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The review analyzes the physical mechanisms of energy dissipation in type-II superconducting alloys in the
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INTRODUCTION

Among the numerous singularities in the properties
of the so-called type-II superconductors, which include
superconducting alloys with sufficiently short mean free
paths as well as pure niobium, the least trivial is the
appearance of a finite conductivity in the presence of a
magnetic field. This circumstance, which is of primary
significance for practical applications of superconduc-
tivity, has been for the last decade the subject of numer-
ous experimental and theoretical studies. It can now be
regarded as established that this resistance is due to
motion of the vortex structure first introduced by
Abrikosov[1' to describe the unique behavior of type-II
superconductors in a magnetic field. The vortex motion,
as first noted in[ 2 ] , is the result of the action exerted on
the vortex by the superfluid component of the Lorentz-
force current. In real superconductors the situation is
greatly complicated by the action of the pinning forces,
so that a properly uniform motion of a vortex lattice
occurs only if the current through the sample is large
enough to suppress the action of the pinning centers.
We shall consider throughout just this case, and only
then is the resistance a property inherent in the super-
conductor itself and does not depend on the details of
the sample preparation. Figure 1 shows current-voltage
characteristics obtained in the classical experiments of
Kim, Hempstead, and Strand[3) for Nb-Ta alloys. We see
that although the threshold current at which a finite po-
tential difference appears is different for different sam-
ples, the slopes of all curves are the same at large
currents.

Figure 2 shows schematically the usual experimental
setup. The magnetic field is perpendicular to the plane
of the plate (film) of the investigated superconductor,
and the points designate the vortex structure. A finite
direction to the longitudinal current I t r makes it possi-
ble in principle for a Hall potential difference to appear,

FIG. 1. Idealized current-voltage char-
acteristics for samples with different de-
grees of structure inhomogeneity.

k, h2

FIG. 2. Experimental setup for
the measurement of ρ f and of the
Hall angle. The points mark the vor-
tex filaments. LV and TV are the
longitudinal and transverse voltages.

and this difference was indeed observed in the experi-
ments of Reed, Fawcett, and Kim.[ 4 ] The sample is
usually a thin film. The use of such a setup is dictated
by the desire to prevent bending of the vortex lines by
the self-field of the current and by the action of the
pinning forces, and also the desire to attain high homo-
geneity of the transport-current density. In fact, although
at a finite resistance the average current density in a
bulky sample would be different from zero, the Meissner
effect on the surface would lead to a significant bending
of the current line in the vicinity of a vortex filament if
the filament density were not too large. From this point
of view, the optimal films have dimensions smaller than
the depth of penetration of the magnetic field.

A vortex filament carries a magnetic-field-flux
quantum <p0 = (hc/2e)nH (the vector nn is directed
along the field).11 Therefore the Lorentz force exerted
by the flowing current on the system of currents in the

1}A list of symbols is given at the end of the article.
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vortex (per unit vortex length)

F L = —[JtrXqJo].

is directed as shown in Fig. 2. If this force causes the
vortex to acquire a velocity vi, then the macroscopic
electric field induced in the sample is

where the magnetic induction is Β = nLq>o (nL ^s * n e

density of the vortex filaments). Thus, the direction of
the electric field is determined by the direction of vor-
tex-filament motion. In a Galilean invariant system,
such as helium, the vortex filaments at low tempera-
tures move together at equilibrium with the superfluid
component of the velocity. If the same were to occur in
a superconductor, as proposed by de Gennes and
Nozieres,[ 5 ] then according to Fig. 2, at least for a pure
type-II superconductor (e.g., Nb), the largest quantity in
the experiments would be the Hall potential difference
(the transverse field E). The dragging of the vortices in
the metal lattice can be hindered by their deceleration
via some relaxation mechanism. If this deceleration is
large, then the vortices move slowly under the influence
of the force F L in a direction transverse to the trans-
port current—this is called viscous flow of the vortices.
Experiment, even at low temperatures, offers decisive
evidence in favor of predominance of the dissipation
mechanisms whose nature will be discussed below. The
Hall component of the velocity turns out to be small, and
for the Hall angle a

it is of the same order as in the normal metal.[ < l At
Τ = 0 the effective conductivity obtained in the experi-
ments'-3' turned out to be

From the theoretical point of view, the fact described
above should fit within the framework of the Bardeen-
Cooper-Schrieffer (BCS) microscopic theory of super-
conductivity.[61 The fact that the vortex structure moves
relative to the lattice calls for a generalization of the
BCS theory to include the dependence of the parameters
of the theory on the time. A microscopic theory of non-
stationary processes in superconductors was con-
structed by Gor'kov and Eliashberg.[7"9] As is customary
in superconductivity physics, a qualitative understanding
of the phenomena in type-II superconductors, which
occur when current flow, can be gained on the basis of
the semiphenomenological considerations advanced in
Chap. 1 of this review. In Chaps. 2 and 3 we discuss the
results of the microscopic theory. In the final Chap. 4
we attempt to estimate the degree of quantitative corre-
spondence between the microscopic theory and experi-
ment.

1. SEMIPHENOMENOLOGICAL DESCRIPTION OF
THE VISCOUS FLOW OF A VORTEX STRUCTURE

a) Thermodynamic properties of a type-II super-
conductor in a magnetic field, We summarize below the
basic vortex data which we shall need subsequently. A
more detailed exposition can be found in the book[ 10) or
in the review of Schmidt and Mkrtchyan.[11]. As already
mentioned, type-II superconductors include pure nio-
bium and possibly vanadium, as well as superconducting
alloys with small mean free paths. [ 1 2 ] From the physical
point of view, the main property responsible for the

qualitative change of the behavior of these objects in a
magnetic field is the negative surface energy on the
boundary between the normal and superconducting
phases. In the Ginzburg-Landau theoryt l 3 ] the surface
energy is negative at κ > 1//Ζ, where the parameter

Tc

characterizes, from the point of view of the BCS theory,
the ratio of the depth of penetration δ of the field to the
coherence radius ξ:

Abrikosov[1' has shown, in the approximation of the
Ginzburg-Landau theory, that the destruction of super-
conductivity in a magnetic field begins with a field Hcx
< Hem and terminates at HC2 > HCm> where H c m is

the thermodynamic field of the transition. At κ » 1 we
have[ 1 ]

In*
(1.1)

In the field interval HC1 < Η « HC2 (B « HC2) the mag-
netic field penetrates into the sample in the form of
filaments, the structure of which is shown in Fig. 3.
This figure shows schematically the distributions of the
magnetic field Η and of the order parameter Δ as
functions of the distance ρ to the center of the filament.
The magnetic flux connected with an individual filament
is equal to hc/2e and is distributed over an area with
dimensions on the order of the penetration depth. The
field near the filament is therefore usually of the order
of Hcl. The order parameter varies over distances
ξ = θ/κ « δ and tends rapidly to the equilibrium value
4 x (ΔΛ = Δ in the absence of a field). At the center of
the core we have Δ(0) = 0. In the field interval indicated
above the filament cores do not overlap, and we can use
the concept of individual filaments packed in the lattice
and coupled with one another by a magnetic interaction
whose characteristic effective radius is large in com-
parison with the dimension of the filament core. The
macroscopic mean value of the magnetic field is the
induction Β = n]jp0.

When the fields increase to Hc2, the distances be-
tween filaments decreases to d ~ ξ. It is seen from
Fig. 3 that the cores begin to overlap, and this leads to
an appreciable decrease of the value of the order
parameter averaged over the sample.

The microscopic theory of superconductivity had
confirmed the general picture of the vortex state in a
magnetic field, which was proposed in[ 1 ' , in two respects.
First, it has turned out[ l i ! 1 that in the vicinity of the
transition theory the BCS theory goes over into the
Ginzburg-Landau theory, and therefore the results of[1)

are approximate in character in this region. The order
parameter of the theory[ 1 > 3 ] is proportional to the en-
ergy gap Δ in the energy spectrum of the superconduc-
tivity in the BCS theory. Second, in the entire range of

FIG. 3. Schematic plots of the order parameter and of the magnetic
field for an isolated vortex filament.
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FIG. 4. "Band structure." The
shaded area shows the occupied
states.

S 10

FIG. 5. Normalized state density on the Fermi surface for a "dirty"
superconducting alloy. [l 6]

temperatures, the penetration of the magnetic field into
a bulky sample begins at a certain weak field HC1 and
proceeds in the manner described above in the form of
a lattice of filaments. The fields H c i and HC2, accu-
rate to temperature-dependent coefficients, are of the
order of (1.1), where Hem should be taken to be the
thermodynamic critical field of the bulky superconduc-
tor at the given temperature.[ 1 1 ]

An important circumstance, which is to play an es-
sential role in what follows, can be qualitatively deduced
from the fact that the order parameter vanishes at the
center of the filament, and also from the remark made
above concerning the connection between the order
parameter and the gap in the energy spectrum of the
superconductor in the BCS theory. According to [ 8 ] , in a
homogeneous superconductor the energy spectrum of
the excitation has a threshold, namely, the density of
states fs(e) in the superconducting state is equal to

It can thus be assumed that in a superconductor that is
inhomogeneous in space the state density depends on the
point, and the vanishing of the order parameter at the
center of the filaments indicates that there is no excita-
tion threshold near the center. This was first demon-
strated by Caroli, de Gennes, and Matricon[15] within
the framework of the microscopic theory for a pure
type-II superconductor. The result of[15' is shown
schematically in Fig. 4 in the form of the "band"
structure of the spectrum of the superconductor. The
shaded region shows the filled excitation states of en-
ergy e < 0 at absolute zero temperature. The distance
between the two curves is the " loca l " threshold for the
excitation of the ground state. As ρ — <*> this threshold
is equal to 2Δ*>, but in the region ρ ~ ξ there is no
threshold. In this region we have i>s(0)/fn~ 1· Figure
5 shows the results of numerical calculations^1 of the
function vs(p, 0)/i/n in the case of a so-called "dirty"
alloy, when the mean free path is ι « RVF/TC· The
value of ξ in Fig. 5 is chosen to be ξ = VD/2Aoo(0)
= / / V F / 1 0 . 5 T C .

Generally speaking, as first shown by Bardeen,
Kummel, Jacobs, and Tewordt,[17), the structure of the
energy spectrum of Fig. 4 at intermediate κ ~ 1 has a
strong effect on the value of the critical field Hcl at
low temperatures, since the energy of the vortex fila-

ment is determined in this case to a considerable degree
by its core. The distribution of the magnetic field also
has a different form. Compared with Fig. 3, the field in
the vicinity of the center of the filament has a rather
sharp maximum.[181 The origin of this effect follows
most clearly from the results [ 4 7 ] for a pure type-II
superconductor. In this case the Fermi excitations in
the core of the filament have a conserved projection of
the angular momentum m relative to the axis on the
direction of the magnetic field, but in this case e < 0
(shown shaded in Fig. 4) corresponds to m < 0, whereas
e > 0 always corresponds to m > 0. At zero tempera-
ture, as is indeed the case for Fig. 4, all the states with
m < 0 are occupied and the states with m > 0 are empty.
Thus, the vicinity of the vortex center is a solenoid of
sorts. The effect of the concentration of the field in
alloys with κ ~ 1 [ 1 8 ] may turn out to be so strong that
the field can reverse direction in order to preserve the
total magnetic flux φ 0 . We shall deal here in the main
with the case κ » 1.

b) Physical nature of the dissipative processes. The
just-described structure of the vortex suggests a cer-
tain simplified model in which the vortex consists of a
perfectly normal core and of a region with dimension 5,
in which a flux quantum is concentrated. On the bound-
ary, the superconducting parameter changes jumpwise
from its value in the homogeneous superconductor to
zero. This rough picture makes it possible, however,
to understand one of the mechanisms of energy dissipa-
tion in the vortex, viz., Joule heating of the normal ex-
citations near the center of the filament. An estimate of
the contribution of this mechanism was first made by
Bardeen and Stephen[191 and was based on the following
considerations. We write down the hydrodynamic equa-
tion for the velocity vs of the "superfluid" electrons:

™^=VM, (1.2)

where μ is the chemical potential. If the vortex filament
moves as a unit with constant velocity VL, then the total
derivative dvs/dt contains the term

(vtV) v, = V (VLV,), (1.3)

since curl v s = 0, here VL « Vs, and v s is the velocity
field of the superfluid component outside the core of the
vortex:

mvs = p, (r)-r - A(r). (1.4)

Inasmuch as in this model the order parameter is
constant outside the vortex,

2Ps = five,

i.e., it is proportional to the gradient of the phase of the
Cooper-pair wave function (hence the coefficient 2!).
The condition that the wave function be unique

2 φ ρ, Λ = h ·2π

yields

The potential A(r) in (14) is small (at κ » 1 the mag-
netic field inside the vortex is ~H c i) , and we ultimately
obtain

The additional term (1.3) in the expression for dvs/dt
is an additional acceleration that acts on the "super-
fluid" electrons because of the vortex motion. It is im-
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portant that in the stationary picture of moving vortices
the current line must inevitably enter into the vortex
core, i.e., the superfluid current is converted on the
vortex boundary into a normal electron current, and an
electric field Ε = — νΦ is produced in the normal
region. According to (1.2), in the superconducting
region there is added to the chemical potential a term
μβ — μ - (VL -Vs)· In the normal region μη = μ - βΦ.
The equilibrium conditions calls for continuity of μ on
the boundary. Since inside the vortex we have jn = σηΕ
and div jn = 0, it follows that ν 2 Φ = 0. As a result we
get

The electric field in the core of the vortex is
Ε = fiVL/252e, and we can write down for the energy
dissipation per unit volume

W = anE*nL πξ2 = " J1— — ,

where nL is the number of filaments per unit area.
Expressing the velocity VL in terms of the average
field Ε = ( V L / C ) B , we obtain for the effective conduc-
tivity W = afE2

σ/ = ^ · (1.5)

The crude model of a vortex with the core cut out does
not make it possible, of course, to determine the nu-
merical coefficient in this formula, but the order of
magnitude turns out to be correct.

The second mechanism, which was pointed out by
Tinkham, is essentially connected with the inhomo-
geneity of the order parameter in the vortex. In an im-
mobile reference frame, at a given point of the metal
through which a vortex filament passes, the order
parameter varies with time from an equilibrium value
| Φοί far from the vortex to zero, and then increases
again as the vortex filaments moves farther from the
point. The characteristic time of passage of the filament
is t 0 ~ |/VL> whereas obviously there is also another
time To during which an equilibrium distribution of the
order parameter is established. If F is the value of the
free-energy density, then in the case of slow motion
To « t 0 the fraction of the energy

τ0 f

is dissipated in irreversible fashion. The dissipation
per unit volume in a unit time is

For the effective conductivity we obtain

~0n cm c cm TQC ti cg
°' = B ^ ο"δ5" HC,B 65 B~'

As the characteristic relaxation time it is natural to
choose To ~ Κ/Δ(Τ) . Inasmuch as in the limit of a small
mean free path (κ » 1) we have[ 2 1 ]

we again obtain expression (15) as an estimate of this
mechanism. Actually, as we shall show below, in the
vicinity of the critical temperature the mechanism
wherein the order parameter relaxes prevails.

c) Dissipation function. The dissipation mechanisms
discussed above for the motion of vortex filaments were
brilliantly unified by Schmid[22] in a phenomenological
theory constituting an attempt to generalize the Ginz-

burg-Landau theory to the nonstationary case. The
simplest approach, in accord with the foregoing, would
be to include in the Ginzburg- Landau equation for the
wave function a term with the first derivative with re-
spect to time, thus ensuring relaxation of the order
parameter, whereas in the expression for the current
one adds a term in the form σηΕ corresponding to dis-
sipation of the energy of the normal component. With the
aid of the resultant equations it becomes possible to
write down a dissipation function that describes the ir-
reversible losses.

The standard method that permits a description of
slow relaxation of any parameter η is to connect the
rate of change of η with the system energy by the rela-
tion

γη = -
_6£_
δη (1.6)

The free energy F of the superconductor consists of
three parts. First, the energy F n of the metal in the
normal state, from which other energies are reckoned
usually in superconductivity theory. The second term is
the energy F e m of the electromagnetic field

w. (1.7)

The third and final contribution F s n is given by the ex-
pression of the Ginzburg-Landau theory, with an addi-
tion to the free energy to account for the transition to
the superconducting state and for the interaction of the
superfluid currents with the electromagnetic field:

^ = ί [ ^ | Ψ Ρ + - ^ | Ψ | ' + ^ Γ | ( - ί / ζ ν - ^ Α ) ψ | 2 ] ^ . (1.8)

We define the electric field Ε in the following manner:

Before we write down the equation for Φ, we note that
the left-hand side of (1,6) should in this case also be
gauge-invariant because of the complex character of
the order parameter in the Ginzburg-Landau theory.
Therefore, in any case, differentiation with respect to
time always accompanies the electrostatic potential

However, as already mentioned, the macroscopic theory
makes it possible to establish the physical meaning of
the function as a quantity proportional to the wave func-
tion of the Cooper pair. The dependence of the phase of
the latter on the time is determined at equilibrium by
the value of the chemical potential^23':

Ψ (r, ί) = Ψ (r) e-2W/\

Thus, the left-hand side of Eq. (1.6) for Φ contains the
time derivative in the combination

ft -£- + 2i(KD + 2ίμ = h -~ + 2HKD,

where

is the electrochemical potential, and it is most natural
to reckon chemical potential from its value for the
normal metal in the absence of a field.

In the isotropic model

The electroneutrality condition, which is formulated as
div j = 0 by virtue of the continuity equation
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we obtain

means constancy of the charge density. Therefore the
vanishing of 3N means that we can neglect the differ-
ence between Φ and Φ .2) We have

W

(1.9)

(1.10)

In accordance with (1.6), we write down a generalized
equation that describes the relaxation of the order
parameter Φ of the Ginzburg-Landau theory, in the
form

—&φ- (1.11)

and a complex-conjugate equation for Φ*.

Equation (1.11), jointly with Maxwell's equations

(1.12)

rot Η = •— ί -!- — -i£- /ι Λ·3\

• c J c at K1·10)

and expressions (1.7), (1.8), (1.9), and (1.10) makes it
possible to formulate the energy conservation law. In-
deed, let us write down the time derivative of the total
free energy

dF _ dFrm . dFs,,
dt ~~~ dt ' dt '

The first term in this expression is transformed with
the aid of (1.12) and (1.13) into

iip_= | (-divS-jE)dV, (1.14)

where S is the Poynting vector:

In the second term it is necessary to differentiate
Φ, **, and A with respect to time. We obtain directly

• Λ ~ J L l ' 6 ¥ (r) ' V
- 4 - A •

»A(r) J (1.15)
+ j J L div [ψ (fiv-!-^- Α) Ψ·-'- c.c] dh.

The integrand in the first term of the right-hand side of
(1.15) can be written, according to (1.9), (1.10), and
(1.11), in the following manner:

U ax
c dt

•^^-+- "№
- + 2ίβΦΨ 4 Φ div j , .

Combining the so-transformed expression for (1.5) with
(1.14) and recalling that the total current density in-
cludes a dissipative term

2)The electroneutrality condition in the form div j = 0 is equivalent,
accurate to terms ( ω / ω ρ ) 2 (where ω ρ is the plasma frequency) to the
approach with the Poisson equation for a self-consistent potential.
From the condition div j = 0, generally speaking, it does not follow
that div Ε = 0. The longitudinal electric field is the result of Coulomb
forces exerted by the ions on the electrons which shifts relative to the
latter under the influence of the external action, and is necessary to
satisfy the electroneutrality condition in first-order approximation. In
particular, in the problem in question, where the parameters of the
superconductor are indetermined in space, an alternating charge density
6(Ne) arises, and is generally speaking extremely small.

IL = - f W (r) dh- \ div iE <Pt,
dt J J

where JE is the density of the energy flux

2v I
(1.16)

It should be noted with respect to (1.7) that the elec-
tric field is produced in the present situation as a re-
sult of an induction mechanism. Therefore, as is always
the case in the theory of quasi stationary currents in a
metal (see, e.g.,[24]), the electric field Ε is small.
Estimating it from (1.12), we see that Ε ~ (wd/c)H
« H, where d is the characteristic dimension of the
problem. Therefore, properly speaking, we could
neglect E2 in comparison with Ez in expression (1.7)
for the electromagnetic-energy density. Similarly, we
can omit from the right-hand side of (1.3) the term with
(l/c)3E/at, since the characteristic frequencies ω are
small:

It is then easy to verify that this Maxwell's equation can
be represented in the form

i.e.,
—6A(t) (1.17).

Thus, Eqs. (1.11) and (1.17) determine the generalized
friction forces corresponding to the variables Φ, Ψ*,
and A, while W is by the same token the dissipation
function.

Introducing the phase of Φ = | ψ | e^ , we rewrite (1.6)
as follows:

(l.lii)

Subtracting from (1.11) its complex conjugate, we obtain

and since div j s = -div jn, the last relation is trans-
formed into an equation from which it is necessary to
determine the scalar potential Φ:

(1.19)

By the same token, the problem of finding the resistance
of the vortex structure at low velocities of its motion
has in principle been solved. Indeed, all the quantities
characterizing the vortex system can be written in first
order in the form

/ (r, t) = /„ (r - vt() + Λ (r - vL(),

where the corrections fi to the distributions of | Φ|, θ,
and A in the moving reference frame are themselves
linearly small relative to the velocity of motion ντ_,.
The time derivatives in (1.18) and (1.19) can therefore
be written in the form

i.e., they are determined by the solution of the static
problem. The potential Φ is proportional to the velocity
and should be determined from the inhomogeneous
linear equation (1.19), which also contains known quanti-
ties . The dissipation per unit volume is proportional to
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vfj. The average electric field Ε is determined from
the condition

E—j-[B,vt]. (1.20)

Thus, expressing the velocity in terms of E, we obtain
an energy dissipation proportional to the square of the
macroscopic electric field, and this yields directly the
specific conductivity σΐ in the superconducting phase:

If the vortex lattice is rarefied enough, as is the case
either when the filament concentration is very small, or
when κ» 1 in the field interval Β « Hc2, then pf = ajj1

is obviously proportional to the number of filaments. It
is therefore convenient to write pf in the form

r\ ___ β —1 IT n\ №

I Ha (T) (1.21)

where the dimensionless coefficient β(Τ, Β) is to be de-
termined, and Hc2(T) is the upper critical field at the
given temperature.

Let κ » 1, so that in fields Β « HC2 it suffices to
confine oneself to the motion of an individual filament,
a motion due to the local (i.e., in the vicinity of the given
filament) superfluid component of the current j t r . For
unaccelerated motion, the Lorentz force F L = (l/c)[jtr
χ <p0] per unit volume of the vortex is offset by the
viscous-friction force -TJVL. If jtr = erf Ε = (af/c)vj_,B,
then the viscosity coefficient can be expressed from
this in terms of the conductivity

η = _ 2 ^ - = β ""^fr- . (1.22)

No special assumptions were made above. At κ » 1,
Eq. (1.19) and the expression (1.18) for W can be simpli-
fied. Indeed, in this case, besides the fact that we can
choose div A = 0 for an individual filament, the magni-
tude of the vector potential A at distances ρ ~ ξ is
small in comparison with (c/2e)V# :

The second term in the curly brackets (1.18) and the
term ση(νΦ2) are both transformed with the aid of
(1.19) into

— (ΛΘ + 2eO>) αηψΦ + αη (νΦ)2 = -^ θσ,,ν2Φ τ- ση div (ΦνΦ)

Discarding the surface contribution, we obtain for the
energy dissipation per unit length of the vortex

The two terms in (1.23) represent respectively the con-
tribution made to the energy dissipation by the relaxa-
tion of the order parameter and by the ohmic dissipa-
tion by the normal excitations in the core of the vortex.

Qualitatively, formulas (1.22) and (1.23) correspond
to the general experimental situation. Since, however,
the equations (1.11) and (1.17) follow quantitatively from
the microscopic superconductivity theory only in alloys
with paramagnetic impurities, we shall defer the calcu-
lation and the discussion of (1.23) to the appropriate
section.

2. RESISTANCE OF TYPE II SUPERCONDUCTORS
IN SIMPLE MICROSCOPIC THEORY

Simple equations such as (1.11) and (1.17) appear in
the microscopic theory only in two cases, alloys with
large concentration of paramagnetic impurities, and
alloys in a strong magnetic field (HC2 - Η « HC2). In

Chap, 3 below we shall explain qualitatively the formal-
ism of the BCS microscopic theory becomes so compli-
cated when it comes to the study of kinetic phenomena
in superconductors. Here we note only briefly that this
circumstance stems from the threshold character of the
electronic spectrum of the superconductor. The para-
magnetic impurities and the magnetic field have one
common property that alters in principle the indicated
feature of the spectrum, namely, they violate the invari-
ance of the electron Hamiltonian to time reversal. As is
well known, in Cooper pairing the wave functions of two
electrons are obtained from each other by the time-
reversal operation. Violation of this in variance by the
action of the magnetic field, or as a result of the inter-
action of the electron with the proper angular momen-
tum of the impurity, suppresses the pair production. In
a definite range of concentrations this suppression
manifests itself in the so-called "gapless superconduc-
tivity" [ z 5 ] where there is no energy threshold for the
excitation. In the limit when the density of states of the
superconductor is us(e) "* ^n(0)> the kinetic equations
become much simpler and take the form of the diffusion
equations of the preceding section.[ ? 1 . A magnetic field
acts similarly, as proved in the thermodynamic case by
Maki[ 1 4 ] and by Caroli, Cyrot, and de Gennes.c 2 6 ] . The
nonlinear kinetic equations of the diffusion type (1.11),
as it turns out, can be written down also in this case'-9^,
but, as we shall see, the situation in the region |H
- HC21 « HC2 is much simpler everywhere except in
the immediate vicinity of Tc. The point is that the
strong magnetic field suppresses the superconductivity
in the entire volume. Therefore, instead of the picture
of localized vortex filaments, the state of the supercon-
ductor corresponds in this limiting case to a strong
overlap of the filaments, and the order parameter is
uniformly small throughout the entire volume.

a) Superconducting alloys with paramagnetic impuri-
t ies . Weak and intermediate fields (B « HC2). The be-
havior of these alloys in an alternating field in the limit-
ing case of high concentrations (Tc « TcO or
« 1) is described by the equations

(2.1)

j = L|A|2Q;

here D = Zvjr/3 is the diffusion coefficient and r s is the
average time between the collisions of the electrons
with the impurity, accompanied by spin flip. Equations
(2.1) were written for the order parameter of the micro-
scopic theory of superconductivity, and the following
notation was introduced:

Q = A--^V9, μ = θ + 2εΦ (2.2)

(θ is the phase of the order parameter; throughout this
section we use fi = 1).

The correspondence between Eqs. (2.1), (2.2) and
(1.11), (1.17) is complete if we put Φ = Δ VNoTTS/2 and
γ =K/2mD. Therefore, in particular, the viscosity η
could have been determined by using expression (1.23)
for the dissipation function. We use here a different ap-
proach 1 ^ with an aim, in particular, of demonstrating
the concept of the equivalence of the Lorentz force and
the Magnus force, meaning to show that the motion of
the vortex is caused by the field of the superfluid veloc-
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ity in its vicinity. More important is the fact that the
developed approach is applicable also in the case when
equations such as (1.11) and (1.17) do not hold.

We shall assume below that the constant of the Ginz-
burg-Landau theory is κ = c(48vDanTl/2 » 1. There-
fore, as already mentioned, in the calculations all the
quantities will be suitable over distances ρ « 6 in which
the magnetic field (and consequently its contribution to
the vector potential A) oan be neglected up to fields
Η « HC2. Therefore even if the distances d between the
filaments are small in comparison with the penetration
depth, but still large relative to the coherence radius,
the expression for Q in (2.2) reduces to the form
Q = -(c/2e)V0.

Putting 2βΦ = μ* and denoting by js = j/e the elec-
tron momentum flux density, we can rewrite the system
(2.1) in such a way that the electron charge is com-
pletely eliminated from it (we shall henceforth omit the
symbol for the absolute value of Δ):

[ ] )2Δ=..η, (2.3)
Δ=(θ-|-μ*) — D div (Α2νθ) =-0, (2.4)

ί'—§τ(νμ·-2τ^νθ). (2.5)

Equations (2.4) and (2.5), jointly with div j = 0, yield

UV2,u* - 2τ,Δ2 (θ -f μ*) ^ 0. (2.6)

We shall seek a solution of these equations for a slowly
moving vortex in the form

Δ = Δ η ( r - v L i ) + Δ, (r - v L i ) , 0 - Θ, (r - vLt) -f B , ( r - vLt).

(2.7)

We substitute (2.7) in (2.3) and (2.5), confining ourselves
to terms linear in VL:

-(νιν)Δ0-Γ^[-π2(7'ί-η-ιΓ·^γ-]Δ1-Ον: !Δι (2.8)

+ D (Vflj) Δ, + 2D (νθ0 νθ,) Δο = 0,

j . , - - - § - (νμ·-2τ,Δ=νθ1-4τ,ΔοΔ,νβο). (2.9)

By virtue of the spatial homogeneity, the origin in
the static solutions Δο, θ ο, and jsO of (2.1) can be
shifted by an arbitrary vector d: f(r) — f(r + d). It is
therefore obvious that Ad = (<1·ν)Δ0 and 0d = (d-V)0o

satisfy Eq. (2.8) without the inhomogeneous term
(VL * ν)Δ0) and the linearized equation div jd = 0 with
expression (2.9) (without the term νμ*) in place of jd,
if we replace throughout Δ! by θ ι and Ad by θ ά. Bear-
ing this in mind, we multiply (2.8) by Ad and integrate
over the volume of a cylinder with radius larger than ξ.
Denoting analogously Δ ν = (VL · ν)Δο and using the fact
that Αι attenuates over distances of the order of ξ, we
can integrate the terms DAdV^iby parts, discarding
the surface integrals. We obtain

Combining the second integral with the aid of the expres-
sion for jsi and jd» w e Se^

- J (j.dVe,-j.iVe<()dsr—|- j (νμ· V8d) d»r = 0.

Integrating by parts, we obtain (div jd s l = 0)

where, according to (2.6), μ = μ* - (VL · ν)θ ο satisfies
the equation

with a boundary condition that calls for finite μ* at
ρ = ο.[28'2β1 The surface integral can be easily expressed
in terms of j s i» = j s t r · Indeed, at ρ » ξ we have

Whence ^ = -

(lnB Xdl !,„) = 2πρ (^-) 2 d?+ J

where μ = VLSI sin φ and μΊ = - l/p as ρ — 0. If VL

= Ec/B and ji*> = jtr, then we obtain for the conductivity

σ, = ^ § ^ , (2.11)

where we have used the expression for the upper criti-
cal field HC2 = CTSA2

M/12CD in the given concrete prob-
lem, and the numerical coefficient α is equal to

(2.12)

where the function f is the solution of the stationary
problem for a single vortex in terms of the dimension-
less variables^'2 7 1 (in units of ξ = fWpTEF

and μι in the same units satisfies the equation

,= - ± at 0. (2.13)

The quantity «i was calculated in[ 2 8 1 and found to be
a x = 0.279. Equation (2.13) was solved numerically by
Likharev and Kupriyanovt28] and by Hu (see[ 2 8 > 3 0 ]); <*z
was found equal to 0.159. Thus, a = 0.438. The two
terms of (2.12), in accord with (1.23), describe the con-
tribution to the energy dissipation by the order-parame-
ter relaxation mechanism (αϊ) and by the ohmic losses

b) Equations of motion and deformations in a vortex
lattice in the presence of a transport current. In the
preceding section we considered one filament in the
field of the superfluid current flowing around it. The
transport current is produced in the volume of the
superconductor, of course, only at a finite vortex-fila-
ment density. In weak fields Β « Hc2i a very important
role is played by edge effects, since the Meissner ef-
fect causes the current to flow in the main near the
surface of the superconductor and to go into the interior
only in the vicinity of the filaments. This is the reason
for one of the mentioned difficulties in the measure-
ment of the vortex resistance in superconductors in the
case of weak fields. The second factor, which plays an
essential role, is the current's own field, which leads
to the appearance of a magnetic-field component per-
pendicular to the applied external field. This component
bends the vortex lattice. Thus, in a bulky sample the
current near an individual filament does not coincide in
general with the average density of the transport cur-
rent.41

When considering a vortex lattice, we shall assume
that Β « HC2, i.e., the distances d between the vortices
are large in comparison with ξ (κ » 1). We locate the

3)In ["] we cited a less accurate value, a, = 0.247.
4)We shall show, however, that expression (2.11) for the conductivity

does not change when account is taken of the latter circumstance, so
long as the current's own field is small compared with H.
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origin of the coordinates on one of the filaments. The
coordinates of the points along the filament are charac-
terized by a two-dimensional deformation vector u(z, t),
and the coordinates along the remaining filaments are
POi + u i ( z i *)» where pj is the equilibrium position of the
i-th filament. The bending of the filaments changes the
picture of the motion near the selected vortex (p « d).
Although the velocity and deformation are by definition
small, the zero-order approximation for an individual
filament corresponds now not only to a displacement but
also to a rotation of the equilibrium solutions:

Δ = Δ0(ρ —u(z, ί)) + Δ,, Q = Q0(p —u(z. *))

+ [«<P,Qo) + Qi, δ<ρ = [ η Η χ - | · ] (2· 1 4 )

(cf. (2.7)!). As a result of calculations that are perfectly
analogous to those that have led us to (2.10), we obtain[ 2 7 ]

mpF%seD

The second integral in (2.15) reduces to the form

(2.15)

where e = 2-ηκ 2(1η κ + 0.18) is the energy per unit
length of the vortex.[1) Ultimately,

(2.16)

(the last term contains the dependence on p).

This relation enables us to establish a connection be-
tween the filament velocity and the deformation of the
vortex lattice. To this end we proceed in the following
manner: The current j i ^ p ) at not large distances
from the core of the selected filament can be obtained
directly from the Londons' equation

δ 2 1

where h is the microscopic magnetic field, dSj is the
length element along the j-th filament, 5(R - Rj) is a
three-dimensional δ function, and Rj is a three-dimen-
sional vector drawn to a point on the j-th filament. From
this we easily obtain an expression for the current
j = (c/4jr)curl h:

Assuming that u(R) varies slowly over distances on the
order of δ and d, we expand (2.17) in powers of the
small lattice deformations up to second-order terms in
the derivatives fvfu:

{(Cii— ί: 6 6)[ηΗκν<ϋνιι]+<:β β[ηΗχν2ιι]

L n « x -aWJ + ^ ~ c™> IT r o t u } -

^ .

1βπ»δ«

where cij are the elastic moduli of the triangular lat-
tice of vortex filaments, calculated by Labusch.[311

Comparing expressions (2.16) and (2.18) at ξ « ρ « d,
we obtain an equation that describes the motion of the
vortex lattice

r-S- Β [ η Η χ u]
(2.19)

The lattice deformation and its velocity are deter-
mined by the applied macroscopic field Ε and magnetic
field Η or by the transport current jtr· The problem
thus consists of expressing the lattice deformation in
terms of jtr. To this end we write down the thermody-
namic Gibbs potential^*1 for a system of vortices in a
given external field H [ 3 2 ] :

^• = ̂ o + j { [y( c ' i -c e 6 ) (^) 2 + i6o(-^-)2 (2.20)

here β~0 and Ho correspond to a superconductor with an
undeformed lattice of vortex filaments, so that at Η
= Ho and au/axj = 0 the potential is #~ = J^.

Its variation with respect to the deformation vectors
ui at a constant Η determines the forces acting on the
vortex lattice. The induction Β changes in this case by
an amount

i = B,g—B<aB. (2.21)

In steady-state uniform motion, the lattice is at equili-
brium. Therefore the condition that the potential (2.20)
be a minimum yields

(2.22)l — cc6) V div u + c e 6 v 2 u + c44 ~ = —£ j ( r ,

where, by definition,

^ j , r = rotH-=[nHX^.j_[nH, V (ff2 -//„)].

We see thus that the right-hand side of (2.19) is directly
equal to the macroscopic transport current

ϊ,Γ = 6αση—^-[ηΗΧ u] (2.23)

in accordance with the statement made above.

The average electric field Ε can be obtained from
Maxwell's equation

where Β is given by (2.21):

E-^[ D «x i ] . (2.24)

Substituting (2.24) in (2.23) we see that the superconduc-
tor has a finite conductivity

We note once more that Eq. (2.22) has the same form as
the conditions for the equilibrium of an elastically de-
formed lattice

aik is the stress tensor, where the role of the external
force is played by the Lorentz force.

Taking the force acting on one vortex we find that F L
= ?JVL(VL = u is the vortex velocity), where the viscosity
coefficient (per unit length of the vortex) is

Substituting here φ0 = -nftc/e and HC2 =Kc/2ef2 we
see that

i.e., the electron charge drops out from the expression
for the viscosity coefficient, in full accord with the fact
that Eqs. (2.1) are the generalized equations of electro-
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dynamics for a superfluid Fermi liquid. Therefore the
Lorentz force is equivalent to the Magnus force exerted
by the superfluid component on a unit length of the vor-
tex. As to the kinematics of vortex motion, the predom-
inant role is played not by the dragging of the vortex by
the superfluid component of the liquid, but by the action
of the viscous forces, due to the invariance of the elec-
tron system in the alloy to Galilean transformations.

We point out also that the results of this section,
which concern the connection between the transport cur-
rent and the lattice deformations, are based on the
Londons' equations far from the vortex, and have there-
fore a macroscopic character. The details of the kinetic
dissipation processes determined by the microscopic
model enter at κ » 1 only in the value of the constant
in expressions (2.19) and (2.23) for one filament.

c) Superconducting alloys with paramagnetic impuri-
ties . Strong fields (B * HC2). Let us examine first the
equilibrium structure of the vortex lattice in a strong
field. In this case, as already mentioned, the supercon-
ductivity is strongly suppressed in the entire volume of
the superconductor. It follows from the microscopic
theory^14' that in fields close to Hc2 the superconductor
is described by equations of the Ginzburg-Landau type
in the entire temperature interval 0 < Τ < Ί ' ο Confining
ourselves for the purpose of illustration in this section
to the simplest case of alloys with paramagnetic im- .
purities, we write down the static equation (2.1)

In order for this picture to be more general and
more lucid, it is convenient to introduce the scale of
length in this equation

where Δ» = 1 (Π-

is the equilibrium value of the order parameter Δ in the
absence of a magnetic field. We then have

?-2(1_JAll)A4(v——-Α)2Δ = 0. (2.25)

In the considered range of fields, Δ / Δ Λ is small and
the gauge usually chosen for A is A = (0, Hx, 0) (we
recall that the magnetic field is directed along the ζ
axis). At Η = Hc2 the solution (2.25), which is periodic
in χ and y, as shown by Abrikosov1·11, takes the form

(2.26)

The coefficients C^ satisfy the periodicity conditions
C n + l , = C n , where ν is an integer; the parameters q
and ν are determined by the concrete geometric struc-
ture of the lattice. For a triangular lattice we have
ν = 2, with Ci = iC0. Each term in (2.26) describes the
nuclei of the superconducting phase in the form of a
strip in (2.26) describes the nuclei of the superconduct-
ing phase in the form of a strip of width ξ (Τ) (we recall
that HC2 = Κσ/2βξ2, and therefore at Η = HC2 the argu-
ment of the exponential contains simply -(ΐ/2ξ2) (χ
- xo)2, Xo = -nficq/2eH). The lines | Δ 12 = const for a
triangular lattice are shown in Fig. 6.[ ]

If the field Η is slightly smaller than HC2, then we
have Β * HC2 and the connection between the induction
Β and the magnetic field Η can be established from the
equation

FIG. 6. Lines of constant density of the superconducting electrons
for a triangular lattice of vortex filaments. [33]

δ = fie 1-1/2 is the depth of penetration of the
magnetic field. Using (2.26), we can show that

. _ c2h • β | Λ |» . _ c2» a Ι Δ ρ ( 2 2 7 )

whence

Averaging hz over the volume of the sample we obtain

ht = B=H—iij-JAH. (2.28)

To find | Δ | 2 we multiply (2.25) by Δ* and integrate
over the volume of the superconductor. Then, taking
(2.26) and (2.28) into account, we obtain

where 0 L = | Δ |4/ (| Δ f f. For a triangular lattice we
haveC33] 0L = 1-16· We shall find it more convenient to
express | Δ | 2 not in terms of Η but in terms of B, since
it is precisely the induction Β which is equal to the
field Η in the vacuum at the sample surface. Substitut-
ing (2.28) in (2.29), we find

(2.30)

In the concrete case of a superconductor with para-
magnetic impurities in strong fields, it is easiest to
find the resistance1 3 4' by starting from expression (1.16)
given in Chap. 1 for the dissipation function, but putting
there y = fi/2mD and * =ΔνΝ ο ττ δ /2 :

w-.
It is convenient to choose the gauge for the potential

such that the electric field, which is homogeneous in
zeroth order in | Δ |2, is described by the scalar poten-
tial

Φ = —Ε,χ, a A = (0, H^x, 0).

In this case the second term in W yields, after averag-
ing over the sample, simply σηΕ2 accurate to | Δ |2,
since the deviations of the field from the mean value,
5E = Ε - Ε, drop out: 5E = 0 and (5E)2 ~ | Δ | 4. To cal-
culate the first term, we note that in first order in the
velocity we can assume 3A/9t = -(ντ_,· ν)Δ 0 , where
Δο is the equilibrium value οί_Δ, given by (2.26), and
the average electric field is Ε = - ( 1 / C ) V L X Β =
- ( 1 / C ) V L X Hc2, so that in the chosen gauge of Φ the
velocity VL is directed downward along the y axis.
Using this, we can write

_ rot h = j = To simplify the calculation of these expressions, we
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introduce the operators

which act on Δ and Δ*, respectively.

With the aid of (2.26) we can easily verify that Π*Δ0

= 0 and [Π+, Π-]- = (4e/fic)Hc2. We therefore have

(Δ;Π+Π_Δ0)

(Δ0·[Π+, Π_]Δ.)«

Thus

Equating W = afE2, we obtain[34]

(*-"£ (2.31)

This result is customarily represented as the slope of
the plot of the resistivity pf against B:

„ _ YHC, dp, η

L p,, dB \B=HC2

In dirty alloys with Ζ « ξ the Ginzburg-Landau parame-
ter κ is large, therefore

We note that the conductivity in strong fields can be
obtained also by direct calculation of the current in
Eqs. (2.1). The equation for the order parameter has
then an exact solution.

Let us write down again the time-dependent equations
(2.1) in the form (2.25)[7]:

(2.33)

As before, we choose the gauges for the potentials in
the form Φ = -E x x and A = (0, Hc2x, 0). Since
Ε = -(1/C)VL x B, it follows that VLX = 0 and vLy
= -cE x /H c 2 . It is easy to verify that the solution of
(2.32) with these potentials is the function[22]

A =

(2.34)

which, obviously, describes uniform motion of the initial
equilibrium structure (2.26) with velocity VLy. Using
the obtained expression for Δ, we easily calculate the
current (2.33). By the same procedure as in the deriva-
tion of (2.27) we get

I*'->L, | A I-

iAf.
dz

After averaging over the sample, we have[ 2 2 > 3 4 ]

/„ = ", /* = " „ " * — 1 6 π δ 2 £ β ΔΙ, η :

We thus obtain again for the conductivity <j{ the expres-
sion (2.31). Formulas (2.31) if taken literally (the ex-
pression for K\) pertain the case of paramagnetic alloys.
The idea of the calculation, however, is close in the
general case (which will be discussed later on) to that
of the scheme described above.

3. RESULTS FOR GENERAL CASE OF
SUPERCONDUCTING ALLOYS

a) Viscous flow of vortices in superconducting alloys.
The case Β « HC2. The dissipation-function method
described in Sec. c of Chap. 1 cannot be used directly to
calculate the viscosity for the motion of vorte filaments
in ordinary superconducting alloys. The nonequilibrium
processes in superconductors should be described by
the kinetics of the excitations in the superconductors.
The corresponding system of nonequilibrium kinetic
equation, which generalizes the ordinary kinetic equa-
tion in a normal metal, was derived by Eliashberg from
the microscopic theory.[35] It is too complicated to
present in the present review. As to the qualitative
aspect of the matter, it can be understood by consider-
ing the singularities of viscous flow of vortices near the
critical temperature. In this region, our subsequent
reasoning, as shown by the detailed microscopic
theory,[36] is also qualitative in character.

Near Tc, the vortex dimension increases, |(T)
cc (Tc - T)"1/2. The motion of the vortices leads to a
deviation of the excitation distribution function from the
equilibrium Fermi function no(e) = (e€' Τ + I)"1. Since
the times of electron energy relaxation due to collisions
with one another and with phonons are large, the steady
state sets in via outflow of the nonequilibrium excita-
tions to infinity. The corresponding times are deter-
mined by the diffusion relation Dtdiff ~ ξ2 <χ (Tc - T)"1.

We write down the BCS-theory equation that defines
Δ ( Γ , t), assuming that the dependence of the latter on r
and t is slow enough:

Δ(Γ, i) = r, ί)[1-2Β(ερ (3.1)

With respect to the level density ι/s /νΆ it is assumed
that it is determined by the usual relation vs = 0 at
e < Δ and vs = une /e 2 - Δ2, but with a local value
| Δ ( Γ , t ) | . In Eq. (3.1), n(ep, r, t) is the distribution
function of the normal excitations, which differs little
from the equilibrium η = no(€) + nx(ep, r). In the vicinity
of the critical temperature at thermodynamic equili-
brium, Eq. (3) can again be expanded in terms of Δ/Tc
and VA/T C , and we get the known equations of the
Ginzburg-Landau theory, Therefore, with an aim at
repeating the derivation of Sec. a of Chap. 2, which
enabled us to find the connection between the superfluid
component of the current with the vortex velocity, we
write down, in analogy with (2.8), the linearized equa-
tion for the correction Δι to the gap on account of the
motion of the vortex:

where the left-hand side (without θΔ/at) is the lineari-
zation of the Ginzburg-Landau equation for alloys
(Gor'kov[121), and the right-hand side, according to (3.1),
is

For the function
equation

P , r) de.
e2-A0»

we write down the usual kinetic

where
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σ, βα(Τ)

3e

It is possible to prove rigorously the local equation (3.3)
only with the aid of the microscopic theory,[ 3 β ] but it
can be used in the vicinity of Tc because Δ is small in
comparison with T. Therefore almost all the electrons
are excited and the contribution from the paired elec-
trons has an additional smallness A / T C . If there are
many impurities, i.e., I « ξ, then (3.3) reduces in the
usual manner to the diffusion equation, since the second
term of the expansion of the dependence of n^ep) on the
direction ρ in Legendre polynomials

η, (ερ) = ή-, + (ν,η,) + . . .

is small to the extent that //ξ « 1. Indeed, taking the
zeroth and first harmonics of Eq. (3.3), we obtain

(3.4)

(3.5)

Assuming as usual that θΔ/at = -(VL · ν)Δ 0 and putting
Si = -weVL cos ψ, we obtain from (3.5) the following
equation for w:

which can be easily solved[3ei with the boundary condi-
tions

»t(p)-»-0 as ρ-*οο (β>Δ«,),

»«(Po) = O a t Δο(ρο) = ε

(3.7)

repeating the derivation of relation (2.10), we get

№ H X d], jtr) =~^ j Δ ! α > (dV) Δορ dp d(f •:

In this expression we have retained only the principal
term due to the nonequilibrium character of the distri-
bution function. All the remaining terms, particularly
the Joule dissipation, make smaller contributions. The
reason is clear from the forms of the right-hand sides
of (3.2) and (3.5). From (3.5) we estimate

"LASS _ 1 _ ,,,,-2 _ε_

" l ~ D V i 5 = I a 22" 2Γ

The integral in (3.7) with respect to e makes the main
contribution in the region e ~ Δ. The quantity Aia' is
of the order of νΐ,,Δοξ/DT OC VL V'TC - T, and can be
compared with the contribution, say, due to the diffusion
derivative (ir/8Tc)<Wat ~ νΐ,Δο/Τξ OC V L ( T C - T) in
the left-hand side of (3.2). It can be similarly verified
that the contribution made to the ohmic current from
ni, j °c -ejvjrnidedup is due to electrons with e ~ T,
and therefore the energy dissipation due to the electrons
is determined unjust as in Sec. b of Chap. 1 by the
estimate1 1 9 1 of the fraction of the superconductor volume
occupied by the normal core of the vortex. This mech-
anism always makes a contribution on the order of
unity to the coefficient of af, whereas calculation of
(3.7)[37] yields for the conductivity of the alloys near
T c the expression5'

s)The coefficient 1.1 in this expression is obtained by using the inter-
polation curve for Δ0(ρ). At the same time, a computer calculation
[37] of the integral in (3.7) yielded β = 2.85 [1 - (T/T c )r 1 / 2 . Such a
discrepancy is strange, but no other calculations of (3 have been pub-
lished to date.

From the point of view of Eqs. (2.11), this result means
an additional factor (1 - T/Tc)"1 / 2 in the coefficient a.
In other words, as Τ — T c , owing to the large dimen-
sions of the vortex, the relaxation of the order parame-
ter is slower than proposed in [ 2 0 ] . We call attention also
to the fact that, just as above, the charge of the elec-
tron drops out of (3.7), since j/e has the meaning of the
electron momentum flux density.

We have thus seen that the square root singularity in
the density of states of the BCS superconductivity theory
leads in (3.1) to a strong dependence of the order
parameter on the nonequilibrium increments to the ex-
citation distribution function in the region | Τ - T c |
« T c . Evidence of this singularity can appear even in

the case when ys(e) does not become infinite, i.e., the
singularity is only smoothed out because of effects that
violate the Cooper pairing. For example, if the concen-
tration of the paramagnetic impurity is not too high, so
that the transition temperature Tc changes little,
|,TC - TcO| « TC0 ( T S T C 0 » fi), then, as shown by
Eliashberg,[38], in the temperature region τβΔ « Κ
there is likewise an effective increase of the order-
parameter relaxation time. The conductivity of the
vortex lattice (H « HC2) is [ 2 7 ]

The case when an analogous role is played by the mag-
netic field for an ordinary superconducting alloy was
considered by Larkin and Ovchinnikov[39>401 (see the
next section).

We have discussed in rather great detail the calcula-
tion of the conductivity (or viscosity) of the vortex
structure in the vicinity of the critical temperature. The
noted singularities of this limiting case make it possible
to obtain relatively simple formulas. The general case
of arbitrary temperatures is exceedingly laborious if
for no other reason that the spectrum itself, the state
density, and the magnitude of the gap change signifi-
cantly over small distances. General equations that
make it possible in principle to obtain by means of
numerical calculations the conductivity of a lattice of
vortex filaments were obtained for dirty alloys from the
complete system of kinetic equations by Gor 'kov and
Kopnin[41), However, a solution for these equations was
obtained only for the case of low temperatures. The
conductivity at Τ = 0 i s [ 4 1 ]

„ _ 0.9onHa(O)

b) Superconducting alloys. Strong fields (B « HC2)·
The microscopic theory of the motion of vortex fila-
ments in alloys in the region of strong fields Hc2 - Η
« Hc2 is much simpler than in weak fields since, as
indicated in Sec. 2 of Chap. 2, the order parameter
Δ/Δ*Ι ~ / I - (H/HC2) is small in the entire volume of
the superconductor. Therefore in the thermodynamic
(static) case there exists a generalization of the Ginz-
burg-Landau theory/1*1 where the expansion of the free
energy is in terms of the parameter Δ / Τ ~ VHc2 - H.
To summarize briefly the results, we indicate that, ac-
curate to linear terms, the equation for Δ takes in this
theory the form

[in 2 -̂ + ψ(τ + ί~')~ψ("5")]Δ==0'' ( 3 · 8)

here ψ(ζ) is the logarithmic derivative of the gamma
function, and ρ is an operator
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Since the function (2.26)

is an eigenfunction of the operator p :

ρΔ — ρ0Δ,

where p 0 = 2DeHC2/47rTc, Eq. (3.8) reduces to an
algebraic equation, from which we determine the upper
critical field HC2(T):

The current density in the mixed state is

The connection between the induction and the field is
given by a formula similar to (2.28):

(3.9)

For M, in turn, we have

where we have introduced a new parameter κ2(Τ).[ 1 4 ' 2 6 1

As Τ — Tc we have ρ — 0 and all the foregoing formu-
las go over into the ordinary expressions of the Ginz-
burg-Landau theory, while .

κ 2 (Τ) ->- κ.

A plot of κζ(Τ) is shown in Fig. 7.

In the description of the kinetic phenomena in super-
conducting alloys at Η « HC2, the distribution functions
of the nonequilibrium excitation can also be expanded in
the order parameter, since the singularity of the state
density i/s(e) is completely smoothed out. It is clear
that in this case the state density differs little from its
value in the normal metal to the degree that | Δ | is
small. The expansion parameter, however, is in this
case the ratio Δ Α Ο , where e0 = 2DeHc2(T)/c. As shown
by the microscopic theory[ 9', the contribution of the
nonequilibrium excitations to the order-parameter re-
laxation processes has an additional smallness ( Δ / € 0 ) 2

relative to the relaxation processes described in Sec. c
of Chap. 1. Therefore in the case when Δ /€ 0 is small a
simple generalization of the static equation for Δ to the
nonstationary case consists, roughly speaking of re-
placing[ 4 2'4 3', just as in the case of paramagnetic im-
purities (2.32), the operator D[V - (2ie/fic)A]2 in the
static equation (3.8) by

Therefore the solution in the presence of an electric
field is, as before, an expression of the type (2.34),
which describes a vortex lattice moving as a unit. As

to the electric current, the contribution of the nonequili-
brium excitations turns out to be comparable with the
ordinary ohmic current even in the case when their
contribution can be neglected in the equation for Δ. [ 4 4 1

It is of interest to note that the inequality Δ/ε0 « 1
at a given field Η can be violated if Τ is close enough
to T c , since Δ ~ fTc - Τ and e o ~ (Tc - T). This
occurs at 1 » 1 - (H/HC2) » 1 - T/T c . In this case the
problem of finding the conductivity becomes much more
complicated.

In that simple case when the inequality Δ/eo « 1 is
satisfied, the calculation of the conductivity in the mixed
state is analogous to the scheme described in Sec. c of
Chap. 2, and consists of finding the corrections, propor-
tional to | Δ \d, for the current σηΈ in the normal state.

In this review we cannot dwell on the details of the
rather cumbersome calculations of the conductivity in
this case. We confine ourselves only to the results.

The first attempt at applying the microscopic theory
to the problem of the resistive state of type-II super-
conducting alloys was made by Caroli and Maki.[ 4 9 !

Their result is

Using (3.9) and (3.10), we can represent this result in
the form

where a = π

2/2 = 1.20.

However, no account was taken in[ 4 2 ) of the contribu-
tion of the nonequilibrium excitations to the electric
current. This circumstance was first pointed out by
Thompson.[44) The expression obtained by him is

where LD(T) = 2 + [poip"((l/2) + po)/'/((l/2) + po)l. A
similar result was obtained later by others [ 4 3 ' 4 S ' 4 6 ' . As
Τ -» Tc, the conductivity is exactly double the value
calculated int42l. A plot of S = [(Hc 2/pn)dpf /dB]B=Hc2
against Τ is shown in Fig. 8.

Formula (3.11) no longer holds in if Τ is in the im-
mediate vicinity of Tc. As already noted above, at
1 - (H/HC2)» 1 - (T/Tc) an important role is assumed
by the nonequilibrium excitations upon relaxation of the
order parameter. The phenomena that evolve in this
temperature region have the same physical nature as in
weak fields, and were discussed in the preceding sec-
tion. The conductivity of superconductors in this region
of temperatures was calculated by Larkin and
Ovchinnikov.[39'40i They have shown that for supercon-
ducting alloys

On the other hand, in the case when the Cooper pair-

O.S 0.3 1.0
T/T:

FIG. 7. Dependence of the generalized Ginzburg-Landau parameter
κ2 on the temperature [26] (K is the ordinary Ginzburg-Landau parameter

FIG. 8. Temperature dependence of
the slope S(T) = [(H/pn) dpf/dH]Hc2

 i n

strong fields. I4 4]
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ing is affected also by a small concentration of para-
2magnetic impurities, viz., TSTCO :

in the field range
A Λ- V Ss ^ 8

R> Δ2τ$ » Reo, i.e.,

where
γ ..

βΐ.<2χ»κ·-ΐ)+ί V1 HZ I'

the conductivity is [ 3 9 ]

Near the critical field HC2 it turns out to be possible
to investigate dissipative processes in superconductors
at an arbitrary ratio of the mean free path / and the
correlation radius ξ0 (the dimension of the Cooper
pairs )J 4 7 ] Because the formulas are cumbersome, we
refer the reader to the original paper.

c) Surface impedance. As already mentioned in the
Introduction, the observation of the picture of the vis-
cous flow of vortices in the experiment is made diffi-
cult by the action of the pinning forces, so that the pro-
cedure frequently used to determine the resistivity of
a superconductor in the mixed state is to measure the
energy dissipated when a magnetic wave is reflected
from the superconductor surface (usually in the centi-
meter-wavelength band). This dissipation, as is well
known, is determined by the real part of the impedance
(the surface resistance)

where λ (ω) is the "skin" depth of penetration of the
electromagnetic field.

In a weak field Β « HC2 the problem of reflection of
an electromagnetic wave from the surface of a super-
conductor in the mixed state can be solved, in first
order in ω, with the aid of Eqs. (2.21), (2.22), and
(2.24), and also the relations

We note that all these relations are quite general in
character and do not depend on the concrete model of
the superconductor.

It is easy to showt27] that following the reflection of
the electromagnetic a superconductor in the mixed
state behaves like an anisotropic "medium" of sorts,
described by Maxwell's equations

1 3B_

and by the material equations

j . = σ,Ε,, Β . = μΗ_

(the tilde labels the alternating quantities), and the
magnetic permeability μ depends on the direction of the
magnetic field of the wave relative to Ho. If H^ is
parallel to Ho, then μ is given by

and if H~ is perpendicular to Ho, then

The moduli Cn and c M are equal t o [ 3 1 ]

At κ » 1 and in the field interval H c j « Η « HC2 we
have

Proceeding in the usual manner/2*1 we can obtain the
"macroscopic skin" depth of penetration of the electro-
magnetic field

d+0"

The surface resistance is

where it is necessary to use for af the corresponding
expressions obtained in Chaps. 2 and 3 (see also (4.1a),
(4.2a), and (4.3)).

This approach is valid when the "skin" depth λ(ω)
is large in comparison with the depth of penetration of
the constant field:

so that the effects on the surface itself can be neglected.
Unfortunately, the inequality λ » 6 is satisfied only in
the meter wavelength band. Thus, even at temperatures
lower than Tc we have

where the characteristic values of T c /R are of the
order of 1011 sec"1.

In the case of strong fields (Ho « HC2) the frequency
dependence of the impedance can be calculated more
fully. We put j = -Q(OJ)A. The skin depth λ is expressed
in terms of Q(a>) by means of λ"2 = 4jrQ(a>)/c. The
kernel Q(o>) can be represented in the form

Q (ω) = Qn (ω) + Q' (ω),

where

corresponds to the normal metal and Q' is a small cor-
rection necessitated by the incomplete suppression of
the superconductivity. We obtain for the surface resist-
ance

»)}• (3.12)

In the limit as ω - 0 this relation yields

(3.13)

(Rn = SZvuvcnfi^ is the surface resistance of the normal
metal). We note that the derivative 9Rf/9B|HC2 *s e x ~
pressed directly in terms of the derivative dpf/dB |Hc2:

/ He2 dB,\ _ 1 / Hrt d2j_\ _
\ΊϊΓ ~dlf ) HC2~ 2 \ p n dB IHC2—

The kernel Q'(a>) was calculated by Thompson.[44]

At low frequencies fia> « ir(Tc - T c ) we have

Re ι?'
= 0, Im?' (3.14)

where the magnetic moment is given by (3.9). From
this we readily obtain with the aid of (3.12) and (3.13)
the expression (3.11) for the conductivity. In the region
near T c , where the frequency ω becomes comparable
with TT(TC - T)/S for Κω « TTTC and T c - Τ « T c , we

have

(3.15)
4πΓψ' (1/2) J "
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FIG. 9. Family of curves for the slope (1/2) S (ω, Τ) = { [ H / R n M ]

dRf (co)/dH}Hc2, expressed in terms of the surface impedance. [48]

1 -c/Tc = 0; 2-v/Tc = 0.4, ω/ε0 (0) = 0.0109; 3-e/Tc = 2, ω/ε0 (0)

= 0.0544; 4-WTc = 6, ω/ε0 (0) = 0.1633; 5-P/TC = 10, w/e0 (0)

= 0.2771. S(0, T) (curve 1) coincides with the slope S (T) = [(H/pn)

dpf/dH]Hc2 (see Fig. 8) of the resistance in a constant field.

Figure 9, which is taken from[48', shows the numerically
calculated slopes

1 ι tin r\ — ( Η<Λ iR> \

for different values of the parameter co/eo(0).

4. STATUS OF EXPERIMENTAL RESEARCH

a) Summary of principal theoretical formulas. Be-
fore we proceed to discuss the experimental data, we
summarize the formulas describing the conductivity of
various superconducting alloys in weak and strong
fields at different temperatures.

1} Alloys with large concentration of paramagnetic
impurities.

a) Weak fields Η « HC2, κ » l^27"301:
σ, _ 2.63//c2 (T) Pi = 0.3811 ^ (4.1a)

b) Strong fields Η « H C 2 [ 3 4 ]

α ι 12x' / , B__ \

PI , 12χ' I. B_\
1 β!,(2>(=-1) + 1 V Hct I

(4.1b)

(4.2a)

(4.2b)

(in the limit κ » 1) we have in practice pf/pn = 1
- 5.17 [1 - (B/HC2)]).

2) Alloys with low paramagnetic-impurity concentra-
tions :

a) #<ffcS, κ>1, τΛ

b) HxsHel, n/T,Te<£l

At κ » 1 we have
^ . = 1 + 0.24 l £ ( l _ ^ _ ) 2 .

3) Ordinary superconducting alloys (without para-
magnetic impurities). Weak fields Η « Hf»2 (κ » 1).

a) Low temperatures Τ « T c

[ 4 1 ) :

g / _ 0.9ge,(0) pi LIB . . .
^ s ' Pn - Hciifi) • (4.da;

b) High temperatures T — T c t 3 6 ' 4 0 ] e )

P» V '-TTlT^fJ· (4.3b)

4) Alloys without paramagnetic impurities. Strong
fields.

At κ » 1 we have

(see Fig. 8).
b ) 1 - (HIHel) > 1 - {T/Tc)i3'l:

(4.4a)

I 13/2

At κ » 1 we have
(4.4b)

It should be noted that so far (with the exception of the
interpolation curve obtained by Danilov, Kuprianov, and
Iikharev[37') no calculations have been made of the de-
pendence of pf on Η in arbitrary fields.7'

b) Results of comparison of theory and experiment.
Let us now dwell briefly on the experimental measure-
ments of ρί in the mixed state. At the present time
two methods are being used for this purpose: measure-
ments with direct current and the method of surface re-
sistance.

In the first method the sample is placed in an external
magnetic field Hci < Η < Hc2 and an electric current
jtr perpendicular to the magnetic field is made to flow
through the sample. The experimental setup is shown in
Fig. 2. The resistance pf is identified with the slope of
the linear section of the current-voltage characteristic.
Already, as already mentioned many times above, such
a "viscous" flow of vortices is impeded by the pinning
of the vortices by the inhomogeneities of the sample
structure. This causes the linear sections of the current-
voltage characteristics to be located in regions of cur-
rents large enough to exceed on the average the so-
called critical current jc at which the vortices become
detached from the inhomogeneities; in addition, these
sections turn out to be relatively short. All this makes
the reduction of the experimental data difficult and de-
creases the accuracy of the experiment. To obtain
reliable results it is therefore necessary to subject the
samples to a special chemical treatment that eliminates
the defects of the structure.

There are also other difficulties connected with the
bending of the vortex filaments, which is due not only to
the pinning forces but also to the Meissner effect and
to the need to take into account the field produced by the
transport current itself. If the transport-current
density is jtr, then the field on the surface of a sample
of thickness D is

2n
H-, -JtrD.

6)See footnote 5.

7)Figure 10 shows the plot obtained in [37] for pf against the ratio B/HC2
for alloys with large concentration of paramagnetic impurities. The
slope of the pf(B) curve in strong fields is equal to 5.17, in agreement
with the result of [ 3 4 ], but the slope obtained in [37] for weaker fields
is 0.318 and does not agree with the results of [28] and [3 0]. In our
opinion this discrepancy is due to an error made in [ 3 7 ] .
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It follows from the results of Chap. 2 that the expres-
sions for the conductivity in weak fields have been ob-
tained under the assumption that the self-field of the
current is small in comparison with the applied field,
which at a low vortex concentration is of the order of
Hcl. On the other hand, the transport current should
exceed j c , and we therefore obtain the estimate

Satisfaction of this inequality is possible only for a suf-
ficiently thin sample. Thus, for example, for a sample
of a well-annealed alloy of Nb + 45%Ta, the critical
field H c i is of the order of 200 Oe, and the density of
the critical current is of the order of 5 χ 103 A/cm2.[ 1 8 1

This yields

Thus, in this case the sample thickness should be
less than 10~2—10~3 cm, and the corresponding current
density will exceed 104 A/cm2. In a thin sample this
leads to a large Joule heating of the sample itself as
well as the conduction contacts. All this calls for ef-
fective cooling.

These difficulties can be overcome to a certain ex-
tent by using the method based on the measurement of
the absorption coefficient in the reflection of an electro-
magnetic wave from the surface of the superconductor
in the mixed state (the surface-resistance method). The
expressions for the impedance of the superconductor
and its connection with the resistance in the mixed state
are given in Sec. c of Chap. 3. It was also indicated
there that this method is suitable, in the main, in the
case of an extremely large vortex-filament concentra-
tion. This method also suffers from the same short-
coming that it cannot be used in practice to measure
pf near T c . The point is that as Τ — T c > at any given
frequency of the electromagnetic wave, the ratio u>/e0

or ω/Δ ceases to be small, thus making it difficult to
determine the value of pf from the results of the experi-
ment (see Fig. 9).

To study the dissipation of the energy in the mixed
state one can use in principle also a method based on
generation of the oscillations of the vortex filaments
under torsional vibrations of the sample in a magnetic
field perpendicular to the rotation axis.[ 5 0 1 This method,
however, is at present still in the development stage,
and no concrete results on pf have been obtained as yet.

The first to study viscous flow of the vortices in
type-II superconductor were Kim et al. [ 3 ] They obtained
for the alloy Nbo.5Tao.5 the plot of pf vs. Η shown in
Fig. 11. Qualitatively, the pf(H) retain the same form
also for other superconductors at arbitrary temperatures
and fields. Kim et al. have proposed the empirical
formula

_££ R . , , n fl
p n - P * J ' Hn(T) '

where β(Τ) = Hc2(0)/Hc2(T). As Τ — Ο this expression
for β agrees well with the theoretical value β = 0.9
(4.3a), but at finite temperatures this formula does not
describe satisfactorily the temperature dependence of
β(Τ) (see (4.3b)).

The measurement of pf in various fields has been
the subject of a large number of experiments. Let us
dwell first on the results of measurements of pf of
alloys in weak fields. Figure 12 shows the data of
of [ 3 ' 5 1"5 4 ] , which show the temperature dependence of the

FIG. 10. Interpolation curve for
alloys with large concentration of
paramagnetic impurities. [37] The
straight lines give the slopes of the
curves for weak and strong fields.

1.0 Γ

0.5

ύ-0.7,

//,kOe

FIG. 11. Dependence of pf on the magnetic field for the alloy
Nbo.5Tao.s· T c = 6.15°K, t = T/Tc.

is
fid)

3.0

FIG. 12. The function (3(T) (see formulas z s

(1.21) and (4.3b)). Solid line-plot of the 2g

function 1.1 [1 - (T/Tc)]""2. The arrow indi- '
cates the theoretical value β(0) = 0.9. 1 -re- <s

suits of [3], 2 - [ 5 1 ] , 3- [ S 2 ] , 4 - [ 5 3 ] , 5-[ 5 4 ] .

1 Λ1 as o.a to
/

function β(Τ). The solid line is a plot of the function
1.1 [1 - (T/Tc)]"1 / 2, and the arrow marks the value
/3(0) = 0.9 (see (4.3a) and (4.3b)). The most important
fact here is that the experiment confirms the theoret-
ically predicted1361 growth of /3(T) near the critical tem-
perature, a reflection of the slowness of the relaxation
processes near T c .

Because of its relative simplicity, the viscous flow
of vortices in fields close to HC2 was studied theoret-
ically much earlier[ 4 2~4 4 1 than in the weak-field
region1 2 7"3 0'3 6'3 9'4 1 3. This explains why for almost five
years most experiments were made only in strong
fields. The values of pf were measured there in prac-
tically the entire range of temperatures and for a
variety of alloys with a wide range of parameters, t 4 8 ' 5 5 6 1 !
The experimental data revealed here an unusually large
scatter. Some of the causes of this scatter are indicated
in Kim's review.[82] In addition the pf(H) curves,
especially those obtained by the dc method, frequently
have near Hc2 a dip that may be due to the presence of
pinning. Some investigated used for the slope
dpf/dH H C 2 t n e value of dpf/dH ahead of the dip, and
others the value past the dip.

By way of example we present here data on the
measurement of pf in strong fields, obtained by Axt
and Joiner[ 5 6 ] by the dc current method. The shaded
region in Fig. 13 contains the experimental points cor-
responding to the alloys Nbo.5Tao.5, Nbo.iTao.e,
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η 0,2 Ο,Ί ΰ,δ 0,3 W

FIG. 13. Data of [56] on the measure-
ment of pf near HC2 for NbTa, InBi, and
PbTl of varying purity. The shaded region
corresponds to the experimental points. The
solid line is the theoretical plot [41] (see
Fig. 8; formula (4.4a)), and the dashed line
is the result of Caroli and Maki. [42]

FIG. 14

Ο,Ζ Ο,Ί O.S 0,8 1.0

τ/τ,

FIG. 15

FIG. 16. The shaded regions
correspond to those ranges of the
parameters H/HC2 and T/Tc where
there are analytic expressions for
of. Region I corresponds to formu-
las (4.2a) and (4.3b), II to (4.3a),
III to (4.2b) and (4.4a), and IV to
(4.4b).

Ha

FIG. 14. Data of [48] on the measurement of Rf by the surface-
resistance method for NbTa alloys. I-region of experimental points for
Nbo.sTao.s, Nbo.75Tao.25, II-Nb0.9Tao.i, Nbo.9sTao.os- Curves 1 were cal-
culated respectively for the critical points 5.8 and 8.5°K and for the
frequency ν - 3.14 X 101 0Hz. Curves corresponds to the slope of S(T)
in a direct current.

FIG. 15. Data of [48] on the measurement of Rf by the surface-
resistance method for the alloys Pbo.slno.s, Pbo.83Ino.17 and Pbo.9Ino.1-
Curves 1 were calculated for the critical temperatures 6.2°K and 7.0°K.
κ = 3.14Χ 101 0Hz.

Ino.9sBio.o2, Ino.geBio.o», Pb o .eTl o .4 , Pbo.39Tlo.e1, and

Pbo.95Tlo.o5. The solid line corresponds to the theoreti-
cal dependence (4.4a), and the dashed line to the results
of the theory of Caroli and Maki, with which all the ex-
perimental data prior to the publications of Thompson's
paper were obtained.[44]

The most reliable at present are the data of Pedersen,
Kim, and Thompson/481 obtained by the surface-resist-
ance method using a differential technique that permits
direct measurement of dRf(co)/dH. An advantage of this
method is that it admits of a simple extrapolation of the
slope dR/dH to fields HC2- Figure 14 shows data[ 4 8 1 for
NbaTa alloys of varying purity. The solid curves 1 cor-
respond to numerical calculations in accord with the
theoretical formulas (3.14) and (3.15) (frequency 3.14
χ 1Ο10 Hz and critical temperatures 5.8 and 8.5°K).
Curve 2, calculated from (3.14), is the low-frequency
limit (ω — 0). Figure 15 shows the analogous data for
Pbln alloys. Curves 1 were calculated for the critical
temperatures 6.2 and 7.0°K. It is curious to note a cir-
cumstance pointed out in[ 4 8 J , that many experimental
data on the slope of the plot of the resistance against
the field near HC2 agree better with Maki's earlier
formula^42' than with the undoubtedly more correct re-
sults of Thompson (3.11). It is difficult to say as yet
whether this fact is due to purely psychological causes
or has a more substantial cause.

CONCLUSION

It follows from this brief survey of the experimental
data that the theory agrees in the main with experiment,
in spite of the large difficulty of obtaining final results
in either direction. The simplest and most well-devel-
oped theoretical conclusions, such as for example the
formulas for alloys with paramagnetic impurities or the
behavior of the conductivity near Tc are precisely the
ones that raise additional difficulties when it comes to

verify them in the experimental situation. Modern
microscopic theory of superconductivity makes it possi-
ble in principle to calculate the conductivity of super-
conductors in the mixed state at arbitrary temperature
in the entire range of magnetic fields. However, rela-
tively simple analytic expressions for the conductivity
can be obtained only in rather narrow ranges of the
parameters H/HC2 and T/T c . The shaded regions in
Fig. 16 are those in which there are analytic expres-
sions for af (see the summary of the formulas); only
for alloys with large concentration of paramagnetic im-
purities has the conductivity af been calculated in the
entire range of temperatures for both small and large
fields. The calculation of the conductivity in regions
where the parameters H/HC2 and T/Tc are not close
to zero or unity entails great difficulties and is appar-
ently possibly only by using numerical methods. On the
whole, we can state that the microscopic theory provides
not only a qualitative but also a quantitative description
of the chosen unique circle of phenomena.

It was our aim in this review to report on the physi-
cal mechanisms that govern the viscous flow of vortices,
and present an idea of the methods used to resolve these
problems in the theoretical papers. The number of
these papers is at present quite large, but nevertheless
a large number of phenomena related to those touched
upon in this review have still no substantial micro-
scopic description. This pertains, in our opinion, to
most thermomagnetic phenomena (at least in the field
interval Η « Hc2), a n d also to the Hall effect. Starting
with[19], where it was noted that the Hall effect in a
superconductor should be of the same order as in a
normal metal, numerous attempts were made to obtain
this effect quantitatively from the microscopic theory
(see, e.g.,[63>S41). For various reasons, not all these
attempts are presently sufficient, It should be added
that the experimental data on the Hall effect are like-
wise quite contradictory.

In conclusion, the authors thank A.I . Larkin and Yu.
N. Ovchinnikov for useful discussions.

LIST OF SYMBOLS

A — vector potential of electromagnetic field,
a = 1.20,
Β — magnetic induction,

Bo — the same for undeformed vortex-filament
lattice,

Cij — elastic moduli of triangular vortex-fila-
ment lattice,

D — diffusion coefficient,
Ĵ — distance between vortex filaments,

d — arbitrary translation vector of vortex
structure,

Ε — electric field intensity,
& — Gibbs' thermodynamic potential in a given

external field H,
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F — free-energy density,
F L — Lorentz force acting on an individual vor-

tex of unit length
f = Δ / Δ » ,

H c m — thermodynamic critical magnetic field,
H c i — lower critical magnetic field,
Hc2 — upper critical magnetic field,

Η — macroscopic intensity of magnetic field,
Ho — the same for undeformed lattice of vortex

filaments,
h — microscopic magnetic field,
j — electric current density,

jtr — density of average (macroscopic) electric
current (transport current),

Jloo — current density produced when an individ-
ual filament moves at large distances for,
its core,

jc — critical pinning current,
Ko, Ki — Bessel functions of imaginary argument,
L D ( T ) = 2 + ροψ"((ΐ/2) +po)/V((l/2) +p 0 ),

I — mean free path,
Μ — magnetic moment per unit volume of the

superconductor,
Ν — electron-number density,

n£, — vortex-filament density,
no(e) — Fermi distribution function,

n(e, r, t) — distribution function,
nn — unit vector in the magnetic-field direction,
pp — electron momentum on the Fermi surface,
Q = A - (c/2e)v9,

Qo — value of Q for immobile vortex,
Qd = (dv)Q0,
Rf = Re Z(u>)—surface resistance in mixed

state,

Rn

s

Re Ζη(ω) = Ί 2πω/σηο
2—the same in the

normal state,
[(Hc2/pn)(dpf/dB)]—slope of dependence
of resistivity on B,
temperature,
critical temperature,
critical temperature in the absence of
a magnetic field and paramagnetic impuri-
ties,

ui(z, t) — deformation vector of i-th vortex filament,
VL — velocity of motion of vortex filament,

velocity on the Fermi surface,
dissipation function,
impedance,

1.16—constant of triangular vortex-fila-
ment lattice,
order parameter (energy gap),
the same for an immobile vortex,
value of Δ in the absence of a magnetic
field,
energy of excitations, reckoned from the
Fermi surface,
2DeHc2/c,
viscosity coefficient for vortex,
phase of order parameter,
parameter of the Ginzburg-Landau theory,

S k i n depth of penetration of alternating
electromagnetic field,
constant of Cooper interaction of electrons
chemical potential,
θ +2βΦ,

magnetic permeability,
density of states in the normal metal on
the Fermi surface,

Τ
T c

Tco

vF
W

Ζ(ω)

Δ

Δ ο

e 0

η

θ

κ = δ/ξ —

λ
μ
μ

μιι ι

= Pi 1

— density of states in superconductor,
ξ — coherence radius,
ρ — distance from center of vortex,

POi — equilibrium position of i-th vortex filameni
pi — resistivity in mixed state,

Po = €o/47fT,
ση — conductivity of normal metal,

1 ~ conductivity of superconductor in mixed
state,

τ — free path t ime of electrons with respect to
collisions with impurity atoms,

Tg — free path time of electron with respect to
spin flip,

Φ — scalar potential,
φ — azimuthal angle in cylindrical coordinate

system,
ψο = hc/2e = 2 · 10~7 G-cm2,
Ψ — order parameter in Ginzburg-Landau

theory,
φ — derivative of gamma function (psi function)

ip" — derivatives of psi function.
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