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This paper contains an exposition of the classical hydrodynamical interpretation of multiple hadron
production processes. Special attention is given to the clarification of the fundamental aspects of the
hydrodynamical theory, the analysis of nucleon-nucleus collisions, and e*e™ annihilation into hadrons. The
conclusions of the theory are compared with experimental results. Some heuristic aspects of the theory are
outlined. Use is made of the literature up 1o the beginning of 1975.
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1. INTRODUCTION

The production of many particles in two~hadron col-
lisions (multiple production processes) is a privilege of
the strong interactions. These two characteristics of
multiple production processes—a large number of par-
ticles in the final state and the strong interactions—de-
termine the specific character of this phenomenon. Its
description is complicated by lingering doubts about the
applicability of modern field theory to the strong inter-
actions. On the other hand, the fact that many particles
take part in the process offers hope that one can suc-
cessfully apply the quasi-classical approximation, It is
therefore expedient to approach the description of mul-
tiple production processes from the standpoints of both
quantum and classical ideas.

It is appropriate here to point out an analogy with
nuclear models: the shell model, for instance, is a
quantum model and, at the same time, a gas model,
i.e., a classical approach. However, this analogy has
a very important limitation: whereas the nucleus is a
system of real particles, a major role is played by
virtual particles in multiple production processes. This

fact does not facilitate an understanding of the situation.

Nevertheless, the main point of this analogy is that both
quantum and classical approaches to the description of

these two phenomena {the nucleus and multiple produc-

tion processes) are still possible.
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Historically, the theory of multiple production pro-
cesses began with the prediction of the phenomenon
even before it was observed experimentally. In an at-
tempt to explain the showers which had been seen long
before in cosmic rays, Heisenberg!') made use of a now-
forgotten variant of the 8 interaction. However, what is
most important is that he had already pointed out in his
early works! 2] the possibility of a statistical descrip-
tion of multiple production processes, owing to the large
value of the coupling constant.

This idea was subsequently expressed in the work of
Fermi'®!, who adopted the basic hypothesis that a statis-
tical equilibrium is established in a Lorentz-contracted
volume.

However, Pomeranchuk!*! noted that there is an in-
consistency in this theory, which is based on the assump-
tion that there is a strong interaction of many particles
concentrated in a volume whose dimensions are much
smaller than the range of the forces. This inconsistency
was aggravated by the fact that calculations of the char-
acteristics of multiple production processes made use of
the ideal-gas model. The Lorentz-contracted volume in
the classical approach should therefore be only the ini-
tial state of the system.

On the basis of these observations, Landau'®! devel-
oped the hydrodynamical theory, which in fact consti-
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tutes the main content of the present review; the great-
est emphasis here will be on those matters which have
been discussed inadequately or not at all in previous
reviews: the. interaction of nucleons with complex nuc-
lei, the annihilation of leptons into hadrons, and the fun-
damental principles of the hydrodynamical model.

The hydrodynamical theory has had a curious history.
Although the quantum approach was developed together
with the classical description'® 7, the hydrodynamical
theory was undoubtedly dominant until the late 1950s.
The situation changed after the formulation of the mul-
tiperipheral theory[s], when it seemed that a way had
been found of solving all the problems of multiple pro-
duction processes within the framework of current the-
ory. These hopes were strengthened when the method of
complex angular momental®! was incorporated in this
theory.

Nevertheless, it was not possible to overcome the
fundamental difficulty of formulating a self-contained
theory of multiple production processes.

On the other hand, the latest precision experiments
which have been carried out with large accelerators (in
particular, the ISR"’) have demonstrated that many of
the currently observed characteristics of multiple pro-
duction processes were predicted previously in the
framework of the hydrodynamical theory.

All these facts have led to a surge of interest in the
hydrodynamical theory.

This rebirth has produced a curious paradox: ques-
tions and problems which confronted physicists about
two decades ago are now being solved anew (and not al-
ways correctly) and rediscovered. This situation was
the motive for the reinterpretation and exposition of
the hydrodynamical theory.

2. FERMI'S STATISTICAL THEORY

Let us recall briefly the basic idea of the statistical
theory. In the c.m.s., the colliding nucleons are conirac-
ted disks with transverse dimensions 1/u (where u is
the pion mass) and longitudinal dimensions ~ (2/u)M/Vs
(where M is the nucleon mass and Vs is the total energy
in the c.m.s.).

The basic hypothesis of the model is that during the
collision within the characteristic volume

M (1)

Flant

Vz%n
ny's

the observed real particles appear with a distribution
which, for sufficiently large particle numbers N > 1
(the thermodynamic approximation), correspond to
black-body radiation with allowance for the isotopic
factor 3/2, which reflects the fact that there exist three
types of charged pions. The number of particles, N, is
then given by

N = n,V, (2)

where the concentration is
n, =~ 0.4 T3 3)

We shall henceforth takeh =c =k =1 (here k is the

Boltzmann constant); T is the temperature of the system.

Since the energy density is given by the expression
o= @
and
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£=0.7 T4, (5)
we have
Na1b ‘ —11515 (6)
orz)
Yr25) B )

where E; is the energy of the incident particle in the
c.m.s.

3. POMERANCHUK'S STATISTICAL MODEL

Shortly after Fermi’s work appeared, it was pointed
out!*! that there is an inconsistency in the space-time
description of N particles on the basis of the ideal-gas
model (N> 1) when the interaction range is greater than
the overall dimensions of the system®’. To overcome
this inconsistency within the spirit of the whole statis-
tical picture, it must be assumed that the description
of multiple production processes is divided into three
stages:

1) the formation of an initially contracted disk;
2) the expansion of the system;
3) the decay of the system into real particles.

It is important to emphasize here that no real par-
ticles are involved in the first two stages. Thus, the
above-mentioned inconsistency is eliminated. However,
a high price is paid for achieving this, since there arises
the fundamental question as to the concrete meaning of
the idea that the expansion takes place during the col-
lision. We shall return to this problem later.

In order to assign a quantitative form to the statis-
tical model with an expanding volume, we must specify
the characteristic volume of the system. From physical
arguments, there exists in our approach, apart from the
initial Lorentz-contracted disk, only a single volume,
equal to the ‘““volume’’ Vg of an elementary particle in
its proper coordinate system. In order of magnitude,

V.,z%—n——. (8)

The total volume of the system is then
Vr = NV, 9

Since the total energy is Vs = ¢V, we have

N Ve,

. (10)

This result was obtained in the earliest works on the
theory of multiple production processes[z].

During the expansion, the temperature T decreases.
In the final phase, the temperature Ty is equal to the
pion mass in order of magnitude (compare this with

(10)):

Ty ~p. (11)

Subsequent analysis of experimental data showed that
the relation (10) is in conflict with the data and that Eq.
(7) is much closer.

Owing to this fact, as well as to the appearance of a
more consistent hydrodynamical theory, the statistical
theory with an expanding volume was completely for-
gotten.
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However, it was found quite recently!'!! that a care-
ful comparison of the conclusions of the statistical the-
ory with an expanding volume with the experimental data
up to Eo < 30 GeV yields good agreement, provided that
one introduces a new phenomenological parameter—an
inelasticity coefficient K, which was found to have the
value 0.4.

The law (10) is no longer in agreement with the data
at energies E; > 30 GeV.

4. THE PHYSICAL BASIS OF THE HYDRODYNAMICAL
THEORY

The statistical model with an expanding volume is
also not sufficiently consistent. The point is that ther-
modynamics and hydrodynamics have the same domain
of applicability. The transition from the initial state (the
first stage) to the final state—the decay into real particles
(i.e., the expansion of the system )-is therefore the fac-
tor that determines the third and final stage. The hydro-
dynamical velocity of an element of the fluid determines,
in the final analysis, the rapidity distribution of the de-
caying elements:

E+Pn
E—py

y=%ln

or

—nl 2L Pyl

y=in[ 2+ 1 () a3)
here m | = Ym® +pJ, p) and p are the perpendicular and
pa.rallefcomponents of the momentum of the particle,
and m is the mass of the secondary particle,

Thus, we must resort to hydrodynamics for a con-
sistent description of the second stage. In the framework
of the ideas that are being developed, we must also pos-
tulate that there exists a local equilibrium in all three
stages of the development of the system. In other words,
the thermal motion in the proper system associated with
an element of the fluid is superimposed on the hydro-
dynamical motion. The distribution of bosons is des-
cribed by the Bose formula, while that of fermions is
given by the Fermi distribution, The overall rapidity
ys is a sum of the rapidities corresponding to the col-
lective hydrodynamical motion and the thermodynamical
thermal motion inthe coordinate system associated with
a given element of the fluid. Thus, the consistent descrip-
tion of multiple production processes amounts to the
following postulates:

a) in the first stage, a Lorentz-contracted disk is
formed with an initial temperature T, and energy density
€o determined by Eq. (5);

b) this disk constitutes the initial stage of the hydro-
dynamical expansion; the quantities € and T decrease
during the expansion process;

c) when the temperature T reaches a certain final
value T = T¢, which is independent of the initial energy
E, but depends on the properties of hadronic matter, the
decay of the system into real particles sets in; it is
natural to assume that Tf = z also holds in this case.

Although this set of postulates is logically complete,
it does not, unfortunately, provide a unique solution of
the problem. The reason for this is that the hydrody-
namical descrirption of the motion is determined by two
types of terms!'?! (see Eqs. (14) and (15) below): inertial
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terms, which are in essence a consequence of the law of
energy-momentum conservation, and dissipative terms,
which reflect the properties of the medium (in our case,
hadronic matter). Relativistic hydrodynamics is contained
in the system of equations.

Ty
o =0

Typ = ppgin -+ (& + pp) uuy 5 Tin,

(14)
(15)

where Pp is the pressure, gik is the metric tensor, uj
is the i-th component of the 4-velocity, and 7ji is a dis-
sipative term comprising a sum of terms of the form
nvaui/axk and 7y (du;/8x"Jujuk; Ny is the coefficient of
viscosity.

In addition to the ambiguity associated with the rela-
tive contribution of the dissipative terms, it is obvious
that even if we put

(16)

the system (14) does not have a unique solution, since
the five equations (the system (14) and the equation
23i=1 uj = 1) contain six unknowns (e, pp, uj). Conse-
quently, to obtain a unique solution, we must specify
the equation of state

Tin =0,

pp = (e). )
The dependences (6) and (7) are obtained if we assume
(16) and

€ 4)
Pp=T .

(18)
5. DISSIPATIVE TERMS AND THE EQUATION OF
STATE

The question arises as to the degree of generality
of the conditions (16) and (18). These conditions seemed
almost obvious when the hydrodynamical theory was
formulated. The situation is now much less clear.

To examine the problems which arise here, it is
convenient to turn to certain simple models for which
practically everything can be calculated quantitatively.

Let us first consider the equation of state (18). This
relation is a relatively general consequence of the iso-
tropy of space and relativity. In fact, the pressure Pp
for an ideal gas is the average flux of the root-mean-
square momentum projection per unit area on the normal
to the surface:

I
szm{;jl_——l:; , (19)
where
e S N (20)

Putting v = 1, we obtain Eq. (18). The assumption that
space is isotropic is important for these considerations.
There is no problem here for macroscopic bodies. How-
ever, this assumption becomes less obvious when we go
down to distances which are comparable with the ¢‘di-
mensions’’ of the particles, because of the possible in-
fluence of spin effects (there may occur a distinguished
direction because of spin correlations).

If we use field theory and consider only an interaction
with no derivatives, Eq. (18) is obtained again in first-
order perturbation theory and the ultra-relativistic ap-
proximation!*%),

Nevertheless, for a concentration n, —> and mass
m # 0, for example, it is found that for vector particles®!
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Py =t (21)

We turn now to the problem of determining the role of
dissipative particles. Putting du/8x ~ u/L, where L de-
notes the characteristic dimensions of the system, we
find that the dissipative terms may be neglected; with
the Reynolds number

tedrp L

Re >1 (22)
Nyt
or, since € ~ Pp, we have
ol
Re ~ n:,vu' (23)

For a nonrelativistic gas consisting of real particles,
ny ~ nmvl (where 1 is the free path length), so that

Re ~ L, (24)
Hydrodynamics is applicable under the condition L > 1;
it was therefore concluded in the fundamental works(®’ '’

that viscosity may be neglected.

However, this reasoning involves an inconsistency:
the coefficient 77, is calculated for a nonrelativistic gas,
whereas all the calculations are carried out in a rela-
tivistic approximation.

Another argument is even more important: for a
medium consisting of strongly interacting particles, the
very concept of a ‘‘free path length’’ has a conditional
character. The relevant criterion is the relation be-
tween the interaction range and the average distance
between the particles. The free path length is obviously
meaningful when their ratio is less than 1.

Let us consider the situation in greater detail for
system of photons and electrons, when (in contrast with
the case of hadrons) numerical estimates can be made.
For a system of relativistic electrons and photons in a
thermodynamic equilibrium, the role of the dimensions
is evidently played by the classical electron radius
ry = e?/m.In fact, the cross sections for the processes
and the distributions in such a system are usually ob-
tained in the single-photon approximation. Multiphoton
processes begin to play a role when the following ine-
quality is satisfied:

o

nha >

(25)

al~

!
(see, e.g.,“B]); A is the average wavelength of the radi-
ation, given by A ¥ 1/T for an ultra-relativistic gas, and
o is the characteristic cross section for the process
evaluated in the single-photon approximation. In our case,
this is the process of pair production: o ~ arZ. Using (3),
we obtain the condition

T;Ti-»viO“ deg. (26)
corresponding to an average distance between the par-
ticles equal to the classical electron radius.

We note that, even in the case when the dimensions of
the system are taken to be L ~rg, the use of a criterion
such as (24) leads to values Re ~ 1 for the critical con-
dition n;Ac ~ 1. Digressing from the fact that this esti-
mate is unreliable, we would like to emphasize that
there exists a relation between the coefficient ny and
the equation of state (17). For hadron interactions, both
functions are determined by the properties of hadronic
matter.
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The foregoing considerations make quantitative esti-
mates of the coefficient of viscosity, and at the same time
the role of dissipative processes, highly problematical.

For example, in the case of a scalar interaction in
the lowest order of perturbation theorys’, it has been
found"*®’ that

Ny ~ T 27
There is a better basis for an estimate of the coeffi-
cient of viscosity according to dimensional argumentst®J,
Since we have the dimensionality 7y =[mass]/length][time],
we obtain, in our system of units, the relation (27) in the

ultra-relativistic case (T >> M), The absence of a parame-
ter with the dimensions of mass is important for this ar-
gument; its role is therefore played by the temperature.
The largest mass is usually taken to be equal to the nuc-
leon mass M. However, the validity of this choice is not
obvious; moreover, the initial temperature satisfies
To > M only for energies Eo > 10" eV (see (5)). In other
words, dimensional arguments are insufficient for an es-
timate of the coefficient 7y in the very interesting ener-
gy range E, < 10" eV,

Taking into account these uncertainties, it is there-
fore expedient to postulate definite dependences 1y (T)
and pp(e). From considerations of simplicity and the
analogy with electrodynamics, we shall first of all adopt
the relations (16) and (18). Estimates using different
dependences for 7y (T) and pp(e) will be made later.

6. THE HYDRODYNAMICAL INTERPRETATION OF
NUCLEON-NUCLEUS COLLISIONS

Consider a collision of a relativistic nucleon with a
nucleus of atomic number A. Owing to the highly aniso-
tropic emission of the secondary particles, the nucleon
and the particles produced by it should be expected to
move approximately along the same trajectory within the
nucleus. Thus, the nucleon, as it were, cuts out a ‘‘tube’’
of nuclear matter in the nucleus. The description of this
process has two limiting variants. In the first of them,
the nucleon and the secondary particles produced by it
undergo successive collisions with each of the nucleons
of the ‘‘tube.”’ In the second variant, the nucleon col-
lides with the ‘‘tube,’” whose matter is devoid of struc-
ture (the ‘“‘tube’’ model™”). In the ¢‘tube’’ model, the
nuclear matter constitutes a single ‘‘elementary’’ par-
ticle with a density of matter equal to the density of the
nucleon. The geometric shape of the ‘‘tube’’ is a cylin-
der whose base has radius ~1/u.

Estimates have shown that, if the nucleon loses a re-
latively small fraction of its energy in an elementary
collision process, the effective longitudinal interaction
length may exceed the dimensions of the nucleus!??’,

The time of a single event may then exceed the time be-
tween interactions; consequently, there is a basis for the
use of the ‘‘tube’’ model.

There are as yet no unambiguous arguments in favor
of the ‘‘tube’’ model; its basic postulate, the lack of
structure of the nuclear matter during the collision, lies
outside the system of postulates of the hydrodynamical
theory. Nevertheless, the ‘‘tube’” model is quite consis-
tent with it. Let us consider the hydrodynamics of the
initial stage of a collision of a nucleon with a structure-
less ¢‘tube.”’

In the case in which the length of the ¢‘tube’’ isn =1
(a single nucleon), this problem is merely of methodo-
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logical interest, since the initial state is determined by
a symmetry condition; this state is a stationary fluid
contained within a Lorentz-contracted volume.

The picture becomes much more complicated when
n > 1, At the first moment of contact of the nucleon with
the ‘‘tube,’’ shock waves begin to propagate in both di-
rections through the nuclear matter. If we adopt the equa-
tion of state (17), the velocity D of the shock waves is
equal to 1/3, while the velocity of sound in the medium is
co = 1/V3®1 1t is convenient to carry out the analysis in
a coordinate system in which the nucleon and the ‘‘tube’’
have identical velocities in absolute value.

If the densities of nuclear matter of the nucleon and
the ‘‘tube’’ are the same, the matter between the shock
waves will be at rest (we shall suppose that the nucleon
is incident from the left (Fig. 1a)). Then the shock wave
traveling to the left reaches the edge of the nucleon be-
fore the wave moving to the right reaches the edge of
the ‘‘tube.’’ At this moment, a simple (traveling) rare-
faction wave moves from left to right through the nuclear
matter (Fig. 1b). This wave propagates with the velocit?r
of sound c,, i.e., faster than the shock wave. Estimates'?*!
have shown that, if n < 3.7, (and, in particular, if n = 1),
the simple wave does not manage to overtake the shock
wave before the latter reaches the edge of the ¢‘tube.”’

If n > 3.7, the simple wave catches up with the shock
wave and, in being reflected by it, produces the so-called
first reflected wave. When the shock wave moving to the
right reaches the edge of the ‘‘tube,’”’ emission of matter
into the vacuum begins,

Let us now estimate the effect of the hydrodynamical
emission on the average multiplicity N. Owing to the
ideal nature of the fluid (see the condition (15)), the en-
tropy does not increase, so that the dependence (6) and
(7) remains valid for the NN interactions. However , the
multiplicity rises somewhat with increasing atomic num-
ber A, It is easier to see the physical origin of this ef-
fect by using the statistical theory!®],

Let the mass of the tube be My = nM. Then the volume
V, of the ‘‘tube’’ in its proper coordinate system and its
mass My are proportional to A'®, Using Egqs. (3)-(5), it
is easy to show that

Since E, ~s/M;, we obtain the final result
N oo ElsA1/3,

(28)

(29)

A solution of the hydrodynamical equations[”] leads to
the slower dependence

» FIG. 1. Scheme of the hydro-
dynamical emission of particles.

a) Scheme of the motion of the
matter and shock waves in the ini-
tial stage. The matter between the
shock waves is at rest, v = Q; “‘parts”
of the nucleon (from the left) and
the “tube” (from the right) con-
tinue to move with velocity v=1
towards each other. b) The shock
wave has reached the edge of the
nucleon. Emission of a simple
wave into the vacuum with velo-
city ¢o has begun. The dashed

line indicates the plane of contact
of the nucleon and *“tube” at the
initial moment.

st
]
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N oo A0,

(30)

A steeper growth is obtained in the case of a collision
of two identical ultra-relativistic nuclei of atomic num-
ber A, An argument similar to that leading to (28) and
(29) gives the dependence

(31)

N~ AT,

It should be emphasized that this last estimate is a
rough one, since the system contains many nucleons in
a head-on collision (i.e., the initial entropy is very dif-
ferent from zero), a fact which is not taken into account
in the derivation of (31).

Next, let us consider the effect of the hydrodynamical
emission on the angular and momentum distributions or
on the rapidity distribution.

Owing to the strong contraction at the initial moment,
there exists a distinguished direction, which coincides
with the direction of motion of the incident particles.

The hydrodynamical emission is therefore predominantly
one-dimensional in character. It has been shown!®! that,
for energies up to Eq < 10'-10" eV, one can employ one-
dimensional motion to estimate the hydrodynamical mo-
tion in a first approximation. The longitudinal momentum
components are then determined by the hydrodynamical
velocity, while the perpendicular components are deter-
mined by the thermal motion!®!, In this approximation,
the inclusive distribution function

E dg

pL Py ) =gz (32)
decomposes into two factors:
f(p_l_y y4in S) = fl (p_l_v S) f‘z (Pllv S). (33)

This is an important point. Since the final temperature
is Ty = const (s), the function fl(pl, s) is independent of
the initial energy and is determined entirely by the ther-
mal motion. In that case, this distribution is the projec-
tion of the Bose distribution (for bosons) on the direction
perpendicular to the motion!?!:

[ rapy = 5y [V (B s 69)
r=d

here g is the number of internal degrees of freedom of
the particle, and K, is a Bessel function of an imaginary
argument. Putting Tf = m = 1, we obtain

%:Bé(:n'—*lﬂ[ﬂ/i+(%~)2J Py 33)

For p, > u, we find

dy - Bple

-pu
dp_L

(36)

Figure 2 shows the distribution dN/dp,, calculated using
various values of the parameter Tj.

In the next approximation, allowance must be made
for the effect of the hydrodynamical expansion on the
trangverse motion of the matter and of the thermal

FIG. 2. The distribution
dN/dp] for various values of
the final temperature Tg [].

b4 3 5‘A7
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fluctuations on the longitudinal motion. This complicated
calculation was carried out in two papers'*® *") whose
results were in mutual agreement. To avoid a digression
here involving cumbersome calculations (see the Agpen-
dix), we shall consider only the final conclusions!®’, In
the c.m.s.,

AN yrexpl—(y*%2L]
5 ‘N'-——_-Vz.u , 37)
where
L=0561n 58
2 (38)

+1.61n (m).u,s.

The accuracy of the solution of Eqs. (14) and (15) with
the condition (16) is ~15-20%. The distribution (37) is
correct for n < 3.7. In this case, the c.m.s. differs little
from the-equal-velocity system, and this difference can
be neglected. The distribution dN/dy* remains symmet-
rical with respect to y* = 0. Collisions with nuclei in
this case give only a slight narrowing of the distribution
dN/dy* and, accordingly, a broadening of the distribu-
tion dN/d$* (where $* is the angle of emission in the
c.m.s.).

However, a curious effect occurs for n > 3,728 1
this case, the difference between the c.m.s. and the sys-
tem in which the emission of the secondary particles is
symmetrical becomes quite appreciable. This means
that the symmetry with respect to y* = 0 in the c.m.s,
is broken. More particles are emitted in the fragmenta-
tion region of the target (the so-called backward cone)
than in the fragmentation region of the incident particle.

The relative velocity V. of the center-of-mass sys-
tem with respect to the system in which the emission is
symmetrical is determined by the expression

V§ 2n—4—-2 1/3 n—1
V°=Lh[T+‘W“A”h(u+1)]‘ (39)

dN  Nexp(~—(*—ud?2l]

7 R V2 A (40)

where yc = Arctanh V.

Another important conclusion should be stressed. Al-
lowance for lateral hydrodynamical motion leads to a
weak s~dependence of the function dN/dp,. Calculations
made on the basis of the results of' *gave the following
dependence P, (s) in the energy range 10'* < E; < 10* Ev:

7. MeV) =250-40 1n1_/‘_f. (41)
I we try to approximate this dependence by a power
function, we find in this interval
Dy o s, (42)

It is of interest to note that the dependence p, (s) has
been calculated quite recently’*’ (see Eq. (105) in the
Appendix) on the basis of the distributions obtained in
the fundamental paperm. However, owing to the very
crude approximation in estimating the final stage of

the hydrodynamical emission, i.e., for the distribution
dN/dp, , the results of'*) are very inaccurate. The de-
pendence p, ~ s'!* which was found'*®! and the conclu-
sion that the hydrodynamical theory is inconsistent with
the experimental data are therefore incorrect.

7. THE DISTRIBUTION IN THE LOGARITHMIC
COORDINATE
For a long time, analyses of multiple production pro-

cesses have been making use of the very ¢onvenient
variable
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[29]

n=—lntg -5, (43)
which was introduced in high-energy physics inf°1,
Since
n=gin i, (49)
it is obvious that in the relativistic case (p > m)
nay (45)

Ecompare this with the definition of the rapidity, Eq.
12)). However, the situation is completely different
for slow particles, p < m.

For example, if p << m, theny — 0, while 0 <7
< =, This circumstance has a strong influence on the
characteristics of the distributions dN/dy and dN/dn
as y — 0 or 7 — 0%, More accurate calculations
(than those of!®]) of the distribution dN/dn within the
framework of the hydrodynamical theory have shown
that the distribution dN/n exhibits a small minimum
near the point 7 = 01! with a depth which becomes
greater with decreasing p;, i.e., which depends on
the value of the final temperature Tg.

Figure 3 shows the distributions dN/dn for vari-
ous temperatures Tg. The origin of the effect in
question is easy to understand. As p; decreases, the
anisotropy becomes greater, leading to a decrease
in the number of particles emitted at angles 8* ~7/2,
i.e., near n = 0. It was later pointed out!*?! that the
occurrence of a minimum in the distribution
dN/dnl,,_.¢ is a very general phenomenon due to the
boundegness of ;. In other words, if we accept that
P, (s) = const as an experimental fact, then for
s — = there must necessarily be a minimum in the
distribution dN/dn at n = 0, for any distributions in
the longitudinal momenta,

Subsequently, the occurrence of the minimum in the

distribution was meticulously investigated in'*! within
the framework of the hydrodynamical theory.

Qualitatively, the calculation of the distribution
dN/dn leads to an integration of the distribution (32)
with respect to p; within the kinematic limits.

Using the dependence

y == Arcth (—g— thn) , (46)
we obtain
Pm
aN ; pf[pschn, y(p, 1), s]
—d—n—.-: 2N schzn S; W—dp' (47)

where pp, is the maximally allowed value of the
momentum p.

8. THE EFFECT OF DISSIPATIVE TERMS AND THE
EQUATION OF STATE ON THE VALUE OF N

We pointed out earlier that, if the equation of state
is approximated by a linear function
Py = &, (48)
then 0 <co < 1.
Distributions for ¢ # 1/3 were calculated in®*! (see
also the later estimates of ")), It was found that

4N Nexp[—(%2L] , (49)
dy V2L
where
e () V. 5
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FIG. 3. The distribution dN/dn for various values of the parameter
Tr [3']. The curves are normalized so that dN/dn =1 atq =0. t-Tf
>u, 2-Tr=u,3-TfF=0.751, 4—Tf = 0.5u.

In another form, the logarithmic term can be written

iter Vs
1"( 23 J{Vop.‘)
(see the Appendix), i.e., the Gaussian distribution has a
universal character; however, the value of L, which
characterizes the width of the plateau in the distribution
dN/dy* in the vicinity of y* = 0, depends on the value
of co.

The multiplicity N is determined largely by the quan-
tity c:

J'v ~ s(t—cs)/2(1+c5). (51)
This dependence is a consequence of the relations
s~ gt/
(52)

goc TUHD/
which follow from Eq. (48).

Thus, the allowed range of variation of the velocity
of sound ¢, corresponds to a power-law dependence
N~ 5%, (53)

with0<a < 1/2.

The maximum value of N corresponds to the para-
meter value co = 0. The decrease in N with increasing
Co is evidently explained by the fact that the relative
value of the kinetic energy decreases with the pressure;
the growth of the potential energy is due to the enhanced
role of the dissipative processes, leading to a growth
in the multiplicity (see below),

We turn now to the estimate of the dissipative pro-
cesses!?” ),

Assuming the relations ny = T® and (52), we have

Re~T“ “Zc&B/ch; (54)
here L is the characteristic size of the system.
Putting Re = 1, we obtain the new characteristic
dependence
Tcé/(i—Zc’é)
Ly e (55)

7
€6

A detailed quantitative analysis of the effect of the
viscosity on the characteristics of multiple production
processes was given in!% **),

Qualitatively, this effect can be estimated by assum-
ing that the inertial terms are negligible in comparison
with the dissipative terms up to the limit defined by
Eq. (55). The effect of these terms can be neglected for
L> L.

Using (52) and (55), as well as Eq. (18), we obtain
T, cos'/fs,

N oo T2 co s,

(56)
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Since the fluid is assumed to be ideal for T < T,,
the multiplicity remains unchanged in the subsequent
emission stage.

The increase in the multiplicity (56) in comparison
with the law (29) has a simple physical interpretation;
the dissipative terms reflect an additional interaction
of the elements of the fluid, which leads to an increase
in the entropy.

The additional interaction also leads to a broadening
of the angular distribution (or a corresponding shrinkage
of the plateau in the distribution dN/dy). However, this
change is relatively small and determines the pre-expo-
nential factor in Eq. (49) or the logarithmic term in the
definition (50).

The viscosity has a considerable effect on the entropy
contained in the simple wave!**!, We note, however, that
the entropy of the simple wave is relatively smalll® **!
and that estimates in this region are unreliable.

In conclusion, we mention that the expressions for
the viscosity have been derived here, strictly speaking,
only for the value c3 = 1/3.

9. THE ROLE OF DISTINGUISHED PARTICLES IN
MULTIPLE PRODUCTION PROCESSES

From studies of cosmic rays, it was concluded long
ago that there exists one energetically distinguished
particle among the secondary particles.

Subsequent careful investigation of this question has
confirmed this conclusion; this distinguished particle is
a baryon in baryon-baryon collisions, while it is a pion
in 7N collisions. The average inelasticity coefficient K
for nucleon-nucleon collisions or for collisions of a
nucleon with a light nucleus is approximately 0.5. The
existence of distinguished particles and, even more so,
their conservation of definite quantum numbers indicate
that not all the energy of the colliding particles goes
into the statistical system. The quantity K is a parameter
of the theory which must be determined experimentally.
However, we can give definite physical reasons why nuc-
leons are distinguished in a complex statistical system*®!,
If Eo < 1010 eV, we have T M throughout the emis-
sion stage, so that the initial nucleons may be expected
to preserve their quantum numbers in this energy range.

On the other hand, rough estimates show that at these
energies the limiting Fermi energy is eg > Tq, so that
the pressure due to.the Pauli principle tends to force the
nucleons to the periphery of the volume in which the had-
ronic fluid is concentrated™.

As in the estimate of the effect of the viscosity, there
occurs here a new characteristic energy Eo ~ 10°~10"*
eV (corresponding to a value T, ~ M) at which we should
expect a change in the dependence of the multiplicity
N(E,) towards higher values.

10. COMPOSITION OF THE SECONDARY PARTICLES

We shall refer to the relative yields of the various
types of particles as the composition.

The statistical theory with a contracted volume pre-
dicted an incorrect composition of the secondary par-
ticles, since at T = T, the masses of the secondary par-
ticles no longer affect the composition; the relative
statistical weights are therefore determined by the ra-
tios of the internal quantum numbers, gi/g;, which are
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equal to 1 in order of magnitude. For example, the ratio
of the number of antinucleons to the number of pions is
8/3, in gross conflict with the experimental data.

However, the situation is entirely different in the
hydrodynamical theory, in which the composition of the
secondary particles is determined by the final emission
stage with T = Ty.

A calculation of the composition in the hydrodynamical
approximation with ¢, = 1/V3 (the number of particles
of type i is nj > 1) leads to the expression
7 g F(my/Ty
T En FTp

(57)

where

o0

F S r2dr R
@)=z i exp z Vit =1

The signs ‘“+” and ‘“~’’ refer to fermions and bosons,
respectively. For m; > Tf = 4,

S B () () o ()
Ra gx £ (1) (\2 W xp O

This expression contains a characteristic exponential
factor, which suppresses the occurrence of heavy par-
ticles (e.g., ix/fg ~ 0.17).

(58)

(59)

In the thermodynamic approximation, the composition
is independent of the initial energy E,. However, Eq. {57)
was obtained with the very strong assumption that nj > 1,
which begins to hold for kaons and antinucleons only at
energies Eo> 107 eV,

In calculating the composition at lower energies, it is
therefore necessary to make use of the exact expressions
for the statistical weight!**’ ***°] This is an important
point. Owing to the conservation of baryon number or
strangeness, heavy particles appear in pairs. In the sta-
tistical approach, this means that, if such a pair appears
with probability Wj < 1, the increase of phase space will
involve a growth Wj ~ r{r —1), where r is the number of
elements of phase space. Since fiy > 1, we have i1 ~Wy
~r. Therefore, if i < 1,

noT
— O Na
nn

(60)

and it is only for fi; > 1 that we obtain the asymptotic
relation

T — const.
L

11. CORRELATIONS AND FLUCTUATIONS IN
MULTIPLE PRODUCTION PROCESSES

Owing to the relatively small number of secondary
particles (this number is ~ 10 at the available acceler-
ator energies), all characteristics of multiple produc-
tion processes are subject to strong fluctuations. In
addition to the difficulty due to this fact, there is an-
other problem which also complicates attempts to
understand the fluctuations in multiple production pro-
cesses. It is usually necessary, in theoretical estimates
of the fluctuations, to formulate assumptions which go
beyond the postulates required for the calculation of
average values.

We shall illustrate this point for the case of estimates
of fluctuations in the framework of the hydrodynamical
theory.

To be specific, we shall discuss here the fluctuations
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of two quantities: the multiplicity N at fixed energy Eo,
and the relative spacing between the particles along the
scale of rapidities y (assuming for definiteness that the
rapidity of the i-th particle satisfies y; < yi+1). The fol-
lowing basic sources of fluctuations can be distinguished:

a) Deviations of the hydrodynamical velocity from the
average value determined by the equations (14).

b) Fluctuations in the value of the inelasticity coef-
ficient K, affecting the fraction of the energy imparted
to the statistical system and hence the value of N.

c) The influence of resonance, whose decay affects
both the multiplicity N and the relative rapidity y.2

d) Thermodynamic fluctuations.

To estimate the fluctuations associated with the hydro-
dynamical velocity, allowance must be made for the kin-
etics of the emission, which, at least for the description
of micro-physical processes, lies outside the scope of
the phenomenological approach.

Crude estimates of the influence of the coefficient K
show that variation of this quantity may lead to an ap-
preciable change in the spread of the multiplicity dis-
tribution.

The influence of resonances could be estimated if we
had at our disposal data on the partial cross sections
for the yields of resonances. However, such data are al-
ready lacking at energies Eo> GeV. Finally, let us con-
sider the role of thermodynamic fluctuations in greater
detail. Since the first three factors are not taken into
account here, we are estimating in this way a lower
bound for the fluctuations. T

Thermal fluctuations were studied inl*?!, These fluc-
tuations are determined largely by the dissipative terms.
If, however, we assume in the framework of our system
of postulates that emission of an ideal fluid takes place,
then there is no thermal exchange between different ele-
ments of the fluid (adiabatic motion).

In the case of bosons with ¢, = 1/3, the ratio of the
average number of particles N to the dispersion D is
then found to be constant:

N
by

~ 2.

The effect of thermal fluctuations can also be extended
to estimates of the rapidity shifts of the secondary par-
ticles with respect to the average values of the rapidity'*},

Let the sequence

N <i < - <Fn (61)
correspond to the average values of the rapidities of
particles 1, 2, ..., N, We shall even assume that the
distribution of Ayj is determined by the deviation from
‘Ayj due to thermal fluctuations. Then the momentum
distribution in the proper system associated with an
element of the fluid is a Bose distribution {for pions),
while in the c.m.s. it is a distribution transformed by
a Lorentz factor equal to the component of 4-velocity
Uo. Calculations®® *) have shown that, if the variable
¢ = E/ugm is chosen, then for u, > 1 one obtains in the
c.m.s, a universal distribution
dN m 1
Tl (erg) +1]e (62)

Transforming from the quantity ¢ to the rapidity y, it
can be shown that

—(m/2Ty) [L+(1/D]
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(63)

It is of interest to observe that this estimate is in-
dependent of the index i and is weakly dependent on the
mass of the secondary particle. Since the average in-
terval between two particles is!®'2]

D)=V i —¢ ~ 1.

Ay m L) (64)

we find that for energies Eq > 10'° eV.

D (y) ~Ay. (85)

This relation implies that the thermal fluctuations are
comparable in magnitude with the average interval Ay.
This leads to an important conclusion. As the motion is
quasi-one-dimensional, the points in phase space lie
within a narrow cylinder whose base is of radius 1/u;
therefore the state of a particle is practically deter-
mined by a single parameter—the rapidity y. Owing to
the large fluctuations, there is a high probability that
the value of Ay deviates strongly from its average value;
consequently, thermal fluctuations may give rise to the
production of clusters, which are usually defined as sets
of particles with neighboring points in phase space.

12. SCALE INVARIANCE IN THE HYDRODYNAMICAL
THEORY ’ ’
In'**) 2 new invariance principle was formulated—

scaling or scale invariance: in particular, if s — =
the inclusive distribution function (32) becomes

’

e, o & =7l po), (68)

where

2py
Vs’

r= ~
L

(67

Without going info the detailed history of how this
principle was formulated (seel*’), we merely note that
the principle of scale invariance is a consequence of
ultra-relativity in the sense that it is satisfied when
M/Vs — 0, where 9 is the largest of the characteristic
masses for a process.

However, this condition is not satisfied in the hydro-
dynamical theory. The largest mass here is the mass of
the entire system, so that 2 /ys — const Z 0if s — =,

It is therefore of fundamental interest to study scaling
in the framework of the hydrodynamical theory'*" %%,

To do this, we transform to the scaling variable x in
the distribution (37):

do x

N i o lz Va2m 1
VQTLT“F{_ 2L_—‘}'
Two asymptotic expressions are obtained in the limit
as s — =, In one region,

M
I~ —= dUN%i.

Vs

(68)

(69)

If x > M/Vs, then
do oo, (70)

z?

We note that, if we introduce in the distribution (37) the
variable

—_Y_
U= VZ ’ (71)
the dependence (37), expressed in the variable u,, has a
u:[giav]ersal form which no longer contains the variable
PYCN

-ud/2

(72)
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Thus, as was to be expected, scale invariance does
not, strictly speaking, hold in the hydrodynamical theory,
However, what is especially significant is that the prac-
tical deviation from the principle (66) is very small: it
is reflected in a logarithmic factor L. In other words,
the hydrodynamical theory is scale-invariant with log-
arithmic accuracy.

In practice, scale invariance holds in the hydrody-
namical theory for x > 0.05.

13. THE ACCURACY WITH WHICH THE
CHARACTERISTICS OF MULTIPLE PRODUCTION
PROCESSES ARE CALCULATED

In discussing the accuracy with which the parameters
for a process are calculated on the basis of a strict
physical theory, one usually has in mind the mathematical
accuracy with which the equations are solved. This ap-
proach is completely inappropriate in our case. Equa-
tions (14) and (15) can be solved by numerical methods
with practically any accuracy. However, such a pro-
cedure has little physical significance, owing to the
uncertainty in the parameters of the theory. The first
priority is therefore to estimate, at least approximately,
the basic parameters and to improve the accuracy of
the physical approximations. From this point of view, it
is important to be aware of the physical accuracy of the
calculations of various characteristics of multiple pro-
duction processes. Estimates of these characteristics
in the framework of the hydrodynamical theory may be
intended to have quite different accuracies. The most
reliable characteristics should be those which are prac-
tically independent of the poorly determined initial con-
ditions. Primary consideration should be given here to
the composition of the produced particles and the dis-
tribution dN/dpl. These distributions are determined
entirely by the equation of state and the final tempera-
ture Tf.g)

The dependence N(E,) is a very important character-

‘istic. However, apart from the value of the initial volume

(whose order of magnitude is determined by physical
considerations), calculations of this dependence usually
neglect the dissipative terms, allowance for which would
modify this dependence. Some uncertainty in the calcu-
lation of N(E,) comes from the possible effect of quan-
tum fluctuations in the initial stage of hydrodynamic ex-
pansion (see below).

The angular and energy distributions are determined
by the initial conditions of the problem, the equation of
state and the effect of the dissipative terms. Even with
the assumptions which we have made (Eqs. (16) and
(18)), the distribution dN/dy is, strictly speaking,
governed by the distribution of hadronic matter within
the initial volume. The postulate that this volume is
spherical in shape in the proper coordinate system is
obviously an idealization. However, atiempts to specify
this shape more precisely {for example, by allowing for
edge effects in the form of an exponential fall-off of the
density of matter in the initial state) are completely il-
lusory.

Consequently, the question arises, for example, as to
whether the thermal motion must be taken into account
in calculating the distribution dN/dy. The problem is
further aggravated by the fact that the calculation of
dN/dy is carried out in the ultra-relativistic approxi-
mation, while T ~ Tf ~ 4 in the final stage and uj ~ 1
for slow particles. However, it is significant that, al-
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though all the factors which we have enumerated lead
to an uncertainty in the final results, but this uncer-
tainty has a logarithmic character (see Egs. (37) and
(38)) and therefore has little effect on the final results.

The problem of the fragmentation region is more
complicated. We mentioned earlier that the hydrodynam-
ical theory is not intended to describe the distinguished
leading particles'®. However, there arises here another
fundamental problem concerning the limits of applic-
ability of the hydrodynamical description. Does this ap-
proach provide generally adequate description of most
of the fragmentation region ? Evidently, two alternative
answers are possible here at the present time, and
only future experiments will be able to elucidate this
problem,

The first possibility is to assume that the hydro-
dynamical theory can describe all multiple production
processes throughout the allowed range of variation of
y, apart from the region near the kinematic limits.

From the second point of view, the hydrodynamical
theory may be expected to describe only collisions in-
volving large values of the coefficient K (so-called
central collisions), for which there are practically no
distinguished particles.

However, it seems plausible a priori that these two
alternatives are exfreme points of view which to some
extent reflect an inadequacy of our language.

Nevertheless, as the values of N and K increase, the
possibility of a successful hydrodynamical interpreta-
tion undoubtedly becomes more likely'"’,

14. COMPARISON OF THE HYDRODYNAMICAL
THEORY WITH THE EXPERIMENTAL DATA

Very many comparisons of the distribution (35) for
T¢ ~ u with the experimental data (see, e.g.,[!!’ ° %))
have shown good agreement. It is significant that, in
accordance with the theoretical predictions, the distribu-
tions have been found to be independent of the type of
incident particle and target and dependent on only the

masses of the secondary particles'®,

While the distribution dN/dp, for pions with p; > p
has been approximated by an exponential, this distribu-
tion for heavy particles has been represented’*'! by a
Gaussian function, in accordance with the experimental
data. Figure 4 shows the calculated dependence of B(E,)
and the experimental values of this quantity!*®l, Although
we cannot as yet be completely confident about the ob-
served weak growth of p, with energy, such a tendency
does show up clearly (see the latest data!®®)),

Figure 5 shows the dependence Ng(Eo)."*’ The dashed

curve is the approximation Ng = 1.97EY?*¢! (see also!®?)),

A comparison of the experimental and theoretical
distributions dN/dn in a wide range of variation of the
variable 7 was made in**), where the experimental data
of'**) were used (Fig. 6).

In Fig. 7T we show the results of a careful comparison
of the calculated'®! distributions dN/dq for various
values of the coefficient c, in the equation of state (48).
It can be inferred from this figure that the distribution
dN/dn depends strongly on the parameter ¢o. From the
fact that better agreement is obtained in the approxima-
tion ¢, — 1/¥3 with increasing s, the authors of '*! con-
clude that the asymptotic relation (18) has not yet been
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attained at energies E, ~ 10'“ eV, the calculations oft>!

are evidently more accurate.

In Fig. 8 we compare the distribution In[N/(dN/du,)]
for various values of Eq**),

Very careful comparisons of the calculated and ex-
perimental distributions in y* and x at fixed p. have
been made in'**) (Figs. 9 and 10). We see that very pre-
cise comparisons of many of the latest experimental
characteristics of NN collisions with the hydrodynamical
theory indicate good agreement.

It is a rather paradoxical situation that practically
all the conclusions of the theory were obtained many
years ago but that a detailed comparison became feas-
ible only when large accelerators came into operation.

Comparisons of the ‘‘tube’’ model with the data are
much more meager, although we can say that there is
at least semi-quantitative agreement between experi-
ment and theory.

As is well known, one of the most interesting features
of the interactions of hadrons with complex nuclei is the
relatively weak dependence of the characteristics of
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FIG. 4. Plot of B1(Eo) [*]. The solid curve shows the calculation
according to the hydrodynamical theory.
FIG. 5. Plot of Ng(Eg) [*].

FIG. 6. Comparison of the theoretical [3?] and experimental distri-
butions [53] dN/dn within a large range of variation of n. The solid curve
is the theoretical distribution dN/dn. The dashed curve is the distribution
dN/dy. a)y/s =30.8 GeV, b){/s =53.4 GeV.

FIG. 7. Comparison of the theoretical and experimental distribu-
tions dN/dn for various equations of state [54]. a)y/s = 30.8 GeV,
b)y/s =53.4 GeV.
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FIG. 9. Comparison of the
theoretical and experimental
rapidity distributions {¥5]. 1—
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FIG. 10. Comparison of the
theoretical and experimental dis-
tributions in the variable x [5%]

(on the vertical axis, in mb-GeV™2).

multiple production processes on the atomic number A
(see, e.g.,1”®)). The “‘tube’’ model gives a good descrip-
tion of this property.

Thus, if the experimental dependence is approximated
by a power function

N o 42, (73)

then, according to the review'®® | @ = 0,15 + 0,06, Photo-
emulsion studies!>™! have shown that, when the multi-
plicity for collisions of nucleons of energy E, = 200

GeV with heavy nuclei (Ag, Br) are compared with the
value of N for nucleon-nucleon collisions, one finds

a =0.15 + 0,01. Studies of the dependence (73) using
cosmic rays ™! have led to the value @ = 0.30 £ 0.09.
These data are consistent with the dependence (30).

Figure 11 shows the ratio R = Ngyn /Ny of the average
multiplicities of charged relativistic particles in photo-
emulsion and in hydrogen (see[sal); the solid line gives
the value of this ratio calculated from Eq. (30), assum-
ing that the average atomic number in the emulsion is
A =T70.

We note that the prediction of the ‘‘tube’’ model re-
garding the appearance of a pronounced asymmetry in
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FIG. 11. The ratio R of the average multiplicities in emulsion and in
hydrogen {%%].

FIG. 12. The distribution dN/d log tan ¢ in emulsion (dashed curve)
and in hydrogen (solid curve). The point C corresponds to the c.m.s.
for pp collisions at E;= 200 GeV (see {*%]).

the c.m.s. for collisions of nucleons with heavy nuclei
is also apparently confirmed experimentally'®”*°), This
asymmetry manifests itself in the fact that the number
of secondary particles rises sharply in the fragmenta-~
tion region of the nucleus. To illustrate this, we show in
Fig. 12 the experimental distributions in the logarithmic
coordinates for emulsion (dashed histogram) and for
hydrogen (solid histogram) (seet®®)).

It is notable that a collective effect has been ob-
served'®'3_the production (in the fragmentation region
of the target nucleus) of particles whose velocity exceeds
that of the nucleus before the colligion in the c.m.s.
This effect can be explained qualitatively by a hydro-
dynamical collective acceleration associated with the
nucleon-nucleus collisions. However, a quantitative
comparison of the characteristics of the collective ef-
fect with the predictions of the hydrodynamical theory
is inappropriate for two reasons: 1) the incident nuc-
leons in the experiments of wal pave a relatively low
energy (E, < 10 GeV), and 2) the quantitative predic-
tions of the hydrodynamical theory for the fastest par-
ticles (in the c.m.s.) are unreliable.

The detailed comparison of the ‘‘tube’’ model with
the experimental data on nucleon-nucleus collisions is
undoubtedly an interesting problem. Continuing along
these lines, it would also be of interest to compare the
characteristics of collisions of two relativistic nuclei
(seel®b! for a discussion of this possibility) with the
predictions of the hydrodynamical theory and, in par-
ticular, with Eq. (31), which gives a very strong depen-
dence of N(A).

15. ANNIHILATION PROCESSES AND THE
HYDRODYNAMICAL THEORY

The annibilation of relativistic baryon-antibaryon
pairs evidently provides the richest data for the appli-
cation of the hydrodynamical theory. The main point
is that we know that annihilation processes do not have
a peripheral character, so that the complex question of
whether the hydrodynamical theory is applicable to the
fragmentation region and, in particular, to the ener-
getically distinguished particles is not as acute here as
before.

Unfortunately, there are as yet no beams of suffi-
ciently fast antinucleons. In the intermediate energy
region, a comparison of the experimental data with
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the statistical theory of Pomeranchuk gives good agree-
ment!'"), The statistical-hydrodynamical interpretation
of the process of e'e annihilation into hadrons has re-
cently attracted much attention!®%®,

Experiments within the range vs = 3-5 GeV have
revealed a number of very interesting features (see!®!):

a) The energy distribution of secondary hadrons has
a roughly exponential character

4! =~ exp E)
dE "1( T/

(14)
where T ~ 160 MeV, This distribution is independent of
the value of Eo.

b) The yields of pions, kaons and nucleons are in the
ratio

gty ng ~1:0.1:0.01. (75)

¢) The average multiplicity of secondary particles
rises sharply with energy, although the exact law of
growth of the multiplicity is not clear.

d) The angular distribution is approximately isotropic
in the c.m.s.

e) Any variation of the total cross section with the
energy E, is weak, and this cross section is approxi-
mately equal to 20 nb,

It is difficult to account for all these facts from the
point of view of field theories (see'®!)). However, the
hydrodynamical theory provides a good statistical ex-
planation of all the above-mentioned experimental re-
sults (except, of course, the point about the cross sec-
tion, which is outside the scope of the model). Never-
theless, the hydrodynamical interpretation of the process
e +e — hadrons entails a new and very important prob-
lem about the choice of the initial volume. Since the col-
lision involves point particles (leptons), the initial
state is naturally spherically symmetric, correspond-
ing to the absence of anisotropy.

However, the size of the initial volume and its energy
dependence are important here'®, In the simplest vari-
ant!®® ®) it is assumed that the initial volume V is in-
dependent of the energy E, and has dimensions =1/,
Using (4) and (5), one readily finds that in this case

N oo sy, (76)
For a more general equation of state (see (52)), we find
-ﬁ . s1/2 (1+cg)VE¢’,/(i+c,§)_ (77)

The energy distribution of the secondary particles and
their composition are explained in a natural way by the
statistical character of the decay of the system.

However, certain objections can be raised against the
simplest variant. First of all, the quantity 1/u is not
the characteristic distance for the initial state in this
process. For hadronic collisions, this value determines
the magnitude of the total cross section (~1/u4?), so that
the quantity 1/u appears in the theory in a natural way;
for e'e” annihilation, this is not at all the case.

Furthermore, dimensional arguments have suggeste

that the initial volume should be energy-dependent, namely

V oo 572, (78)
In that case, one finds from Eq. (76) that
N = const, (79)
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in poor agreement with the experimental data. This dif-
ficulty can apparently be resolved in two ways. The first
solution!®’ is to assume that the characteristic dimen-
sions Ro of the initial system are much smaller than
1/u. For example, if we try to relate the initlal volume
to the experimental value of the cross section (~107%
cm®), we must assume that R, ~ 107'° cm; the multi-
plicity is then no longer determined by the initial vol-
ume, but by the dissipative terms and the condition

Re ~ 1. However, the characteristic equation in this
case differs from the dependence (55). In particular,
for the spherically symmetric case, the characteristic
relation takes the form'”

E4- 255)/(1+°3)r,(7°3' DU+ 4.

(80)

Here r, is the distance at which the effect of the dissi-
pative terms can be neglected. Using (77), we obtain

(3cd+2c2-1)/(7c3~2) (i+c§)'

(81)

Neoos

The relations (80) and (81) hold under the condition
ce> 2/1.

A second way out of the difficulty is to abandon the
attempt to relate the initial volume to the magnitude of
the cross section for e'e” annthilation. Then the only
remaining characteristic quantity in the initial state in
our case is V — 0. It follows from Eq. (77) that in gen-
eral N — 0 in this case, which is obviously absurd.

However, there exists one case in which N # 0,
namely when ¢, = 0. In this case, the multiplicity has
its maximum possible value (10). At the initial mo-
ment Ty — = and ¢ — <, but the hydrodynamical emis-
sion comes to an end very rapidly (the picture here is
very similar to the Pomeranchuk model).

An energy distribution of the Bose type (for pions)
is established in the c.m.s., with a non-scaling charac-
ter'®'. The composition is determined by the thermo-
dynamic relations,

Future experiments on e'e” annihilation into hadrons
(particularly measurements of the multiplicity) should
determine whether a hydrodynamical description of this
process is possible, It seems certain that studies of
other forms of the electromagnetic nuclear interaction
at high energies, namely y + N — hadrons, e +N — ¢
+ N + hadrons and 1 + N — ¢ + N +hadrons, will play
a major role in substantiating the applicability of the
statistical-hydrodynamical approach. In particular, it
seems important to study the degree of universality
of the spectra and the composition of the produced
hadrons.

16. QUANTUM FIELD-THEORETIC INTERPRETATION
OF THE HYDRODYNAMICAL THEORY

The hydrodynamical theory was constructed on the
basis of quasiclassical ideas.

Two questions arise in this connection: does there
exist an analogy with quantum field theory, and what
are the limits of applicability of the classical approach?

The first question, which had already been raised in
the early works on the theory of multiple production
processes (see, e.g.,[?’), has a qualitative answer—a
fluid, like a field, is a system with an infinite number
of degrees of freedom, which extends throughout space-
time.

However, it is not possible to establish a well-
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defined relation between the two approaches because
the classical description is based on one set of con-
cepts (entropy, temperature, etc.), while field theory
uses entirely different ones (the field amplitude).

Nevertheless, the fact that the energy density or
Lagrangian can be expressed in terms of classical and
quantum concepts offers hope that it will be possible
to find an analogy between the two approaches.

This problem was solved in'®! where scalar fields

were studied. The analysis was based on the division of
the Lagrangian into two terms:

L= LO + Limr (82)
where
Lo= — 4 (9} +m2q?), (83)
=g, (84)
Lint = 2475 (85)

here A and t are constants. The basic idea of the analogy
is that the quantity L, can be neglected if the energy den-
sity € is sufficiently large. If the energy density is small,
then Lint < Lo and the particles can be regarded as free.
The moment Ljnt = Lo corresponds to the time at which
T = Ty in the hydrodynamical picture. It was found that,
within the framework of this analogy, one can introduce

a conserved quantity T, which is analogous to the total
entropy S:

Lint
aq},

2225 o Q. (86)
The integration is carried out over some space-like

surface. Putting

¥oS~E, (87)
we can obtain the dependence
N oo stt—tyit, (88)

Comparing this expression with the dependence N(s)
obtained using the generalized equation of state, we find

¢ =°2t__l_T' (89)

Thus, the hydrodynamical theory corresponds to a non-
~linear interaction Lagrangian; in particular, the stan-
dard equation of state (18) corresponds to t = 2.

17. THE APPLICABILITY OF THE CLASSICAL
APPROACH TO THE INITIAL STATE

Another fundamental problem is the restriction on
the quasi-classical description of a micro-system with
a Lorentz-contracted volume!®®17),

This problem can be approached in the following way.
Let us divide the contracted disk into n separate layers
perpendicular to the direction of motion of the incident
particle. Then the uncertainty principle for one of these
layers leads to the condition

v

s
3

e> (npz )2. (90)

The conditions (4) and (90) imply that

A~ ©1)
Thus, the restrictions imposed by the uncertainty prin-
ciple prevent us from dividing the contracted disk into
an arbitrarily large number of separate layers. We
must therefore give special consideration to the possi-
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bility of employing a quasi-classical description of the
initial state of the hydrodynamical system.

There are several possible approaches to the reso-
lution of the paradox'®!, a fact which in itself already
suggests that the solution of this problem is incomplete.

One approach is to accept that the discussion of %]

is strictly correct. However, the restrictions (90) and
(91) obviously apply only to the initial state of the sys-
tem. The difficulty associated with these restrictions
disappears once the system expands to several times
the contracted dimensions of the disk. This therefore
raises the question of the role of the initial state in
the hydrodynamical system.

This point has been considered previously (see (48),
(50), (59) and Sec. 13), where we pointed out that, of
all the basic characteristics of multiple production pro-
cesses, the shape of the initial volume affects only the
dependence N(E,). The simplest interpretation of the
restrictions (90) and (91) leads to the conclusion that
there is no justification for the calculation of this de-
pendence on the basis of the hydrodynamical approach'®.

Let us now consider the reasoning of ® in more
detail, The postulate concerning the possibility of
dividing the initial disk into separate layers is most
fundamental here. This point was considered in detail
in"* **] where it was pointed out that, owing to the
strong interaction, each small cell is in strong inter-
action with its surrounding meson cloud, so that the
division into separate layers in the initial stage can be
made only under special conditions.

The situation is obviously completely different if
a limited volume contains particles which have no
strong interaction (such as electrons and photons).

The analysis of'**’ **! showed that a strongly inter-

acting fluid involves a new characteristic length, which
at high temperatures (T >> M) is estimated to be

T &~ 1/T according to dimensional arguments'®), These
arguments are naturally confirmed by model calcula-
tions. However, if it is assumed that 7 ~ 1/T, then one
cannot employ the concepts of ideal hydrodynamics in
the vicinity of the initial state in this case.

A phenomenological method of allowing for the strong
interaction in this case is to introduce a viscosity®®,
which gives an increase in the multiplicity (this problem
was discussed earlier; see (56)). However, it seems to
us that dimensional arguments alone are insufficient for
any firm conclusions about the quantitative values of the
parameters T or 7, This is especially true of the region
Eo < 10" eV, where T, ~ M.

Consequently, the purely thermodynamic approach
allows a consistent description of the initial state up to
energies E, ~ 10'* eV, However, this possibility is an
independent postulate, which it does not seem possible
to substantiate.

The complex problem of quantum fluctuations in the
initial state also arises in the case of e’e” annihilation
into hadrons. If we put 7 ® 1/T, then the condition
7 < Ry is satisfied only if vs > 1/R,. It is easy to satis-
fy this condition if Ro ® 1/u; however, if Ro < 107'° cm,
then the thermodynamic concepts can be reconciled with
the quantum fluctuations in the initial stage only by as-
suming that there is an appreciable effect of the dissi-
pative terms, which determine the initial phase of the

hydrodynamical emission'®.
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Because of certain difficulties in the interpretation of
the initial state, it is expedient to make experimental
tests of the various individual phases of the hydrodyn-
amical description: the initial state, the hydrodynamical
expansion and the final state, The initial phase largely
determines the multiplicity of particles. If the equation
of state has the form (48), then the dependence NE,) has
a power form. On the other hand, a power dependence of
N(Eo) is characteristic of models of the statistical-
hydrodynamical type. It is therefore of paramount im-
portance to make a precise test of this dependence over

a sufficiently wide energy range (e.g., 10" <E, <10 eV).

The hydrodynamical emission determines the angular
and energy distributions of the secondary particles. The
study of these characteristics may therefore serve as

a test for this phase.

The final stage determines the composition and dis-
tribution of p;. The degree of universality of these char-
acteristics is very important for the analysis of the pos-
sibility of a thermodynamic description,

Last (but not least), there is the question as to what
it is that moves during the hydrodynamical emission.

As we have already noted, these are not real par-
ticles. It is apparently also not possible to speak un-
conditionally about virtual particles in the sense in
which they are usually understood in quantum field
theory.

The assumption that partons or quarks see!™)) are

““moving’’ is closer to current but quite tentative ideas.
In this case, only sufficiently ‘‘energetic’’ partons with
wavelengths A ® 1/ys < M/mvys are quasi-free in the
initial stage. Partons with large wavelengths

x> M/mys have a strong mutual interaction and form
a single system.

Such descriptive ideas undoubtedly have too great a
linguistic element for them to be studied seriously.

18. CONCLUDING REMARKS

The hydrodynamical theory provides a good descrip~
tion of the experimental data on multiple production pro-
cesses that have been obtained with modern large ac-
celerators; most of the conclusions were obtained many
years ago with practically the same parameters. It is
paradoxical that such a crude model has such heuristic
capacity. It is a curious fact that another approach to
the theory of multiple production processes—multiper-
ipheralism—is also in %ood agreement with the experi-
mental data (see, e.g., °'). Undoubtedly, it also seems
superficially pa.radox1ca.1 that such different theories
give a sufficiently accurate description of the experi-
mental results.

Of course, the results of this comparison can be at-
tributed to the large number of free parameters in each
of the two approaches.,

However, it seems to us that there is a deeper ex-
planation here. Both theoretical approaches are based
on the principle of quasi-one-dimensional emission of
the secondary particles'™

Multiperipheralism is based on the assumption that
P, is bounded; in the hydrodynamical theory, this is a
consequence of the relativistic contraction of the col-
liding hadrons. It is this fact which determines the main
conclusions of the theory. Consequently, if the particles
are ordered according to increasing rapidity values (the
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sequence (61)), the state of the i-th particle in the mul-
tiperipheral approach is

(92)

Although the hydrodynamical theory leads to a different
dependence

9 = @ (Yi-xr Yitr)

i =9y - - (93)

the state of the i-th particle is actually still determined
almost entirely by the adjacent members of the se-
quence (61).

Vi Vit - Y S,

In this case, the larger the value of i —k (where k is
the index of the k-th particle), the smaller the correla-
tions between the two particles.

The difference between the functional dependences
(92) and (93) is also associated with a difference in the
way in which the two approaches treat the physical state
of a system of N particles. An equilibrium is also es-
tablished in the multiperipheral approach, but this
equilibrium occurs in rapidity space.

The hydrodynamical theory is based on the assump-
tion of equilibrium in ordinary configuration space. In
general, equilibrium is not established in rapidity space.
The sole exception is hydrodynamics with the value
¢o = 1. This case, corresponding to N = const, comes
closest to the ideology of the multiperipheral approach.

The hydrodynamical model is now undoubtedly an in-
tegral part of the theory of multiple production proces-
ses. The hydrodynamical theory accounts satisfactorily
for the main experimental data and raises interesting
problems for theorists. Thus, a recent detailed report!™!
listed up to 20 problems whose solution would be useful
for the development of the hydrodynamical theory (col-
lisions of particles with different masses, estimates of
correlations and fluctuations, etc.).

APPENDIX. THE FORMALISM OF HYDRODYNAMICAL
EMISSION [26:27.68]

The solution of the equations (14) for collisions of a
nucleon with a ‘‘tube’’ is based on the following prin-
ciples:

1) Hydrodynamical emission has a mainly one-dimen-
sional character.

2) A rigorous solution of the one-dimensional prob-
lem with the initial condition in the form of a contracted
disk was obtained in!™?®, The forward front here is a
simple wave, which, on the one hand, borders on the
vacuum and, on the other hand, borders on the region of
the non-trivial solution.

3) The distribution in the transverse direction is
determined mainly by the thermal motion. The solution
based on these assumptions is called the quasi-one-
dimensional approximation. It gives a good accuracy up
to energies Eo < 10'-10" ev{#],

4) Corrections due to the transverse hydrodynamical
motion are obtained by averaging the hydrodynamical
velocity over the cross section perpendicular to the axis
of emission.

In the one-dimensional case, the system (14) is equi-
valent to the equation

e o9
where a In(To/T) (see!® 1),
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Accordingly, the simple waves running to the right
and to the left are described by the equations

T r—cp
t T A—wvey '
a=—cpy (95)
and
—l vy
t Aq-ecg’
. (96)
LY
a=coy, =

here x and t are the coordinate and time of an element
of the fluid, which can be expressed in terms of the
variable y as follows:

7 3
T=¢"0 ((;{'—fshy—o—;chly) y

(07)

—a [ P4 ay, )
t—=qa-a | A _—— .
t=a ( P chy o sty

In the region of the non-trivial solution, the relation is
rather complicated:

=‘2_io_ ca S e—(l+c§)/2’-§10 [%1/12'_(‘.0”2]&:; (98)
=Co¥
here I, is a Bessel function.
Using the definition of the entropy,
dS = —s e7@ (%da—} [ % [Iy) R
*|'=f+;f-z (99)
(where sq is the specific entropy), we finally obtain
[(AY I - al) (ry
TN [/,, " —_—VH—LW]
(100)

—ci

T T az—\ca® .
g Ve te

By using the expansion of the Bessel functions, we
obtain the solution (37) and (49). The dependence (100)
is obtained in the quasi~one-dimensional approximation.
Qualitatively, three-dimensional motion can be repre-
sented as follows!?!, At the initial moment, when the
transverse coordinate is z = 1/y, the thermodynamic
parameters experience a break, i.e., there is a strong
discontinuity. This then breaks up into weak discon-
tinuities, which move with the velocity of sound c,. The
region of three-dimensional motion is bounded by

! c!/‘<1—r{
W mmEs e

(101)

The transverse hydrodynamical motion becomes impor-
tant when the longitudinal dimensions of the system are
comparable with the transverse dimensions. To arrive
at a solution of the complete system of equations (14),
we introduce, instead of the components of 4-velocity,
the new variables u, = cosh y cosh £, u' = ginh y cosh ¢,
u® = ginh £ cos ¢ and u® sinh £ sin ¢ is a polar angle in
the plane perpendicular to the axis of motion.

The system of equations (14) in the new variables can
then be simplified, but it is still a difficult matter to
solve these equations in an analytic form®'’.

A numerical solution was obtained for the value
cé = 1/3 with an accuracy ~15%. The angular and mo-
mentum distribution in the c.m.s. can be expressed in
terms of the total 4-velocity sinh £ in the transverse
direction:

et (102)
E* =pchy-chy. (103)
P =pn sh 3. (104)
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The average hydrodynamical velocity in the transverse
direction is

(105)

“ =1 Fa 10,07

IR (%) .

Consequently, the average transverse momentum §;
has a very slow growth with energy (~EY19),

Dlntersecting storage rings.

DWe stress that the dependence (7) is obtained in the thermodynamic
approximation, which is justified for E,> 10 eV. For energies
E, <€ 10 eV, an exact calculation of the statistical weights [!°] with
a power-law approximation of the dependence N(E) leads to a function
N~ E§’3.

31t was soon found that the Fermi statistical theory is in conflict with
the experimental data on the composition and angular distribution of
secondary particles.

“The physical conditions for the validity of this relation are discussed
later.

A very crude estimate of multi-particle interactions was made.

SUntil recently, no distinction was generally made between the two
distributions within the entire allowed range of y.

NThe quoted estimates were made for nucleon-nucleon collisions; they
apparently remain valid in the “tube’” model, where the problem of
distinguished particles is still present.

8To eliminate the effect of resonances, it is expedient to consider cor-
relations of particles having charges of the same sign {*].

*We are not concerned here with the distribution dN/dp; for pj 2 2 GeV,
which evidently belongs to the domain of deep inelastic processes.

This circumstance has practically no effect on the results of the calcu-
lations of the above-mentioned characteristics.

DFor example, it is difficult to explain the appearance of clusters in the
fragmentation region for N < N in the hydrodynamical theory [*°].

2The comparison was made in [5%%!] for the thermodynamic model.
However, the two models yield the same conclusions for the distribu-
tion dN/dp).

1IN, is the average multiplicity of charged particles.

19We stress that, owing to the spherical symmetry of the annihilation
process, the expansion stage plays a smaller role than in the case of
hadron collisions. In the case of annihilation, the final stage, in which
the system decays into real particles, sets in very quickly.

19As before, we are assuming here that ny ~ T3,

'$'An analogy of multiple production processes with a point-like ex-
plosion was proposed earlier to provide a basis for the principle of
scale invariance [%7). However, owing to the decisive influence of
thermal motion in this case, a point-like explosion should apparently
not result in scale-invariant distributions.

MThis is a particular aspect of the most important problem of the
micro-physics of the space-time limit of the extrapolation of our cur-
rent concepts [7°].

18We note that the possible role of quantum fluctuations is much smaller
for collisions of a nucleon with a “tube’ and, even more so, for colli-
sions of two complex nuclei.

) The uncertainty relation also implies the enequality /s > 1/R,

20)The simple wave and shock wave in the one-dimensional problem
were also studied in {76].

DA analytic solution was obtained in [*’] in a somewhat simplified
form.
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