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We consider phenomena which are frequently designated jointly as the Jahn-Teller effect and result from
dynamic electron-vibrational (vibronic) coupling in polyatomic systems with degenerate and
pseudodegenerate terms. Principal attention is paid to the case of strong coupling, when the adiabatic
potential in the space of the nuclear displacements that lift the degeneracy has several equivalent minima,
tunneling between which leads to a number of peculiar effects. From among the latter, we consider
resonant magnetic- and acoustic-wave absorption due to transitions between tunnel and tunnel-rotational
levels, the temperature and frequency dependences of the EPR and hyperfine splittings in Mossbauer
spectra, polarizability, etc. We discuss briefly cases of weak coupling suppression of splitting, due to
perturbations that act in the electronic subsystem. For the crystalline states, the interaction of local Jahn-
Teller and pseudo-Jahn-Teller distortions leads to structural transitions (the cooperative Jahn-Teller effect).
In the case when the local distortions are of the dipole type, the crystal in the ordered phase turns out to
be the spontaneously polarized. Relations are obtained between the parameters of the vibronic coupling, the
spontaneous polarization, and the Curie temperature for a number of ferroelectrics.
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1. INTRODUCTION tious. In a degenerate electronic state, the symmetry on

It is correctly assumed that the main laws governing w h i c h t h i s degeneracy is based (in this case, a linear
the structure and properties of polyatomic systems be- arrangement of three atoms at equilibrium) is generally
came known back in the thirties immediately after the speaking violated. I was ablve to convince Landau that

development of quantum mechanics. This does not per- h i s d o u b t s m ™ί°™<ϊ«1 ( t h l s is possibly the only time

tain, however, to all the principally possible physical w h e n I w o n m argument with Landau),

effects which, although they do follow from the principal A year later, in London, I asked myself whether there
laws, become important only when a definite stage is exists another exception to the statement postulated by
reached in the development of physics, particularly in Landau. It was clear that electron degeneracy can upset
the corresponding experimental capabilities. The fore- the symmetry on which it is based. But how frequently
going is illustrated also by the effects of electron-vibra- must this of necessity occur ? The question did not seem
tional (vibronic) interaction in polyatomic systems in the simple. I began to discuss this question with Jahn who,
degenerate and pseudodegenerate states, to which this like myself, was a refugee from one of the German uni-
article is devoted. versities. We have reviewed all the possible symmetries

In 1937, Jahn and Teller [ l 1 proved a theorem, accord- a l i d f o u n d t h a t l i n e a r molecules are the only exception.

ing to which, the nuclear configuration of a nonlinear fc a 1 1 o t h e r c a s e s Landau's predictions were confirmed,

polyatomic system in a state with electronic degeneracy One problem remained unsolved. The proof of the
is unstable with respect to nuclear displacement that so-called Jahn-Teller effect was obtained by a rather
lifts this degeneracy. This statement was first formulated inelegant method of reviewing all the symmetries and
by L. D. Landau, a fact specially noted by Teller in "A discussing each of them in succession. Insofar as I
Historical Note," [ 2 ] In view of the undoubted interest to know, there is still no general proof to this day.
Soviet scientists, we quote here Teller's statement in
its entirety: "In 1934, Landau and I were at the Nils T h i s i s t h e r e a s o n w h v t h e e f f e c t s h o u l d b e n a m e d

Bohr Institute in Copenhagen. We had many discussions. a ^ r Landau. He foresaw this effect, and no one else
I told Landau of the work of my student, R. Renner, on obtained for it a proof that could satisfy a mathemati-

degenerate states in the linear molecule CO2. I explained c i a n · J a h n a n d : Performed only some spade work."

that in this case a strong connection arises between the T h e p r o o f o f ^ statement by group-theory methods
splitting of the electronic states and the vibrations of the i s q u i t e s i m p l e . Indeed, by scanning through all the
nuclei, and this modifies the applicability of the Born- p o i n t groups it can be shown that in each of them there
Oppenheimer approximation to these states. a r e s u c h t y p e s ^ n u c i e a r displacements for which the

Landau objected. He said that I must be very cau- matrix elements of the linear term of the adiabatic po-
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tential in the functions of the degenerate term are dif-
ferent from zero. It is these nonzero linear terms which
are responsible for the absence of a minimum of the adia-
batic potential in the direction of the corresponding nuc-
lear displacements at the point under consideration. The
absence of a minimum is clearly connected with the fact
that in the presence of electronic degeneracy the sym-
metry of the electron distribution in the individual states
is lower than the symmetry of the nuclear configuration
(which leads to the degeneracy). Therefore the nuclear
configuration that corresponds to the minimum of the
adiabatic potential turns out to be of lower symmetry.
A general proof of the Jahn-Teller theorem was obtained
recently131.1*

We note[5] that the foregoing formulation of the theo-
rem is not specific enough and can lead to confusion un-
less the terminology is made more precise. Actually,
in[1] they prove only the following statement: If the adi-
abatic potential of a system is a formal solution of the
electronic part of the SchrOdinger equation (at fixed
nuclei) and has several branches that cross at one point,
then none of the branches of the potential has a minimum
at this point. Understandably, knowledge of this singu-
larity of the adiabatic potential is still insufficient to de-
duce the behavior of the nuclear subsystem. The latter
can be determined only by solving the SchrOdinger equa-
tion for the motion of the nuclei with the indicated poten-
tial. Therefore the Jahn-Teller theorem, strictly speak-
ing does not lead to any definite conclusions concerning
directly-observable quantities; the statement concerning
the instability must be understood as an indication that
the adiabatic potential has no minimum at the degeneracy
point (we note that in the presence of degeneracy the po-
tential has no clear-cut physical meaning). In the general
case, such a potential does not lead to the observed dis-
tortion of the nuclear configuration1-5'e]. The most impor-
tant consequence of the Jahn-Teller theorem is that the
adiabatic approximation cannot be used for systems with
degeneracy (or pseudodegeneracy), and the problem re-
duces to a solution of a complicated system of coupled
equations.

In 1960-1962 one of us[7"9] advanced the idea of tun-
nel splitting in Jahn-Teller-type systems. From an an-
alysis of the form of the adiabatic potential of such sys-
tems, carried out for the simplest systems long ago by
Van Vleck[101 and more completely by Opik and Pryce^111

(with subsequent refinements19'12'), it was known that in
all cases of electronic excitation the multidimensional
surface of the potential has several minima that are
equivalent in energy and symmetry; these minima cor-
respond formally to an equal number of equivalent equi-
librium configurations with potential barriers between
them. In the case of sufficiently deep minima (and large
barriers), the configuration in each of them becomes
quasi-stationary and the transitions between them have
the character of hindered motion (tunneling), which leads
to a weak splitting of the electron-vibrational levels at
each minimum (inversion or tunnel splitting).

These ideas were subsequently greatly expanded and
made more meaningful. Tunnel effects and their influ-
ence on the optical, magnetic, electric, acoustic, and
other properties of matter have become among the most
important manifestations of vibronic interactions in
systems with electronic degeneracy.

''Similar statements for linear systems were formulated by Renner [4]
and are referred to in the literature as the Renner effect.

It was thus shown that tunnel splitting greatly compli-
cates the EPR spectrum in that, first, the orbital part
of the Zeeman interaction is strongly suppressed, and
second, the number of observed lines having character-
istic frequency and temperature dependences is increased.
Transitions between tunnel levels lead to a characteristic
absorption of ultra-sound and of electromagnetic waves.
The tunnel splitting is directly revealed by the splitting
of the corresponding zero-phonon lines.

In highly-symmetrical molecular systems that have
no dipole moment, the vibronic interaction can lead to
formation of adiabatic-potential minima at which the
dipole moment differs from zero. This circumstance
leads to a change in a number of dielectric properties
of the molecules, and in particular to a temperature-
dependent polarizability and to a characteristic rotation-
al spectrum, the appearance of which cannot be accounted
for without allowance for the vibronic coupling.

It has become clear in recent years that vibronic ef-
fects play a rather important role in the investigation
of interactions of molecules at short distances, which
determine the mechanisms of chemical reactions.

A major part of this trend is the cooperative Jahn-
Teller effect, which is being intensively developed in
the last few years. Crystals containing sublattices of
Jahn-Teller ions or molecules undergo structural phase
transitions, namely, in the low-temperature phase the
crystal becomes distorted by the correlations between
the Jahn-Teller distortions of the individual lattice sites.
This has led to new ideas concerning the origin of phase
transitions in such crystals, and has made it possible to
investigate their micromechanisms. In particular, in this
approach it is possible to explain the origin of spontane-
ous polarization and of phase transitions in ferroelec-
trics.

It must be emphasized that these effects are quite
general in character and pertain to almost all types of
polyatomic systems. Indeed, electronic degeneracy in
the ground or in the nearest excited states takes place
in almost all polyatomic formations, with the exception
of systems of very low symmetry. However, analogous
effects appear even in these cases because of the mixing
of close (pseudodegenerate) levels. One systems with
pseudodegeneracy are taken into consideration, the group
of objects for which the effects of vibronic interaction
can turn out to be significant becomes practically all-
inclusive. It includes, in particular, all types of molecu-
lar formations (in the ground or excited states), complex
and organometallic compounds of transition and rare-
earth elements, including those in the crystalline state,
impurity centers and defects in crystals, and a number
of biological systems.

From the theoretical point of view it is of interest
that similar defects can arise also in other many-par-
ticle problems, for example, in exciton-phonon,'13aI

nucleon-meson,[13k] or impurity-magnon[14a] interac-
tions; the problem of the cooperative Jahn-Teller ef-
fect has a direct bearing on the problem of phonon in-
stability and phase transitions in semimetals.[14k]

An exhaustive exposition of all the pertinent prob^
lems could be the subject of an entire monograph, and
is thus beyond the scope of this article. In the present
review we confine ourselves to examination of the sta-
tus of the theory of the problem as a whole and of a num-
ber of its most timely applications. Greater attention
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has been paid to the case of strong vibronic coupling,
when the minima of the adiabatic potentials of the de-
generate (or pseudodegenerate) terms are deep enough,
so that the observed effects are best described in the
language of tunneling. This aspect of the problem is most
important for applications. At the same time, to make
the exposition complete, we consider also the limiting
case of weak coupling.2)

2. ELECTRON-VIBRATIONAL EQUATIONS FOR
ELECTRON-DEGENERATE STATES31

We write down the Hamiltonian of a polyatomic system
in the form

r, Q), (1)

wherejfr includes the operators of the kinetic energy
of the electrons and of their interaction with one another,
^ Q is the same for nuclei, and V(r, Q) is the operator
of the interaction of the electrons and the nuclei (from
now on, unless specially stipulated, r and Q are the sym-
bols for all the electron coordinates vv and for all the
nuclear coordinates Q a ) . In the Born-Oppenheimer adi-
abatic approximation, as is well known, one solves first
the electron equation

Wr + V(r,Q)]Mi-i(r,Q) = Wi(Q)i!tl(r,Q). (2)

Next, if the obtained i-th electronic state is not degen-
erate (for the considered values of Q), then the com-
plete wave function takes the form

Vlx(r, Q) = Ψ ί ( Γ , <?)X, „(<?),

so that upon substitution in the SchrOdinger equation
with the Hamiltonian (1)

we can obtain for χ^κ the approximate equation

(3)

(4)

It is seen from this equation, in particular, that in
our case Wj(Q), together with energy of the interaction
of the nuclei fromjfQ, plays the role of the potential
energy of the nuclei in the field of the electrons (the
adiabatic potential). In the derivation of (5), in addition
to neglecting the diagonal kinetic-energy operator ma-
trix elements in the electronic functions ^ ( r , Q), which
are not very significant here (and which incidentally can
be easily taken into account in the form of a correction),
we neglect also the off-diagonal elements of the Hamil-
tonian (1):

> = f r-tr, 2 -r- * ' Σ ι
(6)

where Ajj are the electronic matrix elements of the so-
called non-adiabaticity operator, and Ρ and Μ are the
momenta and masses of the nuclei. Therefore the cri-
terion of the adiabatic approximation is the smallness
of these off-diagonal elements in comparison with the
differences Wj(Q) - Wj(Q). This condition is well satis-
fied for sufficiently remote levels and for the values of
Q that are far from the level-crossing points (or the
closest-approach regions). For electron-degenerate
states, when several adiabatic potentials Wj coincide at
the point Qo (or in pseudodegeneracy, when they are close

enough to one another), the adiabatic approximation no
longer holds.

Assume that in the solution of the electronic equa-
tion (2) the i-th level turns out to be f-fold degenerate
at the point Qo: W^Qo) = W(Q0), i = 1, 2, . . . , f. Neglect-
ing in the equation terms of the same order as those
discarded in the adiabatic approximation considered
above for the nondegenerate level (the state-mixing
terms of different levels of type (6)), we need retain in
the expansion of the total wave function Φ(Γ, Q) in terms
of the system of solutions φι(τ, Q) only f terms with the
electronic functions of the degenerate level

for each of the functions XJ(Q) we then obtain the system
of equations

Wl(Q)-E]Xi{Q)+ S/A(<?)=° («=1.2. . . . , /) . (8)

Thus, the vibrational problem for an f-fold degenerate
level reduces to a system of f coupled equations. How-
ever, the effects of the vibronic interaction, particularly
the tunnel effects considered above, are due in the case
of strong vibronic coupling not so much to the coupling
of these equations as to the complicated character, due
to the degeneracy or pseudodegeneracy, of the adiabatic
potentials Wj(Q), which contain several equivalent mi-
nima.

3. ADIABATIC POTENTIALS OF
ELECTRON-DEGENERATE LEVELS

We consider a system having Ν vibrational degrees
of freedom, and let the electronic level at the point
QaO> a = 1> · · · > N> b e f-fold degenerate and transform
in accordance with the representation Γ of the symmetry
group of the problem. In this case we can take Q a to be
the normal coordinates of the system, which transform
in accordance with irreducible representations of the
same group.

We divide the system into atomic cores and valence
electrons in such a way that all the electron-vibrational
interaction in V(r, Q) can be attributed with the required
accuracy to the valence electrons, and the interaction of
the cores is approximated by the harmonic term
(1/2 S k a Q ^ , where k a = Μαω

2

α is the force constant of

the α-th normal vibration (Ma is the reduced mass and
ω α is the frequency). Expanding the operator V(r, Q) in
powers of the small displacements of the nuclei from
the point QaO> w e have:

V(r, Q) =

0)

2 )For an explanation of a number of aspects of the problem see also [ l s ] .
3 )For more details see, e.g., ["}.

The electronic degeneracy is obtained when account
is taken in (9) of only the zeroth term of this expansion.
The linear terms of (9), in accordance with the Jahn-
Teller theorem,[ 1 ] have nonzero matrix elements in the
functions of the electronic level, at least for several Q a ,
so that their inclusion in (9) lifts the degeneracy of the
level at Q a ^ QaO· Terms of higher order of smallness
are also significant.

We put V'(r, Q) = V(r, Q) - V(r, Qo). Then the correc-
tions to the energy levels as functions of Q at small
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(Q — Qo) are obtained from the solution of the secular
equation

with the aid of which the adiabatic potentials are deter-
mined directly (we omit the index of the degenerate level
and a constant- its energy at the degeneracy point-which
is no longer significant):

(ID

. It is necessary to investigate (10) for each type of
electronic degeneracy. Polyatomic systems of cubic
symmetry (O, O n , T, Tj) admit of doubly-degenerate Ε
levels and triply degenerate Tx and T2 levels. In groups
of lower symmetry, only Ε levels are possible. A higher
degree of degeneracy is possible only in the icosahedron
group, which is not considered here.

As the electronic basis of the Ε level we shall hence-
forth use the functions |A> and I e), which transform res-
pectively like 3z2 - r 2 and x2 - y2; for the functions of
the T 2 term we choose |ξ) ~yz, \η) ~ χ ζ , | ?} ~xy. The
case of the Ti level will not be considered below, since
the results for it are perfectly analogous to the case of
the T2 level.

The vibronic-interaction matrices constructed with
these functions can be_determined by using the Wigner-
Eckart theorem: if Έ(Γγ) is an arbitrary operator that
transform^ in accordance with the row γ of the repre-
sentation Γ , then its matrix elements in the functions of
the basis are given by the expression1-171

(Γγ, | F (Γγ) | Γγ2) = (Γ |1 F (f) || Γ) {Γγ,Γγ | Γγ2), (12)

where ( r | | F ( f ) II Γ> = Α Γ ρ *s the reduced matrix ele-
ment and (ΓγιΓγ\Τγ^ is a Clebsch-Gordan coefficient.
With allowance for the values of the latter, we have for
the Ε level (the lower-case letters will henceforth label
the representations in accordance with which the corres-
ponding normal vibrations transform)

For the T 2 level we obtain analogously

1

Τ
0

0

V T 2 ( «

* > «

0 0^

0 i

r
A-a(o*>-*(·

Vo

I
1 = CTO,
f

0
0
1
0
0
0
1

0

; ) =
0/

; )=

<v

0/

Vr,(«s) =

'1/3

0 — V3

(14)

(15)

= Cxe,

where A = Af,,-,, Β = Aj£ _ , C = A% _ are reduced ma-
un I2I2 l 2 f2

trix elements, the physical meaning of which will be ex-
plained below.

a) Case of Ε Level

In this case the nonzero matrix elements in the
secular equation (10) are those of the vibrations of the
type [E2] = AI + E. The fully-symmetrical vibration of
type Ai can be excluded from consideration, since their
contribution can be taken into account in the harmonic
term of expression (11) by a suitable choice of the ori-

gin of the normal coordinates and frequencies. There
remain the non-fully-symmetrical e-vibrations Q,» and
Qe(the Ε - e problem, for short), which are the only
ones that are active in the Jahn-Teller effect for the
Ε level. The nuclear displacements corresponding to
these coordinates are shown in Fig. 1 for an octahedron.
With the aid of (13), the secular equation (10) with allow-
ance for both the linear and the quadratic terms of the
expansion (9) takes the form

where 1 is a unit matrix and the quantities A,.
= (9V^>/8Q^)o and A2 = (1/2) (aV^j/BQ2»^ have the mean-
ing of the constants of the linear and quadratic vibronic
coupling, respectively.

The solution of (16) can be obtained directly. Putting
Q$ = pcos φ , Q€ = ρ sin φ , we obtain

e± (P, <P) = ± Ρ VA\ + AY + 2AlAipcos3φ (17)

and

(18)

At small A2 one uses frequently a linear approxima-
tion (A2 = 0) for which the potential (18) is given by

and has the form of a figure of revolution called "som-
brero" (Fig. 2).

The extremal points of the surface (18) are given by
the expressions

3 ' \ /

where the upper and lower signs pertain to the cases
Ai > 0 and A! < 0, respectively. An analysis of the con-
ditions for the second derivatives of the functions (18)
shows that out of the six extremal points (20), three
are minima and.three are saddle points, and that at
Ai/A2 > 0 the minima correspond to the points η =0, 2,
4 and the saddle points to η = 1, 2, 5, while at Ai/A2 < 0
these two types of points exchange places (it is assumed
that ke > 2A2).

Thus, when account is taken of the quadratic terms,
alternating maxima and minima appear along the
trough of the sombrero (Fig. 2), as is illustrated in
Fig. 3. The depth Ej-p of the minima, reckoned from the
degeneracy point (the energy of stabilization in the Jahn-
Teller effect), and the height Δ of the (lowest) barrier
between them, as one moves along the trough, are given
by the expressions

^ En. (21)

The regular functions that diagonalize (16) are written
in the form

ψ_ = cos -γ | θ) — sin -γ \ ε),

where
η Μ sin φ — Atf sin 2φ

** Αι cos φ + Λ2ρ cos 2φ

(22)

(23)

We note that in accordance with this relation, Ώ does
not coincide with φ at A2 / 0, and the difference between
them may turn out to be quite appreciable (the strong
nonadiabaticity extends also over the coordinate ρ and
not only φ). This circumstance, first noted in [ 1 8 ] , has
for a long time escaped the attention of numerous work-
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ers investigating this problem (in all the preceding
studies it was assumed that ft = ψ).

b) Τ Level in the Linear Approximation

In this case [ T | ] = Αι + Ε + T 2 , so that in the Jahn-

Teller effect, besides the tetragonal e-vibrations, there

are active also trigonal t 2 vibrations Q | , Q,,, and Q^

(Fig. 4), and the secular equation (10), with allowance

for (14) and (15) for the T 2 term takes the form

<?ητη + <?£τζ) + C <?ετε) - εΐ = 0, (24)

where the quantities Β = (dV^y/dQ^o and C
= (9Vf j/aQ^Jo have the meaning of constants of the lin-
ear vibronic coupling with the trigonal had tetragonal vi-
brations, respectively.

The solution of Eq. (24) in general form is quite com-
plicated. We consider first particular cases.

1) Neglect of the vibronic coupling with the trigonal
vibrations, Β = 0, C φ 0 (the T - e problem). In this case,
since the matrices T$ and τ€ are diagonal, the solutions
of (24) are obtained directly, the surface W(Q#, Qg)
has in this case the form of three equivalent paraboloids,
the minima of which in (Q^, Qe) space lie at the points
(Qo, 0), ((-1/2)QO, (-V372)Qoand ((-1/2)QO, (A?2)Q0),
where Qo = C/ke. The Jahn-Teller stabilization energy
is E J T = C2/kg. We note that the character of the beha-
vior of the sheets of the surface at the point correspond-
ing to electronic degeneracy (Fig. 5) differs from the

FIG. 1. Nuclear displacements
corresponding to the Q# and Qe

components of the normal eg vi-
bration of an octahedron.

FIG. 2 FIG. 3

FIG. 2. Shape of the potential surface in the case of the linear
Ε - e problem.

FIG. 3. Shape of the potential surface of the Ε - e problem with
allowance for the linear and quadratic terms.

FIG. 4. Nuclear displacements
corresponding to the Qf and Qj
+ QT/ + Qf components of the 11 g-
vibration of an octahedron.

FIG. 5. Shapeof the po-
tential surface in the case
of the linear T - e problem, a,

case of Ε level (see Figs. 2 and 3). Whereas for the Τ
level the point Qa = 0 is a point of real intersection of
surfaces, in the case of the Ε level it has the character
of a branch point of the surfaces. The wave functions
corresponding to the adiabatic potentials, unlike the
Ε-level case considered above, are not intermixed by
nuclear displacements of the Ε-type:

Φι = |ξ>. Φ. = h > . Ψ> = Κ>· (25)

2) Neglect of the vibronic coupling with the tegragonal
vibrations, C = 0, Β / 0 (the T - t 2 problem). In this case
the secular equation (24) reduces to an algebraic equa-
tion of third degree. Without solving it, we can use the
method of Opik and P r y c e f u ] to determine the positions
of the minima of the adiabatic potential, their depths,
and the heights of the barriers between them. In three-
dimensional space of the trigonal coordinates (Qt, Q^,
Q^) the minima lie on the four C3 axes of the cubic sys-
tem at the points (pi|Qo, m^Qo, m^Q0), where Qo

= 2B/3kt (kt = Μω| is the force constant of the trigonal
displacement), and the sets (ηΐξ, m,,, mj) assume the
values (1, 1, 1), (- 1, 1,-1), (1 ,-1 ,-1) , and ( - 1 , - 1 , 1).
The electronic wave functions at the minima are given
by the expressions φ = (m^||) +τα.η\η) + mj-|f))/V3~, and
the depth of the minima are given by E J J = 2B2/3kt-

3) Simultaneous allowance for both types of vibra-
tions, C f 0, Β f 0 (the Τ - (e +12) problem). In this case
Eq. (24) becomes even more complicated, but the extre-
mal points of the adiabatic-potential surface are quite
easy to obtain in the considered linear approximation[11].
Besides the three tetragonal points (obtained above in
the T - e problem) and the four trigonal points (from the
Τ — tj problem), it is possible to have here also interme-
diate-type extremal points of symmetry C2, when both
the tetragonal and the trigonal coordinates are displaced.
Then, if C2/2ke > 2B2/3kt, the tetragonal points are
minima and the trigonal points are saddles. On the other
hand, if the inverse inequality holds, then the trigonal
points become minima and the tetragonal ones saddles.
Intermediate points with energy Ε = (l/4)EfT + (3/4)EjT

remain saddles in this approximation in all cases. In the ·
particular case C2/2ke = 2B2/3kt there is realized a con-
tinuous sheet of minima of equal depth (two-dimensional
trough in five-dimensional space), which subtends over
all the three types of extremal points.1191

4) Quadratic approximation.[20] The quadratic terms
of the vibronic interaction can be classified by symmetry
in two or three types: e x e, t2 x t2, and e χ t2. The most
fundamental change in the form of the adiabatic-potential
surface is produced by terms of the type e x fe, which
mix the tetragonal and the trigonal vibrations. Allowance
for these terms leads to the appearance in the left-hand
side of (24) of an additional component

(26)
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where F =[(82V|?7)/(8Q^8Qf)]ois the corresponding re-
duced matrix element, having the meaning of the constant
for the coupling with quadratic vibrations of the e x t2

type. The basic characteristics of the surface (11).are
determined by the two dimensionless parameters
Μ = F O ^ r 1 7 2 , Ν = FC/Bke. The case F = 0 on the MN
plane (Fig. 6) corresponds to one point Μ = Ν = 0. On
the lines Μ = ± (V3/2)N, the energies of the tetragonal
and trigonal extrema, the depths and positions of which
do not change when the quadratic interaction is taken
into account, coincide. In the cross-hatched region, the
trigonal extrema are deeper than the tetragonal ones,
and in the singly-hatched region, to the contrary, the
tetragonal extrema are deeper than me trigonal ones. In
all cases, for the system to be stable it is necessary to
have |M| < 1.

The most important influence is that of the allowance
of the quadratic terms of the e x t2 type on the position
and character of the six equivalent intermediate extrema
of the orthorhombic type (which in the linear approxima-
tion can be only saddle points). Their depths and the co-
ordinates of one of them (the coordinates of the rest can
be obtained from symmetry considerations) are given by
the expressions

E'n = C2 (JV2—4M*N + 4Λ/2) [8/c.iV2 (1 — Jlf »)]">,

(%> = B ( 2 — N ) [2k, (1 -

<?£>= -C(N — 2M2) [2Nke(l — Λ/2)]"1·

As the point F = 0 , M = N = 0 i s approached along the
lines Μ = ± (V3/2) Ν on the MN plane (see Fig. 6), the
depth of these extrema becomes equal to the depths of
the tetragonal and the trigonal extrema, E j T = E j T

= Ejrp, and the already mentioned two-dimensional
trough of the minima on the five-dimensional surface
of the adiabatic potential is realized. Outside this point
we have EfT f Effi, so that when the quadratic terms of
the vibronic interaction are taken into account the trough
of the minima "becomes corrugated," and alternating
hills and valleys appear along the trough, in full analogy,
in principle, to the case of Ε term (see Sec. a). It is very
important that the orthorhombic extrema become abso-
lute minima (Fig. 7) for a large range of the parameters
MandN.

• «

-3

FIG. 6. Regions of ex-
istence of tetragonal (single
hatching) and trigonal
(cross-hatching) minima
of the quadratic Τ
— (e +12) problem.

In addition to these three types of extrema, when ac-
count is taken of the quadratic terms of the vibronic in-
teraction there appear on the adiabatic-potential surface
three new types of extrema, two types consisting of
twelve equivalent extrema each, and the third of 24.
However, the region of existence of the last type of ex-
trema lies beyond the range of values of the parameters
at which the system is stable, and the extrema of the
first two types do not become absolute minima anywhere.
Detailed calculations in these cases were carried out
numerically.1201

A group-theoretical investigation of the shapes of the
potential surfaces in the case of vibronic interaction is
the subject of[21].

4. INVERSION (TUNNEL) SPLITTING

After determining the adiabatic potential, the energy
spectrum and the wave functions of the system can be
obtained in principle by numerically integrating the sys-
tem (8). The latter is a very complicated procedure and
has so far been carried out completely enough for only
two very simple particular cases, the linear approxima-
tions of the Ε - e problem[2Z] and the Τ - t problem.[ 2 3 ]

A second approach to the problem was proposed by one
of us.t7~9] It makes it possible to determine relatively
simply several lowest levels of the system, knowledge
of which is perfectly sufficient for an approximate cal-
culation of a number of observable physical quantities.

We consider the case of strong vibronic coupling,
when the depths of the minima of the adiabatic potential
are large enough, so that at the points of the minima the
distance to the next sheet of the adiabatic potential
(which for the Ε level, for example, is equal to 4 E J T )
becomes comparable with the usual distance between the
potentials of the nondegenerate levels. Then, in the re-
gion near the minima, the system of equations (8) is
decoupled and the usual adiabatic approximation becomes
applicable for the nondegenerate terms.

We assume that in the zeroth approximation the states
at the minima are independent, and we denote the elec-
tronic function in the i-th minimum by ^ , the vibrational
function by xiK, and the total function by i\K = #iXjK, Since
the number of equivalent minima in the system is r, in
this approximation the system is r-fold degenerate. It
is easy to determine which terms of the Hamiltonian
must be neglected in order to obtain the solution $ίκ.
Regarding these terms as a small perturbation, we
write down the complete wave function of zeroth approxi-
mation in the form of the linear combination

Ψαχ= Σ< l r). (27)

Then the energy levels Ε and the coefficients C i a are
determined from the solution of the secular equation

| | < % 5 - £ ^ | | = 0 (i,/=i. ...,r),

where Jt is the complete Hamiltonian and sfi

FIG. 7. Region of existence of orthorhombic minima (shaded).

(28)

τ i s the overlap integral.

It is easy to show that for i φ j we havejff, =jf f2,
Sjj = S12, and Eq. (27) can be solved directly. The ob-
tained values of E a and C^a for r = 3, 4, and 6 are listed
in the table. It is seen that, provided only that jff2 ^ 0,
the electron-vibrational ground level at the minimum is
split into two, one is nondegenerate and one is doubly
degenerate (if r = 3) or triply degenerate (if r = 4),

574 Sov. Phys.-Usp., Vol. 18, No. S I.B. Bersuker et al. 574



or else we get two triply degenerate levels (r = 6) (see
also p 4 ] ) . In the analogy with ammonia, this splitting was
named "inversion"[8-'; some authors prefer "tunnel
splitting" (see [ 1 5 ' 2 5 ] ) . The criterion for the applicability
of perturbation theory is smallness of the inversion
splitting δκ in comparison with the value of the vibra-
tional quantum ηω at the minimum.

a) Tunnel Splitting in the Case of the Ε Level

We assume that the three minima of the adiabatic
potential (Fig. 3) are deep enough for the surface near
each of them to have the shape of a paraboloid, in which
the vibrations are described by the harmonic functions
XiK(Q), and the electronic function can be assumed to be
independent of the nuclear coordinates. Then at each
minimum there^ is a separate proper system of normal
coordinates Q ,̂1' and Q^ (corresponding to a tetragon-
ally-distorted cubic system), which can be easily writ-
ten down on the basis of symmetry, and the expressions
for the electronic functions are determined from (22)
by substituting the coordinates of the minima in n.

For the overlap integral we obtain

Π Κ №) • (29)

Denoting the frequencies of the two components of the
e-vibrational split in the tetragonal minimum by

The results of a numerical solution of this equation
are shown in Fig. 8. It can be seen that already at
β/α > 2, i.e., when the quadratic barrier becomes lar-
ger than the kinetic energy of the free motion in the
trough, the qualitative picture of the arrangement of
the low-lying levels corresponds to that expected from
the theory of inversion (tunnel) splitting.

The foregoing analysis by O'Brien[ 2 6 ] cannot be re-
garded as sufficiently correct, since numerical esti-.
mates given in the same paper make β in the considered
case of strong vibronic coupling comparable with or
larger than the vibrational quantum-ha>p, and there is
consequently no justification for neglecting the mixing
of the vibrational states and the separation of the mo-
tions with respect to ρ and φ (furthermore, the wave
functions of the inversion states are not obtained in [ 2 e ]

in a form convenient for use). Recently1-181 (see also[ 2 7 ])
it was proposed to use a variational principle to solve
this problem. It can be shown that trial functions of the
type

X*(P. <t)"N {2H/2)} /jexp [ - I » (?-!)> +νώβ3φ],;

where Ν is the normalization constant and q = p/p0, with

The coefficients ( C j a , C ^ , ... C r a ) , a = 1, 2, ..., r, from formula
(27), expressed in the form N a (m a > na,..., la), where N a is a normal-
ization factor

and ω φ and ρ
l

= ω
φ φ

tional ground state

p
/ω ρ we easily obtain for the vibra-

-f -1 Op -; 3; 3 P X P (

/>=-:• 3
ΕΠ-

,2,-10ρ_-3 »ωρ

A,
=*?: ~ χ £JTYo ( ' -:- y k.-2A;) -

(30)

(31)

From this expression it seems, in particular, that
Jt?°2 > 0 and that in the vibrational ground state there
will be an inversion doublet at the bottom (see the table).4'

The expressions for the energies and wave functions
of the inversion (tunnel) levels are quite rough in this
approximation, since they do not take into account the
strong dependence of the electronic states at the minima
on the nuclear coordinates (cf. (22)). The problem was
subsequently solved also by other methods. For example,
O'Brien[ 2 6 ], in contrast to the analysis presented here,
begins with the linear case of a sombrero with a suffi-
ciently deep trough, for which the approximate solution
(in the region near the bottom of the trough) is obtained
directly:

-Po)e i m * (

Λ ί ' " ρ

*£JT

1 _̂_ 3

π- (η-^ 1 , ι, · · · :

- ) •

(32)

(33)

where fn(p) are the oscillator functions. Including now
the quadratic terms of the vibronic interaction in the
form of a perturbation, and assuming that they do not
intermix the vibrational states with different n, we can
obtain the following approximate expression for the mo-
tion along the trough:

(34)

where

4)The sign of 3f?2 in the first paper on this subject [8] is wrong.
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two variational parameters u and v, satisfy all the re-
quirements of symmetry and of the behavior of the func-
tion near the minima and under the barriers between
them. Minimization of the total energy calculated with
the aid of these functions makes it possible to determine
the level energies and the parameters u and ν as func-
tions of the parameters of the linear and quadratic bar-
r iers λ = 2Ejj-/fi'j}p and γ = 2Δ/1ίωρ.[181

b) The Case of the Τ Level

In particular cases of the linear Τ - t 2 and Τ - e prob-
lems, the solution is relatively easy to obtain. In the
Τ - t 2 case with four trigonal minima of the adiabatic
potential, the matrix element*"f2 is calculated in analogy
with the case of the Ε level, with suitable choice of the
normal coordinates of the type t2 at the minima^ 8 ' 9 ] In
the linear approximation we obtain

(35)

(36)

and for the vibrational ground state we get

More accurate calculations were carried out via numeri-
cal diagonalization of the Hamiltonian (24) with C = 0[ 2 3 ]

(Fig. 9).

In the case of the linear Τ - e problem, the electronic
functions (25) are orthogonal to one another, and conse-
quently Jff2 = 0-the ground triplet state is not split by
tunneling (as follows also directly from symmetry con-
siderations).

The solutions for the general case of the Τ - (e +12)
problem encounter great difficulties due to the compli-
cated character of the five-dimensional adiabatic poten-
tial obtained above. Calculations for certain low-lying
energy levels were carried out in the linear approxi-
mation under restrictive assumptions concerning the
character of the vibronic coupling with two types of vi-
brations. The strong coupling the e and t2 oscillations
was considered by O'Brien/2 8 1 an arbitrary coupling
with these oscillations under the assumption cut = u>e

and E j T = Ε^χ was investigated in t 2 8 ' 2 9 ] , while strong

coupling with the e vibrations and weak coupling with the
t2 vibrations were considered in t 3 0 ] .

Tunnel splitting in the case of six orthorhombic mi-
nima of the adiabatic potential, which are due to the in-
fluence of quadratic terms, lead to two vibronic triplets
of the type Ti and T, ""'[20]

Ά
Ό . , . 1.0 2.0 3.0 Χ.

FIG. 9. Dependence of the energy of the lowest levels of the Τ — 1 2

problem on the parameter χ =

5. CASE OF WEAK COUPLING

In contrast to the case of deep minima considered
above, it is assumed in this case that the heights of bar-
riers between the minima are smaller than the value of
the quantum of the corresponding oscillations. It is per-
fectly understandable that in this case the states of the
systems, generally speaking, do not differ strongly
from those unperturbed by the vibronic interaction and
can therefore be obtained by perturbation-theory me-
thods.1 3 1 ' 3 2 ]

We begin with consideration of the linear Ε - e prob-
lem. In the absence of vibronic interaction (Aj = 0 in
formula (16)), the Hamiltonian of the problem corres-
ponds to a two-dimensional harmonic oscillator, the
energy levels of which Ε = (n + l)fiu>e are 2(n + l)-fold
degenerate ((n + 1) is the degeneracy multiplicity of the
n-th level of the two-dimensional harmonic oscillator,
and the factor 2 is due to electronic degeneracy). In
second-order perturbation theory, the Hamiltonian of
the problem can be reduced to the form

(37)

where m3 = If1 (QjPe - QePj) is the operator of the angu-
lar momentum of the nuclei in the e g vibration. Since all
the terms of this Hamiltonian commute with one another,
they can be easily diagonalized simultaneously. It is easy
to note that the term πυσ ν , which describes the splitting
of all levels but the ground level (n = 0) into doublets, is
fully analogous to the spin-orbit interaction in diatomic
molecules (in this case mj for the n-th level runs through
the values - n , - n + 2, . . . , and a y = ± 1). We note that
the total splitting of the multiplet is equal to A2fiwen,
i.e., it becomes comparable with-nwe at sufficiently
large n, even at a small coupling constant, from which
it follows that the criteria of perturbation theory are
violated at η >_ A2

l.

For the Τ - (e +12) problem, in the absence of vibronic
interaction, the energy levels of the three-dimensional
harmonic oscillator (the t2 vibrations) E n = [n +(3/2)}nwt
are 3(n + 1) (n + 2)/2-fold degenerate, and the levels of
the two-dimensional oscillator (the e-vibrations) E m

= (m + l)fiwe are 3 (m + l)-fold degenerate. In second-
order perturbation theory, the interaction with the e
and t2 vibrations produces additive contributions to the
effect of Hamiltonian. The interaction with the e vibra-
tions does not change the picture of the energy spectrum,
and only shifts it by an amount equal to the Jahn-Teller
stabilization energy. The effective Hamiltonian of the
Τ — t problem in second-order perturbation theory takes
the form[ 3 1 ]

^(Mi-.2), (38)

where Μ = fi~lQ x Ρ is the angular momentum of the nuc-
lei in the space of the t vibrations, and the vector matrix
λ, defined by the relations [λ χ λ] = ΐλ, λ2 = 2, [f χ τ] =-λ,
can be regarded as the matrix of the electronic angular
momentum (the notation for τ is given in (14)). In this
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form, the problem of the vibronic coupling in the Τ - t
problem is perfectly analogous to the Russel-Saunders
coupling of the spin and orbital angular momenta in
atoms, which makes it possible to write down immedi-
ately expressions for the energy levels split by the
interaction (except the level with η = 0):

= (ΨΓ (Γ) II F f (r) || ψΓ (r)> (Γγ(Γγ | ΓΥ2) [Γ]£, ( - 1)*Μ> (%U),

Here Μ runs through the values η , η — 2, . „ . , 1 or 0 and
given Μ we have L = M ± 1 , M a t M > l and L = 1 at
Μ = 0.

6. SUPPRESSION THEOREM

In all the considered cases, the vibronic ground
levels have the same symmetry as the initial electronic
terms in the maximally symmetrical nuclear configura-
tion. This circumstance makes it possible to simplify
greatly in a number of cases the calculations of the ob-
served quantities. Even in the first calculation of the
spin-orbit splitting of the ground vibronic state1-33 ] it
was shown that, without allowance for the mixing with
other levels, this splitting is proportional not only to the
spin-orbit coupling constant, as in the case of the split-
ting of a pure electronic level, bu to the same constant
multiplied by the overlap integral of the vibrational func-
tions in the neighboring minima γκ as given by (29).
Since γκ < 1, this splitting as a result of allowance for
the influence of the vibronic interaction turns out to be
greatly decreased, sometimes by several orders of mag-
nitude. Ham' 3 4 ' 3 5 1 generalized this idea and showed that
this suppression takes place for all physical quantities
if their operators depend only on the electronic coordi-
nates. We present here a more general proof of this
statement.*303

Assume that it is necessary to calculate the matrix
element of the operator F=-(r) , which transforms in
accordance with row γ of the irreducible representation
Γ of the point symmetry group, in terms of the functions
of the ground vibronic multiplet *py(r, Q). On the basis
functions of the initial electronic multiplet ψ-ργ(τ), such
a matrix element can be written, in accordance with the
Wigner-Eckart theorem, in the form (see[17])

(39)< ψ Γ ν ι | Ff- (r
T. υ <|γ><Γγ,Γγ | Γγ 2 >.

On the other hand, for the wave function of the vibron-
ic multiplet we have in the most general form

lI'rv (r. (?) = - Σ ΨΓ>. (r) χ.νμ «?) (Π.Λ/μ | ΓΥ>, Μ ζ Γ x Γ, (40)
λΜ μ

where the functions of only the nuclear coordinates
Xjyiy(Q) transform in accordance with row μ of the ir-
reducible representation Μ and satisfy the orthogonality
and normalization conditions

(ΧΜιμι Ι Χ-«2μ2> = (X W δΜ,Μ2δμ,μ2, Σ <ΧΜ> = 1 ·

Taking (39) and (40) ̂ nto account, we can easily write for
the matrix element Ff γ (r) in the functions (40) the ex-
pression

r) | r, 0) - <ΨΓ Μ || ί> (r) | (41)

ΧΣ(Χ«> Σ (
Μ μλ,λ2

The last sum can be folded with the aid of the 6Γ coeffi-
cients1 1 7' 3 e ] . Omitting simple intermediate transforma-
tions, we obtain

where [r] is the dimensionality of the representation
Γ, j(M) is the moment of representation M, and {:::}
is a 6Γ symbol.

Comparing this expression with (39), we see that

(Yrv, W) | Ff- (r) | Ψτ^ (r,Q)) = (ψΓϊι (r) | ft- (r) | ψ ^ (ή) ΚΓ (Γ),

Κ r i W r i V >_<*»>, ·Ν /r r Γ , (42)

We see therefore that the sought matrix element on the
vibronic functions differs from the matrix element on
the initial electronic functions by a coefficient Kp(F),
which depends not on the concrete form of the operator
FfY, but only on the representation Γ in accordance
With which it is transformed (and on the vibronic para-
meters which enter in KM)· Since the 6Γ coefficients in
form (42) are known [ 1 7 > 1 , it is easy to obtain group ex-
pressions for the parameters Κρ(Γ) for the concrete
symmetry of the operators in each point._It follows from
this theorem that once the constants Κρ(Γ), called the
suppression constants, are known, the electronic char-
acteristics of the ground state of the system can be de-
termined without solving the vibronic problem—it suf-
fices to calculate the matrix elements in the initial elec-
tronic functions of the degenerate term. In particular, it
is possible to determine the constants Κρ(Γ) from one
experiment and use them to predict the results for all
other experiments.

When solving the vibronic problem, it is possible to
obtain also expressions for the suppression constants
in terms of the vibronic-coupling constants. In particular,
for the linear Ε — e problem the values KgiAa) and Kg(E)
shown in Fig. 10 are obtained. For the linear Τ — e prob-
lem we can assume approximatelyp 4 ]

KT (7,) « KT (T2)

KT (E) = 1.
exp

More exact values of these constants, with allowance for
the influence of the t 2 oscillations, were obtained numeri-
cal ly^ 8 ' 3 0 ] . For the case of the l inear Τ - t 2 problem,
the following approximate expressions a r e known1-341:

(44)

and agree with the results of the numerical calculation1-351

(see Fig. 10). For the orthorhombic minima at k e = k̂
= k and ω 6 = ω̂ . = ω we have[2C1

(45)

It is seen from the presented formulas that the sup-
pression of the electronic characteristics, due to the
vibronic interaction, depends exponentially on the ratio
EjE/nw, which determines the magnitude of the Jahn-
Teller effect, and is therefore quite large in the case of
a strong vibronic coupling. In particular, in all cases
those suppressed most strongly are the operators of the
type Ti, to which the orbital angular momentum of the
electrons belongs, and consequently also the spin-orbit
interaction. An appreciable suppression of the spin-orbit
splitting of the ground state (sometimes by 1 - 2 orders
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FIG. 10. a) Suppression factors Κβ(Ε) and K£(A2) of the linear
Ε - e problem as functions of the parameter EjT/hcje (1 and 2 indicate
respectively the values of K E ( E ) and K£(A2) calculated from the data
of [ 2 2 ] ; the solid lines describe the approximate expressions and the
dashed line was chosen to satisfy the calculated values in the limit
0.1 < EjT/hoje < 3). b) Suppression factors Κχ(Ε), ΚτΟΊ), and
K T C T J of the linear Τ - 1 2 problem as functions of the parameter
χ = V(3/2)E|j/hwt (the solid lines show the result of a numerical cal-
culation [ 3 S ], and the dashed lines correspond to the approximate ex-
pressions [**].

of magnitude, see, e.g.,1·331) is one of the most pronounced
manifestations of the Jahn-Teller effect in systems with
a T level {the Ε level is not split by the spin-orbit inter-
action in first-order approximation). Other suppressed
quantities are, for example, the anisotropic (orbital)
part of the Zeeman splitting, all types of interaction of
the electron shell with the nucleus (dipole-dipole, quad-
rupole, etc.), Coulomb and exchange interactions be-
tween electron shells of Jahn-Teller's centers in crys-
tals^73, and others. It should be noted that as soon as
the physical quantities cease to be determined only by
the ground state, the suppression concepts lose the sim-
plicity described above and are no longer fundamental.
In particular, in a strong vibronic interaction, the vi-
bronic ground multiplet lies close to the next level of
the tunnel splitting (Fig. 8), so that it is very frequently
necessary to take into account its appreciable influence
in the determination of the physical observables (see
below).

In cases when Κ(Γ) <C 1, it becomes important to
take into account the second-order perturbation-theory
corrections on the basis of the vibronic functions of
the initial electronic multiplet. In the case of weak coup-
ling, the influence of second-order terms, say, in the
spin-orbit splitting of the 2T level, manifests itself only
in violation of the Lande interval rules and in a splitting
of the multiplets with J > 2. In the case of a strong Jahn-
Teller effect, the second-order corrections are described
by the usual perturbation-theory formulas, where the
Jahn-Teller energy plays the role of the distance between
levels, i.e., the result coincides with that expected for
the static limit of the Jahn-Teller effect, when the tran-
sitions between the minima can be neglected.C34>35]

When discussing the use of the suppression factors
for the calculation of physical observables it must be
emphasized once more that they remain meaningful only
for operators that do not depend on the nuclear coordi-
nates, in particular, if the electron operators calculated
in second order of perturbation theory, in which account
is taken of the excited electronic states (for example,
in the calculation of the Zeeman splitting of the Ε term
of octahedral systems), then when account is taken of
the vibronic interaction, this operator turns out to be,
generally speaking, dependent on the nuclear coordi-
nates, and consequently the relations presented for the
suppression parameters are no longer valid.[38]

7. PSEUDODEGENERACY. DIPOLE INSTABILITY

As already noted, the criterion for the applicability
of the adiabatic approximation, and for the possibility
of investigating the physical properties of a system in
each electronic state separately, is smallness of the
off-diagonal matrix elements of the Hamiltonianjfij
of (6) in comparison with the energy differences of the
adiabatic potentials W^Q) - W<(Q). This condition is not
satisfied not only in the case of exact degeneracy, when
at the point Qo we have Wi(Q0) = Wj(Q0), but also if at
this point the difference Wi(Qo) - Wj(Q0) is sufficiently
small (quasidegeneracy). In this case vibronic effects
arise, which are formally analogous to those considered
above for the case of exact degeneracy (the Jahn-Teller
pseudoeffect), but containing in principle certain new
qualitative features.

We consider first the simple case of two close nonde-
generate electronic states φ ι and φ 2 separated by an
energy interval 2Δ.[ η 1 Taking into account, as before,
the linear terms of the vibronic interaction (9) in the
form of a perturbation, we arrive at the secular equa-
tion (10), which assumes for the considered case the
form

I — Α — ε aQ

| aQ Λ-e -•- 0 . (46)

where a = (ψ ύ (8V/aQ)0|!|>2) is the linear vibronic coup-
ling constant (the energy e is reckoned from the center
of the interval 2Δ).

The solutions of Eq, (46) are the vibronic corrections
to the electronic energies and are obtained directly:

e± = ± /Δ* + «V, (47)

which yields, when the elastic-coupling energy in the
core is taken into account in accordance with (11) (this
energy is assumed to be for simplicity the same in
both states)

It is seen from this expression that when account is
taken of the vibronic interaction the two adiabatic po-
tentials vary differently: in the upper one the curvature
(the oscillation frequency) increases, and in the lower
one it decreases and becomes equal to zero at a2 = kA.

If the condition

(49)

is satisfied, the system (in the state of the lower sheet)
becomes unstable with respect to the displacements Q.
The minima of the adiabatic potential lie at the points
(Fig. 11)

±Qt=vr*Ll£. (50)

It is perfectly understandable that if these minima are

FIG. 11. Potential curves in the case
of pseudodegeneracy.
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sufficiently deep, so that local states are formed in
them, then tunneling causes the corresponding energy
levels to be split in analogy with the already considered
case of several adiabatic-potential minima due to exact
degeneracy.

A distinguishing feature of pseudodegeneracy is that
the electronic states Γ and Γ ' , which are mixed by the
oscillations, can belong to different representations of
the symmetry group of the problem (whereas in the case
of degeneracy we have Γ = Γ ' ) . This circumstance alters
significantly the nuclear normal-displacement space in
which the instability of the system and the complicated
character of the adiabatic potential become manifest. In
particular, for systems with inversion center, Γ and Γ"
can have opposite parity, so that the constant a differs
from zero only for odd nuclear displacements Q, which
remove the inversion center and lead to the formation
of the dipole moment (dipole instability139' *°]). In this
case the system will have a dipole moment in each of
the minima of the adiabatic potential. It is perfectly
obvious that this effect cannot occur in the case of in-
teraction of the electronic states of a degenerate level,
for in this case Γ = Γ" and the active displacements
can only be even.

Dipole instability is a rather interesting and quali-
tatively new aspect of the problem of polyatomic systems
with electron-degeneracy and pseudodegeneracy. In par-
ticular, it leads directly to an explanation of the origin
of the dipole moments of symmetrical polyatomic sys-
tems and of the spontaneous polarization of crystals
(see Sec. d of Chap. 8 and Sec. b of Chap. 9 below).

8. SPECTROSCOPIC MANIFESTATIONS OF
TUNNEL SPLITTINGS

We begin the discussion of the manifestations of tun-
nel effects with a remark concerning the influence of
small perturbations due to the action of the environment,
which are of interest in view of the smallness of the tun-
nel splitting. In the crystalline state, such perturbations
can be the lattice vibrations and defects of the crystal
structure (dislocations, impurities, vacancies, etc.).

The problem of the effect of oscillations of the en-
vironment of a complex or of an impurity center on the
dynamics of the tunneling and the tunnel states has not
yet been solved in the general case (although individual
attempts at its solutions are known115>41]). In the case of
an isolated complex in a crystal, when its internal os-
cillation frequencies are much larger than the crystal
frequencies, the system can be qualitatively represented
in the form of a complex in a viscous continuum. In this
case the transitions of the complex from one configura-
tion to another are slowed down not only by the internal
barriers, but also by the viscosity of the medium. Since
the viscosity decreases with increasing temperature, in
such a model the magnitude of the tunnel splitting in-
creases with increasing temperature ^53\

A qualitatively similar conclusion is obtained when
the indicated system is considered in the "triple adia-
batic" approximation, in which three subsystems are
separated: fast—electron motion, slow-vibrations of
the complex, and slowest—vibrations of the crystal[ 4 z ] .
In this approximation the tunnel splitting increases with
increasing temperature in accordance with the power
law c n , where η = [exp (hw/kT) — l]"1 are the occupation
numbers of the phonon states of the lattice (ω are the
frequencies of the crystal vibrations). A more concrete

and sufficiently complete solution of this problem is a
very complicated and still pressing problem.

The influence of the crystal-structure defects be-
comes particularly significant when the splittings pro-
duced by them in the complex are of the order of or
larger than the tunnel splitting. It can be shown that
under the influence of the strain e there occurs in the
systems in question a shift of the normal coordinates
Q ~ eR, -where R is the distance between the atoms.
This yields for the constant of the coupling of the elec-
trons with the deformation Ve the relation Ve ~ AJR,
which yields in turn Ve ~ 104 cm'1 for transition-metal
ions. It follows therefore that even under the influence of
weak strains, e ~ 1CT4 (which are practically always
present in real crystals), one can expect splittings
Δ ~ 1 cm"1/3 5 5 These strains, however, have a random
character (both in magnitude and in direction), so that
averaging over them leaves in many cases the qualita-
tive picture of the expected tunnel effects essentially
unchanged, even if Δ > 5. However, this is not always
the case, a fact that must be taken into consideration
when theory is compared with experiment.

As already noted, questions connected with manifesta-
tions of vibronic interactions in electron-degenerate and
pseudodegenerate states of polyatomic systems, which
are grouped together in the literature under the title of
the Jahn-Teller effect, constitute at present an entire
trend in the physics of molecules and crystals. The ex-
position in this section is aimed at illustrating only
some of the most interesting manifestations of these
effects from the point of view of the inversion (tun-
neling) splitting considered above. We do not claim,
naturally, complete coverage of the literature sources,
especially the experimental material.

a) Optical and Acoustical Transitions

Transitions induced between close inversion levels
by an electromagnetic perturbation are allowed as mag-
netic-dipole transitions in the presence of an inversion
center in the system, and can be also electric-dipole in
the absence of an inversion center (for example, in te-
trahedral systems).1 4 3 ' 4 4 ] The observable dipole micro-
wave losses when Mn3* ions (E level) are introduced in
yttrium iron garnets (YIG),[45] which have a clearly pro-
nounced frequency dependence with a maximum, can be
regarded as due to such transitions. This is evidenced
also by the dependence of ^max o n *-ne temperature

'max = 15 GHz at 37°K and vmax = 56 GHz at 58°K),
which agrees qualitatively with the above mentioned
strong dependence of the tunnel splitting on the crystal
temperature.

Transitions between tunnel levels under the influence
of acoustic isolations can be obtained directly1^61, since
these levels, being electron-vibrational, are strongly
coupled with the vibrations of the environment. If it is
assumed that the natural frequencies of the oscillations
of the separated complex in the crystal (local oscilla-
tions) are much higher than the acoustical frequencies,
then we can regard the latter as modulating the former
in the course of the interaction. A suitable transforma-
tion of the Hamiltonian of the complex makes it possible
to separate the perturbation under whose influence
transitions are effected between the tunnel levels with
absorption of one quantum of crystal oscillations. For
example, for the A — Ε transition in the case of the Ε
level (the approximation of the model of three minima
in Sec. a of Chap. 4) can yield the following expression
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for the coefficient cif sound absorption (assuming creases, δ' = ι/δ2 + Δ 2 , the wave functions take the form

(51)

where N is the number of absorbing centers per unit
volume, R is the shortest interatomic distance in the
complex, Ax is the vibronic constant of the linear Ε - e
problem, ν is the speed of sound, d is the density of the
crystal, g(w) is absorption-line profile factor,
Jg(a>)du>= 1, and L is the factor of the direction of the

propagation and polarization of the wave:

»w —τ Σ ('· ι = *· y<*)·
mi and n^ are the direction cosines, respectively, of the
polarization and velocity of the sound wave.

Estimates of σ by formula (51) show that it is larger
by several orders of magnitude than the magnetic acous-
tic absorption due to transitions between spin levels
(this is understandable, since the latter are coupled to
the oscillations only indirectly, via the spin-orbit and
orbit-lattice interactions). Thus, for example, for
aqueous complexes of copper with Ai = 2.5 χ 1(Γ4 dyn
and for the ordinary type of crystals we can obtain'4e]

σ ~ ΙΟ"11 ω2ί(4π2ΤΓ1 (cgs esu). We note that under the
same conditions the probability of direct pure-relaxa-
tion transitions under the influence of thermal oscilla-
tions of the lattice is given by the expression1-461

W = 4 · 10~13 Τω2/4π2. It follows from this that, at least
at low temperatures, the width of the tunnel levels is
small enough in comparison with the transition frequency.

If we introduce the relaxation time τ, then we can
write

where ϋω 0 = δ is the tunnel splitting. In view of the
strong growth of τ with increasing temperature, expres-
sion (51) has a maximum as a function of T. If we neg-
lect the dependence of 5 on Τ (in comparison with τ(Τ)),
then this maximum is determined from the relation
(ω - ωο)τ(Τ) = 1.

Absorption of ultrasound by Jahn-Teller centers in a
crystal was observed by Sturge and co-workers.[25> 4 7 ]

They believed however, this absorption to be more readily
relaxational than resonant. They make reference to the
fact that the random distortions due to the imperfection
of the crystal lattice, having a larger scatter, are esti-
mated to produce an average level splitting ~1 cm"1,
much larger than the tunnel splitting, and therefore the
resonant absorption could occur only at such high fre-
quencies. We shall show that this statement is without
foundation.

For simplicity we consider the case of two equivalent
minima, the vibronic states of which are described by
the functions * j = (1VZ) χ (Φ! + Φ2) and Φ Π = (1VZ)
(Φι — Φ 2) (Φι and Φ2 are the functions at the minima). The
probability of the transition between them under the in-
fluence of an acoustic perturbation is proportional to
the square of the matrix element

~ <&,

where Qo is the absolute value of the displacement of
the normal coordinate at the minimum. With allowance
for the distorting perturbations, the tunnel splitting in-

(53)

and the probability of the acoustic transition is propor-
tional to

where Δ is the change of the depth of the minima due to
the external perturbation.

We see therefore that the probability of the transitions
between the redefined states is smaller than for the un-
perturbed states, in a ratio δ2/(δ2 + Δ2). In other words,
large distortions Δ » δ suppress the acoustic absorption,
as a result of which only the centers that have been little
distorted remain resonantly absorbing in the crystal (i.e.,
the defects in the crystals only decrease the intensity of
the resonant absorption but do not eliminate it).

b) Splitting of Zero-Phonon Lines

Even very small splittings of the vibronic levels can
appear in narrow lines of zero-phonon transitions in im-
purity centers and complexes in crystals. In a majority
of cases, however, if one of the transitions to close-
lying levels of the tunnel splitting is allowed in some ap-
proximation, then the second transition is forbidden in
the same approximation and becomes allowed only when
account is taken of the next approximation (or under the
influence of additional perturbations). Therefore cases
of indirect observation of inversion splitting in a split
zero-phonon line are not plentiful.

Kaplyanskir and PrzhevuskifH8] observed flareup of a
second zero-phonon line near a first one under the in-
fluence of external pressure in the transition A «— Ε in
the systems Eu2*: CaF2; Eu2+: SrF2' Sm2+: CaF2' Sm^iSrFa
(the values of the splitting were respectively 15.3, 6.5, 27,
and 26 cm"1), while Chase[ 4 9 ] interpreted these two close
zero-phonon lines as due to transitions to tunnel-split
vibronic levels. The suppression of splittings of zero-
phonon lines by a crystal field was considered in'-50-'.

A more complicated case of splittings of zero-phonon—
lines of the A •— T2 transition in V2t:MgO was observed
by Sturge.[51] The considered system undergoes tetra-
gonal distortions in the T2 state, and ther e is no tunnel
splitting at the tetragonal minima of the Τ - e problem
(Sec. b of Chap. 4). However, as shown above, (Sec. b
of Chap. 3), when account is taken of the quadratic terms
of the vibronic interaction, the absolute minima of the
adiabatic potential, at which the nuclear motion is local-
ized, may turn out to be orthorhombic, thus uncovering
new possibilities of explaining Sturge's experiments.[51]

Indeed, at these minima, on the one hand, there exist
the required tetragonal displacements (together with the
trigonal ones), and on the other hand, the states in them
are subject to inversion splitting.[20]

c) Electron Paramagnetic Resonance

The electron-degenerate terms produced when the
orbitally-degenerate states are incompletely filled with
electrons have in the overwhelming majority of cases an
effective spin S φ 0. In conjunction with the small value
of the tunnel splitting (which very frequently falls in the
radio region), this is one more reason for using the EPR
method to investigate tunnel effects. The Jahn-Teller ef-
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feet in EPR has by now been the subject of hundreds of
papers (see the reviews1 2 5 ' 3 5 1 and the corresponding
chapters in the monographs[e> 5 2 ] ) . From the point of
view of tunnel effects, the physical picture of the phe-
nomenon becomes understandable from the forthcoming
discussion of the case of the Ε level.

By solving the problem of the Zeeman effect on inver-
sion (tunnel) levels of the Eg term (for example, the Cu2*
ion in an octahedral surrounding) in second-order pertur-
bation theory in the spin-orbit and Zeeman interactions,
we can obtain the following expressions for the energies
of these levels in a magnetic field Η II Oz (the calcula-
tions were performed using the model of three minima1·531)

(54)

here λ is the spin-orbit coupling constant, Δ is the en-
ergy distance to the excited term Τ 2g, and δκ can be de-
termined from the table and from formulas (29)—(31).

The dependence of ejK on Η is illustrated in Fig. 12.
The possible transitions between these levels are best
described by dividing the region of variation Η into three
parts: I—low-frequency ((λ/Δ)/3Η <C δκ), Π-intermediate
((λ/Δ)/3Η ~δκ) and ΠΙ-high-frequency ((λ/Δ)/3Η»δκ).
In regions I and ΠΙ the dependence of e ^ on Η is approxi-
mately linear, so that we can use g-factors to describe
the electromagnetic absorption. Calculations show^531

that in region I there are allowed, with the usual proba-
bility, the following three transitions shown in Fig. 12
by the arrows (λ < 0):

whereas in region I other transitions are allowed:

( 5 5 )

(56)

where γκ is given by (29). In the intermediate region the
probabilities of the transition of one type become con-
stantly weaker, and those of the other become stronger
on moving from one region to the other. For the angular
dependence, say of the low-freqnency spectrum we can
obtain (the terms with γκ have been omitted for sim-
plicity)^41:

ί-n2 + m-ri'),

(57)

where /, m and η are the direction cosines of H.

The characteristic frequency and angular dependences
of the spectrum were the subject of numerous experi-
mental tests. We note that, assuming that δ increases

FIG. 12. Spin-inversion levels of
Ε — e problem in a magnetic field
H||Oz.

with increasing temperature, the transition from one
type of spectrum to another can be observed by per-
forming measurements at one frequency but at different
temperatures. The low-frequency region I then corres-
ponds to the high-temperature spectrum (δ» (λ/Δ)/3Η),
while the high-frequency region ΠΙ corresponds to the
low-temperature spectrum. Of course, if region I is
reached at too high temperatures, for which the rates of
the relaxation transitions are high, the spectrum corres-
ponding to this region turns out to be isotropic. Tem-
perature transitions of this kind were observed in EPR
spectrum even before tunnel effects were revealed1·55',
but could be fully explained only on the basis of the tun-
nel effects. Tunneling exerts also a very substantial in-
fluence on the hyperfine structure of the spectra[3S> M 1 .

In the case of very large tunnel splittings δ, when
only the lower vibronic doublet (in the case of the Ε
level) or triplet (in the case of the Τ level), is populated,
the EPR problem is easily solved with the aid of the sup-
pression parameters (Chap. 6). For the EPR frequencies
of the transitions in the vibronic doublet of the Ε level
we can obtain1·351 (v is the quantum number of the hyper-
fine splitting):

V) ± Κ (Ε) - 3 (Pm*

where
(58)

Pi and P2 are the constants of the contact and dipole-di-
pole hyperfine interactions. The formulas (54)-(57)
given above are obtained from (58) for the case of strong
vibronic coupling, at which K(E) « 1/2 (Chap. 5). As
shown by Ham1·3" and by Chase1·491, a sufficiently strong
influence of the random strains due to the defects in the
crystal leads in the case of EPR only to a change in the
shape of the absorption line (but not to a shift of its po-
sitions). In analogy with (58), formulas were obtained
for the EPR frequencies in the case of a vibronic trip-
let/3 4 1

Tunneling affects significantly also the relaxation-
transition probabilities^42' 5 7"5 9 ], which manifest them-
selves in the EPR line widths. This effect is connected,
first, with the presence of several close-lying levels
(as against two in the absence of tunneling), which in-
creases the number of relaxation channels. Second, the
relaxation transitions between different orbital states are
much more probable than between Kramers-conjugate
states. As a result of the first of these circumstances,
the relaxation probabilities, depending on the ratios of
the parameters, can be proportional not only to the first
(direct processes) and the seventh (Raman processes)
powers of the temperature, but can also depend on the
temperature like e ~ 5 / ^ o r χ 5 . The second of the cir-
cumstances indicated above leads to an appreciable in-
crease of the probabilities of the relaxation transitions.

It follows from qualitative considerations that tun-
nel effects should lead to dynamic changes of the elec-
tric-field gradient and of the hyperfine magnetic field
at the nuclei, and consequently to corresponding mani-
festations in the hyperfine structure of the Mo'ssbauer
spectrum.[ e o"6 2 1 As applied to the Mossbauer effect, the
influence of tunnel effects on the line shape was deter-
mined for cases when the Mossbauer atom is of the
Jahn-Teller type with degenerate electron terms ^ 2 ,
2 T 2 , [ 6 0 ] , 5 T 2 , C e i 1 , and 'E.t 6 2 1 In the latter case the line
shape was calculated with allowance for the relaxation
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transitions due to the coupling of the tunnel states with
the lattice vibrations.

d) Rotational Spectrum and Average Dipole Moment of
Dipole-Unstable High-Symmetry Systems

Interesting consequences of tunnel splittings are ob-
tained in the case when a symmetrical system has a di-
pole moment at the minima of the adiabatic potential
(dipole instability[ 3 9 > 4 0 ]). This situation, as already
noted, is realized in systems with inversion centers in
the presence of pseudodegeneracy between the ground
state and a nearby excited state of opposite parity (Chap.
7), and also in the case of a degenerate electronic Τ
state in high-symmetry systems without inversion cen-
ters . We shall show that because of the dipole instability
such systems, which do not have a proper dipole moment,
have generally speaking, in spite of the prevailing no-
tions, a pure rotational absorption spectrum and exhibit
properties that are possessed by systems having proper
dipole moments[40> " ' β 5 ] .

Consider a polyatomic system with four sufficiently
deep minima of the adiabatic potential of the dipole type
(just as, e.g., in the Τ — t tetrahedron problem, Sec. b
of Chap. 4). Owing to the tunneling, the lowest vibronic
levels will be T2 and Ai (we put for the sake of argument
E A ^ E T 2 ) > t n e wave functions of which in the four-mini-
mum model are given in (27) and in the table. With allow-
ance for the rotation (but without allowance for the vi-
bronic-rotational interaction), there is adjacent to each
vibronic level a series of rotational levels with energies

£ T 2 J = BJ (J +1) , EM = BJ (/ +1) + 6 (59)

where B is the rotational constant), and for each of these
the wave function can be written in the form of a product
of the function | Τ γ) in accordance with (4) by the spheri-
cal-top rotational function

TyJKM) = I Γγ> <fjKM (Κ, Μ = 0, ±1 ± / , Γ = Alt T2).

(60)
Knowing the wave functions, we can determine the tran-
sition probabilities and calculate the intensity of the
stimulated dipole transition TJ — I"J ' per unit density of
the radiation that causes the transition*83]:

(61)
where Ζ is the partition function

Z = 2 ( 2 / + l)2

In these formulas p 0 is the absolute value of the dipole
moment of the system at the minimum, Ν is the number
of absorbing centers per unit volume, and g^j is the
statistical weight and depends on the spin I of the nucleus.

From (61) we see that three types of transitions with
J' = J + 1 (R transitions) are possible: TzJ-^TaiJ +1)(R),
AiJ —T2(J + 1)(R') and TjJ ^AX(J + 1)(R"), whereas the
Q transitions (J' = J) and Ρ transitions (J' = J - 1) are
allowed only as T2J —AltI(Q) and T2J—Aj(J - 1)(P). An
analysis of the conditions for the appearance of these
series of lines, and of their frequencies and intensities,
as functions of the ratio of the constants δ and Β and of
the temperature is given in [ e 3 ] . In particular, at δ > Β
and sufficiently large δ, all the series can appear (we

note that only one R series appears in the usual purely
rotational spectra of systems with proper dipole moment,
and in the rotational structure of the vibrational band
there are three branches R, P, and Q). The intensity of
this new spectrum in accordance with (61) is proportional
to pS and, is consequently (po/pm)2 times weaker than the
usual rotational spectrum (p m is the dipole moment of
the rigid-dipole molecule). Although numerical estimates
are presently difficult, it can be assumed that in systems
with a strong dipole instability we have p0 ~ 0.1 in Debye
units, which yields the estimate (po/pm)2 ~ 10"2. Absorp-
tion of tiiis magnitude (and even weaker by many orders)
is perfectly observable (at the present time the possibility
is being considered of observing the symmetrical-mole-
cule rotational spectrum due to Coriolis interaction, which
is 1010 times weaker than the usual spectrum[ 6 4 ]).

It is quite natural to expect high-symmetry systems
with dipole instability to behave in an unusual fashion in
an electric field[40> 6 5 ] . As is well known, rigid-dipole
molecules differ from high-symmetry molecules (which
have no proper dipole moment) in that their polarizabi-
lity has a temperature dependence of the type a =pn i/3kT
(symmetrical molecules have only induced polarizability
with constant a) . To determine the polarizability of di-
pole-unstable systems it is necessary to calculate their
average dipole moment in an electric field E. In the case
of the system of the symmetrical-top type with two mi-
nima and with tunnel splitting 26, the vibronic-level
energies are

=- ± EJK = ± δ 4 BJ (J + 1) ~ (A - Β) Κ";

ι, and the average
< 5-B)is

where A and Β are rotational constant
dipole moment (under the condition ρ ο
given by[ e 5 ]

— _ plE SJ f [ ( / - ' I ) 2 — A"-| [ 6 t h (6/fcT·) — Β ( / + ! ) !
P = ~W 2j \ (/ _ . . l ) | g i _ J } 2 ( / . -1)2]

J.K

(Ji-K'-)\bUl№T)-~BJ\ (,2J~l)K* t h ( 6 W ) - | / _ EJK V

J ib- — B-J-) ' J (J - I ) * I V \ kT I '

£-%(2J-rl)e*l>{—gr-) . ^

If, in analogy with the Langevin theory, we take into
account the rotation of the molecules under the influence
of the electric field classically, then we can obtain for
this case a much simpler formula

*-nsfthTEf· <64)
The numerical calculations by formula (63) and their
comparison with (64) have shown that in this case the
neglect of quantization of the rotation is perfectly legit-
imate. Analogous calculations for the case of four mi-
nima of the adiabatic potential lead to the expression

?h {&!№)_ (65)- _ pjE
3kT exp (— &,:kT) -'-

The temperature dependences of the polarizability in
accordance with formulas (63)- (65) are shown in Fig.
13. We see that the curve has two limiting regions:
1) large T, where the dependence on T"1 is linear and
coincides with the temperature dependence of the po-
larizability of the rigid-dipole molecules, and 2) small
T, where the polarizability ceases to depend on T, i.e.,
it behaves as in the case of high-symmetry molecules
that have no proper dipole moment. The position of the
transition region on the boundary between these limiting
regions depends on the magnitude of the tunnel splitting
δ: the smaller δ, the farther into the region of low tem-
peratures (larger T 1 ) does the region of the high-sym-
metry behavior shift.
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FIG. 13. Temperature dependence of the average dipole moment
of a system with two minima for different values of the parameters of
the inversion splitting δ (indicated on the right side in cm"1) and of the
rotational constant Β (0<ίΒ <5 10 cm"1). For details see [ 6 5 ] .

Thus, the same molecules can behave in an electric
field either as rigid-dipole or as high-symmetry mole-
cules, depending on the region of the measurement tem-
peratures. By the same token, the fundamental differ-
ence between the two types of molecules with the respect
of their polarizability is eliminated: these two types are
only as limiting cases of molecules with small and large
δ, respectively.

9. COLLECTIVE EFFECTS IN CRYSTALS

We consider a crystal containing a large number of
Jahn-Teller centers. In the presence of strong interac-
tion between the centers, the distortions and tunnelings
on each of them are not independent, and with decreas-
ing temperature a structural phase transition should oc-
cur, into a state in which the Jahn-Teller distortions
are ordered and the tunneling on each center is sup-
pressed (the cooperative Jahn-Teller effect).

The first studies of the cooperative Jahn-Teller ef-
fect, which date back to the late fifties/66"681, were per-
formed in the semiclassical approximation, in which
the motion of the nuclei along the surfaces of the adia-
batic potential was considered classically (without al-
lowance for tunneling), and the interactions of the cen-
ters were considered in the molecular-field approxi-
mation. More detailed calculations, as in general the
rapid development of research in this field, date back
only to the last few years.

a) Spontaneous Polarization and Ferroelectric
Phase Transitions

In 1965, one of us called attention to the fact that the
ordering of dipole-unstable centers in a crystal leads to
spontaneous polarization of the crystal, and the corres-
ponding phase transition has a ferroelectric character [ 3 9

This idea was subsequently further developed and sup-

plemented[69"71] (similar ideas were proposed also
in [ 7 2 > 7 3 ] and developed inC 7 4 ]). For crystal lattices with
perovskite structure (of the BaTiO3 type) and with the
structure of rock salt (of the GeTe type), the energies of
the states of the electrons of the valence band were cal-
culated with allowance for their mixing with the states
of the conduction band under the influence of nuclear
displacements of the dipole type (the limiting optical
oscillations), which lead to spontaneous polarization[70]

or antipolarization[75] (the case of pseudodegeneracy
with allowance for dispersion). This has made it pos-
sible to determine the adiabatic potential of the lattice
in the space of the corresponding nuclear displacements
and to obtain (in analogy with (49)) a criterion for the
instability of the lattice with respect to these displace-
ments, i.e., a criterion for the possibility of a corres-
ponding ordering in the crystal. Estimates of the tem-
peratures of the phase transitions in such a system in
semiclassical approximation1-711 (assuming classical mo-
tion of the crystal over the surface of the adiabatic po-
tential and taking into account the remaining oscillations
of the crystal as the statistical reservoir) have made it
possible to obtain good quantitative agreement with ex-
perimental data for BaTiCh.

In the course of the development of such a "micro-
scopic theory" of the ferroelectric properties of crys-
tals (many numerical results were obtained with com-
puters), a number of interesting effects and regularities
were revealed. Thus, for example, it turned out that in
the adiabatic potential of the crystal BaTiCh, at the
points of the minima of the surfaces, the titanium atoms
are shifted in the directions of the trigonal axes, a fact
corresponding to the low-temperature rhombohedral
phase of the observed ferroelectricity. The remaining
singularities of the surface-the saddle points and the
maximum-correspond to nuclear configurations of the
following orthorhombic, tetragonal, and paraelectric
phases. It was concluded from this that only the low-
temperature rhombohedral phase is fully ordered, and
the remaining phases result from the fact that as the
temperature increases the system first overcomes (by
means of temperature fluctuations or tunneling) the
barrier along the lowest saddle point (the observed dis-
placements are in this case the averages of two neigh-
boring minima), and then at higher temperatures along
the next saddle point, etc. The experimental data on the
diffuse scattering of χ rays [ 7 6 ] confirm the fact that the
high-temperature ferroelectric and para-phases are
not completely ordered, and reveal the character of the
disorder of the system on going from one phase to
another (see alsot 7 7 ]).

Another large class of ferroelectrics can be sepa-
rated in accordance with their content of tetrahedral
structural units. In Sec. d of Chap. 8 it was noted that
the tetrahedral system is dipole-unstable because of
electron degeneracy (T level) or because of pseudode-
generacy (see also[ 7 8 1), and consequently such tetrahedra
may serve as a source of phase transitions in crystals.
Let us illustrate this statement using as an example the
well investigated crystal KH2PO4.

[ 1 7 9' s o 1 The origin of the
spontaneous polarization in this crystal cannot be ex-
plained as being due only to ordering in the system of
hydrogen bonds, since the direction of such an ordering
is almost perpendicular to the observed direction of the
spontaneous polarization. At the same time, from the
isotopic effect it follows that the role of the hydrogen is
quite appreciable in the phase transition. To reconcile
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these two facts one customarily assumes a definite type
of interaction between the hydrogen and the other ele-
ments of the crystal.1·811 Taking into account the insta-
bility of the PO4 groups, at which they have four minima
of the adiabatic potential, the picture of the spontaneous
polarization and of the phase transitions changes appre-
ciably. The Hamiltonian of the system can be written in
the form[82]

<^ = —ζΣ^μΟίημ + Ω Σ Σ<4ιμ<*7>ιμ' + ω Σ btJ>l#
ηιμ m μμ' χχ'

-ΕΣρ«μαί,μ<ΐΜμ-ΣΣνμ κΚ
ι»μ ml μχ

where ξ is the chemical potential, Ω and ω are the tun-
neling frequencies for the PO4 group and for the hydrogen
group, respectively, Ε is the intensity of the external
field along the polarization direction, and p^ is the di-
pole moment of the PO4 groups in the μ-th minimum of
the adiabatic potential. Writing down the equation of mo-
tion for the Green's function and using a splitting equi-
valent to the molecular-field approximation, we can ob-
tain a system of transcendental equations with respect to
the occupation numbers of the minima of the PO4 groups
and hydrogen bonds, which makes it possible to deter-
mine the temperature dependence of the populations and
to establish the presence of a phase transition in the
system. The temperature of the phase transition depends
on the tunneling frequencies of both the hydrogen bonds
and the PO4 groups. We can therefore expect the appear-
ance of two types of isotopic effects in KDP-when the
hydrogen is substituted and when substitutions are made
in the PO4 groups. The first of them is well known-deu-
teration increases T c by 1.7 times.[T9> 8 0 ] The second type
of isotopic effect was apparently observed recently inC83],
where it was shown that replacement of Ο1β in KDP by
O18 changes the Curie temperature by several degrees.

b) Structural Phase Transitions

As already noted, in systems with inversion centers
the Jahn-Teller distortions of the centers are not of the
dipole type and do not lead to spontaneously-polarized
states. Therefore in most cases the cooperative Jahn-
Teller effect (or the Jahn-Teller pseudoeffect) leads to
structural phase transitions of non-ferroelectric type
(see, however,1-841). An important and relatively new
class of such systems are the ferroelastics[85'8el, for
which the order parameter is the deformation, and which
behave with respect to external pressure like ferroelec-
trics in an external electric field (in particular, they
can become "repolarized", i.e., their deformation can
be reoriented under the influence of pressure). The fol-
lowing example of a model crystal with Jahn-Teller cen-
ters illustrates the origin of the structural phase tran-
sition in the general case.

We consider an ionic crystal with local symmetry
D4h of the cation sites, and with a doubly degenerate
electronic ground state. In the Jahn-Teller effect, for
the Ε level, the active oscillations are in this case big
of the type ([E2] = Aig + Big + B2g). Since the valence
oscillations big corresponds a cnange of the length of
the bond with the cation, and the deformation oscilla-
tions b2g correspond to a change of the angles, the inter-
action with the former predominates as a rule. We
write this interaction in the form Σ Aa^Qm(big), where
m numbers the sites, A is the vibronic coupling con-
stant, and σζ are Pauli matrices in an electronic basis
that diagonalizes the vibronic interaction with the big
oscillations. Changing over in the usual mannerί87Ί to
phonon operators Q m = Σ amK(b^ + bK), we can obtain

for the Hamiltonian of the electron-phonon system of
the crystal the expression:

Η to. (67)

where n m is the operator of the number of electrons at
the site m. Next, by a unitary shift transformation, we
can exclude the terms of the Hamiltonian (67) which are
linear in the phonon operators. The transformed Ham-
iltonian jf = e" 1 He"1", where ·, (68)
takes the form[88]

m mnx (69)

where Δ = ΣΑ^^φω^Γ1 is the Jahn-Teller stabilization
energy at each site. The last term in (69) describes the
distortion-induced interaction of the electronic states
of different sites. In the considered case, this interac-
tion leads, as seen from (69), to the Ising Hamiltonian.

In the investigation of the structure transitions ac-
companied by deformation of the crystal, it is neces-
sary to include in the Hamiltonian (67) the strain energy
and the interaction of the electrons with the strain1·681.
If the following condition is satisfied

A^g'-

''<·>„
where go is the coupling constant of the electrons with
the strain, then at temperatures below the temperature
of the phase transition kT c r = A there appears a crys-
tal strain u = g0V(2/cNaz, due to the cooperative Jahn-
Teller effect. Here £2 is the volume of the crystal, Ν is
the number of unit cells, c is the elastic modulus of the
crystal, and σ̂  is the average value of the operator σζ.
The spontaneous distortions of the crystal at Τ < T c r

can be regarded as the result of softening of the crystal
with respect to the corresponding strains. Indeed, for
the elastic modulus we can obtain the expression

1 — (A/kT) sech'Uo JkT)

l — [{A—gl)lkT] sech'(Aa,ikT)
(70)

from which it follows that c ^ O a s T - T c r .

The cooperative Jahn-Teller effect has interesting
singularities in such a crystal in an external magnetic
field[88]. The point is that the components of the split
ground-state doublet do not have a proper magnetic mo-
ment in the low-symmetry phase. To the contrary,
states produced by a magnetic field and having a proper
magnetic moment are realized only in an undistorted
crystal. It follows therefore that magnetic ordering
counteracts the structural ordering and vice versa, thus
leading to a characteristic connection between the mag-
netic and structural properties. In the molecular-field
approximation for ΊΓΖ, which determines the relative Jahn-
Teller strain in the crystal, we obtain the transcendental
equation

where g is the spectroscopic-splitting factor of the
ground-state doublet, μ is the Bohr magneton, and
γ = (cos 2f> is the average statistical factor of the vi-
bronic reduction of the orbital angular momentum. At
a given temperature, Ε does notjtepend on Η if σζ ^ 0.
With increasing H, the value of ~oz decreases in such a
way that Ε remains constant. As seen from (71), the
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crystal is in a low-symmetry structure-ordered phase
at Τ < T c r , where the temperature of the structural
phase transition is given by the formula

M * C R = -jj- gvyfi arc th~:

We see that application of the magnetic field lowers
T c r , and no structural phase transition occurs in fields
Η > Ho = Afg^y)'1. In other words, such magnetic fields
stabilize the undistorted configuration of the lattice. The
magnetic moment of the site is given by the expression
β = g V / H E " 1 tanh (E/kT), from which it follows that
at Η < Ho the magnetic moment is proportional to the
field: β = gVy'HA"1, and at Η > Ho in the undistorted
crystal we have A = gyu tanh (gyMH/kT). This behavior
of the magnetic moment as a function of the applied field
atdifferent temperatures is shown in Fig. 14. FigurelS
shows the temperature dependence of the magnetic sus-
ceptibility.

The Jahn-Teller nature of the structural phase tran-
sitions was established undisputedly for a wide class of
crystals. Much experimental and theoretical material has
been gather edC89~93] offering evidence that the structural
phase transitions in rare-earth orthovanadates of the
type MeV04, where Me is a rare-earth element whose
ion Me* has electronic degeneracy, is of Jahn-Teller
origin. These phase transitions occur at very low tem-
peratures T c r ~ 10°K (in contrast, for example, to spi-
nels, for which T c r ~ 102oK), and it is therefore easy to
obtain for them in an external magnetic field splittings
on the order of k T c r , and consequently it is possible to
observe the above-mentioned mutual suppression of the
structure and magnetic orders, The results of the mea-
surements of the dependence of the magnetic moment on
the external field and of the susceptibility χ on the tem-
perature agree with those in Figs. 14 and 15.

10. CONCLUSION

In this brief review we highlighted only the main as-
pects of the theory of tunnel effects-one of the principal
manifestations of vibronic interactions in polyatomic
systems with electron degeneracy and pseudodegeneracy.
As noted during the course of the exposition, certain
questions in the theory of vibronic interactions still await
their solution. First of all, the problem of dynamic vi-
bronic coupling with many Jahn-Teller modes has not
been solved to date. Such a coupling arises in more com-
plicated polyatomic systems, particularly for an im-
purity center (or any other local formation) in a crystal,

when it is impossible to separate one dominant mode or
when the vibronic coupling cannot be simplified, as in the
Τ - e problem. The known attempts at solving this prob-
lem (see[ 1 5 ]) actually reduce it to a single-mode problem.
At the same time, a number of observed properties of de-
generate systems are brought about precisely by the pre-
sence of many active Jahn-Teller modes. This circum-
stance influences particularly strongly the temperature
dependences.

The problem of the cooperative Jahn-Teller effect
in the case of intermediate dynamic vibronic coupling
has not yet been fully solved. In this case it is impos-
sible to obtain separation of the electronic and nuclear
motions so as to be able to investigate the phase transi-
tions directly. Little attention has also been paid so far
to the important problem of numerically calculating the
electron-vibrational coupling constants which determine
the urgency with which it is necessary to take into ac-
count the vibronic interaction in concrete polyatomic
molecules. This is a part of the problem of calculating
multielectron polyatomic systems. When account is taken
of the progress made in this field in recent years, such
calculations now become urgent.

We hope that this review will help the reader to find
his way more easily in this interesting problem and will
stimulate further investigations in this field.

1.0
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I'1
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FIG. 14. Dependence of the magnetic moment // = μ (g7M)"' of a
Jahn-Teller site on the magnetic field intensity (H = Η (g7iiA~') in a
crystal with cooperative Jahn-Teller effect. The relative temperature
τ = 2kΤΑ"1 for curves 1 - 3 is equal to 0.25, 0.62, and 0.94, re-
spectively.

FIG. 15. Dependence of the reciprocal magnetic susceptibility
X 1 = X~1(A~1g2y2μ2) on the temperature τ = 2kTA~' in a crystal with
cooperative Jahn-Teller effect.
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