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Several nontrivial questions are discussed which arise in obtaining and utilizing boundary conditions along

moving surfaces separating two media and which are associated with characteristics features of

electrodynamic material equations. It is noted that the boundary conditions themselves can depend on the

relationship between the thickness of the boundary and the proper times of the motion of the particles of

the medium (and even simply on the velocity of the boundary). In view of the inertial properties of the

medium all the electrodynamic quantities remain continuous (the law of continuity) at an ideally sharp

discontinuity of its parameters in time. An exception is presented by the case of the motion of the

boundary with velocity c, and also by discontinuities "frozen into" the medium. For a more smoothly

varying (although sharply varying compared to the external scale of variation of the field) boundary layer

one can neglect the inertial properties (dispersion) of the medium; in this case the field and the polarization

undergo a "discontinuity." However, in this case difficulties of another kind arise when the velocity of the

boundary is "above light velocity" on one side and "below light velocity" on the other side (in particular,

the interaction of small perturbations with shock waves belongs to such a case); these cases require a

separate investigation. The effect of the inertial properties of the medium on the boundary conditions is

illustrated on the example of electromagnetic waves in a dielectric with elastic oscillators.
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1. INTRODUCTION

Phenomena arising in the course of interaction of
electromagnetic waves with a moving boundary separat-
ing two media occupy an important place in physics. We
remind the reader that the problem of the reflection of a
wave packet from a moving mirror was investigated by
Einstein in his famous paper ^ as an illustration of the
effects of the special theory of relativity. During the last
twenty years these questions have been repeatedly dis-
cussed, most frequently from a more utilitarian point of
view: it was proposed to utilize the Doppler frequency
shift arising at the boundary in order to transform the
spectrum of electromagnetic signals. For example, the
sharp boundary of a plasma beam can serve as a moving
mirror M . Since in order to obtain a large frequency
shift it is necessary that the velocity of the boundary
would be comparable with the phase velocity of the wave,
then it is useful to have the beam propagating in a dielec-
tric (or a retarding system); this relieves one of the re-
quirement of having to achieve a relativistic motion of
the medium £ 3 ] . An even more radical solution consists
of arranging that there is no macroscopic motion of the
medium at all, and the boundary is created by the sharp
front of an intense running wave (pulse) which acts on a
nonlinear medium (ferrite, semiconductor, plasma),
producing a relativistically moving sharp change in its
parameters'-1'5-1. We note that if the boundary moves
faster than the phase velocity of any one of the waves,
then new quanta of the field are produced ^ . With the
aid of a distributed interaction one can even produce a
"parametric wave" propagated faster than the velocity of
light in vacuo (the problem of emission of such objects
moving with velocity faster than light has recently been
discussed specially[7-*). A review of specific results re-

lating to the transformation of waves at moving boundar-
ies is given in ^ .

Here we would like to direct the attention of the
reader to certain special features of this phenomenon,
instructive in our opinion, which usually remain un-
noticed. The interaction of a field with moving objects
is generally one of the most complicated and interesting
problems of electrodynamics to which already quite a
few books and reviews have been devoted. A moving
boundary is a rather unique object of this kind. For ex-
ample, the incidence of a plane wave on a plane boundary
transforms the latter into a moving oscillator, a kind of
a plane particle which moves with relativistic velocity
and emits waves—a transmitted and a reflected wave —
into different media. The properties of such a "particle"
are determined by the well-known boundary conditions
relating the values of the electromagnetic field and of the
polarization of the media on both sides of the moving
boundary. These conditions have the form '-9-1

{E + ip, B]} = {H - ip, D]} = 0, (1)

here β = V/c, c is the velocity of light in vacuo, V is the
velocity of motion of the boundary; brackets indicate the
difference in the values on the two sides of the boundary.
For the sake of simplicity we do not take into account
surface charges and currents and consider only the com-
ponents of the field tangent to the boundary.

Conditions (1) are universally applicable and are valid
even for a nonlinear medium. But they, just as the
Maxwell equations themselves, acquire a nonformal
meaning only taken together with the material equations
connecting the quantities D and Β with the intensities Ε
and Η (for the sake of argument we shall have in mind the

452 Sov. Phys.-Usp.. Vol. 18, No. 6 Copyright © 1976 American Institute of Physics 452



connection between D and E). From this follow, generally
speaking, additional "material" boundary conditions the
number and the form of which depend not only on the
parameters of the medium "outside" the boundary, but
also, possibly, on finer features of the latter—the struc-
ture of the boundary region or the velocity of its motion.
It is just at this stage that different nontrivial situations
arise which sometimes appear to be nonobvious and even
paradoxical. Of course, we nowhere go outside the
framework of the usual equations of macroscopic elec-
trodynamics, and one can speak of "paradoxes" only with
respect to a definite level of understanding of a phenom-
enon (but it is just in this sense that paradoxes were
interpreted by Mandel' shtam who ascribed to them, in
particular, considerable instructional importance[ 1 0 ]).
Probably the problems discussed below could be given a
more rigorous mathematical formulation (and in some
cases this presents no difficulty), but our aim is only to
show by simplest possible means that one should some-
times approach with great care the study of phenomena
which at first sight are quite simple and which have been
discussed for a long time in order not to arrive at con-
tradictory or simply incorrect conclusions.

2. ARE FIELD DISCONTINUITIES AT THE BOUNDARY
POSSIBLE?

First of all we make the following assertion (we shall
refer to it as the law of continuity)! at a moving sharp
separation boundary both the field and the polarization
of the medium are continuous, i.e., all four vectors
E, H, D, and Β are continuous. This assertion might
appear paradoxical already because it contradicts the
well-known results for a stationary medium where the
tangential components of Ε and Η are continuous, but
D = eE is necessarily discontinuous since the values of
the parameter e are different on the two sides of the
boundary. Moreover, as can be seen from (1), at a mov-
ing boundary (β £ 0) a discontinuity in one of the quanti-
ties immediately leads to discontinuities in the remain-
ing quantities. Nevertheless, the underscored assertion
turns out to be just the rule (which, it is true, has im-
portant exceptions), which is based on the obvious fact
of the inertial nature of any medium. Indeed, no real
medium has time to react instantaneously to a stepwise
(i.e., infinitely rapid) variation of the field in time. The
appearance of a discontinuity in a field comoving with
the boundary signifies the appearance of infinitely high
frequencies in the spectrum of the waves. But, as is well
known t-s-1, in the high frequency limit the dielectric sus-
ceptibility of any medium is described by the asymptotic
expression e = 1 — (Α/ω2), where A are constants possibly
different on opposite sides of the boundary. We see, that
at very high frequencies these dielectric constants are
close to unity and differ little from each other. In other
words, a sharp discontinuity in the field "does not notice"
either the medium or the separation boundary, and must
be propagated as in vacuo with the velocity c (this cir-
cumstance has already been noted at the beginning of
this century by A. Sommerfeld). But if V ^ c, then there
can be no sharp change in the field or in the induction
comoving with the boundary, and the field must remain
continuous independently of the value of V, as has been
asserted above.

It is necessary immediately to qualify the above state-
ment: the continuity of the instantaneous values of all
the quantities does not at all mean that the wave incident
on the boundary will not be reflected or refracted. Since

for waves of finite frequency the parameters of the med-
ium on the two sides of the boundary are different the
conditions of continuity can be satisfied only by adding to
the field of the incident wave also the fields of the secon-
dary (transmitted and reflected) waves1'. In this case the
law of continuity can also be of definite practical use.
For example, in solving problems on the reflection of an
electromagnetic wave from a moving half-infinite
plasma'-2'3-1, where use was made of a relativistic
transformation of the fields into the comoving system of
coordinates and back, it would have been sufficient and
would have produced the same result to assume the total
values of Ε and Η to be continuous at the boundary.
Another problem of the same kind is discussed below.

Of course, the case V = c is a special one. Such a
boundary can carry a field discontinuity which "does not
notice" the medium and is propagated just as in vacuo.
Therefore the discontinuities in all the functions Ε, Η, D,
and Β must be the same (in the CGSE system of units),
but the magnitude of discontinuity is arbitrary and de-
pends on the initial conditions of the problem (the solu-
tion of a specific problem of such kind—concerning a
sharp ionization front moving in a medium with a veloc-
ity c can be found in '-11-).

The foregoing refers to the general case when the
boundary moves with respect to the medium. In order to
sort out the apparent contradiction with the case of a
stationary boundary we consider the following situation.
Let the medium with a sharp boundary move as a whole,
i.e., there exists such a system of coordinates in which
both the medium and the boundary are stationary. It is
obvious that in this case a fixed element of the medium
does not undergo any sharp variations in time, although
the parameters of neighboring elements separated by the
boundary differ from each other. In such a case a dis-
continuity in the electromagnetic quantities is possible
which is "frozen into" the medium, and which therefore
does not affect its inertial properties. This also applies
to the case when the media are moving parallel to the
boundary (tangential discontinuity)2'. This, of course,
also leads to understanding the special case of a station-
ary boundary separating two stationary media. But the
law of continuity again becomes valid if one takes into
account spatial dispersion, i.e., nonlocality of the ma-
terial equations. Therefore, in speaking of "frozen-in"
discontinuities, we are dealing rather with a pseudo-
exception—an ideal field discontinuity always moves with
velocity c.

3. WHAT IS MEANT BY A SHARP SEPARATION
BOUNDARY?

In the foregoing we have been speaking all the time of
a sharp boundary, having in mind essentially a discon-
tinuity in the properties of the medium and correspond-
ingly a discontinuity in the field. But in real cases the
situation is more complicated. In order to be convinced
of this we consider more closely those idealizations
which are associated with the concept of a boundary
(the hypothesis of a discontinuity). It is clear that in
actual fact there always exists a certain transition region
of a finite, although possibly small, thickness d. In der-
iving the basic boundary conditions (1) it is assumed only
that d is small compared to the characteristic dimen-
sions of the field itself (the wavelength in space and the
period in time), so that the field can be regarded as
constant over intervals considerably larger than d.
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However, this requirement is insufficient to conclude
that the field is continuous. It is necessary that the
variation in the parameters of the medium over the
boundary would be rapid also compared to all the times
of the characteristic oscillations or relaxation of the
particles of the medium—only then do the latter not
have time to "move off the spot," and the polarization
is not altered. In the opposite case the law of continuity
is, generally speaking, inoperative and, although the
relationships (1) remain valid, the complete system of
boundary conditions is altered. In particular, the
boundary layer can be sufficiently thick for the inertial
nature of the medium (dielectric) not to have any effect
at all. If at the same time the wave incident on the
boundary is such that for it one can neglect dispersion
(inertial properties) of the medium then the latter turns
out to be nondispersive everywhere including the tran-
sition layer itself. In order to obtain the desired trans-
formation of the field in this case it is sufficient to
substitute into (1) the relationship Di,2 = £ I , J E I , ! ,
where the subscripts 1 and 2 refer to values on oppo-
site sides of the boundary, while e l j 2 are given at the
outset. Now, of course, D and Ε cannot be simultane-
ously continuous.

Thus, in the general case, the boundary conditions
themselves are not completely determined by the
parameters of the medium external with respect to the
boundary, but also depend on the internal parameters
of the boundary layer, in this case on the relationship
between its duration and the characteristic times for
the motion of the particles of the medium. From the
foregoing it is clear that in considering the trans-
formation of the field at an ideally sharp boundary it is
in principle not possible to regard the medium as non-
dispersive. But if dispersion is not taken into account
and the boundary is not rigidly "attached" to the med-
ium, then it should be assumed that the thickness of the
boundary layer is not too small. An example of such
boundaries which is important in physics is a shock
wave—an intense discontinuity in the field which moves
with respect to the medium and alters its parameters.
Shock waves are a classical object of study in the
mechanics of continuous media; comparatively recently
electromagnetic shock waves have become known
created by powerful pulses in a nonlinear dielectric or
magnetic medium (for example a ferrite)[ 1 3 : J . The
boundary conditions (1) remain valid at such a shock
discontinuity. At the same time one can neglect dis-
persion (it is true, that instead of D = eE one has to
adopt the nonlinear relation D = D(E), since the wave
itself alters the value of e), while the thickness of the
shock front turns out to be just such that the polarization
of the medium would have time to "readjust" from one
constant value to another. We shall return to this case
again later.

The solution to the problem as to which boundary is
sufficiently sharp and which is not in the sense indicated
above depends not only on its thickness d, but also on the
velocity of its motion. In a medium without spatial dis-
persion (the word "without" means, of course, that the
scale of the dispersion is small compared to the thick-
ness of the boundary) polarization suffers a discontinuity
at a stationary boundary, since the latter has an infinite
extension in time; in the case of small values of V a dis-
continuity in the field intensity is also possible. Only in
the case of a sufficiently high velocity of the boundary,
when the time d/v becomes smaller than the character-

istic time scale of the medium, does the law of continuity
begin to operate.

The question of "thick" and "thin" boundaries is
essential already because in practice it is not always
simple to produce a sharp moving boundary in a medium.
Thus, no "proper" wave of a field propagating in a
medium and altering its properties can have an infinitely
short front—it is smeared out to a duration of the order
of the relaxation time of the medium (and converts into
the Shockwave that has already been mentioned). In
order to produce a boundary shorter than the character-
istic time of the medium external sources are required—
for example, ionizing radiation, which transforms a
dielectric into a plasma, or a wave propagating in
another auxiliary system (as is accomplished in radio-
physics with the aid of transmission lines for electro-
magnetic waves). In such cases one can obtain a suffi-
ciently thin boundary which satisfies the law of continuity.

Example. As an example we consider a simple, but
still very useful Lorentz model of a dielectric medium
as a collection of identical elastic oscillators (dipoles).
The polarization of such a medium satisfies the oscilla-
tory equation

P + <P-£E. (2)

where ω0 is the characteristic frequency of the oscilla-
tors, ω is the plasma frequency proportional to their
density. We assume the magnetic susceptibility to be
equal to unity (B = H).

Let some external factor produce in the dielectric a
moving boundary along which some parameter of the os-
cillators is varied. For the sake of simplicity we as-
sume that the medium remains macroscopically station-
ary, but that it is acted upon by a strong external field in
the form of a wave with a sharp front. This field alters
the elasticity (potential energy) of the oscillators, i.e.,
the magnitude of o>0, from ωΟι to ωΟ2.3)

We consider plane waves propagating along the
normal χ to the boundary (E = Ε , Η = Hz). Then from
(1) we have

{£ - μΐ) = {H - po> = o. (3)
It is now necessary to add the relationships between the
discontinuities in the magnitudes of D and E. For this
we integrate the material equation (2) twice with respect
to t over the time τ of the passage by the boundary past
a given point. Since Ε and Ρ are finite then as τ — 0 the
integrals over them vanish, and only the integrals in-
volving Ρ remain, and therefore

(P) = (P) = 0, (4)

For {P} = 0, evidently, {D} = {E} and the conditions
(3) yield at once

{E) =-- {H} = {D}.= o, (5)

i.e., the field and the induction are continuous at the
boundary, in complete agreement with the foregoing.

The continuity conditions (4) and (5) are sufficient for
the solution of specific problems. The usual formulation
of the problem consists of the following (Fig. la). Let a
plane monochromatic wave of frequency ω^ fall from
region I on the boundary, and, for the sake of definite-
ness, in the direction towards it (V < 0). Then all the
secondary waves (reflected and transmitted) will also be
monochromatic, and the frequency and the wave number
of each of them will be related by the dispersion equation
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ck = ± ω ] [ci)J/((oJ — ω2)) = ± ω ]A(ω), (6)

with the values of ω0 being different in regions I and Π.

What waves, reflected and transmitted, can appear
due to the interaction with the boundary? The dispersion
equation (6) enables us to answer this question. From
the continuity of the instantaneous values of the field it
follows, in particular, that the phases of all the waves
are equal at the boundary (with χ = Vt), i.e., for all the
waves the values of ω -kV are the same. Using (6) one
can determine what frequencies satisfy this condition in
each region; from them, as usual, one should select only
those for which the condition for radiation is satisfied:
the group velocities of the secondary waves must be such
that the energy should be travelling away from the boun-
dary4'. This is convenient to carry out graphically: we
obtain all the points of intersection of the dispersion
curves w(k) in both regions with the straight line
ω - wj = V(k - kj). Such a construction is shown in
Fig. lb, where the point 1 corresponds to the incident
wave5'. From the diagram it can be seen that for a suffi-
ciently small |V| the conditions for radiation are satis-
fied by the values of ω denoted by the numbers 2, 3, 4
and 5 (the group velocity doj/dk, evidently, is determined
by the slope of the dispersion curve). If ω^ <iC ω0, then
for the incident wave it follows from (6) that ck = ω ^ ,
where 7 = VI + (ω2/wp corresponds to zero frequency

and dispersion can be neglected. But if in addition
jVJ <C C/VTI , 2, then the frequencies of all the waves can
be found analytically without difficulty. In region I there
exists one reflected wave of frequency

ω2 « ω, (1 + 2β V'EO, (7a)

and in region II there exist three waves of frequencies

ω3 κ ω,[ΐ+ $(]'%-}/%)], (7b)

Thus, in addition to waves of frequency ω2 and ω3 for
which dispersion can be neglected there appear two
resonant essentially dispersive waves of frequencies
close to ωΟ2· These waves are propagated in the same
direction as the discontinuity, but lag behind it with
respect to their group velocities and therefore satisfy
the condition for radiation6'. The field in region I is a
superposition of the fields of the waves 1 and 2, and in
region II it is a superposition of the waves 3, 4 and 5.
The amplitudes of all four unknown waves 2, 3, 4 and 5
can now be easily determined in terms of the known in-
cident wave 1 from the conditions of continuity for the
four quantities Ε, Η, Ρ and f> if one takes into account
that for each wave Η = ±E/e, while 4πΡ = (e — 1)E.
Without reproducing here the corresponding solutions
we note only that the amplitudes of the "resonance"
waves 4 and 5 turn out to be small of order β2.

Going to the limit β = 0 we formally obtain for Ε and

V

ζ

" -

ω

1)

5

I 1 X
a

FIG. 1
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Η in waves 2 and 3 the usual Fresnel formulas at a
stationary boundary, and in the resonance waves Ε = Η
= 0. However this transition, which appears natural at
first sight, is not justified. This can already be seen
from the fact that the polarization of the resonance wave
remains finite, (E 4 ; 5 ~ β1, but χ 4 ) 5 ~ e — 1 ~ β'2). It can
be shown that the energy density of these waves is also
finite. Consequently, no matter how slow is the motion
of the boundary, it leaves a finite trace in the form of
oscillations of particles of the dielectric with a charac-
teristic frequency W02. This can be understood: for an
arbitrarily small β the motion of an infinitely thin
boundary alters discontinuously the properties of each
oscillator, and this in the presence of the field of an
incident wave leads to a "shock" excitation of the char-
acteristic oscillations of the medium. At the same time,
if from the outset one regards the boundary as stationary
nothing of this kind occurs.

The reason for this seeming contradiction was indi-
cated in the previous section. Since the boundary region
always possesses a certain finite thickness d, then,
evidently, time variations of all the quantities at the
boundary have a finite duration τ * d /v. But then Ρ and
Ρ are continuous only if the velocity of the boundary is
not too small. Indeed, the term Ρ in Eq. (2) is of order
Ρ/τ2 and is larger than the term ωΐΡ under the condition
V2 ^ (o>0d)2 (i.e., the path traversed by the boundary
during a period of the characteristic oscillations of the
medium 2ir/o>0 must be greater than the thickness of the
boundary). If the reverse inequality holds (together with
wi <C ωο) one can neglect the term Ρ entirely, then over
the whole transition region we have Ρ = 7E, and as 7
varies at the boundary the polarization has time to
"keep track" of the field. It is clear that in this case the
dielectric can be regarded as being nondispersive. Sub-
stituting Di,2 = ei,2E l j 2 and Bi,2 = Hi,2 into the initial
relations (1) we easily obtain

β1 («ι —«2) u u _ 17 η <e2 — ει) (8)E2 - £ , =
1+β'ε, '

where the subscripts 1 and 2 refer to values on opposite
sides of the boundary. Thus, as has already been stated
above, over a sufficiently thick and slowly moving boun-
dary layer the field experiences a discontinuity. As
β — 0 only the discontinuity of the induction D remains,
and as a result Fresnel formulas are obtained without
any singularities of any kind.

The same holds if the boundary (in this case an arbi-
trarily sharp one) is created at the junction of similarly
moving dielectrics with different parameters ω0 or ω .
In the comoving system of coordinates the material
equation (2) is a local relationship in which Ρ remains
finite and which for the same Ε determines different
values of Ρ in regions I and Π. But in the initial system
of coordinates, where the medium moves as a whole,
Ε and Η also vary discontinuously at the boundary. All
this, of course, agrees with the considerations stated
above.

4. BOUNDARIES MOVING WITH SPEEDS BELOW AND
ABOVE THE SPEED OF LIGHT

In those cases when the boundary is sufficiently
"thick" and one can neglect dispersion, the problem ap-
pears to be quite obvious—the relationships (8) must lead
to an elementary generalization of the Fresnel formulas
since no "unforeseen" resonance waves can appear.
However, it turns out that also in this case difficulties
can arise which either require the introduction of addi-
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tional data for a unique solution of the problem, or even
force one in general to give up the simple boundary con-
ditions in the form of (8). In this case the problem is
associated with rapidly moving boundaries. As has been
noted already, in principle, and also in practice, the
boundary can have any arbitrary velocity both smaller
than and greater than the velocity of the waves interact-
ing with it, and this, in turn, affects the solution of the
problem in an essential manner.

We illustrate this by utilizing once again the example
of a stationary dielectric in which a boundary is moving,
thereby changing its parameters e and μ. We shall take
as given a wave incident normally and moving towards
the discontinuity. Since £ and μ do not depend on the
frequency, the field on both sides of the boundary
(regions I and Π) satisfies the one-dimensional wave
equation and is given in the general case by a superposi-
tion of two waves propagated in opposite directions with
velocities Vi,a = ο/^ε^,ιμ-ί,ζ (Fig. 2). Each of these
waves is characterized by one unknown function, for
example, E(x, t), since Η = ± E / Z , where Ζ 1,2
= νμι,2/ει,2 is also a known quantity (the wave imped-
ance of the medium). The field of one wave, El = E^ is
given, and in order to determine Ε in the remaining
three secondary waves there are two boundary conditions
(8) (or their generalization to the case μι Φ- μ2). There-
fore the problem will be completely correct only in those
cases when the existence of one of the secondary waves
is impossible as a result of the condition for radiation.
Just such a situation exists in the case of a stationary
boundary of separation, when in region Π there exists
only one transmitted wave E2, while the wave E5 is
evidently excluded. The possibility for the existence of
a given wave depends on the relation between its velocity
and the velocity of the boundary (in view of the absence
of dispersion the variation of the frequency is of no sig-
nificance). In the general case four variants are possi-
ble:

transmitted waves Ε2, Ei remain, and the problem again
has an elementary solution. The appearance of the wave
E2 which falls back with respect to the boundary means
that quanta of the field are created at the discontinuity.
We note that as |V| — °° we obtain from this the case of
a one-time stepwise change in the parameters of a
homogeneous medium (which is, of course, possible only
in the presence of a distributed interaction.)

In both cases indicated above there exist in the xt
plane two families of characteristics crossing the boun-
dary. However, the cases c) and d) are not so simple
when the velocity of the discontinuity is smaller than the
velocity of light on one side of the boundary and is
greater than the velocity of light on the other side of the
boundary. From Fig. 3 it can be seen that in these cases
one of the families of characteristics remains separated
by the boundary which, thus, is itself a characteristic,
or, to be more precise, moves synchronously with the
wave with the velocity of the wave having a value inter-
mediate between vx and vz. Consequently, the boundary
conditions (8) are specified in the neighborhood of the
characteristic, and such cases are always special in
mathematical physicse). At the same time, these singu-
larities turn out to be quite different for the cases c)
and d).

In the case c) there is no basis for excluding one of
the three waves, and then the two boundary conditions (8)
are insufficient to determine them—some kind of addi-
tional information is needed. In the present case one can
remove this difficulty in the following manner (Fig. 4).
We consider instead of a single discontinuity two dis-
continuities (1 and 2) separated by a region with com-
paratively smooth variation of width d, in which the value
of the velocity ν = c/Ζεμ varies from |V| + 6V to |V|
- 6V, where 6V is a sufficiently small positive quantity.
Then the discontinuity 1 is completely characterized by
a velocity smaller than that of light, while the discon-

d) vl<\V\<vt.

(9)

The characteristic features of these cases can be
demonstrated visually if in the plane of the variables χ
and t one constructs characteristics, i.e., trajectories
of waves moving with velocities ±Vi and ±V2, and also
the trajectory of the boundary itself dx = Vdt (Fig. 3). It
is evident that outside the boundary region these char-
acteristics are straight lines (V is constant), but with
different slopes on opposite sides of the boundary. Those
waves arise in reality whose characteristics move away
from the boundary (independently of their direction with
respect to a stationary system of coordinates).

The simplest is the case a) (motion with velocity less
than that of light), which also includes the case of a sta-
tionary boundary. Here the wave E2 is excluded, while
the fields EI and E2 can be easily found from (8) in terms
of the known E^ if we set Ei = EI + E ,̂ E2 = E 2

7 ) . In the
case b) of motion with velocity greater than that of light
the reflected wave EI is absent, but in region II both

Ει —

_ ει

J L
d X

FIG. 4

FIG. 2
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tinuity 2 is characterized by a velocity greater than the
velocity of light, and a fourth unknown quantity is added-
the field E' in the region d. Utilizing the boundary con-
ditions (8) in sequence for both discontinuities we obtain
all four unknown waves. Then by letting d and δV ap-
proach zero we obtain a unique solution for the initial
discontinuity (for details cf.,C 1 5 3). This solution contains
the additional internal parameter Z' = τ/μ'/e'— the wave
impedance at the point of synchronism where ν = |V|. Of
course if only one quantity varies, for example e, while
μ is constant, then Z' is known in advance, since e' is
evidently equal to cV/iV2· In this case the solution takes
on an extremely simple form:

π- __ ρ Ε*+ ρ- —._U2. f1 /I [)\
1 it 2 2 y, I ' \ *·*/

It is curious that the velocity of the boundary does not
enter this at all. But if both e and μ vary, then z ' is an
independent parameter.

Thus, we have to give up the completely "discontinu-
ous" description of the problem (at least in favor of two
discontinuities) and to make more specific the internal
parameter in the boundary region Z' (we recall that in
neglecting dispersion one cannot treat the boundary as
being infinitely thin). One can see the reason for this
from the picture of the trajectories in Fig. 3c. In this
case the characteristics diverge from the boundary
which serves them in the manner of a "watershed." As a
result we partially lose connection between processes in
regions 1 and 2, and it is just because of this that we re-
quire additional data for the problem.

Still worse is the situation in case d), when the inci-
dent wave Ej gives rise to only one transmitted wave
E2, while the waves El and E2 are impossible. Now the
problem turns out to be overdetermined—two boundary
conditions (8) for one unknown E2. Here a division of the
discontinuity into two offers no help. In order to obtain
a unique result we must in some manner correct the
boundary conditions (8) themselves. In order to under-
stand what is happening here we turn to Fig. 3d corre-
sponding to this case. One of the families of character-
istics converges towards the boundary in such a manner
that the waves moving in the same direction as the
boundary are grouped at the boundary. Consequently,
the perturbations produced by it are accumulated and
must increase without limit. Therefore the problem with
a uniform completely autonomous motion of the boundary,
in essence, does not in general have in this case a
bounded solution.

Thus, we again arrive at a contradiction, for the
resolution of which we must return to the question of the
manner in which the moving boundary is produced. As
long as we are dealing with a "thick" boundary in a sta-
tionary medium then the natural possibility consists of
the fact that in a nonlinear medium there is created a
powerful pulse of the field with a sharp front propagated
in it as a wave characteristic of it and altering its
parameters. In order to describe the motion of such a
front it is necessary, in essence, to solve the nonlinear
problem, since the variation of the parameters of the
medium itself affects the wave. But the initial boundary
conditions (1) or, in the one-dimensional case, (3) are
valid as before, and one cannot utilize only linear mater-
ial equations of the type D = eE. But such a nonlinear
variation of the field is just the electromagnetic shock
wave which has been mentioned earlier. The linear prob-
lem which is of interest to us now reduces to the inter-
action of small perturbations of the field with the shock

wave. Such problems are not new in physics—they have
been studied in connection with the problem of the stabil-
ity of shock waves. In such a case in order to obtain a
unique solution one must take into account that the inci-
dent wave perturbs the motion of the shock front, so that
β = βο + δβ (it is just here that the effect of the "accumu-
lation" of the field at the boundary is felt—it leads to
oscillations of the boundary). Then, taking into account
the fact that (3) describes the sum of the fields of the
weak waves and of the strong shock field and that the
latter also satisfies (1), we obtain for the perturbations

{E - - £οδβ} = {Η - - - ϋοδβ} = 0, (ID
where Do, and Bo are the unperturbed values different in
regions I and II, while e and μ now denote the deriva-
tives dD/dE and dB/dH also taken for the unperturbed
values corresponding to the shock wave.

Now our problem in the case d) can be solved in an
elementary manner. The unknown that is lacking is δ β,
while the field El in the only transmitted wave is deter-
mined easily and in a finite manner together with δβ
from the two equations (11) (the corresponding solution
is given in Ε4-1).

It is of interest to note that it is specifically in case
d), and only in this case, that the shock wave turns out to
be stable, since a finite Ej gives rise to finite perturba-
tions. In the remaining cases δ β can be arbitrary (among
other possibilities it can be arbitrarily large), and this
indicates an instability of the shock wave (this question
has been studied in detail in the mechanics of continuous
media). Consequently, if the boundary is created by the
"proper" wave in the given nonlinear medium, then we,
in essence, always have the case d), while in the re-
maining cases something artificial is required for the
creation of the boundary: an independent system giving
rise to pumping, an external source of a different nature,
etc. (this now refers also to "thick" boundaries).

Thus, in the case of an interaction of a weak wave
with a strong (shock) wave the former would grow without
limit if it were not for its reaction on the motion of the
shock front. Here there exists a certain analogy with the
phenomenon of parametric resonance in an oscillatory
circuit with a periodically variable capacitance, when
the amplitude of the proper oscillations increases without
limit until the effect of these oscillations on the law
governing the variation of capacitance becomes felt, i.e.,
a nonlinear effect appears.

For sharper discontinuities of a parameter which are
produced externally such characteristic features do not
arise, since the velocity of the secondary waves varies
due to dispersion, and when this is taken into account the
equations of electrodynamics all have the same charac-
teristic velocity c which is the same for both regions I
and II, while for V £ c the problem of the reflection and
transmission of the wave must always be correct in this
sense. But if V = c, then in this case also, as has been
mentioned previously, additional conditions are required
for a unique solution of the problem.

5. CONCLUSION

Idealization is a necessary step in the theoretical
description of any phenomenon which enables one to set
aside details of little significance. At the same time,
when the same phenomenon is studied more deeply the
neglected factors sooner or later "obtain revenge" lead-
ing to different kinds of contradictions and paradoxes
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the resolution of which requires at least a partial de-
parture from the idealizations adopted. This situation,
which is usual in physics, also arises for the problems
discussed here. A sharp boundary of separation between
two media is one of the most fundamental idealizations
in the electrodynamics of continuous media. It is gen-
erally accepted that if the thickness of the boundary
transition region is small compared to a wavelength,
then the boundary is completely described by universal
boundary conditions which contain only the parameters
of the field and of the medium outside this region. From
what has been stated above it follows that this, generally
speaking, is not so, in particular in the case of moving
boundaries. In order to obtain a unique solution one must
"peek inside" the boundary introducing additional data
concerning its thickness, velocity, structure, etc. In
doing so we in essence reject the initial idealization and
replace it by other more complicated idealizations.
Thus, it turns out that even such a common idealization
as the concept of a sharp separation boundary, encom-
passes within itself a quite complicated physical content.
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than |v|, i.e., the latter wave lies in the region of the anomalous Doppler-
effect (it is just because of this that ω changes sign in it; cf., Fig. 1 b).
As has been stated already, this means that at the boundary quanta of
the field are created.

7)We do not reproduce here the elementary solutions of this and subse-
quent problems; these solutions can be found in [4>'s] and in the re-
view [8].

8)However, the present formulation of the problem and the singularities
associated with it are not quite usual for the theory of hyperbolic equa-
tions in mathematical physics.

''If the velocity of the boundary is close to the phase velocity of the
reflected wave then, because of the Doppler effect, the frequency of
this wave increases without limit. As a result, as was noted by Β. Μ.
Bolotovskii, already the whole wave with a limited spectrum (wave
packet) can penetrate the boundary without being reflected. Thus, if
a stationary plasma completely reflects all waves with frequencies
below a certain finite plasma frequency, then a wave incident on the
boundary of a plasma moving with a velocity close to c practically
always penetrates across the boundary. [3]

2 )In this latter case there exists the possibility of amplification of waves
unconnected with the Doppler effect, if one of the media is dissipa-
tive [1 2].

3)The limiting case when ωΟι -* °°, ω02 -* 0 corresponds, essentially, to an
ionization front which converts a nondispersive dielectric into a plasma.

4'This requirement (for a stationary boundary between two dispersive
media) was first formulated, probably, by Mandel'shtam ['*].

s)Here the plasma region of transparency (ω > ^ / ω 0

2 + ω ρ

2 ) has not
been indicated since in the present case all the waves lie on the low
frequency branch (ω < ω0).

6)We note that the frequencies ω 4 and ω 5 differ by quantities of order
β2 {ω[Ιω01). At the same time it also turns out that the phase velocity
of the wave 4 is greater and the phase velocity of the wave 5 is smaller
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