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The electrical, optical, and magnetic properties of layered compounds of dichalcogenides of transition
metals and intercalated crystals are considered. Particular attention is paid to the anisotropy of these
properties and to the analysis of the changes produced by intercalation. Experimental data are presented on
the structural transitions in layered crystals and are examined from the point of view of the ideas
concerning the charge-density wave. The bulk of the review is devoted to the superconducting properties of
layered compounds (the critical temperature, the specific-heat discontinuity in the transition, the gap, the
fluctuations above Tc, and the magnetic properties of ordinary and intercalated layered superconductors).
The theoretical concepts that make it possible to describe the distinguishing features of the superconducting
properties of layered and intercalated compounds are discussed (the effective-mass model and the model of
Josephson interaction between layers).
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1. INTRODUCTION

This review is devoted to a definite class of com-
pounds, layered crystals of dichalcogenides of transition
metals. These compounds are presently attracting wide
attention because of a large number of exceptional prop-
erties. Foremost among them are strong anisotropy of
the mechanical and electronic characteristics, due to the
specifics of the crystal structure of layered com-
pounds. '-1"*-' Owing to anisotropy, crystals of this class
uncover a possibility of investigating most interesting
effects of solid-state physics in their two-dimensional
or almost two-dimensional manifestation. It is remark-
able that the anisotropy of layered compounds can be
most enhanced by intercalation.1' Inasmuch as layered
compounds intercalated by molecules include supercon-
ductors, we are presently able to investigate supercon-
ductivity in systems with almost two-dimensional motion
of the conduction electrons.

The intercalation ability of dichalcogenides of transi-
tion metals, i.e., the ability to include atoms and mole-
cules in the spaces between layers, is the basis for
hopes of realizing high-temperature superconductivity
via the exciton mechanism proposed by Little '-5-1 and
Ginzburg.[6:i In essence, the intercalation ability of
layered compounds was in itself observed by Gamble
et a l . [ 7 ] in connection with searches for the possible
realization of the exciton mechanism of superconductiv-

"Intercalation is the implantation of atoms or molecules in crystals.

ity. The class of intercalated compounds is practically
unlimited, since there are many molecules and atoms
that can be introduced into layered dichalcogenides
crystals. In particular, crystals with alternating metal-
lic and semiconducting layers are apparently the most
promising from the point of view of realization of the
exciton mechanism of superconductivity. It is likewise
not excluded that combination, on a microscopic scale,
of metallic layers with superconducting layers or with
layers of complex molecules can lead to crystals with
entirely new electronic properties.

Layered compounds have by now already found prac-
tical applications in devices such as superconducting
quantum interferometers, where they are used as weak-
coupling links, since they can be produced in the form of
very thin films.[8] The possibility of realizing Joseph-
son interaction between layers of a layered compound
through intercalation uncovers very attractive prospects
for an even wider practical application of crystals of
this class.

Finally, structure transitions with formation of
charge-density waves have been observed most recently
in layered compounds. '-9-1 Transitions of this type were
hitherto observed only in quasi-one-dimensional crystals
(the Peierls transition in planar-quadratic mixed-valence
platinum complexes '-10·'). In the one-dimensional case,
however, these are inevitably metal—insulator transi-
tions. In layered systems, the low-temperature phase
can become semimetallic or remain metallic, and if the

514 Sov. Phys.-Usp., Vol. 18, No. 7 Copyright © 1976 American Institute of Physics 514



properties of the transitions turn out to be different than
in quasi-one-dimensional crystals.

The present review is devoted to the electronic prop-
erties of layered metals and semimetals and, to a con-
siderable degree, to the superconducting properties of
layered compounds. We are interested primarily in how
the electronic properties of layered crystals are changed
by intercalation, and in those particular superconducting
properties of layered compounds which distinguish them
from ordinary isotopic or weakly-anisotropic supercon-
ductors. In addition to the experimental data on super-
conductivity, we shall discuss also those theoretical
concepts and models which were proposed for the des-
cription of the superconductivity of layered systems with
almost two-dimensional motion of the electrons. We
shall not consider in detail the crystal structure of
layered compounds—these data are contained in the re-
views of Hulliger, Wilson, and Yoffe111"33. Detailed
information on layered semiconductors is contained in
the reviews^2'3-1 and the specifics of the mechanical
properties are dealt with in the review by Kalikhman
and Umanskif. m

2. STRUCTURE OF LAYERED DICHALCOGENIDES
OF TRANSITION METALS AND
INTERCALATED COMPOUNDS

A. Dichalcogenides of Transition Metals

The general formula for layered dichalcogenide com-
pounds is MX2, where Μ is a transition metal from
groups IV—VII and X = Se, S, or Te. The crystals of
these compounds consist of layers, each of which is a
sandwich of two sheets of halogen atoms X with a sheet
of metallic atoms Μ between them. The bond between the
metal atoms and the halogens in the sandwich is strong
(predominantly covalent), and the atoms Μ and X form a
two-dimensional hexagonal lattice in the sandwich. The
MX2 layers are coupled with one another in the crystal
by weak Van der Waals forces. The crystal structure is
shown schematically in Fig. 1.

Depending on the relative arrangement of the two
sheets of the X atoms, two different crystal structures
are produced within the X-M-X sandwich. In one of them,
six X atoms surround the Μ atom, forming an octahedron,
and in the other they form a trigonal prism (Fig. 2). The
weak Van der Waals interaction of the layers admits of
various methods of stacking the MX2 sandwiches in the
crystal along the axis perpendicular to the layers (the c
axis). Therefore many layered compounds exist in sev-
eral modifications. The most widespread stack types
are shown in Fig. 3. The stack is characterized by a

number, a capital letter, and additional symbols if the
first two symbols do not define the structure completely
(IT, 2H, 2R, 4Ha, 4Hb, and 6R). The number is that of

the layers in the unit cell, the capital letter character-
izes the type of crystal symmetry (T—trigonal, H—hexa-
gonal, R—rhombohedral). In phase IT inside the sand-
wich the surrounding of the metallic atom is octahedral,
in 2H, 3R, and 4Ha it is trigonal. In the modifications
4Hb and 6R sandwiches with octahedral and trigonal
stacking alternate.

Since the interaction of the MX2 layers is weak, it is
not surprising that the physical properties of layered
compounds are determined predominantly by the lattice
structure inside the sandwich. The three modifications
of TaS2 demonstrate the strong dependence of the elec-
tronic properties of layered compounds on the type of
the crystal structure inside the layer. The crystals
IT—TaS2 with octahedral stacking of the Ta and S atoms
in the layer are semiconductors or, more accurately,
semimetals in which the conductivity increases weakly
with increasing temperature ^ / 3 y

= 4.0 χ 10~3 "Κ"1

at Τ = 300°Κ for the conductivity σΛ along the layers).
The crystals 2H—TaS2 with trigonal stacking are metals.
Layers with trigonal and octahedral surroundings alter-
nate in the compound 4Hb—TaSi, and in these crystals
the conductivity along the layers is metallic because of
the trigonal layers semimetallic transverse to the
layers [ 1 1 ] (Fig. 4). This difference between the elec-
tronic properties of crystals with trigonal and octahedral
stacking is preserved also for other dichalcogenides of
Ta and Nb.

The anisotropy of the electronic properties of all the
layered compounds is connected primarily with the fact
that the electrons can move freely inside the layers, but
between the layers the overlap of the electronic wave
functions is weak because of the Van der Waals charac-
ter of the layer interaction. Of greatest interest are
layered compounds in which the anisotropy is extremely
strong and leads in essence to almost two-dimensional

FIG. 3. Structure of different
modifications of hexagonal layered
compounds ( l l 2 0 planes).
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FIG. 1. Structure of layers in dichalcogenides of transition metals.
The view is in a direction parallel to the layers. The arrows indicate the
Van der Waals bonding.

FIG. 2. Mutual arrangement of the atoms Μ and X in the coordina-
tion cell inside the sandwich. ΑΒΑ-trigonal prism, ABC-octahedron.

FIG. 4. Resistance of 4Hb-TaS2
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motion of the electrons in the crystal. Thus, in crystals
of the semiconductor 3R—M0S2 optical observations seem
to indicate the existence of two-dimensional excitons.1-12-1

As already noted, a strong anisotropy of the kinetic
properties is observed in 4Hb—TaS2. Finally, the exis-
tence of superconducting layered compounds (NbS2 with
critical temperature T c = 6.3°K, NbSe2, TaS2, and TaSe2)
makes it possible to investigate superconductivity in sys-
tems that are close to two-dimensional (films consisting
of several atomic layers)2' and in three-dimensional
crystals with extremely anisotropic electron motion.
The first possibility was realized by Frindt C l 3 b 3 , who
observed a decrease of T c from 7 to 4.5°Κ when the num-
number of layers in NbSe2 was decreased from 5 to 2.
However, with the exception of T c , the superconducting
properties of these films have not yet been investigated.
The crystals 4Hb— TaS2 permit an investigation of the
superconductivity of the motion of the electrons in dif-
ferent directions is different, but all that is known in this
case so far is the value of T c (2.9°K).[1411 The anisotropy
of the motion of the electrons in the most widely inves-
tigated layered superconductors 2H—NbSe2 and 2H—TaS2

is not very strong (the conductivity across the layers
remains metallic). The anisotropy of these crystals,
however, can be tremendously increased by intercalation
with molecules.

B. Intercalated Layered Compounds

The weak Van der Waals bonds between the layers in
dichalcogenides makes it possible to introduce extran-
eous atoms or molecules in the space between these
layers. By now, a large number of intercalated com-
pounds of dichalcogenides of Nb and Ta have been ob-
tained with molecules, [ 7 > 1 ! r i 7 : i ammonia C l l ' l s : l , metals11183

metals and ammonia I-14a-1, and hydrogen1-19-1.

Layered compounds intercalated with molecules have
the formula MX2 (molecule)r, where r is a fraction,
mostly in a form close to 1/n (n is an integer). When the
molecules are introduced the distance between the MX2
layers increases and reaches 56 A in the TaS2

(octadeclyamine)i/3 '-15-1 (the distance between layers in
2H—TaS2 is approximately 3 A). The structure of this
compound is shown schematically in Fig. 5. Sufficiently
detailed x-ray data on the arrangement of the molecule
layers are available so far only for 2H—TaS2 crystals
with pyridine (C6H5N).'-20 -1 In this intercalated com-
pound, the planar pyridine (Py) molecules are arranged
perpendicular to the layers, and the mutual disposition of
the neighboring MX2 layers differ somewhat from that in
2H— TaS2. The pyridine molecules between the TaS2

layers form a rectangular superlattice with unit cell
2aV3~x 13a, where a is the dimension of the hexagonal
unit cell inside the TaS2 layer. The complete unit cell of
the intercalated crystal corresponds to the formula
TaS2(Py)6/i3 rather than TaS2(Py)i/2 (for brevity we shall
henceforth write 1/2 in the formula of the compound
rather than 6/13).

All the intercalated organic molecules are of the type
of Lewis bases. They contain nitrogen with two unbound
electrons and therefore have donor properties. A hypo-
thesis was advanced in11163 that the electrons from the
nitrogen molecule go over partially to the conduction
band of the dichalcogenide layers and that this is the
cause of the lowering of the system energy by intercala-
2'In principle one could obtain two-dimensional superconductivity
over Tamm surface levels. ['"]

Ι λ χ χ
5Λ Μ Μ

) X X X

FIG. 5. Arrangement of the mole-
cules of the octadecylamine in the
compound TaS2 (octadecylamine) 1 / 3 .
[20.]
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tion. In accordance with this hypothesis, the molecule
"sticks" to the layer as a result of the bond between the
Ν atom of the molecule and the group of atoms Μ and X
of the layer. Numerous experimental data confirm the
hypothesis of charge transfer from the molecule to the
MX2 layer, and this hypothesis is the basis for the calcu-
lation of the change of the electronic characteristics of
the molecule and of the conducting layer . [ 2 l ] In fact, a
certain correlation is observed between the ability of the
molecule to intercalate in dichalcogenides and its ioniza-
tion potential,C l 6 ] although the energetics of the inter-
calation depends also on a number of other factors. C l 7 ' 2 1 ]

A decrease of the electron density at the Ν atom of the
molecule was revealed by data on the photoelectron
emission induced by x-rays in TaS2(Py)1/2

1-16·1. The
change in the NMR spectrum of NbS(Py)i/2 crystals can
also be interpreted by assuming that the charge is trans-
ferred from the Py molecule to the conduction band of
NbS2 layers (according to these data, approximately
0.2 electron per Nb atom is transferred) ^ . The trans-
fer of part of the electrons from the molecule to the
dichalcogenide layers leads to a change in the electron
density of the conducting layers and to the appearance
near these layers of charged nitrogen groups at distan-
ces somewhat closer than the Van der Waals distances.
These two factors, and also the electric field of the
dipoles of the intercalated molecules, change the elec-
tron-phonon characteristics of the conducting layers and,
as we shall show below, these changes are clearly seen
when the magnetic susceptibilities and the critical tem-
peratures T c of the initial and intercalated layered com-
pounds are compared.

Introduction of molecules between the conducting
layers leads to an appreciable decrease of the overlap of
the electron wave functions of different layers, if the
molecule sticks to one MX2 layer (for example in the
compound TaS2(Py)i/2). According to the data oft23'24:l,
introduction of Py into 2H— TaS2 increases the conduc-
tivity anisotropy from 10 to a value exceeding 105. In
systems with such an isotropy, the motion of the elec-
trons becomes practically two-dimensional. At the same
time, the superconductivity does not vanish when the
2H-modifications of TaS2, NbS2 and NbSe2 are intercala-
ted with molecules and 4Hb—TaS2 is intercalated with
ammonia, and in these systems the superconductivity
can become quasi-two-dimensional.

The superconducting properties of layered metals
are preserved also when they are intercalated with metal
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atoms-18-1 and with both metals and ammonia'-14-'. In
most cases the intercalation with metal atoms lowers
T c . However, introduction of iron atoms in 2H—TaSa
leads to an increase of T c to 3°K in Feo.o5TaS2 and to an
appreciable increase of the anisotropy of the upper
critical f ie ld. [ 1 4 b ]

The crystals of the 2H and 3R modifications of MoS2,
ZrS2, HfS2, WS2 and WSe2 intercalated with alkali-metal
atoms'-2527-1 and with atoms of alkali-earth metals and
Yb with ammonia1-28 are also metals and superconduc-
tors. The initial layered compounds in this case are
semiconductors with spectra of the exciton type.[ 2 ' 3 ' 1 2^
Intercalation of M0S2 with K, Rb, Cs, or Sr atoms results
in the stoichiometrie compounds K0.4M0S2, Rbo.3MoS2,
CS0.3M0S2, and Sr0.2MoS2, with critical temperatures of
about 6GK. Compounds with Li and Na have no definite
stoichiometry, and have T c ~ 4°K. In the compounds
Ax(NH3)vMoS2 with A = ca, Ba, Yb, or Sr the critical
temperature does not exceed 5.7°K. According to x-ray
structure data^52"1 intercalation increases the distance
between the M0S2 layers by 2—3.5 A, and the parameter
a of the two-dimensional lattice in the layer is increased
by approximately 1%. An x-ray structure analysis t29-1

shows that the Na atoms and ammonia molecules are
present between all the M0S2 layers in the crystals
Nax(NH3)yMoS2, and occupy the empty places inside the
octahedron made up of the S atoms of neighboring
layers. The intercalated atoms together with the impuri-
ties form a superstructure of orthorhombic symmetry,
and intercalation with ammonia contributes to ordering
of the impurities. More detailed information on the
arrangement of the intercalated atoms is still lacking.
Nor are the electronic characteristics of these com-
pounds known, with the exception of the dependence of Hc2

on the temperature in the crystals CS0.3M0S2 and
Sr0.2MoS2. According to these data, the anisotropy of
the electron motion in these compounds is high, and
quasi-two-dimensional superconductivity can also be
realized in them (see Chap. 7).

3. ELECTRONIC PROPERTIES OF LAYERED
METALS

We consider now the electronic properties of layered
metals and intercalated compounds in the normal state.
We are interested primarily in the anisotropy of the
crystals and in those changes of the electronic proper-
ties which are observed after intercalation. In Table I
are gathered the experimental data on T c , on the conduc-
tivities σ ι, and aL along and across the layers, on the
Seebeck coefficient S, on the coefficient γ in the elec-
tronic term of the specific heat, and on the electron
concentration Ν determined from the Hall effect (at low
temperatures the sign of the Hall coefficient R H corre-
sponds to electron motion).

A. Kinetic Properties

We note that the temperature dependence of σ± of the
crystals TaS2(Py)i/2 investigated in*2 3 3 duplicates exactly
the variation of the conductivity σ\\, so that there is no
doubt that the conductivity across the layers was deter-
mined by short circuits (due to the structure defects)
between the conducting layers. It appears that the in-
trinsic anisotropy of the conductivity in the compound
TaS2(Py)i/2 greatly exceeds that indicated in the table.

It is seen from the conductivity data that the aniso-
tropy in 2H—TaS2 and 2H—NbSe2 is not very strong, and

TABLE I

Compound

2H-T&

2//-TaS2'(Py)1/2

4H»-TaS2

2//-TaSc;

*

0.8—2

3.2-3.7

2.9

0.15

105

(0.17-
-D-10+5

105

( 0 . 6 — 2 ) X
X10»

10=

cm"1

'X

0.7-103

3.3-103

2.5.103

7-103
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σ ι ,.'σ (

ι
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m 5
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20-50
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I!
η

— 12

- 1 3

I
ΐ
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5.5
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ail
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1 . 5 5 - 1 0 2 2

R
ef

er
en

ce

23,
30-32
18, 23
24, 32

11, 33

2 , 3 , 3 1 ,
34-36
2, 31,

37

the temperature dependence of σ χ shows that the conduc-
tivity across the layers in these compounds has a metal-
lic character (the σ±(Τ) relation in non-intercalated
crystals does not duplicate the σΝ(Τ) relation, and the
anisotropy O\\ /σ± indicated in Table I is intrinsic). After
intercalation, the conductivity along the layers and the
Seebeck coefficient remain practically unchanged (at
room temperature, atl is decreased by a factor of two as
a result of intercalation, because the concentration of the
carriers is decreased to one-half when the distance be-
tween layers increases from « 3 A in TaS2 to ~ 6 A in
TaS2(Py)i/2). At the same time, σ± decreases by more
than five orders of magnitude, to a value 0.05—0.15 Ω " 1

cm"1 at 20°K.C23'2 At so low a conductivity, the elec-
trons undoubtedly move between the layers by hopping,
as is apparently evidenced by the decrease of o^ ob-
served by Thompson at Τ < 20° Κ. L u 2

Under the influence of pressure, the anisotropy of the
conductivity of the crystals 2H-NbSe2 and 2H-TaS2 de-
creases, since the dichalcogenide layers come closer
together. From the data of[38] at Τ = 300"Κ, the aniso-
tropy of the conductivity of NbSe2 decreases from 30 to
18 as the pressure ρ increases from 0 to 30 kbar. At
higher pressures, a structure transition takes place,
after which the anisotropy continues to decrease with
increasing pressure (linearly) and should vanish at
50 kbar.

B. Optical Properties

Measurements of the reflectivity or absorption in
layered-compound crystals reveal clearly a plasma edge
due to the reflection by the conduction electrons. De-
tailed measurements of the optical-absorption coefficient
of 2H-NbSe2 crystals, as a function of the frequency at
2°K, made it possible to determine the frequency de-
pendence of the dielectric-constant component C|| parallel
to the layers, and from it the plasma frequency[ 3 9 ]. The
expression used for €|((ω) is

where ex is the dielectric constant of the internal elec-
trons, ω ρ is the plasma frequency, Ν is the electron con-
centration, τ is the relaxation time, and m^ is the effec-
tive mass of the electron for motion along the layers.
The best agreement with the experimental data were ob-
tained with the parameters Κω = 1.5 ± 0.2 eV, fir"1

= 0.12 ± 0.02 eV, and τχ = 2.7 ± 0.4. Using the value
Ν = 1.55 χ 1022 cm"3, Bachmann, Kirsch, and Geballe
obtained iri|| = 9.7 m e (me is the mass of the free elec-
tron).

A shift of the plasma absorption edge following inter-
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calation of NbSe2 and TaS2 with molecules was observed
by Beal and Liang. ^ In most cases, a shift towards
lower frequencies was observed. Similar measurements
were made in1-40-1 on the crystals TaSi.6Se0-4,
TaSi.6Se0^(Py)i/2, and TaSi.6Seo.4(aniline)3/4. The plasma
frequency of the intercalated compounds TaSi.eSeo.4,
calculated with the aid of the Drude formula (1), was
lower than in the initial compound, owing to the increase
of the distance between the conducting planes and the
corresponding decrease of the carrier density. Assum-
ing that the molecules act like a dielectric liner that
moves the metallic layers apart (but does not change
them) Benda Revelli, and Phillips obtained good agree-
ment between the experimental data and the calculated
values of ω in the case of a compound with pyridine (the
agreement was only approximate for aniline).

The optical anisotropy of metallic layered compounds
was investigated only for 2H —NbSe2 crystals by
L i a n g . t 4 i a ] The reflectivity of the crystals was meas-
ured with the electric-field vector parallel and perpen-
dicular to the layers. The value of ω was estimated
approximately from the position of the plasma edge
(without allowance for damping) and the estimates yielded
ni|| « 3.8me and τα±/ταΗ « 1.4 at 78° K. It appears that
these estimates are not accurate enough, since the re-
sults for m|| differ strongly from that obtained in [ 3 9 : ! .

The intercalation of TaS2 and of semiconducting lay-
ered compounds (M0S2, HfS2) with molecules leads to a
change in the frequencies of the interband transitions in
these crystals. An experimental investigation of these
changes in the absorption spectrum makes it possible to
determine the parameters that characterize the bonds
between the intercalated molecules and the dichalcogen-
ide layers within the framework of the charge-transfer
concepts.[·21-1

It would undoubtedly be of interest to be able to meas-
ure £χ(ω) in intercalated compounds. Thus, in quasi-
one-dimensional crystals K2Pt(CN)4Br0.3· 3H2O, the
plasma edge, depending on εχ(ω). is not observed up to
frequencies ϋ ω « 6 eV,!-10·', i.e., the motion of the elec-
trons across the chains is not metallic at frequencies
Βω < 6 eV. A similar picture could be observed also in
layered compounds intercalated with molecules.3'

C. Magnetic Susceptibility and Specific Heat

The coefficient γ of the electronic-specific-heat term
that is linear in the temperature yields direct informa-
tion on the density of states N(0) on the Fermi surface,
in accordance with the relation

2 «ι! y tr\\ /Ο\
' 3 * V / » \ /

which is valid in the Landau model of a Fermi liquid.
Taking into account the electron-phonon interaction, the
right-hand side of the expression for γ contains the fac-
tor (1 + λ), where λ is the dimensionless electron-
phonon interaction constant. Since λ is small (0.2—0.4),
relation (2) makes it possible to estimate N(0) from the

3'ln intercalated compounds, as well as in quasi-one-dimensional crys-
tals, one can observe in principle a reflection peak at the plasma fre-
quency at incidence angles close to normal. [41b] To this end it is
necessary that the layers be perpendicular to the crystal surface and
to the plane of incidence, and that the electric-field vector lie in the
plane of incidence. Such a peak was already observed experimentally
in the quasi-one-dimensional crystals K2Pt(CN)4Br0.3· 3H2O. [42]

experimental value of γ with sufficient accuracy. It is
seen from Table I that within the limits of the experi-
mental errors the values of γ (and of N(0)) remain un-
changed when TaSa is intercalated with pyridine.

The magnetic susceptibility of transition-metal com-
pounds yields less unambiguous information on the elec-
tronic system, since the measured quantity is a sum of
the contributions χ^{Λ of the diamagnetism of the ion
core, χ ρ of the Pauli paramagnetism, and χ γ of the
Van Vleck paramagnetism ia^:

- I I »

Xil.v — μ Β

Λ

(3)

(2π)3~ Em. ( k ) - £ m ( k )
τη, τη'

X<m,k|Li|m',k)<m',k|Lj|m, k),

where Ueff is the effective atomic exchange interaction,
n(0) is the density of states per atom (the Stoner factor
in χρ reaches values 2—4), L is the orbital-angular-
momentum operator, m and m' are the indices of the
electronic bands corresponding to the d levels of the
transition metal, and f is the Fermi distribution func-
tion. The value of x d i a for transition ions is quite diffi-
cult to estimate, but the diamagnetic contribution of
dichalcogenide layers is approximately the same for
different modifications and for the same composition,
and is not altered by intercalation. Therefore the change
of the magnetic susceptibility of the layers following
intercalation or following a transition to another modifi-
cation is due mainly to the change of χ γ , since the
Van Vleck paramagnetism is highly sensitive to changes
of the electronic structure.

The magnetic-measurement data are listed in Table
II. In addition, to the measured values of xj_ and χ ^
(magnetic field perpendicular or parallel to the layers)
and of χ, the table lists for comparison also the results
of calculations of χ ρ with N(0) from data for γ without
allowance for the Stoner factor. The quantity χ" is the
susceptibility of powdered samples. Owing to the pre-
ferred orientation of the crystal, this quantity can differ
somewhat from the true average susceptibility
(2Χχ + χ ||)/3, and this difference is indeed observed for
TaSiiPy)^. Κ i s s^ 1 1 from Table Π that χ ± greatly ex-
ceeds χ μ for Ta compounds. This difference is un-
doubtedly connected with the Van Vleck contribution.
From calculations of the band structure (see Sec. b of
Chapter IV below) it follows that the 2H—TaS2 conduction
band is made up of the orbitals dz2, dx2 2, and d x y

of the Ta atom.4' Located higher in energy are two bands
of the same orbitals, and still higher the bands d x z and
d y z . The contribution to χγ(ΐ) is determined by that
matrix element of the operator L z which connects the
bands that are closest in energy (d x y and ^ 2 _ 2, and
therefore Xy(i) > Χγ(ΐΐ)· From a comparison of the
values of χ for different modifications of TaS2, we see
that x(4Hb) = [χ(ΐΤ) + χ(2Η)]/2, i.e., the interaction of
the layers has little effect on the electronic properties
of octahedral and trigonal layers. The fact that 2H—TaS2

and 4Hb—TaS2 have approximately equal values of crM

(per conducting trigonal layer) and a similar tempera-
ture dependence of σ^11*3* confirms this conclusion.

Table m lists the values of χ at 50°K, of the lattice

"'Here and below, the ζ axis is perpendicular to the layers.
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Compound

ΙΓ-TaS-,

2//-TaS2

2/7-ToS, (Py),,,

4//6-TaS2

ΙΓ-TaSe,

2/7-TaSe2

2i7-NbSe2

TABLE

Measured
quantity

χ; 50 "Κ

χ; 50 °K

it; 300 °κ
χ . ; 300 °Κ

-/ , ; 300 °Κ

·/; 50 °Κ

γ.±; 50 «κ

χ „; 50 °Κ

χ; 50 °Κ

χ; 50 °Κ

Ζ; 50 °Κ

χ; 50°, 300 °Κ

II
Measurement

results
KT'crnVmoIe

—47

151

134

223

89

69

167

33

56

- 3 8

110

185—200

y.T,

<o-scms/mole

117

123

76

283

Reference

11

11

2 0 a

11

37

37

18, 44

TABLE III

Compound

2ff-TaS™
TaS 2 (coUidine), ,

TaS2 (2-phenyl-
pyridine),,,

TaS 2 (picoline),,,

TaS.2 (pyridine),,,

TaS 2 (aniline),,.

io-ecm'/moie

151
109

55

83
69

47

*dia (of molecule)
10-ecm7mole

0
- 7 9

g4

—56
- 5 0

—64

Ϊ (TaS?),
10-· cm'/mole

151
122

72

102
94

95

. . A

3.315
3.319
3.328

3.326

d, A

6
9,6

12

12
12

18

parameter a inside the layer, and of the distance d be-
tween layers of a number of intercalated compounds of
TaS2.

 [2° The table gives also the values of χ" for TaS2

in these crystals; these values show that the magnetic
susceptibility of the crystals is strongly altered by the
intercalation (at the same time γ, and consequently also
N(0), remains practically unchanged when intercalated
with pyridine). The data of Table ΠΙ confirm the conclu-
sion that χ is practically independent of the interaction
of the layers. Therefore the change of χ by intercalation
is due mainly to their interaction with the molecules.
This interaction changes not only the electronic charac-
teristics, but also the crystal structure of the layer
(in particular, the parameter a). We note that according
to the data of Table ΠΙ there is a clear-cut correlation
between the changes of χ (TaS2) and the parameter a. In
Sec. c of Chap. V we shall show that the changes produced
by intercalation in the system of conduction electrons of
the layers can be revealed also by the change of T c .
Since the changes in the electron systems are in general
small (the corresponding energies are low in comparison
with ep), it is not surprising that only such sensitive
quantities as T c and χγ are noticeably altered by inter-
calation.

4. STRUCTURAL TRANSITIONS AND BAND
STRUCTURE OF LAYERED COMPOUNDS

A. Experimental Data on Transitions Between
Polytypes

Reversible structural transitions take place within
the framework of one and the same modification
(IT, 2H, or 4Hb). The index IT (just as 2H or 4Hb) per-
tains therefore to several polytypes, the structures of
which differ slightly from one another, but are close to
the simple structure C6 shown in Fig. 3. Analogously,
the polytypes of the 2H modifications of Nb and Ta are
close to the structure C27 shown in the same figure. In
contrast to transitions between polytypes, transitions be-

FIG. 6. Behavior of the susceptibility
X, of the resistivity p, and of the Hall co-
efficient RJJ in structural transitions in
2H modifications of chalcogenides of Nb
and Ta (schematic).

tween modifications are irreversible and are observed
at higher temperatures. Thus, the 2H — IT transition
occurs for TaSe2 at 1100°K, and the enthalpy jump for it
is approximately one order of magnitude larger than for
the transition between the polytypes IT at T d = 473°K. i371

Structural transitions between metallic polytypes are
observed in the 2H modifications of TaS2, TaS, and NbSe2

at T d = 117.75 and 35°K, respectively. It appears that
these transitions are of first order but very close to
second. Thus, in 2H—TaS2 the jump of the enthalpy is
only a* 1 cal/mole. The transitions are manifest primar-
ily in changes of the kinetic and magnetic properties of
the metals. Schematically, the features of the variation
of χ, of the resistivity p, and of R H at the transition
point T d are shown in Fig. 6 on the basis of the data

[ ] [] []d

o f [«,45] Q f
[44]

> a n d o f [a] f o r

According to the data of[47], a jump of T c (7.2 — 7.4°K)
is observed in 2H—NbSe2 at a pressure ρ = 1 kbar. Since
the Hall coefficient is positive in a phase that is stable
at ρ > 1 kbar, one can assume that the jump of T c corre-
sponds to the same structural transition as the transition
at 35°K and ρ = 0. If this is the case, then T d in
2H-Nt>Se2 decreases with increasing pressure to «7°K
at ρ = 1 kbar.

In the IT and 4H modifications, the structure transi-
tions are of first order. Table IV lists the changes of the
enthalpy, of the resistivity p, of the volume V, and of the
magnetic susceptibility at the transition point T d . The
character of the variation of p(T) in the transitions in
4Hb—TaS2 is shown in Fig. 4. In IT—TaS2, just as in
4Hb—TaS2, for a current perpendicular to the layers, the
resistance decreases slowly with increasing Τ in the
intervals 0-190°K and 190—348°K. According to the
experimental d a t a [ 3 7 ' 4 9 ] the specific heat of lT-TaSe 2

and IT—TeS2 decrease at the lowest temperatures with
decreasing Τ more slowly than T. This dependence of
the electronic specific heat on the temperature offers
evidence that the state density N(e) near the Fermi level
varies rapidly with energy e, increasing as e — 0 (see,
e.g., [ 5 0-1). This N(e) dependence should manifest itself
in the magnetic properties as a growth of the paramag-
netic susceptibility as Τ —· 0 at a slower rate than called
for by the Curie law. Therefore magnetic measurements
in IT—TaSe2 and IT—TaS2 crystals at infralow tempera-
tures (similar to the measurements of E50]) would be
capable of confirming the existence of a sharp maximum
in the state density at the Fermi energy.

We now consider the experimental data concerning
the type of lattice change that occurs in structural tran-
sitions in 2H and IT modifications. In 2H—NbSe2, ac-
cording to the NMR data, at 4°K1-*5-1 there exist in the
lattice two types of Nb atoms which are not equivalent in
charge, and according to the structural data1-518·-1 the
lattice period quadruples in the transition. For transi-

5'According to [461 an approximate jump of 1.5% is observed in the
resistivity of 2H-TaS2 at the transition point.
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TABLE IV

Compound

lf-TaSa

IT-TaSe,
AHb-T&Sv

Td. 'K

190
348
437

20
315

dTdldp

"K/kbar

- 2 . 8
—4.7

C r

ΔΗ,
cal/mole

57
31

320

HO

P+/P-.
P ± - Ρ (Td t 0)

0.1
0.5
0.25
1

1 along the
layers, 0.2
perpendicular
to the layers.

AVW, %

0.056
0.35

0.22

cm'/mole

+ 1.85
+1.0
-1.8

+0.9

Ref-
erence

11, 48

37

11

tions in IT modifications, there are at present more de-
tailed data, and they cast light on the causes of the
structural transitions in layered compounds. Wilson
et al. '-*-', in an investigation of the diffraction of elec-
trons in IT—TaSea, observed a superstructure inside the
layers (against the background of the main C6 structure)
with a period V13a, where a is the period of the basic
hexagonal structure in the plane of the layer. According
to1-9'"-1, the true lattice is pseudohexagonal inside the
layers. The deviations of the atoms from their positions
in the ideal structure are small and range from 0.05 to
0.1 A. In 2H-TaSe2 below 117°K, a superlattice also ap-
pears, but with a period6' 3a. In the series of compounds
IT—Ta x Ti x _iSe 2 , the superlattice period decreases with
decreasing x. This relation gives grounds for assuming
that the appearance of the superlattice is connected with
the singularities of the geometry of the Fermi surface.
According to the theoretical premises'-52'53"' the presence
of congruent sections on the Fermi surface in the high-
temperature phase must inevitably lead to the appear-
ance of a superstructure with decreasing temperature,
and this effect, according to the hypothesis of[9^, is the
cause of the transitions between polytypes of layered
compounds. Before we proceed to a more detailed dis-
cussion of the concepts concerning transitions of this
type, it will be useful to consider the data on the band
structure and the shape of the Fermi surface of layered
compounds in their high-temperature phases (see Note 1
added in proof at the end of the article).

B. Structure of the Energy Beams of Layer
Compounds

A schematic model of the band structure of layered
compounds, on the basis of optical data, was proposed by
Wilson and YoffeC2], and is shown in Fig. 7 for 2H com-
pounds of Nb and Ta. According to this model, the layer
valence band σ and the upper band σ* correspond to
binding and antibinding s-p orbitals of metals and halo-
gens. The conduction band corresponds to dz2 orbitals
of the metal, and for the elements of the Vb group the
conduction band is half-filled. Above the conduction
band are located the bands dxy, dx2_y2 and the bands
d x z , d y z in order of increasing energy. In the compounds
of Mo and W with trigonal packing in the layer, the band
scheme is the same, but the band dz2 is completely filled,
and these compounds are semiconductors (the energy gap
in 2H—MoS2 is 1.4 eVC 5 4 ]). For dichalcogenides of group
IV (Ti, Zr, Hf) there are no electrons in the d band, and
these compounds are dielectrics with rather large gaps
(2.0eVin lT-HfSz11543).

Subsequent numerical calculations have refined the
energy scale and the symmetry of the wave functions of

FIG. 7. Arrangement of the energy bands in
layered compounds of Ta and Nb. [2]

0.7

0.5

103

0.1

o.i

''According to f46*5111^ a superlattice was observed also in 2H—TaS2

crystals. Just as in TaSe2, the period of the superlattice is approxi-
mately equal to 3a.

Γ Σ Μ Τ'Κ Τ ΓΑ R L S'H 5

FIG. 8. Electron energies in 2H-TaS2> calculated by the method of
augmented plane waves. [s4]

FIG. 9. Brillouin zone for hexa-
gonal Bravais lattice.

the different bands. The most complete calculations of
the band structure of layered IT—TaS2 compounds with
structure C6, of compounds 2H—TaSe2 and 2H—NbSe2

with structure C27, by the method of augmented plane
waves (APW) were carried out by M a t t h e i s Μ , and this
paper contains also a detailed comparison of the results
of this method with the experimental data and with the
results of other approximations. Figure 8 shows the en-
ergy levels of 2H—TaSi, calculated at the symmetrical
points of the Brillouin zone as indicated in Fig. 9. The
straight dashed line shows the Fermi level, and the
lower band corresponds to band σ on the scheme of Fig.
7, while the upper dashed band corresponds to the band
σ*. As a result of hybridization, the d levels shift, and
the two sub-bands turn out to be lower ones (the Fermi
level passes through the lower one). These lower sub-
bands consist of strongly hybridized functions dz2, d x y ,
and d x

2 _ y

2 of the Ta atoms (thus, at the point Γ the
lower sub-band consists of the orbital dz

2, and at the
point Κ it consists of the orbitals d™ and ^ 2 2 ) .
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Hybridization leads to a strong narrowing of the lower
sub-band, the width of which turns out to be of the order
of 1 eV. Owing to the interaction of the layers, the en-
ergies at the points A, H, L and Γ, Κ, Μ are different,
and, as seen from Fig. 8, this difference in the conduc-
tion bands reaches a maximum value at the points A
and Γ,

To investigate the influence of intercalation on the
band structure, Mattheis calculated also the energies of
the hypothetical compound 2H—NbSe2 in which the layers
are shifted along the c(z) axis by another 1.5 A. After
such a "separation," the difference at the points A, H,
L and Γ , Κ, Μ decreases by approximately a factor of
five, and the band structure becomes practically two-
dimensional. It follows also from the Mattheis results
that all the singularities of the energy spectrum of the
electrons in the conduction band can be accounted for
with sufficient accuracy in the two-dimensional approxi-
mation. This conclusion is confirmed by the observation,
in the reflection spectrum of the TaS2 crystals, of
van Hove singularities in the band structure, which are
typical of electrons with two-dimensional motions
(singularities of the saddle-point type1-55-1).

From a comparison of the Mattheis calculations with
the data on photoemission [ 5 S " 5 7 ] it follows that the APW
method accounts sufficiently well for the structure of the
d band, but it yields less accurate results for the rela-
tive placement of the bands σ, σ*, and d. Thus, accord-
ing to the experimental data the lower d-sub-band inter-
sects the band for 2H—TaS2 and 2H— NbSe2, although this
intersection is small. The Mattheis calculations do not
yield such an intersection. At the same time, the small
width of the conduction band obtained by Mattheis agrees
with the photoemission data (they yield a width less than
0.70 eV), and with the large electron effective mass as
determined from measurements of the plasma frequency
(see above).

We emphasize that all the structures calculated by
Mattheis for NbSe2 and TaS2 are realized only in high-
temperature polytypes. Therefore these calculations
cannot yield a description of those low-temperature
properties of layered metals and semi-metals which are
sensitive to a high degree to the structure of the Fermi
surface. However, the results of Mattheis yield informa-
tion on the singularities of the Fermi surface of high-
temperature polytypes, which by assumption'-9-' deter-
mine the appearance of a superstructure with decreasing
temperature. The Fermi surface for IT— TaS2 in the
plane k z = 0, obtained from the calculations ofc , is
shown in Fig. 10 and indeed contains flat sections which
can be joined through a shift by the vector q0.

C. Charge-density Wave in Layered Compounds

If the Fermi surface has sections that can be made
completely congruent by parallel displacement through a
certain vector q0, then the electron spectrum satisfies
the condition

ε (k) — ej, = — ε (k — q0) + eP (4)

for the region of the electronic states k with energies
close to the Fermi energy (as e(k) — £p). The condition
(4) is a condition for the equality of the energies of the
electron and hole with summary momentum q0 and leads
to a logarithmic singularity of the dielectric constant
ε(ω, q) at ω = 0 and at q = qo.[ 5 2 : l In particular, the con-
dition (4) is satisifed if the Fermi surface has flat

FIG. 10. Two-dimensional Fermi surface in lT-TaS2. The figure
shows also the vector q0, which determines the radius of the diffuse
scattering from the superlattices, and the Brillouin Zone corresponding
to the superlattice. [9]

parallel sections. A similar singularity always takes
place in a one-dimensional metallic system of the elec-
trons, inasmuch as in such a system the Fermi surface
consists of two points with wave numbers ±kp, and these
can always be made congruent through a shift by the
wave number 2kp (the logarithmic singularity appears
if the regions that can be made congruent by translation
through a vector q0 have the same dimensionality as the
Fermi surface itself). In the case of an isotropic Fermi
surface, translation by a vector q0 with |qo| = 2kp makes
it possible to make congruent only two diametrically -
opposite points of the Fermi surface, and a logarithmic
singularity appears only in the derivative θε(0, q)/9q as
q — 2kF (the Kohn anomaly of the dielectric constant).
In a three-dimensional metal with spectrum (4), just as
in a one-dimensional system of electrons, the logarith-
mic singularity of e(0, q) at q = qo leads to the appear-
ance of a sinusoidal shift of the atoms from the equili-
brium positions of the initial lattice with decreasing
temperature below T^. The displacements are charac-
terized by the wave vector q0, and on the flat sections of
the Fermi surface below T^ there appears an energy gap
corresponding to Bragg reflections from the superstruc-
ture. This gap, however, can cover up only flat parallel
sections of the Fermi surface. Therefore in the general
case of a two-dimensional or three-dimensional lattice,
when the Fermi surface consists not of flat sections only,
the transition in which a superstructure (charge-density
wave) appears is a metal—metal or metal—semimetal
transition, depending on the areas of the covered sections
of the Fermi surface. In the one-dimensional case, on
the other hand, the analogous Peierls transition is always
a metal—insulator transition i1-10-1).

In the IT modification, the energy gap appears over a
larger part of the Fermi surface. Thus, according to
Wilson's calculation1-37-1 for IT—TaSe2 (they are based
on the Mattheis results1154-1), 12/13 of the Fermi surface
is covered up on going from the hexagonal lattice with a
period a to a pseudohexagonal one with period vT3a.
Therefore as a result of the appearance of the super-
structure, the IT—TaSe2 crystals are diamagnetic semi-
metals at low temperatures. It appears here that on part
of the remaining Fermi surface a singularity arises in
the density of states and leads to the already mentioned
anomalies of the electronic specific heat.

In the 2H modifications of NbSe2, TaS2, and TaSe2 only
a small part of the Fermi surface is covered up at the
point Td and the low-temperature polytypes remain
paramagnetic metals (see Note 2 added in proof at the
end of the article).
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In the metal series NbSe2, TaS2, and TaSe2, the cov-
ered part Fermi surface increases, inasmuch as T^
increases in this series and dp/dT is smaller than Τ φ
The structure transition undoubtedly influences also on
the superconducting properties of the 2H metals. Ac-
cording to the data oft47] in NbSe2, following a pressure-
induced transition from a low-temperature polytype to a
high-temperature one, T c increases by 0.2cK, and this
difference is preserved also at normal pressure if the
high-temperature polytype can be preserved (in a meta-
stable state) when the pressure is removed. It appears
that the T c suppression due to the structural transition
is even stronger in TaS2 and TaSe2, and this is the cause
of the low values of T c of these crystals.

According to the data ofC 2°a'2 3 : i, intercalation of
2H—TaS2 with collidine and picoline molecules lowers
the height of the peak in the χ(Τ) plot at the point T^ in
comparison with non-intercalated 2H—TaS2 crystals,
while in the case of TaS2 (Py)i,z crystals the peak of χ(Τ)
and the kink in the (T) plot are practically nonexistent.
After intercalation and following de-intercalation of the
TaS2 crystals, according to the communication'-58·1, the
singularity in the temperature dependence of the conduc-
tivity also vanishes. In the same study we observed an
increase in T c in the crystals TaS2, TaSe2, NbS2, and
NbSe2 after bombardment with argon ions. After bom-
bardment, the critical temperatures in TaS2 and TaSe2

reached 4.2 and 2.5° K, respectively, and the authors
of[58^ attribute this increase of T c to the suppression of
the structural transitions by the appearance of lattice de-
fects. So far, however, there are no data on the tem-
perature dependence of the Hall coefficient in intercala-
ted and defect-containing crystals, so that it is impossi-
ble to state with full assurance that intercalation or
bombardment with argon ions suppresses the structural
transition. Nonetheless, this conclusion seems quite
likely, for after intercalation the molecules change the
period of the initial lattice in the layer (in which case
violation of the condition (4) is possible), and further-
more intercalation causes deterioration of the crystal
structure. In either case, the temperature T^ should
decrease, and in the case of strong disturbances to the
initial structure the transition may turn out to be com-
pletely suppressed'-10'59-' (see Note 3 added in proof at
the end of the article).

5. CRITICAL TEMPERATURE. SPECIFIC-HEAT
JUMP AND GAP IN LAYERED SUERCONDUCTORS

A. Influence of Pressure on Tc

In the initial investigations of the superconductivity
of layered compounds it was assumed that the critical
temperature is determined by a strong degree by the
interaction of the layers, and that when this interaction
is increased the value of T c should increase because of
the suppression of two-dimensional fluctuations.[·60·1

These arguments were based on the fact that in the com-
pound Nbj + x NSe 2 the distance between layers increases
with increasing x, and T c decreases. '-61-' However, after
T c was measured as a function of the pressure in
2H—NbSe2 and 3R—NbS2, it became clear that the change
of T c is more readily correlated with changes of the
parameter a inside the layer than the changes of the dis-
tance between the conducting layers. ^ Later on,
Dzyaloshinskii and Kats1-63-' have shown that in layered
superconductors the fluctuations do not suppress the
superconducting long-range order even at a very small

interaction between layers (see also Sec. a of Chap. 7).
Sambongi1-47^ applied unilateral compression of
2H—NbSe2 along the c axis; it turned out that T c de-
creases with increase of this compression. There is at
present no doubt that the growth of T c under pressure in
2H—NbSe2 (28°Κ as the pressure is increased to
140 kbar[ 6 4"e e : i) is connected with the decrease of the
lattice parameter a inside the layer.

B. Intercalation and the Problem of
High-temperature Superconductivity.

Hopes of increasing T c by intercalation are connected
with the ideas of Little and Ginzburg concerning the ex-
citon mechanism of superconductivity. According to the
assumption in^6-1, it is necessary to produce a system in
which the superconducting layers are joined with mole-
cular or semiconducting layers. The polarization of the
molecules or of the superconductor by the conduction
electrons should lead to an effective attraction of the
conduction electrons. Since T c is proportional to the
frequency of the excitations of the polarized system, one
should expect an increase of T c when the phonon mech-
anism (frequencies on the order of the Debye frequency)
is replaced by the exciton mechanism (frequencies on
the order of 0.1—0.3 eV). Two-dimensional systems^6-1

have here that advantage over one-dimensional sys-
tems'·5·1 in that the fluctuations that destroy the super-
conducting long-range order are smaller in them [ 6 7 : i .
However, T c < 6°Κ in all the hitherto obtained inter-
calated compounds with molecules, and there are no
indications that the superconductivity of these compounds
is determined a non-phonon mechanism. Estimates of
the effectiveness of the exciton mechanism in layered
compounds with molecules [·68·1 have shown that in such
compounds the exciton mechanism is little effective in
comparison with the phonon mechanism, owing to the
localized character of the molecular excitations and
hence of the impossibility of realizing a large momentum
transfer on the order of 2kp, at a relatively low excita-
tion energy on the order of 0.1 eV. This conclusion was
in essence confirmed by Little,'-69-1 who calculated the
effectiveness of electron attraction by a conducting plane
in the presence of a number of particular molecules
near this plane. The interaction via the excitons turned
out to be comparable in magnitude with the phonon in-
teraction only when the molecules come within a distance
R = 1.5 A of the plane, and this is smaller than the
Van der Waals distance (« 3 A), and only at small
values of 2kp for the conduction electrons inside the
layer (2kp = 0.33 A'1, corresponding to e F « 0.1 eV).7)

More greatly promising from the point of the exciton
mechanism of superconductivity can be crystals with
alternating metallic and semiconducting layers. A large
momentum transfer on the order of 2kF at a relatively
low energy of excitation on the order of 0.1 eV can be
realized in them if the valence and conduction bands are
separated by a momentum g with g ~ 2kp. It appears
that systems of this type and related systems of the
sandwich type are the most promising from the point of
view of the problem of high-temperature superconduc-
tivity

[70]
The development of mixed crystals (TaS2 with

7)At a small value of ep it is impossible to satisfy the condition that
ep greatly exceed the energy of those excitations which ensure the
excition mechanism of the superconductivity. At the same time, only
when this condition is satisfied does the attraction of the electrons
due to exciton exchange exceed the Coulomb repulsion of the con-
duction electrons.
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WS2, NbSe2 with MoS2, etc.) is reported in131, but there
is still no information concerning their properties.

C. Critical Temperature for Intercalated Compounds

The most thoroughly investigated intercalated com-
pounds are 2H—TaS2, in which T c is higher than for the
initial compound (from 2 to 4.5°K, as against 0.8—2°K
for 2H—TaS2; the situation for NbSe2 and NbS2 is re-
versed—intercalation lowers T c to approximately 4°K).

The intercalated compounds 2H—TaS2 prove, first,
that T c is independent of the distance between layers.
Thus, for TaS2(octadecylamine)i/3 with distance 56 A
between layers, the value of T c is approximately the
same as for other intercalated compounds (» 3°K).
Therefore the change of T c by intercalation is connected
mainly with the change of the electronic characteristics
of the conducting layer (owing to the transition of part of
the electrons from the molecules and to the action of the
potential of the charged molecular groups). Indeed, a
tendency to a decrease of T c with increasing number of
molecules per Ta atom was observed already in1-16·1.
This tendency was confirmed after 2H—TaS2 intercalated
with n-alkyl-amines were producedt15^. Linear mole-
cules of this series differ only in the number of carbon
groups, which have little effect on the donor ability of the
nitrogen group of the molecules. It turned out that T c

decreases with increasing length of the molecule (from
4.2°K for NH3 to 1.8°K for octylamine), until the mole-
cules are parallel to the layers and the number of mole-
cules per Ta atom decreases (the distance between the
layers remains here practically constant). With further
increase of the length of the molecules, starting with
n-nonylamine, the molecules are already arranged per-
pendicular to the layers, the distance between layers
increases with increasing length of molecules, and T c

remains practically unchanged.

The change of T c undoubtedly depends on the type of
the molecule, but at the present time it is not clear
which are precisely the molecule electronic character-
istics that determine T c of intercalated compounds. We
mention only that a correlation has been observed be-
tween the frequencies of the quadrupole resonance at the
atoms of Ν molecules prior to their intercalation, on the
one hand, and the increase of T c of intercalated crystal
2H-TaS2, on the other. i 7 1 j We note that part of the in-
crease of T c is due to the change of the degree of perfec-
tion of the crystals following intercalation, inasmuch as
the data ofCl6-1 show that after de-intercalation of the
TaS2 crystals the values T c (1 to 1.5°K), remained higher
than those prior to intercalation (« 0.8°K).

As already noted above, MoS2, WS2, and WSe2 are
semiconductors, and no superconductivity was observed
in them. Their intercalation with alkali metals and
alkali-earth metals with ammonia yields crystals with
values of T c from 3 to 6°K. in1^25"28-1 the appearance of
metallic properties after intercalation is attributed to a
transition of the electrons from the metal atoms to the
MX2 layers (one of the d sub-bands then becomes partly
filled).

D. Specific-Heat Jump, Size of Gap, and Applicability
of BCS Theory to Layered Superconductors

Measurements of the specific-heat jump and of the
energy gap in layered superconductors are of interest
primarily because one can expect the strong anisotropy
to give rise to deviations from the BCS theory in these

compounds. Thus, the gap in these compounds can turn
out to be anisotropic, i.e., its value can depend on the
position of the momentum on the Fermi surface.

According to the BCS theory, the specific-heat jump
Ac during a superconducting transition should amount to
2.43yTc. A ratio A c /yT c close to 2.4 was observed in
2H-NbSe2, [ 3 i : l , 2H-TaS 2 , [ 3 2 ] , and Ho. ceTaSu.C2ob:l At the
same time, in TaS2(Py)i/2 and TaS2(2.6-dimethyl pyri-
dine)i/5 the ratio Ac/yTc turned out to be equal only to
0.8 and 0.65, respectively.[ 3 2 ] It appears that additional
measurements of the specific heat on single crystals are
needed (in1-32-' they investigated powders) before it be-
comes necessary to forgo the BCS theory for the des-
cription of superconductivity in intercalated compounds
with molecules.

Measurements of the transmission of light in thin
2H-NbSe2 crystals (of thickness 200—600 A) at tem-
peratures above and below T c yielded for the optical gap
values 2Δ = 0.00215 eV at 1.6°K and 2 Δ Λ Β Τ < , = 3.7 in
accordance with the BCS theory. [ 7 2 ] Within the limits of
errors, the measured values of the gap for light polar-
ized along and across the layer were the same. Tunnel
experiments by Morris and Coleman [ l a 5-! yielded for
NbSe2 a mean gap value of approximately 0.00124 eV at
1.1°K. This value could correspond to the gap for mo-
menta perpendicular to the layers, but the results of
Howard for the average gap in the same tunnel systems
turned out to be different, and the gap value obtained by
him is in agreement with the BCS theory. i13^

6. QUASI-TWO-DIMENSIONAL SUPERCONDUCTIVITY
AND THE MODEL OF JOSEPHSON INTERACTION
OF LAYERS

A. Quasi-two-dimensional Superconductivity

Let us determine first in which cases does the strong
anisotropy of the motion of the electrons lead to a quali-
tatively new (quasi-two-dimensional) behavior of elec-
trons in layered compounds. Let us consider some
effects characterized by an energy e0 per electron.
Then, with respect to this effect, the system of electrons
can be assumed to be two-dimensional if the electron
energy e± connected with its motion between the layers
is much less than e0. In the opposite limiting case e 0

<C ej_ we are dealing with ordinary anisotropy. For
superconductivity, the characteristic energy is the value
of the gap Δ(Τ) at a given temperature T. In the hopping
mechanism of conductivity across the layers el = fi/r^,
where τχ is the time of the jump between two neighboring
layers, and the condition of the quasi-two-dimensional
superconductivity takes the form t7i>75^

•TC~T. (5)

If the condition (5) is satisfied, then, when considering
those superconducting properties which are not connec-
ted directly with the motion of the electrons between
layers, the electron system can be regarded as two-
dimensional. At the same time, the motion of the super-
conducting electrons between the layers will be of the
Josephson type in this case1- . Indeed, under the condi-
tion (5) the current between layers cannot destroy the
superconductivity inside the layers, and the current den-
sity j n η +1 between the layers η and η + 1 can be calcu-
lated by perturbation theory under the assumption that
the order parameters of the layers Δη and Δη + ι are
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specified.8' Just as in the case of ordinary Josephson
junctions, the current j n n + i is determined in this situa-
tion by the formula

where φ η is the phase of the order parameter in the
layer n. We note that for Josephson effects to appear in
ordinary tunnel junctions it is necessary that the proba-
bility of the passage of the electron through the barrier
at the junction be much less than unity.1-77-1 For a
Josephson interaction of the layers to appear in layered
compounds we need the stronger condition (5). The
reason is in ordinary Josephson junctions between bulky
metals the superconductivity is a volume effect, and it is
stronger than the surface effect of electron tunneling be-
tween superconductors. In layered compounds, the dif-
ference of the layers is essentially atomic, and both
effects (superconductivity and tunneling) have the same
dimensionality.

Let us see now in which layered compound is the con-
dition (5) satisfied. If d is the distance between the con-
ducting layers, then the quantity τ]1 is connected with the
diffusion coefficient D x , the conductivity σχ, and the
coefficient γ in the electronic thermal conductivity by
the relations (2) and

Using the data of Table I we can now estimate the quan-
tities fi/τχ at low temperatures (T < 10°K). For
TaS2(Py)i/2 at σ χ = 0.5 Ω " 1 cm"1 we obtain η7τχ « 0.03°K,
and the condition (4) is satisfied practically everywhere
below T c . In 4Hb-TaS2 we have fi/τ « 10°Κ and at
Τ C T c an intermediate case fi/Tj_ « Δ is realized. In
TaS2 and NbSe2 we are dealing with ordinary anisotropic
superconductivity, since Κ/τι« 102—103°K.

B. Differential-Difference Ginzburg-Landau Equations
for Quasi-Two-dimensional Superconductors

In Sec. A of Chap. 7 it will be shown that a super-
conducting long-range order exists below T c in quasi-
two-dimensional systems to which ordinary superconduc-
tivity theory, particularly the BCS theory, is applicable.
However, layered superconductors have under the con-
dition (5) a number of peculiarities similar to those ob-
served in Josephson junctions. These peculiarities must
manifest themselves already at temperatures near T c

(in the region where R/T X <C A2(T)/TC <C Δ(0)), and they
can be described with the aid of the Ginzburg-Landau
equations for the order parameter. To derive these
equations from the general equations of the BCS theory
we use Gor'kov's usual procedure.'-78-' The Ginzburg-
Landau equation terms that are linear in Δ are obtained
from the integral equation for the order parameter Δ (Γ)
(see e.g., Chap. 5 of the bookC 7 9 ])

Δ ( Γ ) = p . ( r ' ) A ' ( r , t ' ) Δ (r ') di', ω = 2 π Γ ( n -

K(t, t') = ^C(io, r, r')G( — ω, r, τ").
(8)

where G(w, r, r') is the one-electron temperature
Green's function in the "frequency" representation, and

8 )In a purely two-dimensional system, the phase fluctuations destroy
the long-range superconducting order. However, the transitions of
the electrons between the layers suppress these fluctuations com-
pletely and the order parameter inside the layer is practically inde-
pendent of the probability of electron transitions between the
layers. This question is considered in greater detail in Sec. a of
Chap. 7.

X(r') is the parameter of the attraction of the electrons
due to their interaction with the phonons. In ordinary
isotropic metals, the electron density is practically con-
stant in space, and in the absence of an external field
XK(r, r ') is a difference kernel, and Δ is independent of
r. In layered and especially in intercalated compounds,
the electron density (like the order parameter) is con-
centrated mainly in the conducting layers, and the kernel
*(r')K(r, r ') is not of the difference-type in the coordin-
ates ζ and z' even in the absence of an external field.
However, the equations of the BCS theory can be greatly
simplified for such systems by confining oneself to a
description of the superconductivity inside the conduct-
ing layers, and disregarding the regions where the elec-
tron density is low (it is precisely just such a descrip-
tion which is used for the Josephson junctions). The
changeover to such a treatment is effected by changing
from the continuous coordinate representation r = (p, z)
to the Wannier representation (p, n) with respect to the
coordinate z. With such a change, the electron motion
along and across the layer can be regarded as indepen-
dent, and the discrete variable η indicates the number of
the layer. The order parameter in the Wannier repre-
sentation is expressed in terms of the function Δ(Γ) with
the aid of the relation

(ρ) A (p, z) wni (z) wnz (») dz, (9)

where wn(z) is the Wannier function of the layer n. In (9)
and in the corresponding equations for Δ we need retain
only the terms that do not contain integration with respect
to the Wannier functions of different layers (the terms
discarded in this case are small to the extent that the
ratio €j_/ep is small). Equations (8) then takes the form
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η

(10)

where λ is the average value of the interaction over a
conducting layer of thickness d0. Now Kn > n' is a differ-
ence kernel with respect to the discrete variables η and
n' by virtue of the translational symmetry along the ζ
axis. The off-diagonal elements of Kg n are smaller at
£X « T c than the diagonal element Κ0,Ό, to the extent that
(e/Tc)

n in the case of diffusion (hopping) of the electrons
between the layers. '-75-1 We can therefore retain in the
integro-difference equation (10) only the nearest-layer
interaction. At τ = (T - T c )/T c <C 1 we can obtain from
(10) for the Ginzburg-Landau order parameter an equa-
tion that is differential in ρ and of the difference type in
n. Indeed, the characteristic length of the kernel Κ along
the layer is the correlation length ξ 0 . At τ <C 1, the
order parameter will change over a length ξ (Τ) = ξο//Γ
along the layer, and at ξ (Τ) ϊ> ξ ο Eq. (10) which is in-
tegral in ρ can be replaced by a differential equation.

Let us consider next the case when the superconduc-
tor inside the layer is isotropic and pure (mean free
path in the layer ln » ξ0), and let us introduce the
Ginzburg-Landau parameter ψη = V7£(3) ΝΔη/4?ττ0 (£(χ)
is the Riemann function). Adding to (10) terms of third
order in φ η and introducing in gauge-invariant fashion
the vector potential A, we obtain

ml -1
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For the current density jn(p) inside the layer η and for
the current density jz(n, η + 1) between the layers η and
η + 1 we obtain

iz(n,n + l) = —

(12a)

(12b)

In the case of band motion of the electrons between the
layers (I j_ 2> d) and the electron spectrum is of the form

ε (k) = -g£-(# + *$)+26(1-cos fed), 0<fed<2n, (13)

the Josephson interaction of the layers is realized if9'
b <S Δ(Τ). At b «: T c we obtain t = 7£(3)(b/87rTc)

2 and
77 = 7 £(3) eF/(4JTTc)

2. In this model, Eqs. (11) and (12)
can be obtained in exactly the same manner as the equa-
tions that are obtained for the Josephson junctions in the
tunnel-Hamiltonian model.'-77-' Equations (11) and (12)
were first derived by Lawrence and Doniach^763 by just
this method.

Equation (12b), which is valid at τ C 1, is equivalent
to Eq. (6) with j c = etd^-r/riijdo. However, physically
Eq. (6) for the current between the layers is valid for all
temperatures and j c = etd^g^rlTjdo, where N s is the
number of "superconducting" electrons at the given tem-
perature. i7Sl

It follows from (10) that at Π/τι < T c the BCS form-
ula for T c of layered superconductors is given by

where N2(0) is the two-dimensional density of states
inside the layer, equal to my /2π1ι2 in the isotropic case.
In order of magnitude, the thickness d0 of theoconducting
layer in dichalcogenides is of the order of 2 A. It follows
from (14) that intercalation (or pressure) changes T c

only to the extent that a change takes place in the char-
acteristics of the conducting layer (Λ and N2(0)), and
these changes are usually small.10' At the same time,
all the thermodynamic and kinetic parameters of layered
compounds (for example, the specific heat, the electric
conductivity, etc.) are determined by the average density
of states over the entire volume, which is equal to
m|| /2;rh~2d in the case of isotropic motion of the electrons
in the layer. It also follows from (10) and (12) that T c

depends on the number of layers Ν in the crystal only to
the extent to which the characteristics Λ and N2(0) vary
inside the conducting layer as a result of the presence of
the neighboring layers1 1'.

C. Josephson Effects in Quasi-Two-Dimensional
Superconductors

Under conditions when the external fields cannot
change the modulus of the order parameter in the layer
(electric field perpendicular to the layers and magnetic
field H||), there will be observed in quasi-two-dimen-

9'ln practice, it appears that the case /j55> d is impossible in the case
b « Tc.

10)The incorrect transition to a discrete representation in the BCS
equations, used in I 8 0 ] , has led to the incorrect conclusion that Λ
~ d"1 and that T c therefore depends significantly on the distance
between the conducting layers.

u ) N o account was taken in [81] of the term 2ίψηΛ? in the left-hand
side of (11), and dependence of Tc on the number of layers in the
crystal was obtained in the form TC(N) = Tc( 1) 11 + 2ηί cos (π/(Ν + 1))].
This conclusion is incorrect, so that it is impossible to explain the de-
crease of T c in NbSe2 with decreasing number of layers. [13b]

sional superconductors effects that are qualitatively
similar to those characteristic of Josephson junctions.
In essence, under condition (5) layered compounds are
sets of parallel Josephson junctions with superconduc-
tors of atomic thickness, arranged in parallel. There-
fore, at a constant potential difference U applied per-
pendicular to the layers, one can observe an alternating
Josephson current at the frequency ω = 2eU/JiN, where Ν
is the number of layers between which the voltage U is
applied. C 7 5 ' 8 2 ] In quasi-two-dimensional superconductors
there should exist also natural oscillations correspond-
ing to Josephson plasma oscillations. I-7e"' In layered sys-
tems these effects become more complicated, however,
by the fact that the external fields cannot be screened by
one conducting layer of atomic thickness. The influence
of this circumstance on nonstationary Josephson effects
in an electric field in layered systems has not yet been
investigated. On the other hand, the behavior of layered
quasi-two-dimensional superconductors in a weak mag-
netic field H|| turns out, by virtue of this circumstance,
to be quite unique and, in particular, the structure of the
vortex in layered systems with e x <C A2/Tc differs both
from the structure of the Abrikosov vortex for isotropic
type-II superconductors and from the structure of the
vortex in ordinary Josephson junctions between two bulky
superconductors'-77 (see Sec. a of Chap. 8 below).

7. SUPERCONDUCTING FLUCTUATIONS IN
QUASI-TWO-DIMENSIONAL SYSTEMS

A. Existence of Superconducting Long-Range Order

RiceC 8 3 : l and Hohenberg[84] have shown that in one-
dimensional and two-dimensional systems the existence
of superconducting long-range order is impossible be-
cause of fluctuations.Cl2] This statement, however, does
not hold for quasi-one-dimensional and quasi-two-dimen-
sional systems. Dzyaloshinskii and Kats1-19'87-1 have
shown that even a very weak overlap of the electron
wave functions of neighboring layers suppresses the
phase fluctuations that disturb the long-range order in a
purely two-dimensional system. Indeed, let us estimate,
following1168'87-1, that region near the critical temperature
T c (obtained in the self-consistent field approximation),
in which the phase fluctuations alter significantly the re-
sults of the self-consistent-field approximation in which
no account is taken of the fluctuations. Within the frame-
work of the Ginzburg-Landau functional, the classical
(thermal) fluctuations can be taken into account in the
manner used by Rice. i S 3 : s We calculate the coordinate
function of the Ginzburg-Landau order parameter gn(p)
= (Φ^(Ρ)Φο(Ο)) C68-82'88^ using a functional quadratic in
Φα(ρ) and corresponding to Eqs. (11), and neglecting the
fluctuations of the modulus of the order parameter, which
are insignificant in the quasi-two-dimensional case

• Φ * ) ] } . (15)

*: =
Ντά

As a result, as r - », we obtain at e x « T c (t C 1) for
the quantity g(«>) = lim g(r) that characterizes the long-
range superconducting order [68'82-' the expression

12)Yet in two-dimensional systems the superconducting properties can
manifest themselves also without realization of long-range order.
[85,86]
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g(co) (16)

It is seen from (16) that even at a very small value of t
the fluctuations do not change the solution of the self-
consistent field in the entire temperature region, with
the exception of a very close vicinity of T c (the critical
region). It appears that allowance for the quantum fluc-
tuations does not change significantly the estimate (16)
(in quasi-one-dimensional systems, the estimate corre-
sponding to (16) changes little after the quantum fluctua-
tions are taken into account1189^).

Thus we can use the usual self-consistent-field me-
thod to describe quasi-two-dimensional superconduc-
tivity. Within the framework of this method, at e x <S T c

— T, the system of electrons can be regarded as two-
dimensional if we consider those system characteristics
which differ from zero as e^ — 0 (such as T c , Hc2» but
not

Β. Superconducting Fluctuations Above T c in
Quasi-Two-Dimensional Systems

Although the transitions of the electrons between the
layers suppress the order-parameter fluctuations, none-
theless the fluctuations in quasi-two-dimensional sys-
tems turn out to be stronger than in ordinary three-
dimensional superconductors. Thus, for isotropic
superconductors the quantity μ in (16) is of the order of
TTC /epT, '-90-1 and in these superconductors the region of
noticeable fluctuations is much narrower than in quasi-
two-dimensional systems. In fact, in layered supercon-
ductors with e x <iC T c in the temperature region Τ — T c

^> e x we can disregard the transitions of the electrons
between the layers. Under the conditions we can use for
the layered superconductors all the calculations of the
fluctuation quantities which were obtained for pure two-
dimensional systems. Near T c (i.e., in the region e x

« T - T c < Tc), the results obtained by the Ginzburg-
Landau functional are valid, and they show that the fluc-
tuation diamagnetic susceptibility χλ, which is perpen-
dicular to the layers, together with the cc conductivity σ\\
and the specific heat, increases as Τ — T c in propor-
tion [ 9 1 > 9 2* to τ'1 = Te/(T - T c ) (in the three-dimensional
case χ ~ r~l / 2). In the region Τ - T c <C eL the fluctuations
acquire a three-dimensional character. The transition
from the three-dimensional behavior with increasing
temperature Τ - T c was calculated by Yamaji1193-' within
the framework of the Ginzburg-Landau functional corre-
sponding to Eqs. ( l l ) . l 3 ) In the region Τ - T c <C T c , in
the case of arbitrary β = H/TLTC, we obtain the expres-
sion

dT

So far, only diamagnetic fluctuations in TaS2(Py)i/2
have been experimentally investigated1-95' , and also
fluctuations of microwave absorption in 2H—NbSe2.'-

97-1

For NbSe2, according to the estimate of Sec. a of Chap. 6,
the "dimensionality" parameter β is large (» 100) and
accordingly the experimental results of i B 7 1 are des-
cribed by the formula for the fluctuation microwave con-
ductivity of a three-dimensional system[ 9 s : ! in a wider
temperature interval than by the formula obtained for the
two-dimensional case. In TaS2(Py)i/2, according to the
estimates of Sec. a of Chap. 6, we can expect an almost
two.-dimensional behavior of the fluctuations. Indeed, it

"'Analogous calculations for the conductivity in a magnetic field were

made recently by Klemm I 9 4 ] .
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was observed in C 9 S ] that above T c the fluctuation suscep-
tibility χ χ decreased very slowly with increasing tem-
perature, and the relation χ ± ~ l/τ was satisfied in the
temperature interval from 10 to 35°K. The correspond-
ing diamagnetic moment M x did not vanish in magnetic
fields exceeding HC2_L(T = 0). The wide temperature
region of the fluctuations and the independence of Mj_ of
Η have cast doubts on the assumptions made inC95-1 that
the diamagnetic moment observed by the authors is due
only to superconducting fluctuations i 2 0 & 1. Superconduct-
ing fluctuations of the diamagnetic moment near T c can
be measured more accurately, and this was done in1-96-1.
Prober, Beasley, and Schwall observed a relation χ±

= SLT'1 with a = 2.5 χ 10~7 cmVg, and according to the
data of C2oa3 in this temperature region the corresponding
diamagnetic moment decreased rapidly with increasing
field Η above Hc2i(0). However, as shown by
Gerhardts '-80-1, the fact that χ ~ τ'1 in some temperature
region near T c is by itself still not proof that the pure
two-dimensional case is realized. Indeed, a region with
such a dependence exists also in three-dimensional sys-
tems (j3 S> 1), and with decreasing β it only broadens
towards lower temperatures. The constant a is deter-
mined by the values of ξ G L ( ° ) a n d 0> a n d Gerhardts,
taking £(JL(0) from the data for H c 2 (i), obtained
β = 0.15.

In the temperature region Τ ^ 1.5TC and in strong
magnetic fields, calculations based on the use of the
Ginzburg-Landau functional are no longer correct.
Complete calculations for the diamagnetic fluctuation
moment within the framework of the BCS theory and
using the electronic spectrum (13) are contained in1-80-1,
for dirty superconductors and arbitrary β they are found
in1-99-1, for dirty superconductors with β = 0 in1-1 , and
for pure superconductors at arbitrary β in'·101-'. It is
shown in'-100·' that in the region above 2TC, in dirty
layered superconductors with β <C 1, the zero-point os-
cillations of the Cooper pairs become significant (these
pairs are bosons and are present even at Τ = 0, owing to
the zero-point oscillations). The diamagnetic suscepti-
bility associated with these zero-point oscillations de-
creases slowly with increasing temperature, and the
corresponding diamagnetic moment vanishes only in very
strong fields.

For temperatures close to T c , the contribution of the
thermal fluctuations χ^ to the total fluctuation diamag-
netic susceptibility χ greatly exceeds the contribution of
the zero-point oscillations χ ο (as Τ — T c we obtain χ τ
~ (T - T c )" x and χ0 ~ ln(T - TQ)" 1 ). Far from T c , how-
ever, the situation changes, and at Τ > 5TC we have
χ0 *£ χ-ρ at parameter values close to the parameters of
the crystals TaSa(Py)i/2. In this situation, the total dia-
magnetic susceptibility decreases with increasing tem-
perature very slowly, remaining noticeable up to 10Tc.
Thus, in dirty quasi-two-dimensional superconductors
one can observe in principle the picture of diamagnetic
fluctuations which was observed in TaS2(Py)i/2 by the au-
thors of[95:l. As Τ — 0, the zero-point oscillation leads
to a suppression of the fluctuation diamagnetic moment
and of the conductivity at Η > HC2, and this effect can
be measured experimentally. No such measurements
have been performed so far, however.

8. CRITICAL MAGNETIC FIELDS IN
LAYERED SUPERCONDUCTORS

The features of the structure of layered superconduc-
tors become manifest most brightly in the anisotropy of
their critical magnetic fields and currents. All the pres-
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ently known layered superconductors are type-Π super-
conductors. This is not an accident. Indeed, the correla-
tion length ξο = Ιίνρ/τΓΔο in layered superconductors is
small because of the narrowness of the d bands. At the
same time, the London depth of penetration even in a
perpendicular field

TABLE V

JJ = Vm||C2/47rezNs is large in
these superconductors, owing to the large value of the
effective mass my along the layers and to the small
average electron density N. We consider first the be-
havior of layered superconductors in weak fields and de-
termine the field Hci, starting with which the magnetic
field penetrates into the sample.

A. Critical Field Hc| and Vortex Structure

In anisotropic superconductors NbSe2 and TaS2, the
quasi-two-dimensionality condition (5) is not satisfied,
and the structure of the vortex in them remains qualita-
tively the same as in ordinary superconductors.[79] A
normal state is realized in this case at the center of the
vortex and the vortex differs from the case of an iso-
tropic crystal only in that in the field Hn the boundaries
of the normal-state region, and also the distribution of
the field and of the currents, are elliptic.'-76-' The field
H c i is anisotropic, and

-ln-l/ M i - U ) = - ° i - l n — φ = ϋ £ *
*"ιιΛιι r E|i;i • ' 4πλίι en ' ° * '

(18)
where X)( and (AyX^ are the depths of penetration of
the field perpendicular and parallel to the layers, and
ξ H and ξχ are the correlation lengths along and across
the layer.

In quasi-two-dimensional superconductors, under
condition (5), destruction of superconductivity inside the
layer in a field HM is impossible (Sec. a of Chap. 6), and
the picture of the vortex in the field HH becomes qualita-
tively different. The structure of the vortex can be ob-
tained in this case with the aid of Maxwell's equations
and the equation for the currents (12).[75-1 Calculation
shows that everywhere except in the region of the vortex
core, with dimensions on the order of d, the currents
and the fields are weak and can be described within the
framework of the approximation, linear in the field, for
the current between the layers (12b). The distribution of
the currents and of the field outside the core of the vor-
tex is elliptic with characteristic dimensions λΗ and λ±

across and along the layers. The value of A. ,t is deter-
mined in the usual manner, and λ± = (c<£o/87r2djc)
= ^oeF/rr4d2A2/3Ns)

1/2. The center of the vortex is in the
space between the layers, and the currents between the
layers reach their maximum value j c in the region of the
core of the vortex. The contribution of this region to the
vortex energy is small (as in the usual case), and we ob-
tain with logarithmic accuracy for Hci(il) and HcWi) the
following expressions (the vortex in the field Hx is
ordinary)14'

-In- (19)

The static structure of the vortex state in weak fields
remains the same in the quasi-two-dimensional case as
in ordinary isotropic superconductors, if the length
scales are suitably altered. However, the dynamics of
the vortex motion and vortex oscillation change in the
quasi-two-dimensional case in a field HM and in a field

Compound

2#-NbSe,
2/C-TaSj"
TaS2(Py)1/2

TC,'K

7; 7.38

3.25
6.3

ΐ

47 6.4-7.9

2.8-3.4
7.8

?*""

10-12
45

>2000
8.5

- Τ

kOe

130

>150

(Γ)

°K

1.2

1.4

H*

kOe

129

60

115

Ref-
erences

35, 103, 104

105

105, 106

107

Hĵ  (in a field H(| there is no normal state inside the
vortex, and in a field Η χ there is no continuous normal-
state core, and vortices of different layers are coupled
only by the magnetic field). As the temperature ap-
proaches Tc, the condition (5) ceases to hold and the
inequality is reversed in the immediate vicinity of T c .
In this vicinity a normal state appears inside the vortex,
and the critical fields Hc^(ll, 1) are determined by ex-
pressions (18).

Among the layered superconductors, the field H c i was
investigated so far experimentally only for NbSe2 near
Tf.,1-108·1, and we shall discuss these data later on to-
gether with the data for the field HC2·

B. Upper Critical Field HC2 in NbSe2 and the
Effective-Mass Model

The data for the fields H c l and HC£ in the supercon-
ductors 2H—TaS2, 2H-NbSe2, and TaS2(Py)i/2 are listed
in Table V. Since the anisotropy in 2H—TaS2 and
2H—NbSe2 is not very strong (condition (5) is not satis-
fied), the behavior of these superconductors near T c can
be described within the framework of the Ginzburg-
Landau equations with anisotropic "mass" [ 7 1 ' 1 0 5 ' 1 0 3 ' 1 0 8 : i .
In this model, the critical field H c i is determined by
expressions (18) with λ± = λμ/α, ξ ± = ξ tia, a = (mi/mj
= (m|| /rrijj and m.||— the effective "mass" for the mo-
tion of a pair inside the layer (the motion inside the layer
will be regarded as isotropic), and m± is the "mass"
for the motion of the pair in a direction perpendicular to
the layers. The temperature dependences of the param-
eters λ and ξ, and also of the field HC2(S) (Θ is the angle
between the magnetic field and the plane of the layers)
are given by

λ ΐ ' " ( Γ ) ~ ^ ' " θ ? ' il^~luu^~r'l ' (20)

" ' 2.πξ|

2ί (Γ) l/sin2e + a2cos29 '

In NbSe2,oaccording to theo data of[103;l, we have a = 0.3,
ξ ι, =71 A, and λ tl = 690 A. From the relations for the
thermodynamic critical field H c 0 at Τ = 0,

(21)

we obtain N(0) « 1035 erg which is approximately
2.5 times larger than N(0) calculated from data on the
coefficient γ in the specific heat.C 3 l D l 5 ) Since no gap
anisotropy was observed in NbSe2, we can assume that
the entire anisotropy of the motion of the electrons in
this compound is due to anisotropy of the electron effec
tive mass. Using then for the electron spectrum the ex-
pression

1 4 Ά solution for the vortex state in a field Η ||, obtained in [1 0 2], yields
a larger value of Hci(ll).

1 5 )It is noted in [103] that this disparity can be due to the fact that
measurements of the specific heat were carried out on powdered
samples and more accurate measurements of y on single crystals are
needed.
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e (k) iw -=2— (AS + t j + cc=&J), (22)
2 m i l v ;

we obtain for the density of states and for the Fermi
level the relations

">H / 3N \ " 3 3JV

4JV (0) ' (23)

Knowing α, Ν, N(0), and σΝ we can calculate the
parameters λΜ and ξ i} and compare them with the values
obtained from experiment. At N(0) = 1.0 χ 1035 erg^cm"3

it follows from (23) that m,, = 13.5me (for NbSe2the
optical mass is mN = 9.7me), e F « 0.07 eV, ίΟιι
= fivFn Α Δ 0 ~ 80 A, and XLI,0 = ^οΐ/8ϊΜψ)ν^τ

= 1600 A. Using the values of the conductivity from
Table I and relations of the type (7) with D x N

= v F i , | Z 1 ; |,/3, we obtain /„ « (70-250) A and /„

= (2-4)/x. These estimates show that in NbSe2 there is
realized the case of intermediate purity, when ξ « I.
The values of IQII a n d -̂LH presented above yield ξ μ
« 60 A and XH « 1100 A. The obtained values of ξ 0 | |

and \LH differ from the experimental data by more than
two times, and the model of the anisotropic effective
mass of the electron (elliptic Fermi surface) must be
regarded as satisfactory.

We consider now the data for the upper critical field at
low temperatures. Figure 11 shows the temperature de-
pendence of HC2n and H c 2 l in NbSe2 as measured by Foner
and McNiff llOi1. The experimental points for both H c 2 i l | \
and HC2i from these data and from the data of Cl03-1 lie above
the calculated curve at low temperatures. This excess is
not very large, and it may be due to the difference between
the true Fermi surface and an elliptic one. The most sur-
prising circumstance is, however, that in NbSe2 we do not
see any decrease of Hc2/n) due to the paramagnetic effect.
Yet for singlet pairing of Cooper pairs under ordinary con-
ditions, the superconductivity is destroyed only by the ac-
tion of the paramagnetic effect at Τ = 0 in magnetic fields
Η > H* = Δ0/μΒν2~:C79] In NbSe2 we obtain H* = 130 kOe,

and the joint action of the orbital and paramagnetic effect
should lead at low temperatures to values HC2CnV approxi-
mately 1.5—2 times lower than the experimental ones.
Inasmuch as in NbSe2 we see the action of only the orbital
effect, it must be admitted that in this compound the para-
magnetic effect turns out to be suppressed. The situation
in TaS2(Py)i/2 in this respect is analogous, and we shall
discuss the possible causes of the suppression of the para-
magnetic effect in layered compounds later on, after we
consider the experimental data for TaS2(Py)i/2.

C. The Field HC2 in TaS2(Py)1/2 and the Model of
Quasi-Two-Dimensional Superconductors

According to estimates from the data on the conductivity
and specific heat, the "dimensionality" parameter β in
TaS2(Py)i/2 is approximately 0.01 (Sec. a of Chap. 6), while
data on fluctuations (Sec. b of Chap. 7) yield β ~ 0.15. To
describe the properties of this compound we can therefore
use the model of quasi-two-dimensional superconductivity.
If we assume that the electron motion inside the layer is
isotropic and can be described by an effective mass mN,
then m|| and e F can be determined from the relations

— m» - N (24)
2JV (0)

From the data of Table I we obtain N(0)
2

1034 erg^cm 3,

near T c (see Table V) we have ξ „ = 1.1 χ 10 " cm, and the
model of quasi-two-dimensional superconductivity with iso-
tropic motion of the electrons in a layer yields a fair esti-
mate of the correlation length in TaS2(Py)i/2. In this com-
pound, however, just as in NbSe2, the values of HC2(^) at
low temperatures, obtained by measuring microwave
absorption, ίι06~* lie above the curve calculated in the iso-
tropic model or in the model of the quasi-two-dimen-
sional superconductor with isotropic motion of the elec-
trons in the layer.Ε 7 5 ] In TaS2(Py)!/2, this disparity is
even stronger than in NbSe2, and the quantity (dHc2x/dT)
for this compound becomes positive at low temperatures
in accordance with the data of Cl06-1. According to the
ideas concerning the structural transitions (Chap. 4) in
layered compounds, the Fermi surface in the (1^, ky)
plane should differ from a circle. Indeed in high-tem-
perature phases of these compounds there should exist
on the Fermi surface flat sections that are closed by the
energy gap if a structure transition takes place. It is
natural to assume that it is precisely these circumstan-
ces that lead to the unusual dependence of Hc2(i) on Τ in
TaS2(Py)i/2 and NbSe2. We note, in contrast to the iso-
tropic superconductors and NbSe2 crystals, in the inter-
calated compound TaS2(Py)!/2 the transition in the field
HC2(l) is, in accordance with the data oft106-', greatly
smeared out over the field at low temperatures. The
reason for this effect still remains unclear.

On the basis of the obtained values of m|:, e^, and β in
TaS2(Py)i/2 we can estimate the value of the field H c i and
the depth of penetration λ. Forocrystals with ξοιι κ *ιι
we obtain at λΝ « xLn « 1300 A, H c l ( i ) » 300 Oe and
λ χ « 0.1 mm, Hci(ll) « 0.03 Oe at β = 0.1 and λλ « 0.3
mm, Hcl(H) « 0.1 Oe at β = 0.01. In accordance with the
estimates for λχ, the experimental data[ 9 6 : l on the Meiss-
ner effect in TaS2(Py)i/2 show that λ χ £ 0.5 mm at low
temperatures.

We consider now the data concerning the HC2i(T) de-
pendence in TaS2(Py)i/2. Figure 12 shows the supercon-
ducting transition in a magnetic field at 1.4°K in one of
the crystals of this compound.Cl053 At angles less than
10° between the magnetic field and the plane of the layer,
the field is HC2(0) » HC2(i)/sin Θ. At smaller angles the
resistance does not reach the value characteristic of the

FIG. 11. Critical field H c 2 (1) and
H c s (2) vs. temperature for single-
crystal NbSe2. The solid (dashed)
curve shows the calculated HC2 (T)
for a "dirty" (pure) isotropic super-
conductor of type II without allow-
ance for the paramagnetic effect.
The insert shows the radio-fre-
quency losses (or the dc resistance)
of functions of the applied field,
and the method of determining

• C0 4]
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e F « 0.25 eV, my « 9me, |QH « 3.5 χ 106 cm, and
= (0.7—4) χ 106 cm. According to measurements of Hc2i(T)

FIG. 12. Resistance (in arbitrary
units) as a function of the magni-
tude and direction of the mag-
netic field in TaS2(Py)i/2at 1.4°K.
The angle indicates the direction
of the field relative to the plane
of the crystal layers. [ l o s]
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normal state, even in a field 150 kOe, and at θ = 0 the
growth of the resistance is not noticeable in fields up to
150 kOe, i.e., HC2(H) in TaS2(Py)i/2 at 1.4°K exceeds
150 kOe and at 2.86°K we have in accordance with the
data o f i l № l HC2(") > 84 kOe.1 6 ) For this compound, the
paramagnetic limit is H* = 60 kOe, and this limit is ex-
ceeded thus by more than 2.5 times.

D. Reasons for the Absence of an Orbital Effect for the
Field Η in Quasi-Two-Dimensional Superconductors

Within the framework of the concept of quasi-two-
dimensional superconductivity in TaS2(Py)i/2 it is easy to
understand why the orbital effect becomes ineffective in
a field H,, at low temperatures. Indeed, in a strictly
parallel field the orbital effect is limited by the Joseph-
son currents between the layers. These currents, under
the condition (5), cannot destroy the superconductivity.
Only in the immediate vicinity of T c is the condition (5)
violated, and when the inverse inequality is satisfied,
the superconductivity-destruction mechanism due to the
orbital effect becomes the ordinary one. The transition
from the ordinary behavior to the quasi-two-dimensional
behavior in a magnetic field HN at temperatures T c - Τ
« T c can be described with the aid of Ginzburg-Landau
differential-difference equations of the type
(11).C75,io2,io9,iio] C n o o s i n g t h e potential A in the form

Αχ = Ay = 0, Az = Hy, we obtain for the order parameter

<p(y) the Mathieu equation

- τ ] ψ(») = (), (25)

from which Hc2ί") is determined as that maximum value
of Η at which (25) has a nontrivial solution. At T c - Τ
<SC t T c we obtain the usual dependence of HC2(H) on

T:

(26)

However, as τ approaches 2t, the field HC2(H) increases
without limit (if superconductivity-suppression mechan-
isms other than the orbital effect are disregarded):

ch (27)

In TaS2(Py)i/2, measurements of HC2(H) near T c have not
been performed, but a similar dependence was indeed
observed in the crystals Cs0.3MoS2 and Sr0.2MoS2 in fields
up to 36 kOe. [ l u : ) At present it is not clear, however,
whether these results are due to crystal structure de-
fects or are a reflection of the internal anisotropic mo-
tion of the electrons in the intercalated M0S2 compounds.
Thus, only the paramagnetic effect can lead to the
destruction of superconductivity in a field HN at
Τ < T c ( l — 2t) in quasi-two-dimensional superconductors
(see Note 4 added in proof at the end of the article).

E. Possible Causes of Suppression of Paramagnetic
Effects in Layered Superconductors

In principle, the suppression of the paramagnetic
effect in layered superconductors can be due to realiza-
tion in these superconductors of an inhomogeneous
state [ 7 5 ' 1 1 2 ] by triplet pairing of the electrons from
neighboring layers [ 1 1 3 ' and by spin-orbit scattering by

impurities'-75'110-1. However, the inhomogeneous state and
the pairing of the electrons of the neighboring layers are
sensitive to the scattering of electrons by impurities
inside the layers, and they are destroyed if the electron
mean free path inside the layer is I ^ ξο·17) Yet accord-
ing to the estimates obtained above the ratio ξ on ll\\ lies
in the interval from 1 to 6 for different crystals
TaS2(Py)i/2 and NbSe2, and no dependence of HC2(H) on
the degree of purity of the samples has been observed in
experiment. The spin-orbit scattering leads to an ap-
preciable suppression of the paramagnetic effect if the
electron with change of spin has a mean free path ISQ
<C ξ 0 . [ 7 5 ' 1 1 0 ] Since lsQ/l < 10"2, the inequality Z s 0 > ξ 0

is satisfied in layered superconductors, and the spin-
orbit scattering changes the paramagnetic limit insignifi-
cantly. In addition, in this case, too, there would be ob-
served a strong sensitivity of HC2(H) to the degree of
purity of the crystals.

It is shown in[ 1 1 4 : l that suppression of the paramag-
netic effect for the field H\\ can be attributed to spin-
orbit interaction of the conduction electrons in layered
crystals with symmetry that admits of the existence of a
polar vector (in pyroelectric crystals). There are cer-
tain grounds for assuming such a lattice symmetry for
layered superconductors. The high-temperature 2H
modifications of TaS2 and NbSe2 have inversion centers.
It is not excluded, however, that in structure transitions
appearance of a charge-density wave is accompanied by a
a preferred direction in the lattice, and the symmetry
center is lost (for example, in the case when the charge-
density wave is not commensurate with the period of the
initial lattice). Intercalation of TaS2 crystals with pyri-
dine suppresses the structural transition, but the pyri-
dine molecules lower the lattice symmetry because the
dimension of the molecule are not commensurate with
the lattice period of TaS2 in the layer (see Note 2 added
in proof at the end of the article).

In addition to the suppression of the paramagnetic
effect for the field HC2(H), the spin-orbit interaction in
pyroelectric layered crystals causes also the paramag-
netic susceptibility in the superconducting state \S(H) to
approach the susceptibility of the normal state
Xn(ll).C l l 4 > U 5 : l At a perpendicular field direction, both
effects turn out to be weaker. Therefore the correctness
of the assumption of1-114-1 can be verified by measuring
the anisotropy of the Knight shift in layered supercon-
ductors. In a certain sense these measurements replace
the measurements of the anisotropy of the paramagnetic
limit H_, since the quantities χη, x s and Hp are connec-
ted at Τ = 0 by the relation

(28)

16)The surfaces of the TaS2 layers in the TaS2(Py)1/2 obtained to date
were not flat but wavy. Therefore at small angles θ there are always
sections of TaS2 layers that are parallel to the field, and in these sec-
tions the superconductivity is not destroyed at Η < HC2(II).

(Hp is the paramagnetic limit with allowance for the
spin-orb it effects).

9. CONCLUSION

We note now the most important experimental results
which have been obtained to date for layered compounds
and which determine at present the most important
trends of future research in this field.

a) Measurements of the conductivity in a direction
perpendicular to the layers, and investigations of the
diamagnetic fluctuations at temperatures above T c in

l7'See Note 5 added in proof at the end of the article.
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2, show that the motion of the electrons in this
intercalated compound is very close to two-dimensional.
According to estimates from data for the diamagnetic
fluctuations in TaS2(Py)i/2, the parameter of the "dimen-
sionality of electron motion" for the superconductivity is
β « 0.15, while the data for the transverse conductivity
yield β » 0.01. Although these two estimates undoubtedly
are approximate, they show that the situation even in
these intercalated crystals is close to that when the layer
interaction becomes of the Josephson type.

b) Structural transitions with formation of charge-
density wave, accompanied by an alteration of the Fermi
surface, were observed in layered compounds. Even
now, the experimental investigations show that a connec-
tion exists between these transitions and the supercon-
ducting properties.

c) In layered superconductors, the upper critical
magnetic field parallel to the layers greatly exceeds the
paramagnetic limit, and this effect cannot be explained
within the framework of the spin-orbit scattering con-
cepts customarily resorted to to explain the analogous
phenomenon in isotropic or weakly isotropic crystals.

In conclusion, we list those trends of research on
layered compounds which are presently most important
and interesting for physics and for practical applica-
tions:

1) The presently existing experimental results and
theoretical premises show that in TaS2(Py)i/2, or in
intercalated compounds with even larger distances be-
tween the conducting dichalcogenide layers, it is possible
in principle to observe the nonstationary Josephson
effect. The imperfection of the crystal is for the time
being still difficult hindering experiments of this type.
However, even now certain ways of obtaining more per-
fect intercalated crystals have been found.[11β-1 We note
that a more accurate determination of the "electron mo-
tion dimensionality" parameter β might be obtained from
measurements of the field HC|(ll) or of the field penetra-
tion depths λ || and λ ±.

2) The character of the structure transitions in the
2H modifications of TaS2 and NbSe2, and the influence
exerted by these transitions on the superconducting
properties are presently one of the central problems in
the physics of layered metals. In essence, in accordance
with the assumption of1-114-1, these can be ferroelectric
transitions. The determination of the lattice structure
in the low-temperature modifications is therefore a very
important factor for verifying this premise. Measure-
ments of the Knight-shift anisotropy in layered super-
conductors could provide an additional verification of
the hypothesis that the lattices of layered metal
TaS2(Py)i/2 and of the low-temperature modification of
2H—NbSe2 are pyroelectric.

3) Layered intercalated superconductors afford a
unique possibility of experimentally investigating the
contribution of the zero-point oscillations of Cooper
pairs to diamagnetism (and possibly) the conductivity of
superconductors at temperatures Τ -C T c and Η > HC2·

4) Great interest attaches to experimental work on
the development of new intercalated layered crystals and
crystals with alternating metallic and semiconducting
layers. It appears that in principle it is possible to in-
tercalate layered crystals with radical molecules. In
this way it would be possible to obtain crystals in which
the metallic layers alternate with ferromagnetic or anti-

ferromagnetic molecular layers. The coexistence of
magnetic order and quasi-two-dimensional supercon-
ductivity in these systems could lead to interesting
Josephson properties of such crystals1 8 1 (see Note 6
added in proof at the end of the article).

The author thanks V. L. Ginzburg for constant inter-
est in the work for reviewing the manuscript of the arti-
cle, and for valuable remarks. The author is also
grateful to A. I. Larkin, Yu. V. Kopaev, I. O. Kulik,
E. G. Maksimov, and A. I. Rusinov for a discussion of
questions considered in this review.

18'See [ l n ] in connection with this remark

Notes added in proof. 1) (See p. 520). In the review [11S] are given
detailed data on the observation of the superstructure (charge-density
wave) in layered compounds. In modifications, the superstructure exists
at all temperatures at which the research was performed. First-order
transitions between polytypes of this modification correspond to
changes of the superstructure. In 2H modifications, the superstructure
appears below the temperature Td-

2) (See p. 521). According to data on neutron scattering [ U 9 ] , a
superstructure appears in 2H-TaSe2 and 2H-NbSe2 below T(j. This
superstructure has a period that is not commensurate with the period
of the initial lattice, but is close to triple the period of the initial hexa-
gonal lattice. In both compounds, the period of the superstructure con-
tinuously changes with decreasing temperature, approaching the triple
period. In 2H-TaSe2 at 90°K, the period of the superstructure changes
jumpwise, and below 90°K it is exactly equal to triple the period of the
initial lattice. In 2H—NbSe2, the periods remain noncommensurate
down to 5°K. According to measurements of the elasticity of the crys-
tals [2 0], the transition to a commensurate structure in 2H—NbSe2 is
not observed down to 1.3°K. The character of the restructuring of the
Fermi surface due to the appearance of the superstructure is considered
theoretically in [1 2 1>1 2 2].

3) (See p. 522). Intercalation of 2H-TaS2 with hydrogen also
raises Tj from 0.8 to 4.2°K, and the addition of hydrogen leads to a
lowering of the maximum in the temperature dependence of the mag-
netic susceptibility. [123]

4) (See p. 529). According to [ 1 2 4 ], the upper critical magnetic
field in compounds of MoS2 with K, Rb, and Cs exceeds the paramag-
netic limit, and the angular dependence of HC2 can be described within
the framework of the model of the Josephson interaction of the layers.

5) (See p. 539). The authors of [ l l 2] have neglected the orbital
effect and considered an inhomogeneous state, in which the order
parameter varied in a direction perpendicular to the layers. Such an
analysis is inconsistent, since the increase of HC2 through realization
of an inhomogeneous state is possible in this case only in the case of a
sufficiently strong interaction of the layers (at e^ » A2/Jc). But in this
situation one cannot neglect the orbital effect. The order parameter
must therefore vary in the plane of the layers in quasi-one-dimensional
superconductors (ej_ « Δ2/Το) in the inhomogeneous state. [7S]

6) (See p. 530). Intercalation of TaS2 crystals with chromocene
molecules Cr(C5H5) is reported in [1 2 5]. The obtained crystals are
superconducting (Tc = 2.9°K) and paramagnetic below T c , i.e., the
superconducting layers in them are separated by layers of paramag-
netic molecules.
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