.
The second term of (7.1) corresponds to the second
term of (3.3) and it was precisely this term that we
discussed in Sec. 3; it describes not only "energy"
shell oscillations but also spatial shell oscillations.
Finally the quantity n'3 takes its origin from the factor
| c n | 2 in (3.3), and, being a normalizing term, satisfies
the equality

I dx(n2 + n3) — 0. \<·&)

The shell oscillations of thermodynamics quantities
are determined, according to (4.4) and (7.2), entirely by
the term ηΊ. If, however, we are interested in the shell
oscillations of the density itself, only the term n'z is
important for these. For a fixed value of μ, the other
terms of (7.1) can be separated out from n' and carried
over into the term δργκζ/8η (see Appendix 2).

We first give the complete solution of the problem
for the one-dimensional case, considering a finite mo-
tion with turning points R and R'. We introduce the
notation

•• \ dx pF,

' R

X

for the action function and time of motion on the Fermi
boundary (the same symbols with the subscript 0 cor-
respond to integration from R to R'). In addition, we
introduce the periodic function

1/ (£„)]* = / (So) ( — T , 2 < S,,< .-T.2)

with a periodic continuation outside this region; the
discontinuities of this function, as is clear from the
quantization condition, correspond exactly to coinci-
dence of an energy level with the Fermi boundary. In
this notation (cf. Appendix 5),

14)We are not concerned here with papers on shell effects in the atomic
nucleus, where the situation is much simpler because of the constancy
of the density over its volume. In essence, many of the results of [ 3 7],
in which, moreover, there are a number of important qualitative argu-
ments (cf. also t 3 *' 9 9 ]), also apply to systems of this type.

In combination with the expression η = 2ρρ/ττ (the one-
dimensional TFM), this leads to the result that the total
number of particles changes by two as each energy level
passes through. Furthermore,

(7.4)cosec (πτ/τ0) - 2 - i · ISO]*).

On going over to semi-infinite motion (R' — °°), TO
—··*> and

« ;=0, η;— — * cos(2S). (7.5)

The three-dimensional spherically symmetric problem
(cf. Appendix 5), in which there is in addition a summa-
tion over the orbital quantum number, leading to partial
smoothing of the oscillations (e.g., in place of the dis-
continuities of the function ni itself, discontinuities only
of its derivative appear), is solved analogously. We in-
troduce the notation15'

for the action function, time of motion and derivative of
the angle of rotation with respect to the angular momen-
tum in the state with zero orbital angular momentum.
Then the three-dimensional analogs of (7.3) and (7.5)
take the form

(7.6)

(7.7)
n ; = —-ττ-ί—rsin(2 f drpF)

ο

(for more-general relations see [ S 4 > 3 6 ]).

There is also another method for describing shell
effects, which is more transparent physically and is
applicable in the general case of nonseparable vari-
ables. It is based on an analysis of the semi-classical
Green function (cf. (6.1), (6.2)), which, in the one-
dimensional case, has the form

G(x,x',i)= —

(7.8)

here Fj is the trajectory of the classical motion from
χ to x'; there exists, generally speaking, a whole set of
such trajectories, of which one (j = 0) joins these points
directly, as it were, and the others join them by varying
numbers of reflections at the turning points. The num-
ber of such reflections is equal to nj, and the last term
in the phase of (7.8) corresponds to the change of phase
in the reflections.

The density is expressed in terms of the Green func-
tion at coincident points (cf. (6.3)). The trajectory with
j = 0 then degenerates to a point, and the corresponding
term of (7.8) loses its oscillatory character and leads
to the TFM result. The remaining terms of (7.8) are
responsible for the shell effects. In the case of semi-
infinite motion (Fig. 2a) there are two terms (j = 0, 1),
with n0 = 0 and nj = 1, in the sum (7.8). For finite mo-
tion, however, the number of terms is infinite. These
include, first of all, terms corresponding to a complete
cycle (nj is an even number); the sum over such cyclic
trajectories (Fig. 2c) forms the term nl. In addition,

15>In the case (to which the formulas cited pertain) when attractive
Coulomb forces act at the coordinate origin, R = 0 and the symbol /

means that the quantity f d r r ' 3 ' 2 · ^ ^ is subtracted from the integral.
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FIG. 2. Trajectories corresponding to
shell effects, a) infinite motion in one
direction, b) finite motion-semicyclic
trajectory, c)finite motion—cyclic trajec-
tory.

of these into account, namely, the smearing-out of the
distribution of electrons over the levels17'. It is found
that in the region of interest to us (the sectors I and II,
where the quantum-mechanical effects are dominant, in
Fig. 1) this smoothing is described simply by a temper-
ature-dependent coefficient:

kr6E. (8.1)

More precisely, in the right-hand sides of (8.1) are ex-
pressions calculated from the formulas of Sec. 7, but
with potential U and chemical potential μ adjusted to
the actual temperature of the system. For U this stipu-
lation becomes superfluous in the uniformity regime,
in which the potential does not depend on the tempera-
ture and (in the cell model-cf. Sec. 1) is equal to

there are "semi-cyclic" trajectories (Fig. 2b), for
which nj is an odd number; the sum over such trajec-
tories gives the term Ώ!Ζ describing spatial oscillations
of the density. Thus, the latter arise as a result of in-
terference of the incident wave and the wave reflected
at the turning point (a standing de Broglie wave). Sub-
stitution of (7.8) into (6.3) does indeed lead to the re-
sults obtained above by a different method.

In the three-dimensional case the qualitative picture
remains as before, although the corresponding expres-
sions are appreciably more complicated. We note,
first of all, that for the semi-cyclic trajectories it is
necessary to take linear trajectories, on which the
particle returns from the turning point along the same
path as in its motion to this point. This corresponds to
a true turning point, at which all components of the
momentum vanish (the distinct character of an s-wave
is connected with precisely this; cf. above). Further-
more, the Coulomb center of attraction, which, because
of the well-known quantum-mechanical effects, does not
allow particles to pass through itself, must be counted
as one of the turning points1*. However, the inapplica-
bility of the semi-classical description at this point
leads to the result that the phase change in the reflec-
tion is opposite in sign to the usual phase change; one
can verify this by using the exact expression for the
Green function in a Coulomb field140' and matching it
with the semi-classical expression in the same way as
is done in the case of an ordinary turning point[3β].

In conclusion, we note that shell effects violate the
self-similarity of the TFM in a substantially more radi-
cal way than do the other effects. After the change to the
variables (1.16) there remains a complicated irregular
dependence on Z, which corresponds to the actual oscil-
lations of the physical quantities with variation of the
composition of the substance.

8. Shell effects (thermodynamics)

It remains for us to consider shell effects at nonzero
temperatures, and also their contribution to thermody-
namic quantities. We note immediately that, in a "hot"
system, a number of factors leading to smoothing of the
oscillations appear. Our formulation of the problem
(cf. the Introduction) makes it possible to take the chief

"'This is the reason why, in a problem with a Coulomb potential, the
region of the continuous spectrum, where there are no true turning
points, also makes a contribution to the spatial oscillations of the den-
sity.

In the region of pressures and temperatures under
consideration, matter is "metallized"; accordingly, at
any temperature the electrons occupy parts of both the
continuous and the discrete spectrum (Fig. 3). The
boundary separating these parts corresponds, accord-
ing to (1.12), to the energy value

μ = 0 ; (8.3)

in reality, it is somewhat lower because of the smear-
ing-out of the levels into bands and because of their
overlap. However, when the condition for semi-classi-
cality at the level μ, which has the form (Z/n)1/*U1/2

» 1 or

Z\ (8.4)

is fulfilled, these effects are small and, to logarithmic
accuracy, do not affect the results (for more detail,
seel 3 5 ').

The shell corrections to the density are found from
(6.4) (cf. W

η' (Τ, μ) = j de /(μ —ε)3«'(0, ε)
3ε

Using (7.7), we find
2.1 T71

sh (2.1TZ1)

(8.5)

(8.6)

(see Appendix 6). Since τ ~ Ζ ' n~ , the density oscil-
lations become exponentially small for Τ > n2/3Z~1/3

(in the case of relatively weakly compressed matter—
for Τ > Z). But if the temperature is less than the
above value, the coefficient (8.6) is close to unity and
the dependence of n'(0, μ) (cf. (8.1)). With increasing
temperature the chemical potential becomes negative

a

FIG. 3. Scheme of the levels of
highly compressed matter. The
region of overlap of bands is shaded.

17)Another factor-the thermal vibrations of the nuclei—becomes appre-
ciable at ultra-high temperatures.
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and increases in magnitude. Therefore, as Τ increases,
the oscillations corresponding to deeper and deeper
shellSj for which the potential energy becomes compara-
ble with the quantity | μ |, disappear. These conclusions
are confirmed by a comparison with the results of an
exact calculation by the Hartree-Fock method (cf J

The corrections to the free energy are determined
by the quantity n[, which is nonzero only in the region
of the discrete spectrum (cf. (7.5) and (7.7)). There-
fore, using (8.5), it is necessary to put the upper limit
equal to μ = 0 (cf. (8.3)). Analogously, taking (6.3) into
account, it is easy to see that the expression for
n'(0, e) is itself equal to n'(0, μ) for e > μ. Substitution
of (8.5) into (4.4) gives

&F(T)-.= dxn\(0)— - ε ) j dxn[{0).

Integrating the second term by parts, it is easy to see
that it makes a relative contribution of the order of
l/μτο (degenerate case) and l/ΊΥο (classical case).
When we take into account that τ ο ~ η" 1 / 2 , these parame-
ters are found to be small throughout the region of ap-
plicability of the TFM. Therefore, the problem reduces
to the first term of 5F. In particular, for Τ = 0 (7.6)
gives

6B μ, j dx»; (0) = -H-- .̂[S0T, (8.7)

where μ0 is the "cold" chemical potential and the
other quantities in (8.7) are referred to the boundary
μ. Hence,

ft, = J - r i n [ e x p ( i L ) - M ] . (8.8)

This coefficient also falls off with temperature, but
substantially more slowly than (8.6): it can be seen
from (1.13) that (8.8) decreases in a power-law fashion,
becoming negligibly small only when Τ » μ0.

The physical nature of the shell oscillations of the
free energy consists in the fact that, on variation of the
density of matter or its composition, energy levels are
"squeezed out" of the discrete spectrum into the con-
tinuous spectrum, or vice versa, whenever the value of
the action in (8.7) becomes equal to an odd multiple of
π/2 (see Fig. 3) l e ) . It is this which leads to the irregu-
larities in the behavior of the physical quantities. Leav-
ing a more detailed discussion of these questions to
Chap. V, we give here explicit expression valid in the
uniformity regime and pertaining to the case Τ = 0.

In place of the density we shall use the cell volume
ν = Z/n and denote >> = 5Ρ/(3π2)*3. Then, taking (8.2)
into account, we have

5 ο = ΛΖ<«.;"·—£-, λ-™3(Α) 1 / 6 ι η ±^νΐ« 1 ι 5 6 . (8.9)

Analogously (cf. Sec. 7 and 1 3 5 '),

6 0 = ( 3 6 ^ ' / C In (Z'v) Z- i . '2y-i/e.

Hence, for the shell correction to the energy we have

6£^36(-^)' / 6 z 7 / 6 " ' " 2 [$?]'; (8.10)
\ 4 / In (Ζ«ϋ) ϋ

this quantity, like (8.7), refers to the volume of one
cell.

18)The shell effects disappear after all the energy levels have moved out
into the continuous spectrum; this corresponds to η > Ζ 4 (cf. (8.4)).
We take this opportunity to point out an error made in [ s], where the
value η > Z 3 was given.

It is important to note that, in reality, (8.10) corre-
sponds to a situation that is unstable near the points of
irregularity

vn = Z-> (ϋ£-)β (η-1,2, . . . ) , (8.11)

This can be seen from the expression for the shell cor-
rection to the pressure:

In (ZJi,) •[•Sol* (8.12)

(cf. the dashed lines in Fig. 4), which is obtained from
(8.10) by differentiating its last, most rapidly-varying
factor with respect to the volume. It is well known that,
because of the negative value of the bulk modulus, such
a state is unstable and rearranges, as a result of which
the pattern depicted in Fig. 4 by the thick solid curve
arises. This corresponds to a first-order phase transi-
tion between a phase in which the n-th level lies in the
discrete spectrum and another phase in which the n-th
level lies in the continuous spectrum. The pattern of
oscillations of the volume on variation of the pressure
or atomic number is depicted by Fig. 4 (rotated through
90J) and Fig. 5. The corresponding analytic expression
has the form

lv-= _36 (i2- ,1/6

where

(3d 2) 2 ' 3 -Ψ11' In (Z21'/·*.'^) '

- kZ*'3 κ
"0 ~ —ι /ι ϋ ο

(8.13)

and the points of irregularity (phase-transition points)
are

Z,, =.gss/20 {^.ψ-. (8.14)

The large value of the numerical coefficient in (8.13) is
worth special mention, and makes the shell oscillations
entirely noticeable even under conditions when they are
essentially small.

The shell effects in quantities obtained from the
pressure by differentiating it further with respect to
the volume are particularly clearly manifested. Thus,
the modulus of elasticity (Fig. 6) is found to be always
equal to zero in the region of coexistence of the phases,
while the Gruneisen constant for the electronic com-
ponent, corresponding to a further differentiation with
respect to the volume, even becomes negative. We
shall continue the discussion of the shell effects in
Chap.V.

FIG. 4 FIG. 5

FIG. 4. Dependence of the pressure on the volume (shell effects).
FIG. 5. Dependence of the atomic volume on the atomic number

(shell effects).
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FIG. 6. Dependence of the compres-
sibility on the volume (shell effects).

IV. DYNAMICAL GENERALIZATION OF THE
THOMAS-FERMI MODEL

9. Response function of a nonuniform electron system

The TFM theory described in the preceding chapters
only enables us to describe the static properties of a
system. Amongst these, in particular, is the static re-
sponse function e(x, x', 0):

j dx'e (χ, χ', Ο) δϋ (χ) = &Ue (χ), (9.1)

relating the variations of the total (5U) and external
(oUe) potentials18'. This function coincides with the
longitudinal part of the static dielectric permittivity of
the system. In the framework of the TFM it is easily
calculated using (1.2):

ε ( χ , χ ' , 0 ) = δ ( χ - χ ' ) + . * ' » ' » , ( 9 . 2 )

where κ = νϊπθη/θμ, is the inverse Debye radius (cf.
(4.2)). In the case of a uniform system, (9.2) describes
the usual Debye screening.

A still more important characteristic of the system
is the dynamical response function e(x, x', u>), defined
by the same relation (9.1) but with replacement of the
static variations 6U(x), SUe(x) by the temporal Fourier
components 6U(x, t ) w , 5Ue(x, t ) w of the dynamical
variations. Such a function is capable of describing
practically all the dynamical characteristics of a sys-
tem encountered in applications. Amongst these char-
acteristics, above all, are the results of the action of
different external agents on the system. For example,
the photo-absorption cross section has the form [ 9 )

σ(ω) = 27r2g(w)/l37, where the spectral density of the
oscillator strengths

g (ω) = ^ j - Im j dx dx' e"< (χ, χ', ω), (9.3)

where e"1 is the "inverse matrix":

f ifx"e (χ, χ", οι) ε"1 (χ", χ', ω) = δ (χ — χ'). (9.4)

The response function enables us to find the frequencies
and damping constants of the normal oscillations of the
system as the real and imaginary parts of the eigen-
values of Eq. (9.1) without the right-hand side:

j dx'e(x, χ', ω) 61/ (x% = 0. (9.5)

In addition, the effective interaction between the elec-
trons, the correlation energy of the system, and so on,
can be expressed in terms of the function e.

19'A nonuniform system is characterized by one further response func-
tion ("charge-charge"), which differs from (9.1) by the replacement
of 6U, 6U e by δη, Sne (n e is the density of external charge) and is
connected with e by the relation —Δχ/dx" e(x, χ", ω)/47τ|χ" — χ' Ι
(sic).

There exists a simple relationship between the re-
sponse function and the polarization operator Π:

e (χ, χ', ω) = δ ( χ - χ ' ) - j dx" ",'*!*'. '" ', (9.6)

Π relates the variations of the density and potential:

δη (χ)ω = δη, (χ)ω + ]* dx'll (χ, χ', ω) δϋ (χ')ω. (9.6a)

Combining (9.6) with (9.1), it is easy to arrive at the
Poisson equation

Δδί/ (χ)ω + 4π j dx' Π (χ, χ', ω) δι/ (χ')ω = _4πδη<, (χ)ω, (9.7)

which replaces (9.1).

If the dynamical parameter So is small (cf. Sec. 2),
the polarization operator is described by a closed loop
(particle-hole) in lowest order of perturbation theory
(the random-phase of high-density approximation; cf.,
e.g.,[51). In the case of a uniform system we can arrive
at a simple result, which is particularly transparent in
the t-representation, in which (9.1) has the form

j dx' f dt'e(x, x', t — t') 6U (x\ t') = 6Ue (x, /)•

Namely, for zero temperature,

e(x, x', f) = o ( x - (9.8)

here the causality property (t < 0) and the retardation
property (t > |x - x' | / P F ) are manifested explicitly.
For Τ * 0 it is necessary to replace θ(η) by [exp (η/Τ)

+ ir1·
Attempts to generalize (9.2) and (9.8) to the nonuni-

form dynamical case have been undertaken in various
directions. The principle of quasi-uniformity (cf.,
e.g./4 '1), which reduces to substituting the quantity
pfr(x) in place of pf· in (9.8), has been used quite often
for this purpose. However, as was emphasized in Sec.
5, as applied to correlation effects (and a dynamical
response is, in essence, such an effect) this principle
is invalid. Another approach—use of the hydrodynamic
(acoustic) equations of motion in combination with the
TFM [ 1 ) 1 0 ' 4 2 > 4 3 1 -is justified only in the long-wavelength
limit and is unable to describe damping (absorption) ef-
fects without invoking additional information. Finally,
the use of the high-frequency expression for the re-
sponse function, known from the sum rules, has also
been suggested^44'. However, because of the divergence
of the series in of* obtained, it is not possible to extend
this approach into the region of frequency of real inter-
est for most problems1 4 5 1.

A response-function theory that makes adequate use
of the characteristic smallness of a number of parame-
ters in the TFM has been proposed in [ 4 6 ] (cf. also [ 5 '9 1).
The inequality δ0 « 1 enables us to take the polariza-
tion operator in its simplest form (cf. above), and the
condition ξ2 « 1 gives the possibility of passing to the
semi-classical limit20'. In the case of a cold system
(the case Τ * 0 is discussed below), the above two
parameters coincide and the accuracy of the results ob-
tained is determined by their magnitude; for a heavy
atom, the latter is Ζ~*13. The simplest approach leading
to a correct answer consists in using the classical col-
lisionless kinetic equation with a self-consistent

t 4 7 3 6 8

20)Being interested only in the linear response, we can take the semi-
classicality in the spatial sense only, without worrying about restric-
tions on the frequencies (for a more complicated case, cf., e.g., t 4 8 ]).

660 Sov. Phys.-Usp., Vol. 18, No. 9 D. A. Kirzhnitz et al. 660



As a result of such a calculation it is found (cf.
Appendix 7) that the answer is expressed in terms of
the classical trajectory (and law of motion of) x(t) of
an electron in the self-consistent field determined by
the TFM, i.e., in terms of the solution of the equation

X ' = ^ L (9-9)

with the initial conditions (n is an arbitrary unit vector)

χ(0) = χ, χ (0) = ρ*. ( ^ (9.10)

We shall give expressions for the polarization opera-
tor in several forms (the bar denotes averaging over
the directions of n).

In the t-representation,

Π (χ, χ', i

In the ω-representation,

(9.11)

Π(χ, χ', ω) = )-x')] , (9.12)

and in a representation of the Kramers-Kronig type, in
which the causality property is explicitly reflected,

Π(χ, χ', ω). (9.13)

An expression for the response function itself can be
found from this by means of (9.6). The expressions ob-
tained lead to explicit generalizations of (9.2) and (9.8).
We note that replacement of the actual trajectory of the
particle in the field of the TFM by a trajectory of recti-
linear uniform motion with the initial conditions (9.10)
would correspond to the quasi-uniformity approach.
Correspondingly, the inapplicability of the principle of
quasi-uniformity is manifested in the radical difference
between these trajectories (cf. Sec. 13 below).

To conclude this Section we point out the self-simi-
larity properties of the response function14"1. The self-
similarity of the quantity p|. leads to the result that,
after change to the variables (1,16), the explicit depend-
ence on Ζ drops out of the solution of Eq. (9.9) and out
of the expression for the response function itself. Ac-
cordingly, e(a>) = ε(ω/Ζ), the proper frequencies are
found to be proportional to Z, and the oscillator-
strength density g(w) = Zf(w/Z).

10. Collective oscillations of a nonuniform system

One of the important applications of response func-
tions is in the calculation of the proper frequencies and
damping constants of the oscillations of a nonuniform
electron system. We are concerned with oscillations
associated with the presence of the Coulomb restoring
force, the long range of which causes a large number
of particles to oscillate simultaneously. Therefore,
such oscillations are called collective oscillations.

To describe them we can start from Eq. (9.5), or,
equivalently, from Eq. (9.7) without the right-hand side:

Α6ί7 (χ)ω + 4JI j dx'II (χ, χ', ω) 6ί7 (x% : 0. (10.1)

When solved with the appropriate boundary condition, it
gives information on the spectrum and damping of the
proper frequencies, on the form of the normal oscilla-
tions, and so on. Equation (10.1) can be brought to a
form suitable for numerical calculations by simplifying
the expression for its kernel.

This expression (cf. (9.12)) contains three integra-
tions—over the time t and over the direction angles of
the vector n, i.e., over θ and φ. All these integrations
can be removed by using the presence of the δ-function
in the integrand. We need only keep in mind that the
equation x(t) = x' (x(0) = x) has, generally speaking, a
whole set of solutions, which we shall label by the sub-
script j ; this corresponds to the presence of several
trajectories joining the points χ and x'. To each such
trajectory correspond its own functions t?(x, x'),
0j(x, x'), <pj(x, x'), having the meaning, respectively, of
the time of motion from χ to x' and the direction
angles of the initial velocity. Introducing the Jacobian
Dj = D(x(t))/D(t, cos θ, φ) | t ?, θ ?,<??> we have

The kernel (10.2) of Eq. (10.1) has a nonzero imagi-
nary part describing the damping of the collective
oscillation. It is essential to emphasize1"1 that in a
nonuniform system the damping constant is a quantity
of the same order as the proper frequency, in the region
of applicability of the TFM. Therefore, the question of
the very existence of a collective level, which reduces
to the question of the relative magnitude of these
parameters, requires a numerical calculation to re-
solve it. Only in the case when such a calculation leads
to a damping constant that is numerically small com-
pared with the frequency can we speak of a real collec-
tive degree of freedom of the system.

The statement that the damping constant and fre-
quency are of the same order stems from the following
simple arguments. As is well-known from the theory of
collective oscillations in a uniform system (cf., e.g./*'1),
in the random-phase approximation under consideration
the damping is rigorously equal to zero, if the wave-
vector of the oscillation does not exceed a certain
critical value. This happens because, under such con-
ditions, the only mode of decay of the oscillation21*—
into a "particle-hole" pair—is forbidden by the energy
and momentum conservation laws. In a nonuniform sys-
tem the momentum ceases to be a good quantum num-
ber, or, which is the same thing, scattering by an in-
homogeneity produces an uncertainty in the momentum
of the order of 1/L, where L is the characteristic non-
uniformity length (cf. Sec. 1).

For this reason, the decay channel under considera-
tion becomes open, and the corresponding damping is
determined by an inverse power of L. The ratio of the
damping to the frequency should be expressed in terms
of the dimensionless combinations l/Ln 1 ' 3 and r o / L .
In the region of applicability of the TFM the first of
these is indeed small, but the second is always of order
unity (cf. (1.17)). From this the statement under discus-
sion follows,

The situation in the important case of periodic mo-
tion of the particle (with period T) is particularly
visualizable. In this case, as can be shown, the Jacobian
does not depend on the index j , and the quantity tj > 0
is equal to t° + jT for motion from χ to x' in one direc-
tion, and equal to Τ - t° + jT for motion in the opposite
direction, in a closed cycle; j = 0 - *>. Substitution into
(10.2) gives
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(10.3)

where we have used the rule (ω — ω + ϊδ) for going
"causally" round the pole (cf. (9.13)). The physical
meaning of (10.3) is that the damping of the collective
oscillation is connected with a resonance of frequency
ω, with the semi-classical particle-rexcitation fre-
quency 2ττη/Τ. It is this which corresponds to the decay
of the collective oscillation into a "particle-hole" pair,
which is the analog of Landau damping in the case of a
nonuniform system. In accordance with what has been
said above, only the δ-function of the energy-conserva-
tion law appears in the expression (10.3). This leads to
a significant (in the literal sense) magnitude for the
damping, proportional, like the frequency itself (cf.
the end of Sec. 9), to Z.

The arguments and formulas expounded in this Sub-
section (like the relations (9.11)—(9.13)) apply directly
to the case of zero temperature only. The generaliza-
tion to the case Τ * 0 is effected by means of the sim-
ple formula

(ΐο.4)

analogous to (8.5) (cf. Appendix 7).

In conclusion, we shall discuss the question of the
absorption of light by the system when collective oscil-
lations are present in it. Introducing the quantity

u (χ, ω) = f dx' ε"1 (χ, ω).

we can rewrite the oscillator-strength density in the
form g(u>) = -(w/2ir2)Im J dxu, and obtain for u the
equation (cf. (9.4))

j dx' ε (χ, χ', ω) u (χ', ω) = 1. (10.5)

This is an inhomogeneous equation corresponding to the
homogeneous equation (9.5) that determines the spec-
trum and damping of the collective oscillations. It fol-
lows from this, already, that to each collective level
with sufficiently small damping there corresponds a
peak in the oscillator-strength density, positioned at the
same frequency.

Applications of the theory described in this Section
to the problem of the collective oscillations of the elec-
tron cloud of a heavy atom are considered below, in
Sec. 13.

V. APPLICATIONS TO THE PHYSICS OF THE ATOM
AND THE PHYSICS OF EXTREMAL STATES OF
MATTER

11. Refinement of the TFM at short distances from the
nucleus

In this chapter we shall consider a number of applica-
tions of the TFM, in its improved form, to different
problems in atomic physics and the physics of extremal
states of matter. It is important to emphasize from the
outset that the theory described in the preceding Sec-
tions is far from being directly applicable to all such
problems. There are a number of important quantities
whose calculation requires preliminary modification of
this theory. However, the situation does not involve a
radical change of the theory, but only, in essence, a dif-
ferent interpretation of the expressions obtained in
Chap. III.

These expressions, corresponding to the exchange,
correlation, quantum and shell effects, were obtained
under the assumption that their contribution to physical
quantities was relatively small. Essentially, we were
concerned with the first term of the expansion in the ap-
propriate parameter δ. As always in such cases, the
small size of the first term of the expansion makes it
possible to discard all the other terms. The correspond-
ing conditions, expressed in terms of the density and
temperature, are contained in the diagram of Fig. 1.

However, fulfillment of these conditions does not yet
guarantee the applicability of the theory of Chap. Ill to
all the physical characteristics of a substance. The
point is that, as already noted at the end of Sec. 3, the
TFM is essentially inapplicable in the region near the
nucleus (and on the periphery of an isolated atom). In
this region the quantum effects are so substantial that
this invalidates not only the TFM itself, but also its
generalizations221. Therefore, those physical quantities
for which this region is important (the total energy, the
polarizability of the neutral atom, etc.) should be de-
scribed in a special way.

Having chiefly in mind the region near the nucleus
(and, correspondingly, the quantum effects), we shall
discuss two ways of modifying the TFM. The first con-
sists in treating the quantum correction and the zeroth
term corresponding to the TFM on an equal
footing1*·29»501. Expansions in the parameter 5qU are not
performed in this case. Now the process of successive
approximations consists in treating the TFM itself in
the first stage, treating the TFM and, on an equal foot-
ing, the first quantum correction in the next stage,
treating the same plus the quantum correction of second
order in 5qU in the third stage, and so on, without mak-
ing any additional assumption at each stage. Such an
approach (which is sometimes called the quantum-sta-
tistical model, or QSM for short) is found to be highly
effective. The process of successive approximations
converges rapidly, and a sufficiently good description
is already achieved at the second stage. In any case, the
corresponding result is an immeasurably better starting
point for subsequent improvements (if there is any need
for these) than the TFM itself.

In the case of zero temperature the program of the
QSM can be realized by considering the minimum of the
functional E(n) = Ε - Jdxn, where Ε is the sum of the
expressions (1.7) and (6.6a). One may proceed either
by a direct variational methodt29>41, or by solving the
Euler-Lagrange equation150'

*"*, ( l l .D

where ψζ a n and ζ = l/B. Eq. (11.1) resembles the
Schrbdinger equation, differing from it by the nonlinear
term23' and also by the quantity ζ (in the Schrbdinger
equation, ζ = 1 and the factor-of-nine difference be-
tween (6.6a) and the Weizsacker formula is connected
with this; cf. Sec. 6).

22)This is manifested, e.g., in the divergence at short distances of the
quantum correction to the energy (cf. Sec. 6).

2 3 ) Additional nonlinearity would appear if the exchange term (4.13)
were included. This would reduce to adding the term - 2 ( 3 / J T ) 1 / : V 5 / 3

to the right-hand side of (11.1) and would imply a return to the
Thomas-Fermi-Dirac model, but with parallel allowance for the quan-
tum effects.
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The success of the QSM program is connected with
the following simple circumstance. The inapplicability
of the TFM at short distances is manifested in the fact
that it leads to incorrect behavior of the density in this
region: as can be seen from (1.11), for ξ = 0 the den-
sity is singular at zero: φ ~ r"3/4, η ~ τ312, while in an
exact quantum-mechanical treatment the density is de-
scribed by a regular function. It turns out that the be-
havior of the density is already radically improved in
the second stage of the QSM: as can be seen from (11.1),
its solution at zero has the form η ~ 1 - (Zr/g).
Therefore, the subsequent stages of the QSM lead only
to insignificant quantitative refinements of the result.

Another way of refining the TFM at short distances
from the nucleus is based on the fact that in this region
the potential created by the electrons is practically
constant and can be put equal to a constant C. At the
same time, the problem with the potential U' = -Z/r
+ C can be solved in explicit form. From this, without
any additional assumptions, we can arrive at the follow-
ing expression for the distribution function:

/ = /i - /» + U (11.2)

here f ι is the exact quantum-mechanical expression for
f for the potential U', and can be expressed in terms of
Whittaker functions[40]; f2 = 6>[2(μ - U') - p 2] is the
semi-classical expression for the same potential; f3

= θ[2(β - U) - p 2] is the usual TFM result. At short
distances, where the potential is close to U', only the
first term remains, while in the region of relatively
large distances, where the motion becomes semi-clas-
sical, the TFM expression is regained (cf . [ 5 1 ] ) .

There also exist other methods of refining the TFM
at short distances. We shall mention only the paper [ 5 2 ],
in which the introduction of a special lower "cutoff" of
the electron-energy spectrum, leading to a sharp de-
crease in density in the vicinity of the nucleus, was
proposed. However, up to now, the most highly-devel-
oped and effective method is the QSM method.

12. Applications to the physics of the atom

In this section we consider only those applications
which illustrate the results of Chap. III. Applications
pertaining to the material of Chap. IV have been carried
over into the next section. Here and below we consider
a neutral isolated atom with a sufficiently large value
of Z. Corresponding to this, in the framework of the
TFM, are the quantities

0, JrY", (12.1)

where for p|- we have used the approximate expression
of[53], which will be applied below.

We begin with the question of the total energy of the
electron cloud of an atom. The TFM gives for this
quantity the expression E(Z) = -0.769Z7/3, which is
considerably greater in magnitude than the results of
experiment and of quantum-mechanical calculations.
This happens because of the inapplicability of the semi-
classical description at short distances from the nu-
cleus (cf. Sec. 11). In addition, the formula given does
not reflect the weak, but perfectly observable, oscilla-
tions of the function E(Z) that are associated with shell
effects. Figure 7, borrowed from [ M 1, shows the results
of calculating the energy of an atom by the TFM, by the
Thomas-Fermi-Dirac model, by the QSM (with inclu-

FIG. 7. Energy of the electron
cloud of an atom. 1-from the Har-
tree model ["], 2-from the TFM,
3-from the Thomas-Fermi-Dirac
model, 4-from the QSM.

0.60-

20 SO >Ό BO 80 100 Ζ

sion of an exchange correction), and by the Hartree-
Fock method. It can be seen that allowance for quantum
effects considerably improves the result: e.g., for
Ζ ~ 20—30 the disagreement with the results of the
quantum-mechanical calculation falls from ~29% to
~5%. The second method discussed in Sec. 11 [ 5 1 ] leads
to similar results.

The shell contribution to the energy of the atom can
be estimated by means of (4.4) and (7.6) (since μ0 = 0,
we cannot use formula (8.7) in the present case). The
principal role in the integral (4.4) is played by small
values of μ and, correspondingly, large values of r,
where the semi-classical description is inapplicable.
Therefore, we can only count on obtaining qualitative
results. The first of these is an explanation of the ex-
tremely small amplitude of the oscillations: its relative
magnitude 5E/E is substantially smaller than the
parametric estimate 5qU ~ Z"^ 3. The explanation
lies precisely in the unsuitability of the semi-classical
method for describing the oscillations under considera-
tion. In the region of importance for these oscillations,
i.e., the region of the outer shells of the atom, where
the charge of the nucleus is practically completely
screened, the amplitude of the oscillations does not de-
pend on Z. Correspondingly,

which is in agreement with the curve of Fig. 7.

The second result concerns the type of oscillations.
Substituting (7.6) into (4.4), it is easy to see that the
oscillations of the energy are smoothed compared with
the oscillations of the density. Namely,241

«ρ Γ es " 2 <• "1* Π Ο 1\
0/> '"^ I J ~ — f O Q Ι - \XCi mO f

which corresponds to wave-like behavior with a discon-
tinuous second derivative, rather than with a discontinu-
ous first derivative as in δη. This also agrees qualita-
tively with Fig. 7. The points of discontinuity corre-
spond to the "magic" values Z m a g = . . . 19, 37, 5 5 , . . .
(the alkali metals), at which a level with quantum num-
bers η and 1 = 0 emerges into the continuous spec-

24)Formula (12.3) is obtained by iteration in μ of the oscillating factor
in (7.6), to which we ought to add the further term —7Γ2/12 (cf. Appen-
dix 5).

663 Sov. Phys.-Usp.. Vol. 18. No. 9 D. A. Kirzhnitz et al. 663



trum, and So = 7r(n - %) for Ε = 0. It can be seen from
(12.3) that the nodes of the oscillations are located both
at the values Zmag and in the intervals between them.
This property corresponds qualitatively to Fig. 7, in
which the nodes correspond to Ζ » 21, 29, 37, 53,
59,. . .

We turn now to the description of the density distri-
bution in the core of the atom (for Z" 1 « r « 1). In this
region the quantum effects are small, while the shell
effects are quite noticeable because of the large numer-
ical coefficient in formula (7.7). Use of this formula
and (12.7) gives25'

δη ~ sin ( (12.4)

(for simplicity, the non-oscillating factor has been
omitted) and leads to good (about 5%) agreement with
the quantum-mechanical calculations for atoms of aver-
age and large atomic number (Fig. 8) [ 3 4 ' . What is
measured directly in experiment is not the density, but
the atomic form factor F(q) = Jdxn(x)e" iq ' x , where q
is the momentum transfer in scattering of fast electrons
or photons. Substituting (7.7), using (9.1) and proceed-
ing by the method of stationary phase, it is possible to
arrive at the expression155'

δ/1 (q) ~ cos UA2Z1" (π - χ)], (12.5)

where χ = q/l.lZ*'3. The inclusion of this correction
appreciably improves the behavior of the function F(q)
(Fig. 9).

The next quantity with which we shall be concerned
is the potential p|r of the atom. With quantum effects
taken into account, it was calculated in the paper by
Kompaneets and Pavlovskii[18]. These results were
used to calculate the polarizability and magnetic sus-
ceptibility of the atom and it was found that, in compari-
son with the TFM, the theoretical results come appreci-
ably closer to the experimental data. Thus, according
to the author of[56', the above quantities for xenon have
(in certain units) the experimental values 4.10 and 4.39,
respectively, the values 24.8 and 113.0 in the TFM, and
the values 4.06 and 45.7 when quantum effects are taken
into account. The behavior of pp with shell effects
taken into account has recently been obtained^57'; it is
shown in Fig. 10.

In the literature there are also data on the distribu-
tion of the partial electron density corresponding to a
given value of I (see Appendix 5). We shall not discuss
this topic (cf.[1]).

We may state that, on the whole, the generalized
TFM, incorporating quantum, exchange and shell ef-
fects, gives a considerably better description of the
properties of a heavy atom than does the standard TFM.
The contrary statement in [ 5 8 1 is based on the factual
errors pointed out in [ 5 6 ].

13. Collective oscillations of the electron cloud of an atom

Amongst the nonuniform systems that have collective
levels as well as single-particle levels in the excitation
spectrum is the electron cloud of a heavy atom. Such
levels correspond to the classical oscillations of a

f(t)
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FIG. 8. Radial electron density in the mercury atom. 1-from the
Hartree model [ " ] , 2-from the TFM, 3-from the TFM with shell
corrections.

FIG. 9. Atomic form factor for iron and copper. 1-from the Hartree-
Fock model I 9 4 ] , 2-from the Thomas-Fermi-Dirac model [ 9 S ] , 3-the
same with a shell correction, 4—experiment [ " ] .

FIG. 10. The atomic potential
(r/Z)pk r = 0.885Z-"3x).

1—from the Hartree-Fock model,
2-from the TFM, 3-from the TFM
with a shell correction, 4—from the
QSM I 5 0 ] .

12 χ

charged liquid drop, to which a sufficiently heavy atom
can be likened29. As has been discussed in detail in the
review19', the collective levels of an atom might mani-
fest themselves as peaks in the cross-sections for scat-
tering of photons or electrons by the atom; in addition,
such levels might lead to those features of atomic pro-
cesses that are characteristic of the "Bohr" picture
(the absence of correlations between the initial and
final states, and so on).

The question of the existence of collective levels in
atoms was raised a long time ago t42>43'. However, up to
the most recent times (cf . [ 5 9 ) β 0 ' ) , two points of cardinal
importance for the answer to this question have re-
mained unclarified. The first pertains to the magnitude
of the Landau damping, which, as was noted in Sec. 10,
is not strictly small in relation to the frequency of the
oscillations, Therefore, only a numerical calculation in
the framework of a consistent theoretical scheme could
lead to a small damping, and thereby to an affirmative
answer to the question of the real existence of collec-
tive degrees of freedom in the atomic cloud.

The second point is connected with the question of
the spatial localization of the collective excitation. If
we supplement Eq. (10.1) by the natural (at first sight)
boundary condition

25)In the given case the quantities n' and δη coincide: because of the rapid
oscillation of n' the first term in the left-hand side of (4.2) is much
larger than the second (cf. (4.3)).

26)We are concerned with "truly collective" levels, having specific quan-
tum numbers, and not with collective effects in single-particle transi-
tions (concerning the latter, cf. ["]).
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U»= 0 (13.1)

(together with the condition δη < ·» or r5U = 0 at r = 0),
then, as it turns out, a continuous spectrum of excita-
tion energies ω > 0 is obtained. The hydrodynamic ap-
proach (cf. Sec. 10 and [ 1 0 ]) also leads to the same result
when (13.1) is used. The point is that the density distri-
bution in the TFM falls off relatively slowly at large dis-
tances and there are always excitations that correspond
to density "spikes" at large distances from the nucleus
and have arbitrary (including arbitrarily small) ener-
gies.

The result obtained not only raises doubts concern-
ing the inapplicability of the TFM at large distances
from the nucleus, but, moreover, corresponds to an in-
correct formulation of the problem. The energy ω ~ Ζ
of a collective level (cf. Sec. 9) is considerably greater
than the ionization energy of the outer electrons '
[ω ~ 1), and so this level, strictly speaking, lies in the
continuous spectrum: a collective excitation that orig-
inally arose in the core of the atom will sooner or later
transfer its energy to the outer electrons of the atom
and thereby cease to exist. Therefore, the boundary
condition (13.1), being referred to an infinitely distant
point, describes not the collective excitation itself but
its decay products, which do indeed correspond to the
continuous spectrum.

A correct formulation of the problem is as follows.
A collective excitation originally arises in the core of
the atom (for r < R ~ Z~1/3), i.e., in the region of ap-
plicability of the TFM, where we can use the relation of
Sec. 10. Whether the excitation is indeed localized in
the region under consideration can be judged by replac-
ing (13.1) by the condition

δη | Β = 0, (13.2)

varying R within certain limits, and noting the appear-
ance of a plateau in the dependence of the frequency ω
and damping Γ on R. The values of the functions u>(R)
and r(R) corresponding to this plateau can be identified
with the frequency and damping constant of the collec-
tive level, and for Γ « ω we may speak of the level as
a real level of excitation of the atom. Subsequently this
level will be damped, both as a result of mechanisms
operating in the region of its original localization
(Landau damping and radiative decay), and as a result
of transfer of excitation energy to the outer shells (cf.
above). Strictly, the Landau damping Γ ~ Ζ is the most
important (it will be determined by a numerical calcula-
tion); the radiative damping and the damping associated
with the outer shells are certainly small compared with
ω, although they can become comparable with the Lan-
dau damping because of the anomalous numerical small-
ness of the latter (see below).

The verification of the correctness of the picture we
have drawn and the determination of the parameters of
the collective excitations are carried out by means of
Eqs. (10.1) and (10.2) and the boundary condition (13.2).
Newton's equation (9.9) is first solved analytically in
the field (12.1). Its solutions are closed self-intersect-
ing trajectories (Fig. 11), describable in polar coordi-
nates by the equation r/α + α/r = Δ + 1 + (Δ - l)cos θ,
where Δ = (Za/M2) - 1; Μ is the angular momentum of
the particle. The motion turns out to be periodic with
period Τ = ΤΓ(Δ + 1 ) ( 3 Δ - 1)α2/Μ (cf. Sec. 10).27)
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FIG. 11. Trajectory of a particle in the field of an atom.
FIG. 12. Dependence of the frequency of a collective oscillation on

the radius of the region of localization (Ω = 3ω/>/2Ζ\ £0 = R/a).

-Or· ft)3
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FIG. 13. Perturbations of the ^
radial density for collective levels
(f = r/a).

The numerical calculation was carried out by the
completed-vector method of[62] and led to two dipolar
(5U ~ cos 6>) levels with relatively small width (cf. [ 5 8 ]).
The curves a>(R) and r(R) do indeed have clear plateaux
(the curve for the u>(R) of one of the levels is shown in
Fig. 12), to which correspond the values (in electron-
volts )

(UJ = 13.7Z, ω2 = 36.0Ζ,

Γ, = 3 ·10-% Γ2 = iO-'Z. (13.3)

Figure 13 shows the radial parts 5n(r) of the change in
density on excitation. It can be seen that the lowest col-
lective level corresponds, in the first approximation,
to a displacement of the cloud, as a whole, relative to
the nucleus (this picture was discussed a long time ago
by E. L. Feinberg). However, the cloud is, in fact,
slightly deformed, while remaining unmoved near the
nucleus and at the periphery of the atom.

By means of the relations given in Subsection 10, the
oscillator-strength density has also been calculated^""1.
As it should, the function g(a>) has sharp peaks corre-
sponding to (13.3). The areas within the peaks, which
have the meaning of the oscillator strengths of the col-
lective levels, are of the order of 0.1Z for the lower
level and three orders of magnitude smaller for the
upper level. Thus, the collective levels exhaust a con-
siderable proportion of the sum rule Jda>g(w) = Ζ and
should make an appreciable contribution to optical
transitions.

To conclude this section we shall touch briefly
upon the question of the correlation energy of a heavy
atom [ 4 9 1. In the framework of the quasi-uniformity ap-

2 7 )The fact that the period coincides with the characteristic time 1/Z of
a collective oscillation implies that the motion of the particle differs
strongly from the rectilinear and uniform motion corresponding to
the quasi-uniformity approach (cf. Sec. 9).
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proach we would obtain a dependence of 5E on Ζ of the
form 6E ~ Ζ In Ζ (cf. Sec. 5). However, the true ex-
pression turns out to be different. Using the general
expression, valid in the random phase approximation,

Λο8ρ(1ηε(ω (13.4)

where e(x, χ', ω) is regarded as a matrix with indices
χ and x', and taking the self-similarity of e = e(co/Z)
into account (cf. Sec. 9), it is easy to see that the con-
vergent integral in (13.4) gives the dependence δΕ ~ Ζ
(cf. (3.5)). This is a further indication of the inapplica-
bility of the quasi-uniformity principle to the atom.

14. Applications to the physics of the extremal states of
matter

The most important and widely-used applications of
the TFM to the physics of extremal states of matter
pertain to the thermodynamics. Here, primarily, we
must single out the problem of the equation of state of
matter, i.e., the dependence between the pressure,
density, temperature and chemical composition of
matter. It is the equation of state that we shall be con-
cerned with in this section, although in the papers cited
below there are also data on other thermodynamic char-
acteristics .

The application of the TFM and its generalizations
to the derivation of the equation of state of matter is
realized, as a rule, in the framework of the Wigner-
Seitz cell model (cf. Sec. 1). Without dwelling on the
details (cf . C 1 > 5 > 8 1 ) , we point out that the most complete
data on the equation of state in the TFM are contained
in the [ ( B 1 (cold matter) and [64l (hot matter) by Latter [ e 3 ] .
A considerable part of these data, which refer to a wide
range of pressures and temperatures, is incorrect be-
cause of the inapplicability of the TFM itself; this con-
clusion is also confirmed by direct comparison with the
available experimental data [ 6 5 ] .

Refinement of the TFM by the inclusion of the effects
considered in Chap. Ill makes it possible to distinguish
the reliable part of these data and obtain an improved
equation of state of matter, valid in a wider range of
pressures and temperatures. In Chap. Ill general ex-
pressions ((4.13), (5.6), (6.11)) were given for the cor-
responding corrections to the equation of state, together
with their explicit form in the uniformity regime281

(shell effects in the equation of state are considered
below).

In the region of not very high temperatures (cf. Fig.
1), the principal contribution to the equation of state is
made by the exchange and quantum effects. The first
have been investigated in most complete form in [ 2 2 ] .
However, the results are invalidated to a considerable
extent by the fact that the quantum effects were not
taken into account at all. As was explained in Sec. 6,
numerically the latter makes the same contribution (to
within a coefficient »l/3).

A quantitative theory of the quantum effects in the
equation of state of matter was constructed in f 2 1 ] , and
a numerical solution of the problem for cold matter is
contained in [ 6 8 1, from which we borrow Fig. 14. It can

28>Cf. also, in this connection, t 6 6 ' 6 7 ] ·
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FIG. 14. Equation of state of iron {pQ is the normal density). 1-from
the TFM, 2-from the Thomas-Fermi-Dirac model, 3-from the TFM with
exchange and quantum corrections, 4—experiment [ 6 S].

be seen from this figure that the quantum and exchange
corrections do indeed make the TFM result come
closer to the experimental data2 9 1. The results of[70',
which, like [ e 8 ], refer to the cold compression of iron,
lead to an analogous conclusion. In [ 7 1 ) the equation of
state with quantum effects taken into account was com-
pared with experiment in the high-temperature region
and convergence of the data was again noted.

Although the TFM, even when refined by allowance
for quantum and other effects, is not directly applicable
in the low-pressure region, it leads to reasonable re-
sults for the atomic volumes (or densities) of uncom-
pressed matter' 5 4 ' 8 8 ' . In this connection, we recall that
at zero pressure the TFM itself leads to an infinite
radius for the atom [ 7 2 ). In the framework of the Thomas-
Fermi-Dirac model, or when quantum effects are taken
into account, the situation is changed: uncompressed
matter acquires a finite density. Although these models
are not capable of describing the shell oscillations of
the atomic volume, they convey the behavior of this
quantity averaged over the periodic table. The best re-
sults are given by the quantum-statistical model (cf.
Sec. 11). The above is illustrated by Fig. 15a, borrowed
from [ M ) . The empirical curve in this figure reflects the
atomic-volume oscillations associated with shell effects.
The peaks correspond to the alkali metals, for which an
electron with a given value of the principal quantum
number and I = 0 first appears in the atom. The de-
scending parts of the curve correspond to close-packed
structures; a description of these parts can be found
in [ 7 3 ] . As Ζ increases the curves pass through a mini-
mum and the ascending parts correspond to structures
that are not close-packed. This is the reason why the
atomic volume of a Group-0 element, for which we
might expect the lowest value, in fact differs little from
the atomic volume of the alkali metal that follows it.
This is connected with the fact that a crystal of a
Group-0 element belongs to the class of loosely-packed

2 9 )The papers I 6 8 ' 6 9 ] contain a complete thermodynamic description in
the framework of the TFM with quantum and exchange effects taken
into account. The paper [101] contains detailed tables of thermo-
dynamic quantities calculated from the TFM with quantum and ex-
change corrections taken into account.
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FIG. 15. Curves of the atomic volumes V(a, e). 1-experiment [6S>97]
2-interpolation formulas [ " ] , 3-quantum-mechanical calculation [98]
(TFC - TF model with quantum and exchange corrections, T F D -
Thomas-Fermi-Dirac model, QSM—quantum-statistical model.

van der Waals structures. Therefore, the curve under
consideration is characterized by a discontinuity not of
the function itself, but of its derivative.

The question of how the shell effects behave with in-
creasing pressure is of considerable interest. The con-
ventional point of view is that they decrease with in-
creasing pressure, becoming negligibly small for Ρ > 1
(in the usual units this corresponds to 300 Mbar). At
higher pressures the properties of matter become uni-
versal, and the dependence of its characteristics on the
atomic number becomes smooth and monotonic. At first
sight, the empirical curves shown in Figs. 15b and

[5465]

However, the results of Sec. 8 show that, in fact, the
situation with the shell effects is more complicated.
Oscillations associated with discontinuity of the deriva-
tive of the function v(Z) (cf. Fig. 15) are indeed
"washed out" at a pressure of order 1, but at higher
pressures sharper oscillations, associated with discon-
tinuity of the function v(Z) itself, appear in their place.
Physically, this corresponds to the fact that even the
structures corresponding to the ascending parts of Fig.
15a become close-packed with increasing pressure;
because of this, the minima of the curve v(Z) disappear
and a discontinuity in the atomic volume arises between
a Group-0 element and the neighboring alkali metal.
The discontinuity points themselves remain the same as

0 1 Z

FIG. 16. Equation of state with allowance for shell effects (Z = 100).

at zero pressure, so long as we are far from the limits
of the uniformity regime (n « Z2). However, at higher
pressures the "magic" values of Ζ begin to move in the
direction of higher Z, as can be seen from formula
(8.14).30> This happens because, on account of the influ-
ence of the neighboring cells, the character of the oc-
cupation of the levels becomes less and less hydrogen-
like. Only when η > Z4 do the shell oscillations com-
pletely disappear, because all the levels have crossed
into the continuous spectrum. As was shown with re-
gard to the uniformity regime in Sec. 8, in the language
of the function v(P) (the equation of state) the shell ef-
fects are manifested in the appearance of a series of
first-order phase transitions, corresponding to the
"squeezing out" of deep levels of the atoms into the
continuous spectrum. Of course, such transitions will
also occur outside the uniformity regime. This is il-
lustrated by Fig. 16, borrowed from [ 7 4 ] (cf. also [ 3 5 1).
Such phase transitions will occur, e.g., inside "white-
dwarf" stars, and are manifested in the form of discon-
tinuities in the density distribution, and in the appear-
ance of singularities on the mass-radius curve. More-
over, as was noted by A. S. Kompaneets, the latent heat
of the phase transition could turn out to be an appreci-
able factor in the evolution of stars.

To conclude this section we shall touch briefly upon
one further extremal factor—a high-intensity external
magnetic field, confining ourselves to treating its in-
fluence on the structure of a many-electron atom
(cf . [ 7 5 ~ 7 8 ' ) . In a strong field3" Η » Ζ ν 3 , all the electrons
occupy the lowest Landau level and have spin opposite
in direction to the external field. So long as Z3 » Η
» Z 4 / 3, the atom remains spherically symmetric, but
its radius decreases like Z1 / 5H~2 / 5 with increase of the
field. At still higher fields Η » Ζ3, the atom is elon-
gated in the direction of the field, and it becomes
favorable for the system of atoms to form a distinctive
polymeric structure.

Being interested in this problem from the point of
view of the TFM, we should consider lower field values
1 « Η « Z 4 / 3, for which the semi-classicality condition
is fulfilled with respect to the field: rHPF ? > 1» where
r H = PF/H is the Larmor radius. Under these condi-
tions the action of the field reduces to flipping the elec-

">Cf. also [»>].
31)The field is measured in units m2e3c/h3 = 10' gauss.
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tron spins, and we are dealing with the atomic analog of
Pauli paramagnetism. The electron-density distribution
is now characterized by two functions: nt = [-2(U
+ Η)]"8/6ΤΓΖ for r < r t and n, = 0 for r > r,(U(r») + Η

= 0) for a spin parallel to the field, and n_ = (-2υ)3/2/6ττ2

for a spin antiparallel to the field. The actual potential
U is determined by the Thomas-Fermi equation

AU = -4π (η+ + n.).

Referring to [ 7 S I for the details, we point out that the
total spin S of the atom increases with the field in ac-
cordance with the law S = Zf(HZ'*/s), where f is a
certain universal function. The effects considered are
important in the conditions obtaining on the surface of
a pulsar^79].

15. The density-functional method

The expression (cf. (1.7) for the energy in the TFM
at Τ = 0 can be represented in the form of an explicit
density functional

Ε {«} = Eh {η} + Ee <»} + Ε, {η>, (15.1)

Ek {η} ~ j dx nV> (x). (15.2)

The minimum of the functional Ε - μ/dxn with respect
to η leads to the Thomas-Fermi equation and deter-
mines the ground-state energy of the system and the
corresponding density distribution.

As is easily seen, when we go beyond the framework
of the TFM and take into account the correspoindng cor-
rections we continue to deal with the functional (15.1)
(cf. (4.11), (6.6a)) but the form of the functional (15.2)
becomes more complicated. In particular, allowance
for quantum effects leads to the result that, in place of
a quasi-uniform functional, we obtain a functional de-
pending on derivatives of n. It is not surprising, there-
fore, that the following statement is valid: in the exact
formulation of the many-body problem (the many-parti-
cle Schrodinger equation), the energy of the system is
expressed in the form of the functional (15.1) with a
unique universal functional Ek of a general form, and
the minimum of the functional Ε - μ|<3χη gives the
energy and density-distribution in the ground state of
the system. This statement was substantiated by per-
turbation theory by March and Murray[8<>1 and proved as
a rigorous theorem by Hohenberg and Kohn[81'.32> In ef-
fect, we have already used it in Appendix 2.

On this statement is based a new method, called the
density-functional method, for treating a number of
problems in the theory of solids. With its help, prob-
lems in the theory of surface phenomena^82'"3'100', the
theory of magnetic phenomena18*1, and many others,
have been solved successfully. The range of application
of the method is so wide and varied that to give an ac-
count of it would require a special review article.
Therefore, we shall confine ourselves below to a few
general remarks.

Decisive for the success of the density-functional
method is the possibility of choosing a sufficiently
valid and, at the same time, not too complicated expres-
sion for Ek{n}. In practice, the following variants are
used:

a) The quasi-uniform expression

Ek {«} = E\ {n} + 6£exch {«} + SE^ {η}, (15.3 )

where E k is the quantity (15.2), δΕ^^ is the ex-
change correction (4.11) and 6 E c o r is the correlation
correction. The problem of calculating this is extremely
complicated (cf. Sec. 5), and is bypassed by considering,
for want of anything better, the quasi-uniform generali-
zation of the Gell-Mann-Brueckner expression or of
more complicated interpolation expressions^6 '8 8»8 9 1. If
we omit the correlation energy, the expression (15.3)
corresponds to the Thomas -Fermi-Dirac model (cf.
Sec. 2).

b) An expression including the density gradient:

-L J d x < ^ I a , (15.4)

where the last term corresponds to the quantum cor-
rection (6.6a). If we omit the correlation energy, we
arrive at the quantum-statistical model (cf. Sec. 11).
The expression (15.4) gives appreciably better results
than (15.3), e.g., in the problem of the work function of
electrons in a metal.

c) An expression describing small changes of
density:

Ek W = Eh {«„) + J dx dx' K(x- x') (m (x) 6ra (x'), (15.5)

where δη = η - n0> Ek{n0} is the functional (15.3) for a
constant argument n0, and the Fourier component of the
kernel is K(q) = (2;r/q2)[e(0, q) - I ]" 1 , where c ( w , q) is
the dielectric permittivity of the system. This expres-
sion is valid if the density changes themselves are
small, without restrictions on their rate of change in
space [ 8 1 ' 8 9 1 .

Summarizing, it must be said that, by its nature, the
density-functional method, being equivalent to an exact
solution of the many-body problem, is much broader
than the TFM. However, the practical realization of
this method is not essentially different from the TFM
with the appropriate corrections treated on an equal
footing with the zeroth term (Sec. 11). Only if other
functionals (besides the variant (c)) differing essentially
from the TFM appear in the future will be fully justified
in speaking of the density-functional method as an inde-
pendent method in many-body theory.

We are grateful to V. L. Ginzburg, Ν. Ν. Kalitkin,
S. L. Mandel'shtam, 1.1. Sobel'man and E. L. Feinberg
for discussions of many topics touched upon in this re-
view, and for a number of useful comments.

APPENDIX

1. FERMI-DIRAC FUNCTIONS

From the definition of the Fermi-Dirac functions

32>This proof has been generalized to the case Τ Φ 0 [*s], to systems with
uncompensated spin [»4>8<s>87], to relativistic systems [ 8 7 ], etc.

it follows that they increase monotonically with increas-
ing argument, have the asymptotic forms

ζη + 1/(η + 1 ) (1 -«- 00), Γ ( η + 1 ) e» (x ->· —oo)

and satisfy the recurrence relation I n = nln_i. For
tables of these functions for integer and half-integer n,
see 9
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2. CORRECTIONS TO THE THOMAS-FERMI MODEL

To derive (4.2) we take into account that the argu-
ment p|- in the first term of (4.1) itself contains a cor-
rection δρ|· associated with n'. Therefore, the total
change in density is equal to δη = η' + δρ|Ίτ2/8π, in
which, according to (1.3),

From this, (4.2), and also (4.3), follow. The solution of
(4.2) should then have no singularities of the type 1/r,
either at finite χ or at infinity.

The derivation of (4.4) (for particular cases of this
relation, see in [ 5 '3 5 ') is based on the condition 6F/6n
= μ for the minimum of the quantity F - μ J dxn. The
functional φ = F - E e - Ei (cf. (1.7)) serves as the po-
tential with respect to pfr/2 = η: δΨ/δη = η. Changing
to the new argument η, we arrive at the functional

Φ = Ψ — f dxnr\ — F — μ f dxn + Et,

which serves as the potential with respect to η: δΦ/δη
= -η. Analogously, (4.1) can be written as Φ — Φ + Φ',
with δΦ'/δ/} = -η'· Considering a total variation of Φ,
it is easy to see that Φ' = 6F. Therefore, 6(6F)/6T)
= -n' . Understanding by δη the variation of the chemi-
cal potential, and integrating over it, we arrive at (4.4).

3. CALCULATION OF THE EXCHANGE INTEGRAL

The integral

after integration over the angles is brought to the form
Τ2κ(λ)/2π3, where

CO

dx
exp(x-X) + i

ΛΓχ+V'y

making the replacement x, y — χ + λ, y + λ and differ-
entiating with respect to λ, we have κ = (I-i/a)2. F r o m
this , expression (4.7) is obtained.

4. CORRELATIONS IN A CLASSICAL COULOMB GAS

For the calculation we use the Bogolyubov method,
leading to a system of coupled equations for the distri-
bution functions:

. _ X n + 1 [

v <*·
whence φ = κ/21. Using (5.2), from this it is easy to
arrive at (5.4). We also point out the relation

δρ£(χ) = 2Γ f <ix'v(x, x')n'(x'),

which follows from comparison of (5.3) and (4.2).

5. SHELL EFFECTS

a) One-dimensional case

The expression (3.3) has (when higher-order effects
are neglected) the following expanded form:

n = 2 § Q n / ( P n T n ) , where
n=0

κ

<?„ = 1 + sin (2Sn) \- f — — sin (2Sn (i)).

H'

The terms Qn correspond directly to the terms of the
right-hand side of (7.1), and the property (7.2) is
directly discernible.

We use the Poisson summation formula
b co b+ε

2 / (Ό = 2 ι **"''"'cos (2π*π)'

where 0 < e, e' < 1.33) We proceed to the energy integra-
tion, taking into account the formula θΕ/θη = ττ/το,
which follows from the quantization rule extended to
noninteger n. Hence,

= T Σ ι"1 *)cos(2*So«).

We consider first the contribution of the first term
of Q. In the sum the k = 0 term, which corresponds
simply to replacement of the sum by an integral, is of
the form 2PF/TT and coincides exactly with the TFM
result. Correspondingly, the terms with k * 0 give
ηΊ. Integrating by parts and keeping the integrated term
at the upper limit (which is the leading term in the
parameter ξ), we have

(-D" sin(2*S0),

which leads directly to (7.3). Analogously, the second
term of Q gives

(-D"

, l-y.'v - /η(χι χη). whence (7.4) is obtained.
Τ £J \xi X)I

Their right-hand sides can be regarded as a pertur-
bation. Substitution of (5.1) leads to an equation for the
correlator:

b) Three-dimensional case

We start from the expression

nr, I

which is easily reduced to (5.3). On the other hand,
putting fi = (n(x)/n)(l + φ), we find for φ the equation

-n(x')v(x, x').

Comparing this with the equation (*) gives

V(p(x)= lim V (v(x, x ' ) + T , ' . , . ) •
x'-fx * l I x x I '

But for small | χ - x ' | the solution of Eq. (5.3) has the
form

where Q has the same structure as in the one-dimen-
sional case, u = (n r, I) and p,y

= Vf2(El, - U) - [(Γ+ Yz)]7r2. Using the quantization
rule SQI, - π(ηΓ +

 l/2), we have

3 3 ) The Poisson formula follows from the relation Σ δ(η - m)
oo n=-°°

= Σ cos^km). The quantity e is chosen from the condition So

k=-oo

= π(Ν + e — Vi), and the quantity e is put equal to V4. Then the energy
Eo can be identified with the minimum of the potential U, inasmuch as
Eo corresponds to the condition SQ,E 0

 = 0, or pE0 = 0.
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2 (-1)**· j dV j jj-VEc,,s<2kSOE-2™.),
ft, i=-oo 0 f.'o

where λ = I + y2. When the Poisson formula is applied
to the summation over I the quantity e is chosen from
the condition S( i m a x + e) = 0 (/max is the largest
possible angular momentum), and e' = %.

The first term of Q for k = s = 0 gives the TFM
result

"2SV~ J dk"") T ^ l ^ ·
0 E»

and for the other values of k and s (and for the second
term of Q) the answer depends on the behavior of the
potential for small r. For an attractive Coulomb field
we have, for small λ,

"'
- 2 ί ± + . . . , So(O)=f drpp.

The main contribution to nl is given by the term with
k = s, for which the terms linear in λ in the argument
of the cosine vanish. Integrating by parts and keeping
the integrated terms at Ε = μ and λ = 0, we obtain

"ί=—9=
ι cos (2fcS0 (0))

From this it is not difficult to arrive at the formula
(7.6). Proceeding analogously with the second term of
Q, and keeping the term with k = 0, s = 1 as TO — °°,
we obtain the expression (7.7).

We note that, by changing to an integral only for the
sum over nr, it is easy to find the partial density ni(r)
with a given value of 1. If μ coincides with the bound-
ary of the continuous spectrum (r0 — *>), then

6. TEMPERATURE SMOOTHING OF THE DENSITY
OSCILLATIONS

The relation (8.5) can be written in the form

n'<7\ μ) = /(*)η'(0, μ), /(i) = j ^

where k = -iTa/θμ. The integral I is found to be equal
to

/(A)-l-2* f A"Bin (fa·)_ π*

ϋ

Taking derivatives only of the rapidly varying sine in
the differentiation of (7.7), we h
then leads to the formula (8.6).

y y g
the differentiation of (7.7), we have k2 = 4τ 2Τ 2. This

7. CALCULATION OF THE POLARIZATION
OPERATOR

The classical kinetic equation for Τ = 0 has the form

where f is the unperturbed distribution function (1.5)
and δί is its variation, with

f
δ» (χ)ω = 2 \ if'pbl (χ, ρ, ω).

In the Lagrangian picture the initial equation has the
form

— τ - ό / ( χ ( / ' — / ) , pit' — / ) , ί ' ) - - Λ ( χ ( / ' — t ) , p[t' — t ) l ' j ,

where p(t) = x(t), x(0) = x, p(0) = p, and the right-hand
side of the equation is denoted by A. Hence, taking the
causality principle into account,

δ/(χ, ρ, /)- j « ( « η p(/'), <+/•).

The right-hand side of this equality can be represented
in the form

0

-2δ(/>ί.Μ-Ρ2) j Ac' j Λ '^_(δ(χ(ί')-χ')]δί/(χ·, i + i')
— 30

when the relations pp(x(t)) - p2(t) = p|(x) - p 2 and
(p(t) · v)F(x(t)) = F are taken into account. Substitution
of the expressions obtained into the equation (•) and
comparison with (9.6a) indeed lead to (9.11) and (9.12).
For Τ * 0, using (1.8) it is not difficult to arrive at the
relation (10.4).
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