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This review is concerned with the propagation of electromagnetic waves in magnetically ordered crystals,

including the subjects of circular, linear, and elliptic birefringence. New optical phenomena in crystals are

analyzed on the basis of magnetic symmetry. Microscopic mechanisms of magneto-optic effects suggested

so far are reviewed. Problems in crystal optics of magnetically ordered media are considered. The main

results of experimental investigations of magnetic birefringence of light in ferromagnets, ferrimagnets, and

antiferromagnets are discussed.
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I. INTRODUCTION

About 40 years ago, the present journal (Usp. Fiz.
Nauk) published a translation111 of a review by Beams
on the birefringence in electric and magnetic fields.
Beams discussed the most important studies of the ef-
fects observed during the passage of light through media
at right-angles to the force lines of electric and magnetic
fields. He reviewed almost a century of the development
of electrooptics and magnetooptics. This branch of phys-
ics was founded in 1845 by Faraday's discovery of the
rotation of the plane of polarization of light during its
propagation through transparent media parallel to the
magnetic force lines. Single-minded investigations of
Faraday, who sought a relationship between light, elec-
tricity, and magnetism, have continued to stimulate for
over a century an increasingly intensive search for new
phenomena in electrooptics and magnetooptics. Among
the numerous examples of these phenomena, the most
important are the Kerr, Zeeman, and Cotton-Mouton
effects.

Beams considered mainly the Cotton-Mouton effect
in liquids because detailed measurements had only been
made in such media. The Cotton-Mouton effect in crys-
tals (also known as the Voigt effect) was dismissed in
few general sentences describing the work of Becquerel
(see C 2 ' 3 1 ) , Becquerel investigated crystals doped with
rare-earth ions and discovered, near absorption lines,
a change in the polarization of light due to the Zeeman
effect. One should mention here the frequent reminder
in Beams' review that, in measurements of magnetic
birefringence, one has to separate this effect from the
always present strong magnetic circular birefringence
(Faraday effect).

A radical change occurred in optical investigations
of magnetically ordered crystals after the discovery of
materials highly transparent over wide ranges of infra-
red, visible, and even ultraviolet light. However, for
many years, investigations have been limited to the

Faraday effect. This effect is discussed in several re-
view papers14"8·1 and we shall not deal with it in detail.
We shall concentrate our attention on the magnetic lin-
ear birefringence in nonmetallic ferromagnets and anti-
ferromagnets.

Even the first investigations demonstrated the unusual
strength of the magnetic birefringence in magnetically
ordered crystals/ 9 ' 1 0 3 For example, a magnetic bire-
fringence η κ - n^ RS 1.5 x 10~2 was reported in c l 0 ] for
the ferromagnet EuSe; this is still a record value for
crystals.

Many studies have recently been made of the linear
birefringence of substances with different types of mag-
netic order. Numerous aspects of this interesting phe-
nomenon have been revealed, such as the large magni-
tude and anisotropy of the effect in magnetic crystals,
coexistence of linear and circular birefringence, and
relationship between linear birefringence and magneti-
zation. Therefore, it has become necessary to general-
ize and arrange systematically the available informa-
tion, which is done in the present review.

In the first chapters, we shall consider some general
aspects of the propagation of light in magnetically or-
dered crystals and later we shall discuss the main ex-
perimental results obtained on the magnetic linear bi-
refringence.

II. CHARACTERISTICS OF PROPAGATION OF
ELECTROMAGNETIC WAVES IN MAGNETICALLY
ORDERED CRYSTALS

1. Magnetic circular and linear birefringence. The
propagation of electromagnetic waves is described by
Maxwell equationstU3 and the properties of the media
through which such waves travel can be allowed for by
introducing the permittivity e ^ and permeability μ^.
The relationships between the electric and magnetic in-
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duction and the corresponding electric and magnetic
fields of light waves are

Di = eikEh, B, = \iihHh. (1)

If allowance is made for the spatial dispersion or the
magnetoelectric interaction, the above relationships are
modified, but this point will be considered later.

Magnetooptic effects appear when a medium in which
light is traveling is subjected to an external magnetic
field (which may be static or may vary at a frequency
lower than that of light) or when a spontaneous mag-
netic order exists in the medium (crystal). Since such
magnetic perturbations have little effect on the optical
properties of the medium, we can expand the permittiv-
ity ejfc as a series in increasing powers of the external
field or magnetization. If a crystal has a spontaneous
ferromagnetic moment M, this expansion can be ex-
pressed in the form

(Μ) (2)

where ef^ is the permittivity tensor of a crystal in the
paramagnetic state (for which Μ = 0), fjj^ is a third-
rank tensor which governs magnetooptic effects that are
linear in respect of the magnetization, i[y?im is a fourth-
rank tensor describing the quadratic effects, etc. A sim-
ilar expansion can also be made in the case of the tensor
Mik·

We shall consider the influence of terms linear in Μ
on the nature of propagation of light in crystals. We
shall assume that the magnetization is directed along
one of the fourfold axes in a cubic crystal Μ H [001].
Equation (1) can then be written in the form

(3)

where the antisymmetric components of the tensor are
equal, £χν = £yx> and are linear functions of the mag-
netization. If a plane light wave travels along the mag-
netization, we find that

: riiEI Du = Dt = 0. (4)

It follows from Eqs. (3) and (4) that, instead of one value
of n2, we have two

n± = exx±e^, (5)

i.e., two waves of different velocities may travel along
the direction of magnetization. The axial symmetry
around the magnetication is responsible for these waves
being circularly polarized with opposite rotations of the
polarization vector. The superposition of these two
waves produces a linearly polarized wave and the plane
of polarization of this wave rotates as one circular wave
overtakes the other. In the direction of propagation of
the wave in a crystal, this angle of rotation is

where ν is the frequency of light, / is the crystal length,
Δη = n_ — n+ = e x v / n , θ is the angle between the mag-
netization and direction of propagation of light. This is
known as the Faraday effect. When the magnetization
is reversed, the angle of rotation of the plane of polari-
zation changes its sign.

The formula (6) applies to those .parts of the electro-
magnetic wave spectrum where there is no absorption.
However, if absorption does occur at the wavelength

under investigation, the two waves of opposite circular
polarization traveling in a crystal are attenuated in dif-
ferent ways. This difference between the absorption co-
efficients of right- and left-handed circularly polarized
waves is known as the magnetic circular dichroism.
This phenomenon is also linear in respect of the mag-
netization. Since two circular waves have different am-
plitudes on leaving an absorbing crystal, their superpo-
sition produces light of elliptic polarization.

The Faraday effect and magnetic circular dichroism
are related by the integral Kramers-Kronig relation-
ships (see c n i ) . Although both these effects are used in
investigations, the magnetic circular dichroism is a
more direct and convenient method (in combination with
optical absorption) for investigating the energy states
of crystals.

It follows from Eq. (6) that, when light travels at
right-angles to the magnetization, linear magnetooptic
effects vanish and, in this case, we can determine the
role of the magnetization by including the next term
fik/mMZMm o f t h e expansion (2). We shall assume that
a light beam travels along the χ axis of a cubic crystal
magnetized along the ζ axis. In this geometry, we have

Dx = 0, Dt = »*£„, D2 = n*Et. (7)

Using Eqs. (7) and (3), we find that two normal waves,
polarized linearly along and at right-angles to the mag-
netization, may travel in a crystal:

, ^ Υ e,, — ̂ !-. (8)

The different phase velocities of these two waves
give rise to a linear biregringence of light, known as
the Cotton-Mouton or Voigt effect. In this case, the
light emerging from a crystal has elliptic polarization.
The degree of ellipticity depends on the difference be-
tween the refractive indices Δη = n z - n v . The phase
shift produced by passing through a crystal of thickness
I can be found from

2nvi
(9)

In the selected geometry with Μ II [001], the χ and y axes
are equivalent, i.e., £χχ = e v v (cubic crystal). Using Eq.
(8), we can find the difference between the refractive in-
dices

(10)

where Δε = e z z - e v v . Thus, the magnetic linear bire-
fringence depends both on the square of the nondiagonal
component of the tensor e^ , governing the circular bi-
refringence of light (Faraday effect), and on the differ-
ence between the diagonal components, which include cor-
rections that are quadratic functions of the magnetiza-
tion.

In the perpendicular geometry, the magnetization
also gives rise to a difference between the absorption
coefficients of waves with orthogonal linear polariza-
tions, which produces the magnetic linear dichroism
of crystals in the region of fundamental absorption
bands.

2. Elliptic birefringence. The circular and linear bi-
refringence effects are special cases of the birefring-
ence of elliptically polarized waves. The elliptic bire-
fringence is encountered in the propagation of light in

411 Sov. Phys.-Usp., Vol. 18. No. 6 G. A. Smolensk!? et al. 411



diamagnetic or paramagnetic optically active crystals
along directions which do not coincide with the optic
axes (for example, in quartz). The elliptic birefring-
ence is possible also in magnetically ordered crystals
whose permittivity tensor (expressed in the principal
axes system) is

(
εχχ iexy iexl s

— ieyx eyy i e S I I .

— ielx — ίε-j, ε2Ι /
(11)

The elliptic birefringence is observed experimentally
when the nondiagonal components are comparable with
the difference between the diagonal components. In fact,
if a crystal has a permittivity tensor of the type given
by Eq. (1) and μ = 1, the solution of Maxwell equations
gives two wave vectors for the light traveling along the
ζ axis:

k± = - ^ [ -exxf + 4ε·,,]. (12)

The normal modes then have elliptic polarizations
with the ellipse axes directed along the χ and y axes:[ 1 2 ]

expli(«t-Ml,

(13)

where A is an arbitrary amplitude and

2ε*!

The system (13) describes two orthogonal elliptically
polarized waves. This system describes also two ex-
treme cases in the propagation of light: if e x v = 0, we
have the usual linear birefringence and waves are prop-
agated with a linear polarization; if €χχ = €yy, only the
circular birefringence is observed and waves with left-
and right-handed circular polarization are propagated.

The equations for the normal modes can be trans-
formed for the χ and y components of the electric field,
which makes it possible to find the relative amplitudes
and phases of these components at any point ζ in the di-
rection of propagation:

cos (Φ/2) - i cos χ sin (Φ/2) — sin χ sin (Φ/2)

sin χ sin (Φ/2) cos

(15)

where Φ = δζ, δ = k+ - k., cos χ = (1 - α2)/(1 + α2),
sin χ = 2α/(1 + ο?2). The matrix in the first set of paren-
theses on the right is the Jones matrix, describing the
propagation of light in a medium.113·1 Equation (15) gives
the relative shift between the electric vectors.

We shall now consider some consequences of Eq. (15).
Let us assume that a wave of unit amplitude, polarized
along the x axis, is incident on a crystal. On leaving
this crystal at ζ = I, we find that this wave is described
by

(Ex)s = cos -j i cos χ · sin -γ ,

(£„); = sin χ-sin-^-.
(16)

It is immediately clear that the maximum value of Ey is
equal to sin χ. If the circular birefringence is weaker
than the linear effect, i.e., if — €yy , the

y yy
maximum value of Ey is small compared with unity.
Thus, the circular birefringence now gives rise to just
a slight ellipticity at the exit from the crystal. However,
if there is no linear birefringence, the amplitude Ey
may be equal to unity. If both effects coexist, i.e., if

0 < sin χ < 1, the plane of polarization of light in the
crystal cannot rotate by 90°.

If we denote the angle of rotation of the major axis
of the ellipse relative to the χ axis by β and if we denote
the ratio of the axes by a/b = tan ξ, we find from Eq.
(16) that

tg 'β = x-sin Φ

(17)

If sin χ « 1, i.e., if the linear birefringence is much
stronger than the circular effect, we have

β = -=· sin χ · sin Φ,
(18)

| = i-sm2X.sin-2-

and we can see that neither β nor ξ can be large.

We must also consider another important feature of
the coexistence of the circular and linear birefringence
in a crystal.cl23 If we assume that εχχ = e0 — η and £yy

yy
= e0 + η and if we substitute these values into the equa-
tions for δ2, we obtain

Snoring the terms η4 and ejy and those of higher or-
ders of smallness, we find that the first term in Eq. (19)
gives the linear birefringence of a medium in radians
per unit length in the absence of circular birefringence:

Υ Φ (20)

The second term gives the circular birefringence in ra-
dians per unit length in the absence of linear birefring-
ence :

28 = j / 5 k . (21)

Thus, with an accuracy to within the rejected terms, we
can formulate the following principle of superposition
of the linear and circular birefringence:

(22)

This formulation clarifies the definitions introduced
above.

Apart from the work of Tabor and Chen,cl2] various
aspects of the propagation of light in media exhibiting
circular and linear birefringence were analyzed in
c l 4 " 1 7 ] . An experimental investigation of the elliptic bi-
refringence in cubic garnet crystals, in which the cir-
cular and linear effects appear because of the magneti-
zation, is reported in : l 4 ] . A more general expression
for the Mueller matrix (see "3 1) is obtained in [ 1 5 ] for
a cubic medium exhibiting optical effects which are
linear and quadratic functions of the magnetization.
This expression is obtained on the basis of the princi-
ple of superposition and on the assumption that the crys-
tal is magnetooptically isotropic.[18:l It is pointed out in
C 1 5 ] that a crystal with elliptic birefringence may trans-
form the state of polarization of the light flux in an un-
restricted manner without additional optical elements.

The coexistence of the linear and quadratic magneto-
optic effects gives rise to certain interesting features
in the modulation of light when the magnetization pre-
cesses, as found, for example, in the microwave
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range. If light travels across a cubic crystal mag-
netized along the ζ axis, i.e., if m n Oz and if k II Oy,
the magnetization precession gives rise to components
oscillating along the χ and y axes:

mx = amz cos Ωί, my = am, sin Qt,

where a is the amplitude coefficient and Ω the preces-
sion frequency.

If the incident light is polarized along the ζ axis, we
find that—in the first approximation—only the electric
field component along the χ axis is modulated:

— ia sin- — kl\}, (24)

where δ = k+ - k_ and k = (k+ - k_)/2. If the incident
light is polarized parallel to the χ axis, only the compo-
nent of the electric field along the ζ axis is modulated.
Thus, the propagation of light in a medium with an el-
liptic birefringence gives rise to a component which is
perpendicular to the incident light. This component has
a different frequency ω ± Ω which depends on whether
the incident light is polarized relative to the static mag-
netization. The amplitude of the resultant component is
proportional to the amplitude of the precession and var-
ies sinusoidally with the path in a crystal I. Estimates
obtained for yttrium iron garnet at λ = 1.15 μ, using the
known components of the circular and linear birefring-
ence (ap = 240 deg/cm, ^CM = 140-160 deg/cm) show
that the first maximum of the sinusoid occurs at I ~ 1.3
cm.

If the incident light is polarized at 45° with respect
to the direction of magnetization, an amplitude modula-
tion is observed for both components with the preces-
sion frequency Ω .

3. Propagation of light in magnetoelectric crystals
with e * l and μ Φ 1. We have considered so far the per-
mittivity tensor e on the assumption that μ= 1. The
permeability is the more important tensor in the prop-
agation of electromagnetic waves in the radiofrequency
and microwave range. However, at some frequencies,
the contributions of e and μ may be comparable and this
may give rise to new features in the propagation of elec-
tromagnetic waves. t l 9 ' 2 O ]

When e and μ both differ from unity, the calculations
are cumbersome even in those simple cases when both
tensors e and μ can be reduced simultaneously to the
principal axes. Therefore, this case is considered in
t l 8 ] using an invariant method which is much more con-
venient in the case of complex calculations. We shall
not consider the details of such calculations since a
whole chapter is devoted to this subject in the mono-
graphc l 9 ] but we shall note the most important results.

In the case of transparent crystals with μ = 1, there
is a definite relationship between the symmetry of a
crystal and the nature and number of its axes. Depend-
ing on its symmetry, a crystal may be optically biaxial,
uniaxial, or isotropic. In the case of crystals with
μ Φ 1, the situation is different. Crystals of cubic and
moderately high symmetries are still isotropic and uni-
axial, respectively, but crystals of lower symmetries
can be optically biaxial or uniaxial. Magnetic crystals
of moderate and low symmetries can, moreover, be
unirefringent. In these crystals, all three values of the
tensor y = μ~1ε are identical, i.e., the tensors e and μ
are proportional. They do not exhibit birefringence in
spite of the anisotropy manifested by the dependence of

the propagation velocity on the direction. In this case,
a wave with any state of polarization or unpolarized
light may travel along any direction.

The propagation of waves is considered theoretically
(23) in c for nonabsorbing media; it is assumed that both

tensors can be reduced simultaneously to the principal
axes and that not only the diagonal components but also
the nondiagonal components differ from zero (i.e., the
media are gyrotropic in respect of e and μ).

Media exhibiting anisotropy and gyrotropy of e and μ
simultaneously are not yet known and the changes of
their discovery are slight. Electric dipole transitions
which contribute to e are usually much stronger than
the magnetic dipole transitions that govern μ. Such
media might be obtained when the tensor e is weakly
anisotropic and its components differ little from unity.
Moreover, it is unlikely that media will be found with
unifringent properties, i.e., with similar magnetic and
electric ellipsoids so that μ = ke.

4. Propagation of light in magnetoelectric crystals.
In magnetoelectric crystals, the general relationship
between the inductions and fields should beC 2 1 ]

(25)
Di = eu (ω, k) Ej + atl (ω, k) H,,

B, = β(/ (ω, k) Ej + μ ι ί (ω, k) Hs>

where the magnetoelectric susceptibility constants are
related by (in accordance with the Onsager principle):

«« = PJ. (26)
Special features of the propagation of light in magneto-
electric crystals are considered theoretically in C 2 1"2 4 ].
The problem was first formulated in C22] soon after the
discovery of the magnetoelectric effect.r25] It was shown
in C221 that even the refractive index of a lossless me-
dium should benerally be complex, i.e., that plane waves
could not travel without attenuation. However, it was
later shownC23] that an error was made in C221 and that
plane waves could travel without attenuation for any
value of the magnetoelectric coupling constant.

The ratio of the amplitudes of the waves traveling
along the χ axis isC 2 3 )

where ej = e^ - (afj /μα), η± = aa /μα. If the magneto-
electric effect is absent, i.e., if η ν - ηζ = 0, Eq. (27)
represents waves with electric vectors polarized along
the y and ζ axes. The magnetoelectric coupling alters
the propagation velocities of the waves so that the polar-
ization is no longer oriented exactly along the y or ζ
axis, i.e., the waves acquare an elliptic polarization.

The magnetoelectric effect is analyzed by the pertur-
bation theory method in C21] and it is shown there that
the real part of the magnetoelectric tensor alters the
state of polarization of linearly polarized light as it
travels along a crystal. The imaginary part of this ten-
sor gives rise to an optical activity, i.e., to a progres-
sive rotation of the plane of polarization. It is also
shown in ZZ11 that different methods of approach to the
equations relating the inductions D and Β and the fields
Ε and H, namely, expressions such as Eqs. (25) and (28),
give—in the final analysis—the same optical effects.

Crystal optics of magnetoelectric media is consid-
ered in C24] by an invariant method and the influence of
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the magnetoelectric effect on the propagation of light in
crystals of specific magnetic classes is discussed. The
role of the magnetoelectric effect in the gyrotropic bi-
refringence is demonstrated in f 2 6 ) .

Only theoretical investigations have been made of the
optics of magnetoelectric media. In spite of the fact
that the estimates predict a very weak influence of the
magnetoelectric effect on the optical properties, exper-
imental investigations of this effect would be of interest.

III. PRINCIPLES OF MAGNETIC SYMMETRY AND
OPTICAL PHENOMENA IN CRYSTALS

Allowance for the magnetic symmetry, i.e., the sym-
metry which includes the operation of time inversion
(or a reversal of the direction of the current), has led
to the prediction and discovery of several new physical
effects in magnetically ordered crystals. These effects
include weak ferromagnetism,
fect,C25] piezomagnetism,1-

[27,28]

, 29]
magnetoelectric ef-

and several galvanomag-
netic effects."01 All these phenomena are due to the
presence of a preferential direction of antiferromag-
netic order in a crystal. Allowance for the magnetic
symmetry may clearly give rise to new optical phe-
nomena in crystals. c 3 1 ' 3 2 ]

Allowance for the spatial dispersion, i.e., for the ef-
fects due to the existence of inhomogeneities of the elec-
tric field of a light wave over distances of the order of
the atomic spacing, modifies the relationship between
the electric induction and the field of a light wave so
that, instead of Eq. (1), we havec l l ]

Oi = ? , „ £ ) , - M u i ^ . (28)

where e ^ and yjjjj are functions of the frequency of light.
We shall now consider the properties of the tensors e^
and yfoi. Following the monographs/3 3 1 we shall divide
the tensors describing physical quantities or param-
eters of crystals into i and c tensors, where the compo-
nents of an i tensor remain invariant under time inver-
sion, whereas the components of a c tensor change their
sign as a result of such inversion.

In the absence of an external magnetic field Η or
spontaneous magnetic order, we can readily establish
the symmetry properties of the tensors e ^ and y ^ . A
generalized symmetry principle for the transport coef-
ficient shows that e ^ contains only the symmetric and
VikZ o n ly the antisymmetric parts, respectively.

eU = eii, v5,i=—V»ii· (29)

The tensor yy^ has a number of special features in the
case of pyroelectric nonmagnetic crystals,C 3 4 but we
shall not consider them here.

The properties of the tensors e ^ and yy^ under co-
ordinate and time-inversion transformations are given
in Table I. The symmetric part of e^ describes the
linear birefringence and linear dichroism effects,
whereas the antisymmetric part of yŷ / describes the
natural optical activity and circular dichroism.

In the presence of an external magnetic field, the
tensors e^ and γ^ι have antisymmetric and symmetric
parts, respectively. They are linear functions of the
field

e°fe (ff) = - εί {H), y'M (H) = yiu (H). (30)

TABLE I. Properties of ej^ and 7ikl tensors under coordinate trans-
formations (inversion I) and time inversion (R) operations and corre-
-ponding optical effects in crystals (plus and minus signs indicate whether
the sign of the effect is invariant or changes as a result of transforma-
tioh; Re and Im denote the real and imaginary parts of tensors)

Tensor

Re eik

IIU f i (f
l ru ε^

Re 11 j £

R e Υihi

I in fib ι
Re yiUi
l m y i k l

Part of tensor

Symmetric
Ditto
Antisymmetric

Ditto
Ditto

Ditto
Symmetric
Ditto »

I

j _

- -

—

—

—

Η

—

---
—

Optical effect

Linear birefringence

Linear dichroism
Nonreciprocal circular birefringence

(Faraday effect)
Nonreciprocal circular dichroism
Reversible circular birefringence (optical

activity)
Reversible circular dichroism
Nonreciprocal linear dichroism
Nonreciprocal birefringence

TABLE II. Transformations of tensors governing Faraday effect (FE)
and Cotton-Mouton effect (CME) in magnetically ordered crystals

Effect

Magnetic FE

Antiferromagnetic
FE

FE in electric field-

FE due to elastic
deformation

Magnetic CME

Antiferromagnetic
CME

Bilinear CME

Tensor

Xihl

aihln

cih!n

Rank

3

3

3

4

4

4

4

Transformation
properties

Axial i tensor

Ditto

Polar i tensor

Polar c tensor

Ditto

Polar i tensor

Tensor of type i

Examples

Dia- and paramagnets in magnetic field;
ferro- and ferrimagnets

Ferrimagnets; crystals with weak
ferromagnetism

Magnetoelectric materials

Piezomagnetic materials

Dia- and paramagnets in magnetic field;
ferro- and ferrimagnets

Antiferromagnets; ferrimagnets

Crystals with weak ferromagnetism

2^

It is shown in Table I that the antisymmetric part e ^
represents an irreversible rotation of the plane of po-

larization of light or the Faraday effect, as well as the
magnetic circular dichroism.

The symmetric part represents the irreversible or
gyrotropic birefringence. We shall consider the optical
effects that may arise from the presence of magnetic
order in a crystal and from the application of electric
fields or elastic stresses to a magnetic crystal/3 1' We
shall describe the magnetic order by the ferromagnetic
m = (Mx + M2)/2M0 and antiferromagnetic 1 = (Mx — M2)/
2Mo moment vectors. We shall assume that external
forces and magnetic order have relatively little influ-
ence on the optical properties. Then, the antisymmet-
ric part of the permittivity tensor describing the Fara-
day effect can be written in the form

Knowing the properties of the tensors eik, m;, l\, E;, and
σιη, we can readily find the properties of the other ten-
sors occurring in the expansion (31) and then determine
the existence of a given tensor for a specific magnetic
structure (Table II).

The first term on the right-hand side describes the
Faraday effect which appears in the presence of a dia-
magnetic, paramagnetic, or ferromagnetic moment in
a crystal. This effect is governed by an axial third-rank
i tensor α^1· Every crystal has this tensor and the
symmetry considerations simply limit the number of
independent components to one for isotropic and cubic
media, two for optically uniaxial media, and three for
optically biaxial crystals.

We shall now analyze the possibility of the appear-
ance of the Faraday effect due to the presence of the
antiferromagnetic vector 1. This effect is clearly pos-
sible if the properties of the transformation of the vec-
tor 1 or some of its components are identical to the
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properties of the transformation of the axial vector m
or its components. All the components of I may trans-
form like the components of m only in ferrimagnets
when there is no sublattice transposition operation. The
Faraday effect in ferrimagnets can be regarded as the
sum of the effects due to the vectors m and 1, and the
contribution of the latter can be found at the magnetic
compensation point of the ferrimagnet because, at this
point, we have m = 0.

The Faraday effect in antiferromagnets due to the
vector 1 should also be observed for those components
Ẑ  which transform in accordance with the same irre-
ducible representations as the components m^. It should
be noted that this admits of the existence of terms of the
mk/n *yPe *n the thermodynamic potential and this is the
condition for the appearance of weak ferromagnetism in
a crystal.

It follows from the expansion (31) and Table II that,
in certain magnetically ordered structures, the Faraday
effect may appear on the application of an electric field
to a crystal. This phenomenon is due to the existence of
a polar third-rank c tensor ξ^;, whose components do
not vanish if a given magnetic structure does not have
an inversion center. A polar third-rank tensor ξ^/ is
dual to an axial second-rank tensor and the latter gov-
erns the possibility of the appearance of the magneto-
electric effect in a crystal.

The magnetic symmetry may also give rise to the
Faraday effect if a crystal is deformed. This case is
governed by a polar fourth-rank c tensor δ ^ η which is
antisymmetric in respect of the first pair of indices and
symmetric in respect of the second pair. This tensor is
accompanied by components of an axial third-rank c ten-
sor representing the piezomagnetic effect.

Expansion of the symmetric part of the tensor e ^
should contain only terms quadratic in m and 1 and can
be represented in the form

- "ikln"ll"ln + bi ln + Cj (32)

where e?k is the permittivity in the paramagnetic state.
The properties of the tensors in Eq. (32) are given in
Table II. The birefringence governed by the polar
fourth-rank i tensor a.^in, which is symmetric in re-
spect of the pairs of indices i, k and I, n, is the mag-
netic linear birefringence or the Cotton-Mouton effect
which appears in all crystals in a magnetic field or in
the presence of a spontaneous ferromagnetic moment.
The tensor bik/n represents the antiferromagnetic lin-
ear birefringence. Although some components of the
vector 1 may transform differently from the compo-
nents of m, which imposes restrictions on the existence
of the Faraday effect, in the magnetic linear birefring-
ence case the antiferromagnetic vector 1 should always
give rise to an effect analogous to that produced by the
vector m because the products of the components l[ln

and m;mn transform in a similar manner.

The specific properties of magnetically ordered
crystals should be manifested not only in the antiferro-
magnetic birefringence but also in the birefringence
which is bilinear with respect to m and 1 and is gov-
erned by the tensor cik/n. This effect should also be
observed in structures for which the product m;Zn

transforms in the same way as the products m;mn or
llln. This is possible if the properties of the transfor-
mation of some of the components of 1 and m are iden-
tical, i.e., if weak ferromagnetism exists in a crystal.

The bilinear effect is interesting because, in contrast
to the ferromagnetic and antiferromagnetic birefring-
ence effects, its sign should be reversed on reversal
of m if 1 retains its direction.

The possibility of the appearance of the optical activ-
ity and gyrotropic birefringence in magnetic crystals
can be analyzed similarly. This can be done by expand-
ing the antisymmetric and symmetric parts of the ten-
sor yjjj/ as a series in components mn, ln, En, and
σ η π 1 . Such an analysis shows that the nonreciprocal gy-
rotropic birefringence effect may be observed in anti-
ferromagnets whose structure allows the existence of
the magnetoelectric effect.

The question of the existence of nonzero tensors
efk> etk> yikZ' an<^ yfkZ *s considered in C3Z1. However,
allowance for the magnetic symmetry leaves open the
question of the magnitude of the effects involved. If the
magnitude is needed, it is necessary to analyze in de-
tail the microscopic mechanisms which contribute to
the polarizability of a crystal subjected to a light wave.
Some of the possible mechanisms are discussed in
Chap. IV.

IV. SPIN-DEPENDENT POLARIZABILITY AND
MICROSCOPIC MECHANISMS OF MAGNETOOPTIC
EFFECTS

The interaction of light with a crystal is governed by
the polarizability of individual ions, pairs of ions, etc.
The polarizability terms making the greatest contribu-
tion to the magnetooptic effects should be functions of
the magnetization of individual ions and can be expressed
in the form: 3 5 ]

α, (ω) = 2 «!' (ω) Sjtl + V < (ω) SMSjv

μ μ
(33)

(34)

where δ^μ is the projection of the average thermody-
namic value of the spin of an ion j . The possible com-
ponents of the tensors occurring on the right-hand sides
of Eqs. (33) and (34) are governed by the local symmetry
of the environment of individual ions and of ion pairs.
The total spin-dependent polarizability of a crystal can
be represented by

α (ω) = 2 α,·(ω
i

au(<a)+ (35)

where the summation is carried out over all the magnetic
ions and over all ion pairs, and the first and second
terms on the right-hand side of Eq. (35) represent the
polarizabilities of individual ions and of ion pairs, re-
spectively.

The most general expression for the spin-dependent
polarization of a pair of ions j and I is

(36)

where all the terms are symmetric relative to the trans-
position of the indices μ and v. This form of the polar-
izability of an ion pair separates isotropically the ex-
change term proportional to Pj/, whereas the terms with
Qj/ and RJ; are, respectively, symmetric and antisym-
metric relative to the transposition of two spins or in-
dices ρ and τ, i.e., they have the following properties:

'ρ^-Λ^τρ, Σ<?5Ϊ!ΡΡ=0. (37)]l, ρτ = Vjl, tp,

If the ion pair under consideration has an inversion cen-
ter, the antisymmetric terms Rjj vanish. The actual
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form of the t e n s o r s of p a i r s consist ing of identical or
different ions in the rut i le s t r u c t u r e is given in c 3 5 1.

TTie interact ion of light with e lect rons in a magnetic
crys ta l can be descr ibed by the Hami l tonian" 5 "

= S( « + + c№ z + <&Vph. (38)

where the terms describe, respectively, the internal
crystal fields, Coulomb exchange interaction of elec-
trons, spin-orbit coupling, Zeeman energy, and interac-
tion of electrons with photons. One-photon processes
(absorption of light) can be described by the perturbation
theory linear in respect to Jfe-ph- Moreover, the per-
turbation theory linear in respect of Jfe_pn can describe
the processes of selective absorption of polarized light
(magnetic circular and linear dichroism) but we then
have to include also the terms jfg, jfs-r> Jt*c· Two-
photon processes (Faraday and Cotton-Mouton effects,
Raman scattering) involving virtual absorption and emis-
sion of a photon with an altered polarization can be de-
scribed by the theory which is quadratic in respect of
•^e-ph a n d linear or quadratic in respect of the other
terms of the Hamiltonian (38), depending on the phe-
nomenon under discussion.

We shall not give details of the calculations reported
in [ 3 5 ] but simply consider the results which give esti-
mates of the polarizability coefficients a m , p m , etc.
The third-order perturbation theory gives the following
expressions for the single-ion and two-ion polarizabil-
ity terms, respectively,

6 | (g I «• | a) p 1,

"Γ

Λ £ ο Δ £

θ - ' o m .
(39)

where | (g) |er |a) | 2 is the square of the moment of the
electric dipole transition between ground and excited
states of opposite parity, ΔΕ0 ~ (E a - Eg - Κω0) is the
energy of an odd electron excitation without allowance
for the photon energy, ΔΕ is the energy gap between
ground and the nearest level of opposite parity, I is the
nondiagonal exchange integral between two ions, λ is the
spin-orbit coupling constant. If the photon energy is
less than ΔΕ, we have θ ~ hwo/(AE + 2hw0). This pa-
rameter θ can play an important role in the case of ions
of the 3d group for which the nearest odd states lie in
the region of ~105 cm'1.

We can see from the system (39) that the effects lin-
ear in respect of the magnetization (the Faraday effect
in the absence of absorption) are governed by the spin-
orbit interaction. This interaction is allowed for in the
explanations of the Faraday effect in metals,1 3 8"4 0 1

yttrium iron garnet Y3Fe5Oli>,':41] and the ferromagnet
CrBr3. [ 4 2 ]

In this approximation, the quadratic magnetooptic ef-
fects depend on the nondiagonal exchange integral I.

The form of a m and p m in the system (39) shows that
these terms may be comparable in magnitude. The con-
tribution to the quadratic effects can also be obtained in
the next approximation of the perturbation theory,
namely, by double allowance for the electron-photon
and spin-orbit interactions. This approximation yields
the contributions A m and A m to the polarizability terms:

Am~ A'm ^ - a (40)

The double term jfg contributes to the biquadratic po-
larizability of an ion pair and the order of magnitude of

this contribution is ~(I/AE)pm. The terms which are
bilinear in respect of Jfg-o and Jfp contribute to the
antisymmetric polarizability terms Rw; the order of
magnitude of these terms is ~(X/AE)pm. Higher ap-
proximations of the perturbation theory will also make
contributions which depend on λ/ΔΕ and Ι/ΔΕ, but the
magnitude of these contributions clearly decreases rap-
idly with increasingiOfd^r of the approximation because,
in the case of the 3d ions, we have λ/ΔΕ ~ Ι/ΔΕ ~ 10"3.

V. CRYSTAL OPTICS OF MAGNETICALLY
ORDERED MEDIA

1. Gyration surfaces. By analogy with the surfaces
representing the natural optical activity along different
crystallographic directions, we can introduce the con-
cept of a gyration surface representing the magnetic
rotation of the plane of polarization of light. This rota-
tion, described by the term in the expansion (31) which
is linear in respect of the magnetization, can be repre-
sented by a surface which is a linear function of the di-
rection cosines γ\ of the radius vector r relative to the
magnetization:

< p ( r ) -•= . 1 / | γ, | -r o2 I Y2 I - «I fa I). (41)

where the coefficients at describe the specific rotation
of the plane of polarization of light traveling along the
magnetization directed along a selected axis. In the
case of crystals of lower symmetry, we have at Φ a2

Φ a3, whereas, for crystals of moderate symmetry, we
have a1 = a2 Φ a3, and for cubic crystals we find that a!
= a2 = a3. In contrast to the gyration surfaces describ-
ing the optical activity, which are linked to the crystal
axes, the magnetic gyration surfaces are linked to the
magnetization.

Figure 1 shows the gyration surface of a cubic crys-
tal when the magnetization is oriented along the x3 axis.
The radius vector drawn from the origin to the point of
intersection with the surface represents the specific ro-
tation of the plane of polarization along this direction.
The symmetry group of the surface is °°/m. If we
change the direction of magnetization, the gyration sur-
face is displaced but its size and symmetry remain con-
stant.

When the magnetization of optically uniaxial and bi-
axial crystals is rotated, the gyration surface of such
crystals follows the rotation of the magnetization but
the dimensions of these surfaces then change in accor-
dance with Eq. (41);

2. Optical indicatrix of cubic magnetic crystals. The

FIG. 1. Gyration surface of a cubic crystal
oriented along the magnetization. The length of
the radius vector drawn from the coordinate origin is
proportional to the Faraday rotation of light
traveling along the direction of this vector. Re-
versal of the direction of the propagation of light
reverses the sign of rotation.
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optical indicatrix describes the propagation of linearly
polarized light in crystals, i.e., it describes the linear
birefringence effect. In an arbitrary coordinate system,
the equation for the indicatrix can be expressed in the
form

5,^i = l. (42)

where i, j = 1, 2, 3; By = 3Ej/3Dj are the reciprocals of
the permittivity.

In the principal system of coordinates, Eq. (42) can
be rewritten in the extended form

Brf + Brf + Bsxl^l. (43)

We shall now consider the influence of the quadratic
term in the expansion (32) on the optical indicatrix/181

Slight changes in the reciprocals of the permittivity,
caused by the spontaneous magnetic ordering, alter the
shape, dimensions, and orientation of the indicatrix.
These changes can be described by specifying small
changes in the coefficients Bj,·:

An± = Δη1 Δη Ο ιο = —

— {>ilklaha,M-. (44)

where PijkZ is the fourth-rank magnetooptic tensor sym-
metric in respect of pairs of indices, and a^ ι are the
direction cosines of the magnetization. For an arbitrary
orientation of the magnetization, the equation for the in-
dicatrix becomes

Bix\ + B.x\ -f- Btx\ ~ 2 / W J - -B
2 = 1 • (45)

where the system for contraction of indices is used.
Equation (45) can be reduced in the usual way to the can-
onical form and the matrices for the transformation of
the old system of the principal axes to the new can be
obtained.

We shall first consider the deformation of the optical
indicatrix of cubic crystals under the influence of the
magnetization. Bearing in mind that the symmetric ten-
sor Pijk/ °f cubic crystals has only three independent
nonzero components, which are p u u = p u , p l l 2 2 = p1 2,
and p 2 3 2 3 = p4 4,

C 4 3 1 we can rewrite the matrix equation
(44) in the extended form

IB,

B.,-l

Bi

Be /
/Pu Pi; Pi; °

Pi! Pu Pi; 0
Pi; Pi; Pli »

ο ο ο P l 4

0 0 0

0 0\ 0

0 p44 0

0 0 p i 4 /

«S

<*3<*1

\ α,α2 /

il/2 =

/ PU^ITP

P!3+P
Pi

P4

V Pi

α.α 3

a3a ι

ct,a2 /

(46)

In general, Eq. (46), where the coefficients Bi can be
determined from Eq. (44), describes the indicatrix of an
optically biaxial crystal. For an arbitrary orientation
of the magnetization, the shape of the indicatrix and its
orientation are governed by the actual relationships be-
tween the magnetooptic coefficients p n , p1 2, and p4 4. We
shall illustrate this by considering several basic orien-
tations of the magnetization in a cubic crystal.

1) Μ π [001]. For this orientation of the magnetiza-
tion, we find that «x = az = 0 and at3 = 1, and we can use
Eq. (46) to find the changes in the principal refractive
indices of the deformed indicatrix:

Δη,, =Αηω,= ~-jn'oPllMz, (47)

Hence, it follows that the birefringence of a beam
traveling along the [100] or [010] direction or along any
other direction perpendicular to the magnetization is
described by

An = η „ - nj = 1 «J (Pll _ P l j ) M2.

We can see that, in this case, the magnetization con-
verts a cubic crystal from an optically isotropic mate-
rial to a uniaxial one. The indicatrix is an ellipsoid of
revolution whose optic axis coincides with the direction
of magnetization. The birefringence depends on the dif-
ference p u - p1 2 between two values of the magnetooptic
tensor.

2) Μ il [111]. For this orientation, we have at = az

= 1//3 and Eq. (46) can be used to find the changes
in the refractive indices along the direction of magneti-
zation Δ η ι η and along any other direction perpendicular
to [111], for example, Δη011:

(49)

The birefringence of light traveling at right-angles to the
[111] axis is

Δη = re || - πj, = — γ n\piiM
i. (50)

In this case, a cubic crystal is again converted from
optically isotropic to uniaxial and the optic axis is ori-
ented along the magnetization. The birefringence de-
pends on just one component p4 4 of the magnetooptic
tensor.

When the magnetization is oriented along other direc-
tions in a crystal, the birefringence is governed by all
three components p u , p12, and p4 4 of the magnetooptic
tensor and a crystal is converted from isotropic to op-
tically biaxial. The optical behavior of cubic crystals
can be described conveniently by introducing, instead
of the three values of the magnetooptic tensor, a ratio
of the type

Pn-Pi; '

which describes the magnetooptic anisotropy. If a = 1,
we can easily show that for any orientation of the mag-
netization the birefringence has the same value, i.e., it
is isotropic. Moreover, in this special case, a crystal
is converted to the optically uniaxial form with the axis
directed along the magnetization. If a # 1, the magnetic
birefringence is anisotropic and a crystal is optically
biaxial. The orientations of the optic axes are governed '
by the parameter a. We shall now consider various
possible directions of the optic axes on the assumption
that the magnetization is oriented along the twofold axis:
Μ π [110] (Fig. 2). We can distinguish the following
cases which differ in respect of the values of the mag-
netooptic anisotropy a.

FIG. 2. Dependences of the
orientations of the optic axes in
a cubic cyrstal on the magneto-
optic anisotropy parameter for
the magnetization oriented
along a two-fold axis.

4 a i -1

[ODI].

j [no]
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a) 1 < I a I < •». We shall assume that 0 < (p u - p12)
s p4 4 and then find ng = nl l 0 , nm = η ^ , and np = n U 0 (

where ng, n m , and n p are the largest, intermediate, and
smallest principal refractive indices. Using the general
form for the tangent of the angle between the optic axes,
we find that

± tg V (52)

By definition, the optic axes lie in the plane of the in-
dicatrix with the ellipse semiaxes n g and np, i.e., the
angle V is measured in this case from the (001) plane.
If a = +1, the optic axis is directed along the magneti-
zation, but, if a = — 1, it is perpendicular to the magnet-
ization and oriented along [1Ϊ0], If a = ±°°, the optic
axes make an angle of 90°, i.e., they lie along mutually
perpendicular fourfold axes [100] and [010]. It is inter-
esting to note that the birefringence of magnetooptically
anisotropic crystals should also be observed for the
propagation of light along the magnetization (i.e., in the
Faraday effect geometry) or, conversely, it may be ab-
sent for light traveling at right-angles to the magneti-
zation.

b) 0 < a < l . For these values of the magnetooptic
anisotropy parameter, the orientations of the optic axes
can be found from

±tgV-j/i=ii, (53)

where the angle is measured from the direction of mag-
netization in the [llO] plane. If a = 0, the optic axis is
oriented along [001] perpendicular to the magnetization.

c) 0 > a > - l . When this condition is satisfied, the
optic axes lie in the (110) plane and the angle between
the optic axis and the [110] direction can be found from
the formula

±tgv= (54)

If a = - 1 , the optic axis coincides with [1Ϊ0].

If the magnetization is directed arbitrarily and a * 1,
we can show that the optic axes are asymmetric relative
to the magnetization and that this asymmetry increases
with a. Consequently, in this case, none of the principal
values of the refractive index coincide with the direc-
tion of magnetization. In general, the position of the in-
dicatrix relative to the magnetization is a complex func-
tion of the value of a and of the direction cosines.

3. Optical indicatrix of uniaxial crystals. We shall
now consider the influence of magnetic order on the op-
tical indicatrix of uniaxial crystals. This problem is
solved in [44>4S1 for cobalt carbonate CoCO, and manga-
nese carbonate MhCO, crystals belonging to the \i^
class of the trigonal symmetry system. Since below the
N6el point TJJ these crystals have a weak ferromagnetic
moment, the quadratic corrections to the coefficients
Bii of the optical indicatrix have the following general
formc s l ]

ΔΒίΐ = «iA!"Ikm! + $tjkiKh + ctjkimhli, (55)

where m and 1 are the ferromagnetic and antiferromag-
netic vectors, respectively. Bearing in mind the small-
ness of the spontaneous ferromagnetic moment m, we
can ignore the contributions associated with this mo-
ment. The polar fourth-rank i tensor β ykj is symmet-
ric with respect to index pairs and describes the pri-
mary magnetic birefringence term as well as the sec-

Pll
βΐ2

SS1

Pit
0

0

PH

β.1
hi

— p 4 1
0

0

βΐ3

Pi»
p33

0
0

0

Pit
- P i t

0

p440

0

0
0
0
0

P«
β.4

0
0
0
0

2β4.

Pll —P.2

ondary effect due to deformation of the crystal lattice
as a result of magnetic ordering. It also includes the
same nonzero coefficients as the photoelastic tensor.[4S1

In the case of trigonal crystals of the Ti^d class, the ex-
tended equation for the corrections to the indicatrix co-
efficients expressed in the form with contracted indices
is t 4 4 ]

(56)

here, a\ are the direction cosines of the antiferromag-
netic vector 1 = (Mx - M2)/2Mo (there are two magnetic
atoms in one unit cell of cobalt carbonate), and the co-
ordinate system is selected in the usual manner
(Oz 11 c3, Ox 11 u2).

In general, for an arbitrary orientation of the vector
1, the nondiagonal coefficients in the equation for the
optical indicatrix do not vanish, i.e., the principal axes
of the indicatrix in a magnetically ordered state do not
coincide with the axes of the indicatrix in the paramag-
netic state. Approximate expressions of the angle of ro-
tation of the indicatrix are obtained in C443, making allow-
ance for the fact that the magnetic birefringence Anm

~ 10~4 is much less than the natural crystallographic bi-
refringence n0 — ne = 2 χ 10~l. An assumption that the
components of the tensor β^ are comparable in magni-
tude shows that the angles of rotation of the indicatrix
are almost two orders of magnitude smaller than the
angle between the optic axes in a magnetically ordered
state.

If we determine the principal refractive indices con-
fining ourselves to terms of the first order of small-
ness, we can ignore the deviation of the direction of n3

from the threefold axis c3 and we can assume that nj
and n2 lie in the basal plane. In this approximation, the
expressions for the principal coefficients of the indi-
catrix become

s = 1 ^ 7 = B» + { τ (P<<

[ | (P11 - Pi»)2 (

-^ = Be + (β,, (a\ + α*

< « + a.',)

',1 l\

(57)

These expressions simplify considerably if I lies in the
basal plane. In this case, the principal refractive indices
are

n. = no-4-»aoM2. n, = no—jnJPii*2. η, = η,~η$»Ρ. (58)

One of the principal planes of the indicatrix then passes
through the antiferromagnetic vector. For light travel-
ing along the principal directions of the indicatrix, the
birefringence is

4 for k||B, (k||e,, J. 1),

1 fork || η, (kit,, ||1),

2 fork||B, (k X c5, X»).

(59)

When light travels parallel to the trigonal axis, the
birefringence should be independent of the orientation
of the antiferromagnetic vector in the basal plane. How-
ever, if the vector 1 does not lie in the basal plane, the
difference nl - n2 depends on the orientation of the pro-
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jection Ιχ in the basal plane. The anisotropy of the bi-
refringence observed on rotation of lL about the c3 axis
is governed by the ratio 2α3/314/(/311 - βι2). For small
angles of the deviation of 1 from the basal plane (a3 is
small), the birefringence is

n, - n, = i n3

a (β,, -β12) [l + j - ^ - a2a3 (3a, -a\)J i (60)

Knowing the difference between the principal refrac-
tive indices, we can now determine the angle between
the optic axes 2V. This angle is proportional to

and it depends linearly on the antiferromag-
If 1 i c3, this angle is approximately equal

Vng - n m

netic vector.
to

-2/: (61)

If (/3U - β12) > 0, we find that ng = nx, n m = n2, and the
optic axes lie in a plane parallel to the vector 1, where-
as, if (/3U — β12) < 0, they lie in a plane perpendicular
tol .

A phenomenological analysis of the influence of anti-
ferromagnetic order on the optical properties of crys-
tals with the tetragonal rutile structure is givenin [ 4 6 1 .
The expression for the density of the internal electro-
magnetic energy in antiferromagnetic fluorides (space
group D^(, including terms which are quadratic in re-
spect of the components of the antiferromagnetic vector,
is obtained in the form

g = g„ + ± Γ )HEU2 + λ. (E'x ~ El) Ρ -r hElH - h (El -f El) ll

-f 7-.sEJz (EJX + Eyly) + XeE-h (EJ, + Eylx) -f λ,ΕχΕ,βχΙ, (62)

As usual, the ζ axis is directed along the fourfold axis
and the χ and y axes coincide with the twofold axes, 1
= (Mj - M2)/2M0 is the antiferromagnetic vector, E x V ) Z

are the components of the electric field of the incident
waves, Xfc are the magnetooptic coefficients. Equation
(62) is derived on the assumption that the birefringence
depends primarily on the antiferromagnetic vector since
the magnetization vector m = (ΊΛ1 + M3)/2MO is two or
three orders of magnitude smaller than the value of 1.

The components of the symmetric permittivity tensor
ejk can be obtained from Eq. (62) by differentiating with
respect to Ej and An analysis of these components
gives an interesting result: allowance for just the iso-
tropic exchange terms makes a crystal retain its opti-
cally uniaxial properties in the magnetically ordered
(antiferromagnetic) state. The resultant magnetic bire-
fringence is proportional to the square of the antiferro-
magnetic vector

A"Z=P (-ψ-£?)· (63)

where n(

(°* = ̂ εψ~ and η^0) = ̂ e[0 >, i.e., the magnetic bi-
refringence of such a crystal is independent of the direc-
tion of the vector 1 relative to the crystallographic axis,
i.e., it is independent of the magnetic structure.

The terms anisotropic in respect of the vector compo-
nents 1 also fail to impart biaxial properties to such a
crystal when the vector 1 is oriented along the [001] axis
(lx = ly = 0, lz = I). In this case the magnetic birefring-
ence is

(64)

For different orientations of the vector 1 at an angle with
respect to the ζ axis, other terms of the tensor ejk con-
tribute to the birefringence. The appearance of the lx

component alters the birefringence in the (z,y) plane:

When light travels along the ζ axis and I = Zx, the bire-
fringence is

Anma =/ix — n — 2 λ 8 ί *

ngence:
10"'-ΙΟ"3; rota-

i.e., it is governed only by the anisotropic terms.

As shown in the preceding chapter, the magnetic bi-
refringence of cubic crystals alters considerably the
optical properties of such crystals which usually be-
come biaxial and the optical indicatrix can be oriented
arbitrarily, depending on the orientation of the magneti
zation and the magnetooptic anisotropy parameter. A
different situation is encountered in crystals which are
uniaxial in the paramagnetic region. The magnetic bi-
refringence of such crystals is a small perturbation
compared with the crystallographic birefringence:
A n mag/^crys t = ΚΓ'-ΙΟ^/ΚΤΜΟ'
tion of the optical indicatrix is slight, of the order of
several degrees.

4. Deformation of optical indicatrix due to elastic
stresses and magnetostriction. The optical indicatrix
may change when a crystal is deformed. This piezo-
optic effect can be described on the assumption that the
changes in the coefficients By of the optical indicatrix№1

are proportional to the stresses acting in a crystal:

AB^=nlJk,Ghl, (67)

where ffijkZ is the fourth-rank piezooptic tensor. This
tensor has the same nonzero components as the fourth-
rank magnetooptic tensor PijkZ in Eq. (44). Thus, in the
case of cubic crystals, the birefringence is governed by
just two combinations of the piezooptic coefficients:
(vn - 7T12) and ir44. Magnetically ordered crystals can
become deformed not only because of the application of
external stresses but also because of magnetostriction.
Magnetostrictive strains e m s are defined in terms of
the direction cosines «% / of the magnetization

ms η /co\
ε ϋ ~ Λί;'6/αΑαί· \VO)

Thus, in general, the birefringence observed in a
magnetically ordered crystal may be due to the "in-
trinsic" magnetic birefringence or "secondary" effect
because of magnetostrictive strains. Although both these
effects are functions of magnetization, their microscopic
nature should be different. The intrinsic magnetic bire-
fringence is due to the splitting of electron transitions
in the exchange field or due to the spin-orbit interaction.
The magnetostrictive birefringence is due to the split-
ting of electron transitions or degenerate lattice vibra-
tions because of a reduction in the symmetry of the
crystal field as a result of magnetostriction.

We can calculate the magnetostrictive birefringence
if we know the magnetostriction constants Ayy, orienta-
tion of the spontaneous magnetization in a crystal, i.e.,
the direction cosines «k and a/, and the piezooptic co-
efficients.

The piezooptic effect is also observed when a crystal
is deformed by an external compressive or tensile force.
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This effect can be allowed for in the usual way using Eq.
(67). However, an important feature of magnetically or-
dered crystals is that, because of the magnetoelastic in-
teraction, elastic stresses alter the orientation of the
spontaneous magnetization. This means that, in addition
to the usual piezooptic effect, we should observe a
change in the birefringence because of a change in the
orientation of the magnetization. This change affects
both the intrinsic magnetic birefringence and the bire-
fringence due to magnetostriction. In practice, the vari-
ous mechanisms can be separated by applying external
forces along the principal crystallographic directions.

VI. INVESTIGATIONS OF MAGNETIC
BIREFRINGENCE IN FERROMAGNETS AND
ANTIFERROMAGNETS

1. Divalent-europium compounds. The strongest, in
the absolute sense, magnetooptic phenomena have been
observed so far in divalent-europium compounds such
as EuX, where X = O, S, Se, and Te. Magnetic, electri-
cal, and optical properties of europium compounds are
discussed in detail in several monographs.147"503 These
compounds have the NaCl-type fee structure. Crystals
of EuO and EuS are typical ferromagnets. Antiferro-
magnetic order is found in EuSe but even weak fields
of 0.1 kOe give rise to a considerable net magnetization
and in fields above 8 kOe the magnetic moments are
oriented along the field. Antiferromagnetic order is also
found in EuTe.

Europium compounds have two strong optical absorp-
tion maxima at energies of 2.0-2.5 eV and 4.0-4.7 eV.
When the lattice parameter increases, i.e., when the
crystal field decreases, the first maximum shifts to-
ward higher energies and the second toward lower en-
ergies. This behavior makes it possible to attribute
these maxima to the allowed electron transitions 4f7

— 4f65d(t2g) and 4f7 — 4fe5d(eg), respectively. These
absorption maxima have a structure which cannot be re-
solved, even at low temperatures. The structure is most
probably due to the spin-orbit splitting of the tjg and eg
states and, at low temperatures, it may also be due to
the exchange splitting. A much better resolution of the
band structure can be obtained in the magnetic circular
and linear dichroism and birefringence spectra. The ab-
sorption maxima exhibit an anomalous red shift of the
order of 1000-2000 cm"1 when a crystal is magnetically
ordered." 0 ' 5 " The large magnitude of this shift indi-
cates that it is associated with an excited state because
the exchange splitting of the ground 4f state should not
exceed ~100 cm"1.

Dispersion effects, like the circular and linear bire-
fringence, are of considerable interest in the transpar-
ency regions of crystals, particularly in the near-infra-
red and partly in the visible range. The magnetic linear
birefringence of europium oxide EuO at Τ = 20°K in a
field of 9 kOe is nL - nM = 1.07 χ 10"2 at a wavelength λ
= 10.6μ.Ε52'53] It gradually increases with energy, reach-
ing 1.5 x 10"2 at λ = 2.5 μ. The magnetic linear bire-
fringence of EuSe is also large near the first absorption
maximum lying in the red part of the spectrum. The
value of this birefringence extrapolated to saturation is

a [ l 0 ]

n x - η,,x ,, 2.0 x 10"a for λ = 0.725 μ at Τ = 4.2°K.[l0] This
magnetic linear birefringence is the highest ever value
recorded for crystals.

The magnetic circular and linear birefringence ef-
fects in europium compounds are a consequence of con-

3 -i 5
Photon energy, eV

FIG. 3. Absorption spectrum of EuS (A), magnetic circular
dichroism (MCD) spectra (B, C), and magnetic linear dichroism (MLD)
spectra (D, E) in the vicinity of and below T c . The dichroism was
measured in the following magnetic fields (kOe): B) 0.17; C) 1.4;
D) 7.2; E) 0.44 [S 4].

siderable circular and linear dichroism in the regions
of the absorption bands, as investigated for crystals of
EuO/ 5 2 ' 5 " EuS,[ M ] and EuSe.c 1 0'5 5 1

We shall now consider the main features of these
phenomena in the case of EuS.t 5 4 ] Investigations of the
optical absorption and magnetic dichroism were carried
out on thin films of this compound deposited in vacuum
on polished CaF2 substrates. The quality of these films
was checked by carrying out x-ray structure analysis
and verifying that the absorption spectrum and Curie
temperature T c = 18 ± 1CK agreed with the published
results. The absorption and dichroism spectra obtained
at low temperatures for this compound are plotted in
Fig. 3. The structure of the two wide bands is not re-
solved in the absorption spectra but it is quite clear in
the magnetic circular and linear dichroism (MCD and
MLD) spectra. The model of a free Eu2+ ion can be used
to calculate the signs of the MCD (+ + -) and MLD ( + - +)
effects for the spin-orbit components (expanded in terms
of rising J) of the excited state 8 Ρ/4ί 6 5ύ(β ε or t ^ ) . The
intermediate state does not appear in the MCD spectrum
because of the mutual overlap of two components which
have the same sign (++) but it can be clearly distin-
guished in the MLD spectrum, where the neighboring
components have opposite signs. At low temperature,
the influence of the exchange interaction varies with the
wavelength. For example, it has little influence on the
MCD spectrum of bands a and b, but large changes are
observed in the region of band c (2.2-3.0 eV). It has not
yet been possible to interpret unambiguously the shoulder
found in the region of the first absorption band. One of
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TABLE III. Comparison of magnitudes and signs of Faraday effect
Δηρ and Cotton-Mouton effect ΔηρΜ predicted theoretically and
found experimentally [ 10J

A n C M

^wMToV"

Theory

, . _ 9

+

-0.026

—0.3

ν 7

2

+
—0.26

- 3

+0.043
+0.5

Experiment

+0.023

TABLE IV. Magnetic birefringence of light in iron garnets (T = 295°K,

λ = 1.15 μ, andH = 20kOe)

Crystal

Y 3 F e 0
Sm3Fe5Oi2

E u 3 F e 5 0 1 2

G d 3 F e 5 0 1 2

T b 3 F e 5 0 1 2

α

1.34
0.62
0,98
1.29
2.67

HIK100]

Λ η Ο ι ) ·
•10»

3.87
8.06

10.25
4.00
1.44

0CM.
deg/cm

120
250
320
124
45

HIHHI]

A"CM'
• 10"

5.16
5.0

10.00
5.10
3.80

PCM·
deg/cm

160
155
312
160
115

Crystal

D y 3 F e 5 0 l s

Ho 3 Fe 5 O f 2

L u 3 F e 5 0 l s

a

3,67
1.82
1.52
1.65

H1K100J

4 " C M '
•1US

0.97
2.72
3.55
3.20

p C M ,

deg/cm

30
85

110
100

Hlltlll]

•10»

3.55
5.00
5.40
5.30

PCM-
deg/cm

110
155
167
165

the possibilities is the spin-forbidden transition
(S' = 5/2), which is mixed with the levels 5d(t2g)
(S' = 7/2) by the spin-orbit or exchange interaction.

Theoretical estimates of the sign and relative mag-
nitude of the Faraday (Δηρ) and Cotton-Mouton (ΔΠ£Μ)
effects based on the intraion transition model are ob-
tained in c l 0 ] for paramagnetic europium fluoride EuF2.
The signs of the effects and the ratios An C M /An F ob-
tained for the cases when the main contribution to the
effect is due to transitions to the levels of the multiplet
8Pj'(4f65d) with J' = 9/2, 7/2, and 5/2 are listed in
Table III. The experiments predict a negative sign for
Δηρ and for AnQjyr, i.e., the experimental values are in
good agreement with the estimates obtained for the case
when the lowest level is 8P5/2.

2. Iron garnets. Historically, investigations of the
magnetooptic phenomena in ferrites were started using
crystals with garnet structure. Yttrium and rare-earth
iron garnets have the general formula R3Fe5O12 (R = Υ
or rare-earth ion). Their structure is described by the
cubic space group On°-Ia3d and the unit cell contains
eight "molecules" (formula units). The garnet struc-
ture is such that considerable variations in respect of
composition are possible due to replacements of the
original ions at tetrahedral, octahedral, and dodecahe-
dral positions.

The first visual observation of the magnetic bire-
fringence of light in iron garnets was reported in C9]

and this phenomenon was later studied in [ 1 8 ' 5 β>5 7 ] . A
general phenomenological discussion of the optical be-
havior of cubic crystals is given in Sec. 2 of Chap. V.
Table IV gives the results of measurements of the mag-
netic birefringence of garnets carried out with the mag-
netization oriented along the fourfold and threefold axes
and with light traveling at right-angles to the magneti-
zation. At room temperature, the magnetooptic aniso-
tropy a allows us to divide these garnets into two
groups: a < 1 for samarium and europium garnets and
a > 1 in all other cases.

Even in the case of yttrium iron garnet, in which the
trivalent iron ions occupying the tetrahedral and octa-
hedral positions are only in the S state, the magneto-
optic anisotropy is considerable at room temperature

FIG. 4. Temperature de-
pendences of the magnetic bire-
fringence of terbium iron garnet
obtained for the magnetization
oriented along the [100], [110],
and [111] axes (curves 1 - 3 , re-
spectively). The curves represent
average experimental results; T c is
the Curie point; TComp ' s the mag-
netization compensation tem-
perature; λ = 1.15 μ; Η = 23 kOe.

400

I It

FIG. 5. Temperature dependences of the magnetooptic anisotropy
parameter of several rare-earth iron garnets.

(a = 1.3). It is interesting to note that the correspond-
ing ratio for the elastic constants of Y3Fe5012 is 0.95,
i.e., this crystal is elastically isotropicC58:l to within 5%.
According to the static measurements,f591 the corre-
sponding ratio of the photoelastic constant is 1.54,
whereas it follows from 300 MHz measurementsteo1

that the ratio is 0.84. The strong anisotropy of the
magnetic birefringence shows that its magnitude de-
pends not only on the exchange interaction, whose con-
tribution should be isotropic, but also on anisotropic
interactions such as the spin-orbit coupling.

The magnetic birefringence of these garnets, gov-
erned by the magnetizations of the iron and rare-earth
sublattices, depends very strongly on temperature.
Measurements reported in C X 8'5 6 ] extended from 77°K
to the Curie temperatures T c ~ 550-580°K. The
changes in the birefringence of rare-earth iron garnets
are particularly large when the temperature is lowered
because there is a change in the order in the rare-earth
sublattice. The contribution of this sublattice is large
and strongly anisotropic. Figure 4 shows, by way of ex-
ample, the temperature dependence of the birefringence
of terbium iron garnet. When the temperature is in-
creased to the Curie point, the contribution of the rare-
earth sublattice decreases: the birefringence curves of
the yttrium and rare-earth garnets approach each other.

Figure 5 shows the temperature dependences of the
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magnetooptic anisotropy parameter a. Some crystals ex-
hibit anomalies of this parameter near the magnetic com-
pensation points. On approach to the Curie point, the pa-
rameter tends to unity for all the investigated garnets.
A reasonable explanation of this behavior is not yet avail-
able.

The temperature dependence of a indicates that the
orientations of the optic axes change. For example, in
the case of dysprosium garnet, Dy3Fe5Ol2, the orienta-
tions of the optic axes vary with temperature from the
(001) plane to the (110) plane and then to the (1Ϊ0) plane,
finally returning to the (001) plane. Large rotations of
the optic axes are also exhibited by holmium and terbi-
um garnets near the compensation temperatures.

It should be noted that the birefringence may be var-
ied not only by cooling or heating but also by altering
the concentration of various magnetic ions.

The most detailed results of the magnetic birefring-
ence of garnets are given in [ 1 8 ' 5 6 · 5 7 1 . The values of this
birefringence obtained in two different laboratories are
in basic agreement but, for some crystals, there are
large discrepancies, particularly at room temperature.
These may be due to residual crystallographic stresses.
Such stresses may be removed by annealing/611

Magnetic ordering of ferrites is accompanied by
magnetostrictive strains and this may give rise to the
lattice birefringence. However, estimates of this bi-
refringence obtained using known values of the photo-
elastic and magnetostriction constants show that the
magnetostrictive birefringence is approximately two
orders of magnitude weaker than the magnetooptic ef-
fect. [62,63]

We shall also mention measurements of the bire-
fringence of light in some substituted iron garnets. t 6 4 ' e 5 1

Complex compounds of the (Gd, Tb, Eu)sFeeO,g type, ex-
hibiting deviations from the cubic structure, 6 1 are of
special interest among the substituted garnets. The ro-
tation of a plate (made of one of these compounds) about
the direction of a light beam in a magnetic field directed
along the [110] axis shows that the birefringence differs
radically from the curves obtained for cubic garnets. In
the absence of this field, a strong birefringence is ob-
served which does not disappear even above the Curie
temperature. Bismuth-calcium-vanadium garnets, which
do not contain rare-earth ions, behave similarly.1671 In-
vestigations of the orientation and temperature depen-
dences make it possible to attribute the observed bire-
fringence to the crystallographic distortions of the cubic
structure of the garnet rather than to the magnetostric-
tive deformation or domain structure.

3. The ferrimagnet RbNiF3. The great majority of
crystals of the 3d-metal fluorides are antiferromag-
netic and some exhibit a weak moment. The hexagonal
structure of RbNiF3 (space group D^,) is interesting be-
cause it admits the existence of the ferromagnetic, fer-
rimagnetic, and antiferromagnetic order. The antiferro-
magnetic order occurs in CsMnF3 (see Sec. 1 in Chap.
Vm). The ferrimagnetic order in fluoride crystals was
first observed in RbNiF3. Divalent nickel ions occupy
two positions, usually denoted by 4f and 2a. Since the
number of 4f ions is twice as large as the number of 2a
ions and the spins of the 4f and 2a ions are antiparallel,
a spontaneous moment appears in the ordered range and,
at low temperatures, this moment reaches as - 21 cgs
esu/g,ce81 which represents one-third of the expected

magnetization for a parallel distribution of spins in both
sublattices. The results of static magnetic, resonance,
and optical investigations indicate that below T c = 139°K
the sublattice spins lie in a plane perpendicular to the
optic (hexagonal) axis, i.e., RbNiF3 is a ferrimagnet of
the easy-plane type. When the magnetic field is applied
in the basal plane, saturation is observed in fields of
the order of 0.2 kOe. and when the magnetization is
along the hexagonal axis, such saturation occurs in
fields of 20-24 kOe.t691 Since the linear magnetooptic
phenomena, such as the Faraday effect and magnetic
circular dichroism, can be observed in their pure form
only for light traveling along the optic axis, fairly high
magnetic fields are needed to observe saturation of
these effects.

In studies of the quadratic effects, a light beam is
usually directed perpendicular to the magnetization.
Therefore, the saturation magnetic birefringence of
RbNiF3 due to propagation of light along the hexagonal
axis is observed in a weak field of ~0.2 kOe. In this
field, the sixfold axis ceases to be the optic axis and
the crystal becomes optically biaxial. The birefring-
ence observed in saturation fields at 77°K in the trans-
parency window at λ = 0.55 μ is 142 deg/cm, whereas
the Faraday effect under the same conditions is only
95 deg/cm.C70J

A magnetic birefringence hysteresis, associated with
the domain structure,C711 is observed in RbNiF3. In the
linear Faraday effect, the direction of rotation of the
plane of polarization changes with the direction of the
field but the sign of the quadratic effect remains con-
stant. Consequently, the magnetic birefringence hyste-
resis loop is of a special shape.

Crystals of HbNiF3 are transparent in wide parts of
the spectrum in the visible, ultraviolet, and infrared re-
gions. This can be used to measure the dispersion of
the Faraday and Cotton-Mouton effects and the magnetic
dichroism spectra over a considerable spectral
range.1·69'711 Figure 6 shows the dispersion of the mag-
netic birefringence and the absorption spectrum of
RbNiF3.

In the investigated parts of the spectrum, the Cotton-
Mouton effect is governed by electron transitions in Ni2+

ions. The greatest contribution is due to allowed elec-
tric-dipole transitions between electronic configurations,
3d8 — 4p3d7, and this contribution lies in the far-ultra-
violet part of the spectrum. Complex dispersion of the
magnetic birefringence is observed in the region of
electron transitions within the 3d shell. The nature of
the observed dispersion of the Cotton-Mouton effect is
different from the dispersion of the Faraday effect and

22 IS 14 10 β
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FIG. 6. Dispersion of the magnetic birefringence (upper curve) and
absorption spectrum along the hexagonal axis (lower curve) of the fer-
romagnet RbNiF3 at 77°K.
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the contribution of transitions in the 3d shell to the dis-
persion of the Faraday rotation is greater than in the
Cotton-Mouton effect. It should be noted that, in contrast
to the quadratic effect, the sign of the Faraday effect
changes several times in the spectral range under con-
sideration. t 6 9 ] For example, several sharp lines are ob-
served in the region of transitions to the 3 T a and xTf
levels in the magnetic circular dichroism spectrum but
some of them are not observed in the linear dichroism.

An analysis of the magnetic linear dichroism of the
1Ea and 1 T j absorption bands, carried out for the ferri-
magnet RbNiF3,

Γ711 antiferromagnet KNiF3,
C723 and weak

ferromagnet NiF2

 C73] shows that the sign of this effect
is governed by the magnetic structure of the crystal.
Special features of the magnetic linear dishroism of the
last two antiferromagnets will be considered again in
Chap. VII.

The dispersion of the Faraday and Cotton-Mouton ef-
fects is usually, even over a narrow part of the spec-
trum, the sum of the circular and linear dichroisms of
the absorption bands throughout the spectral range. This
relationship can be established in its general form from
the Kramers-Kronig formulas. Hence, it is clear that
investigations of the magnetic dichroism of individual
transitions may provide information of considerable in-
terest in studies of the microscopic mechanisms respon-
sible for the magnetooptic effects. Unfortunately, very
little of such information has been published so far.

VII. INVESTIGATIONS OF MAGNETIC
BIREFRINGENCE IN ANTIFERROMAGNETS

1. Magnetic birefringence in the antiferromagnets
a-Fe2O3, RbFeF3, CsMnF3, MnWO4, and ICjMnF^ The
magnetic birefringence of antiferromagnets is associ-
ated primarily with the antiferromagnetic vector 1, rep-
resenting the sublattice magnetizations. The birefring-
ence associated with the ferromagnetic vector m has not
yet been observed for antiferromagnets because it is
considerably smaller. However, this contribution is
large in ferromagnetic crystals.

In this section, we shall review briefly investigations
of the magnetic birefringence exhibited by certain anti-
ferromagnets with different magnetic structures. Later,
we shall discuss in detail the results of studies of the
birefringence of fluorides with rutile structure and of
transition-metal carbonates.

Hematite (o?-Fe203). This crystal has a structure
with the space group D^d. Below T M ~ 250-260% the
spins are parallel to the crystal axis and the state is
purely antiferromagnetic, whereas, at higher tempera-
tures, the spins lie in the basal plane and are rotated
slightly relative to one another, which gives rise to a
weak ferromagnetic moment. The symmetry properties
of a-Fe2O3 are discussed in detail in C27'743.

The magnetic birefringence of hematite was investi-
gated in C75] for light traveling along the optic axis.
Figure 7 shows the temperature dependence of the bi-
refringence in the vicinity of the phase transition from
the purely antiferromagnetic state to one with a weak
moment. Hematite exhibits a considerable absorption
in the visible range and the reported measurements
were carried out at λ = 1.15 μ.

According to a crystal-optics analysis given in Chap.
V for uniaxial crystals of trigonal symmetry, a crystal

1 400-

250 290

FIG. 7. Temperature dependence of the magnetic birefringence of
hematite <*-Fe2O3 for λ = 1.15 μ and Η = 8 kOe. The effect appears at
the Morin point, when the antiferromagnetic moment becomes oriented
at right-angles to the direction of propagation of light.

remains uniaxial when the vector 1 is oriented along the
trigonal axis and the birefringence vanishes for the
propagation of light along this axis. This is indeed ob-
served experimentally below the Morin point T ^
« 253°K. However, when the vector 1 deviates from the
trigonal axis, we should observe the birefringence de-
scribed by Eq. (59). It is interesting to note that if the
vector 1 is perpendicular to the trigonal axis, the bire-
fringence is independent of the orientation 1 in the basal
plane. When the vector 1 deviates from the basal plane,
we should observe anisotropy of the birefringence of the
order of 2α3β14/(βη - /3l2), where α3 is the cosine of the
angle between 1 and the trigonal axis, and β fa is the mag-
netooptic constant.

CsMnF3. The birefringence of this hexagonal antifer-
romagnet was investigated in C45]. The space group of
this crystal is D̂ h a n d a unit cell contains two types of
site (4f and 2a), occupied by paramagnetic divalent man-
ganese ions. Below the Neel point TN = 53.5% this
crystal transforms to a magnetically ordered state and
the spins are oriented in the basal plane. It follows from
symmetry considerations that weak ferromagnetism is
impossible in this crystal and CsMnF3 is indeed a
"pure" antiferromagnet. It should be noted that the
symmetry of this hexagonal crystal allows the existence
of the ferromagnetic or ferrimagnetic order. The latter
is observed in RbNiF3.

The complex crystal structure of CsMnF3 (and of
Rb№F3) makes the magnetooptic phenomena in these
crystals dependent on a large number of parameters.
For a specific antiferromagnetic order of the spins in
the two sublattices of CsMnF3, namely,

I, = s, — s2,

h = - °1 + "2 + °3 - «4.

[where Si (i = 1, 2) and OJ (j = 1, 2, 3,4) are the magnetic
moments of the ions in the 2a and 4f lattices], the num-
ber of coefficients is nineteen. l*5: The expansion em-
ployed for this crystal contains only terms quadratic in
1 and 12.

Figure 13 (given later in the paper) shows the tem-
perature dependence of the birefringence of CsMnF3 ob-
tained for light traveling at right-angles to the optic
axis: k 11 Oy. This crystal remains optically uniaxial
at all temperatures and in all magnetic fields applied
in the basal plane (x, y). The value of Δηχζ (Τ) varies
strongly in the region of T^. Unfortunately, the purely
magnetic contribution to the birefringence cannot be
separated for this crystal because the temperature de-
pendences of the lattice constants are not known.

RbFeF3. This crystal is cubic at room temperature
(perovskite-type structure) but, at low temperatures,
exhibits several phase (magnetic and crystallographic)
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FIG. 8. Temperature dependence
of the birefringence of light in
MnW04.

200

transitions. C 7 e 'T 7 ] Investigations of the optical absorp-
tion have demonstrated that this crystal is transparent
in wide regions at infrared, visible, and ultraviolet fre-
quencies.178'793 The absorption bands in the region of
7020 and 9760 cm'1 are due to electron transitions 5 T 2 g

— 5Eg in the Ye2* ions acted upon by an octahedral crys-
tal field. At higher frequencies, there are weaker ab-
sorption maxima due to electron transitions in the Fe2 +

ions accompanied by a change in spin.

The paramagnetic birefringence is exhibited by this
crystal at 200°K. In the transparency range at ν = 18,000
cm'1, it amounts to Δη « 10"6 in a field of ~30 kOe. This
effect varies quadratically with the field. The birefring-
ence at 77°K (orthorhombic phase with a spontaneous
magnetic moment) was measured in the plane of one of
the principal sections of the refractive index ellipsoid.
In this case, the effect is Δη « 2 χ 10"4 in weak fields
and a strong differential rise is observed when the field
is increased. This suggests that, at 77CK, RbFeF3 has a
noncollinear (canted) magnetic structure.Β ο 1

At 82°K, the birefringence of RbFeF3 is 9 x 10"s at
4000 A and 1.6 χ 10""4 at 8000 A in a 5 kOe field.C78:

MnW04. Measurements of the crystallographic and
magnetic birefringence are reported for this crystal in
t 8 1 1. The crystal is monoclinic and its space group is
P2/c. The refractive-index ellipsoid is oriented so that
Ox II b, Oy II a, and the ζ axis is oriented at an angle of
17-21° with respect to the c axis (for red light produced
by a lithium lamp). The angle between the optic axes is
2VZ = 75° and the crystal is optically positive. The
room-temperature refractive indices are n x = 2.17
± 0.01, n y = 2.22 ± 0.01, and n z = 2.32 ± 0.01.

A study of the birefringence was carried out on a
plate of the (010) type and, in this case, the room-tem-
perature birefringence was found to be n z - n y = 0.1.
The temperature dependence of the birefringence is
plotted in Fig. 8. In the magnetic ordering region (T N

«a 15°K), there is a clear contribution of the magnetic
birefringence, ~2 x 10'3, but a detailed separation of
the crystallographic and magnetic contributions has yet
to be made.

K2MnF4. This compound has the tetragonal D4jj struc-
ture. Paramagnetic ions form layers perpendicular to
the fourfold axis in which the exchange interaction is
stronger than between the layers. Below TJJ = 42.1°K,
K2MnF4 assumes full antiferromagnetic order and, at
higher temperatures in the vicinity of TJJ, the short-
range order in the layers predominates so that the
crystal is a "two-dimensional" antiferromagnet.

The birefringence of light in K2MnF4 was investigated
in [ 8 2 ] . A large magnetic contribution was found not only
in the antiferromagnetic state but also above TJJ right
up to 200°K, i.e., up to ~5T N . The temperature depen-
dence of the magnetic birefringence of ICjMhF,, differs
considerably from the behavior of a three-dimensional

antiferromagnet. In the latter case, the contribution of
the short-range order is relatively weak compared with
the effect in the ordered region and the derivative
d (An)/dT has a sharp extremum in the region of TJJ,
which coincides with the position of the maximum in the
specific heat curve.

In layered structures, such as K2MnF4, the dominant
contribution is due to the short-range order and the
d (An)/dT curve has a wide rounded maximum above TJJ,
which is typical of the temperature dependence of the
specific heat of two-dimensional systems.

2. Birefringence of light in rutile antiferromagnets.
Detailed measurements of the magnetic and crystallo-
graphic birefringence have been carried out on anti-
ferromagnets with the rutile structure. C 4 e ' 8 1 ] This class
of crystals is interesting because they have relatively
simple crystallographic and magnetic structures and
many of their crystallographic and physical properties
are known in sufficient detail.

These crystals are tetragonal and the space group is
D^. In the paramagnetic range of temperature, they are
optically uniaxial and the natural crystallographic bire-
fringence is n e - n0 ~ 10~2, as reported in Β 1 1 (Table V).

The antiferromagnetic vector 1 of manganese, iron,
and cobalt fluorides is directed along the [001] fourfold
axis. Below the Noel temperature, nickel fluoride goes
over to a state with a weak ferromagnetic moment m in
a plane perpendicular to the fourfold axis and directed
along the [100] or [010] axis. The vector 1 lies in the
same plane and is perpendicular to m.t 8 3 1 Some of the
properties of crystals with the rutile structure are
listed in Table V. The values of T^ are deduced from
the temperature dependence of the specific heat,[ 8 4 ] the
magnetic properties are taken from He:, and the refrac-
tive indices at 300°K for λ = 6328 A are taken from [ 8 1 ] .

The birefringence was investigated in C 4 e'8 1 1 for light
traveling at right-angles and parallel to the tetragonal
axis. Figure 9 shows the temperature dependences of
the birefringence for k I [001] at λ = 6328 A obtained
for several fluorides with rutile structure. The bire-

TABLE V. Some optical and magnetic properties of crystals with

rutile structure

Compound

MnF.
FeF,"
COF;

NiFJ

67.5
78.35
37.70
73.22

H E ,kOe

• 500

770
1130

H D , kOe

241
28

t. ι · 103,

cgs esu/mole

24.5

55
6

1.4992
1.5213
1.5331
1.5562

1.4700
1.5113
1.5069
1.5212

400

FIG. 9. Temperature dependences of the birefringence of light in
crystals with the rutile structure. [81] For clarity, the room-tempera-
ture birefringence of all crystals is assumed to be zero.
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fringence varies strongly near the magnetic ordering
temperature and the changes in this region should be
attributed to the magnetic contribution. In the paramag-
netic region far from TJJ, the variation of the birefring-
ence should be attributed to changes in the lattice con-
stants. Thus, the observed changes include the magnetic
and lattice contributions:

Δη (Γ) = &nM (Τ) - Anhtt (Τ). (70)

The lattice contribution itself is due to the change in the
birefringence resulting from the usual thermal expansion
Δη{η and changes associated with the spontaneous mag-
netostriction

At high temperatures, far from Tj^, the relationship
between the observed change in the birefringence Δη(Τ)
and the change in the lattice parameters can be repre-
sented by the linear dependence

• r̂[An(7')] = A[pc(7') —ρα(Γ)], (71)

where j3c and 0 a are the linear expansion coefficients
along the c and a axes in the tetragonal lattice. Since
between 0 and 700°K the changes in the lattice constants
amount to a few percent, the value of k can be assumed
to be independent of temperature. In fact, investigations
of the birefringence indicate that this quantity can be r e -
garded as constant for a given crystal and this is true of
paramagnetic (MnF2, FeF 2 , CoF2) and diamagnetic (MgF2,
ZnF2) fluorides. The constant k should vary from crys-
tal to crystal and depend on the frequency of light. Thus,
if we know k, we can use the measurements carried out
at high temperatures when the magnetic contribution is
negligible, to calculate Anjatt(T) at low temperatures
and the difference between the measured and lattice bi-
refringence gives the pure magnetic contribution.

This contribution was separated for all the investi-
gated fluorides with the rutile structure. At low temper-
atures, Δη]νΐ was found to be of the order of (1-2) x 10~3.
A comparison of the dependence Δ η ^ Τ ) with the depen-
dence of the square of the sublattice magnetization lz in-
dicated that ΔΠΜ(Τ) did not vary as rapidly as the for-
mer (Fig. 10). This indicates that below Tjjwe have I 2

- Ι2 Φ 0, i.e., there are considerable fluctuations in the
vector 1. In the case of MnF2 at 2-60°K, this difference

-2.0

FIG. 10. Temperature dependences of the birefringence of light in
MnF2: [46] 1—experimental dependences; 2—dependence calculated
using the contribution represented by Eq. (70); 3-magnetic bire-
fringence deduced from curve 1 by subtracting curve 2; 4-tempera-
ture dependence of the square of the static sublattice magnetization,
deduced from NMR experiments; 5—difference between curves 3 and 4.

can be approximated by the law a T2. It is pointed out in
t#3 ] that this law is not a trivial consequence of the spin-
wave theory because the latter is valid only at tempera-
tures Τ « TJJ.

The dependence Δη(Τ) has a kink at the Neel tempera-
ture (see the inset in Fig. 10), which agrees well with the
position of the maximum in the specific heat curve. It fol-
lows from general considerations that the observed value
of Δ η ^ is proportional to the magnetic energy of a crys-
tal, i.e.,

d\AnM(T)]
df C*"

where c ^ is the magnetic specific heat. A detailed com-
parison shows that this relationship is satisfied very
well over a wide temperature range (Fig. 11). The mag-
netic contribution to the birefringence does not disap-
pear directly at TJJ but is retained to temperatures of
~(2-3)T]\j because of the short-range magnetic order.
It should be noted that this short-range order may play
a role also in noncubic crystals when light travels at
right-angles to a selected direction. In cubic crystals
or in the case of propagation of light along the optic
axis of a uniaxial crystal, the short-range order should
not affect the birefringence. The value of Δ η ^ obtained
for uniaxial crystals in the isotropic state is propor-
tional to the mean value of the square of the total anti-
ferromagnetic moment. Consequently, the mean value
Δ(ΔΠΜ) due to deviations of the vector 1 from its static
value, does not vanish. The main contribution to the bi-
refringence is due to fluctuations in 1 whose typical life-
times are two or three orders of magnitude greater than
the period of oscillations of the light wave and whose
characteristic dimensions are considerably smaller
than the wavelength of light a « λ. The variation of Δη^ΐ
in the temperature range 70-110°K can be approximated
C46] by the dependence

AnM oc Γ-*.'. (72)

We have seen in Chap. V that Eq. (62), for the density
of the internal electromagnetic energy, including terms
which are quadratic in respect of the components of the

FIG. 11. Comparison of the tem-
perature dependences of the deriva-
tive of the magnetic birefringence
dAnm/dT (circles) and of the mag-
netic specific heat CM (continuous
curves) of several antiferromag-
nets. [81]

20 40 60 80 100

τ.'η
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TABLE VI. Some

and cobalt carbonates

Compound

M»CO3

C0CO3
29.5
17.0

"Κ

32.4
18.1

magnetic and optical properties of manganese
[45]

HE>kOe

320
160

H D , kOe

4.4
27

Xl-103,

<Ss esu/mole

43
52

no(T=«300°K)

1.810
1.855

ne(T=300°K)

1.597
1.60

FIG. 12. Magnetic linear dichroism of the 3A2 -* 'Tf transition in

Ni2* ions in NiF2 for Τ = 1.8°K and Η = 1 kOe. The absorption coef-

ficients are given for polarized light: 1) £*Ε||Μ'· 2) <*E||M· t 7 3 ]

antiferromagnetic vector, allows us to separate the iso-
tropic and anisotropic contributions to the magnetic bi-
refringence. Such separation has been carried out for
MnF2, CoF2, and NiF2 crystals by varying the orientation
of the vector 1 in a crystal subjected to an external mag-
netic field. No changes in the birefringence are observed
for MnF2 and NiF2 and hence it is concluded that the bire-
fringence is independent of the orientation of the vector 1
relative to the crystallographic axes, i.e., the anisotropic
corrections to the permittivity are small compared with
the isotropic contribution. In the case of CoF2, the bire-
fringence changes when the vector 1 is rotated, i.e., the
anisotropic corrections are significant against a back-
ground of the isotropic contribution.

The absence of anisotropic terms in the case of MnF2

means that the crystal remains optically uniaxial for any
orientation of the vector 1. In the case of №F2, for which
the vector 1 is in the basal plane, the anisotropic terms
give rise to biaxial optical properties.1 8 1 1 It is found that
the new optic axes deviate slightly from the tetragonal
axis of the crystal. The angle between the optic axes is
2VZ « 2° at 30°K. Significant biaxial properties are also
exhibited by CoF2.

Apart from the birefringence of NiF2, a study was
also made of the linear dichroism of this crystal."3 1 A
considerable crystallographic dichroism was observed
for many electron transitions in the Ni2+ ion when light
was polarized parallel and perpendicular to the optic
axis. However, it was fairly difficult to separate the
magnetic contribution in this geometry. It was possible
to do this for the propagation of light parallel to the op-
tic axis. Figure 12 shows the results of an investigation
of №F2 in the region of one of the electron transitions.
The absorption coefficients ΟΈιιΜ and «EiM differ after
the orientation of the antiferromagnetic domains by an
external field and the difference between these coeffi-
cients gives the magnetic linear dichroism. An explana-
tion of this effect is given in C731 on the basis of the spin-
orbit interaction, which makes the probability of elec-
tron transitions vary with the polarization of incident
light.

3. Antiferromagnetic manganese and cobalt carbo-
nates. The birefringence of light in manganese and co-
balt carbonates was investigated in t 4 4>4 5 ]. These crys-
tals belong to the D3jj class of the trigonal system and
the crystallographic symmetry has the space group D ^
in the paramagnetic region. A unit cell of these carbo-
nates contains two magnetic ions. When the tempera-
ture is lowered, these crystals assume magnetically

ordered states (Table VI) of the easy-plane type. The
magnetic vectors of the sublattices in these carbonates
are inclined and give rise to a spontaneous ferromag-
netic vector σ which lies in the basal plane and is per-
pendicular to the antiferromganetic vector 1. Some
magnetic and optical properties of these carbonates are
given in Table VI.

Figure 13 gives the temperature dependences of the
birefringence of these carbonates for light traveling
along the y axis, i.e., at right-angles to the optic axis
of the crystals. An important change in the nature of
the temperature dependence of Δη χ ζ is observed near
the Neel point. Clearly, the insufficient precision of
the measurements has destroyed the kink in the curve
Δη(Τ) at the Neel point of MnCO3. Nevertheless, at
32°K, there is a maximum of the derivative d (Anxz)/dT,
which agrees well with the results of magnetic measure-
ments (32.4°K) but differs from 29.5°K deduced from the
specific heat. The value of Δΐΐχζ of MnCO3 is not af-
fected by the application of a magnetic field up to 50 kOe
in the basal plane Η II Ox. Moreover, no changes are ob-
served in the other configuration in which light is propa-
gated parallel to the ζ axis. The difference Δηχγ(Τ)
= n x — ny vanishes in all fields and at all temperatures.
It follows from these experiments that the magnetic bi-
refringence of MnCO3, like that of MnF2, is independent
of the orientation of the vector 1, relative to the crystal-
lographic axes.

A kink is observed in the curve Δ η ^ Τ ) obtained for
C0CO3 recorded with and without the field at 17°K. This
value is in good agreement with the N6el point deduced
from the specific heat measurements. Moreover, the bi-
refringence of CoCOj depends on the orientation of the
vector 1 relative to the crystallographic axes. This an-
isotropic contribution is observed for light traveling
perpendicular and parallel to the optic axis.

The potential usefulness of the magnetic birefring-
ence as a method for studies of domains in rhombohe-
dral antiferromagnets with a weak ferromagnetic mo-
ment was investigated in [ 4 4 1 in the specific case of
cobalt carbonate in the visible part of the spectrum by
the conoscopic figure method. The acute angle 2V be-
tween the optic axes was determined for a crystal mag-
netized to saturation. Light traveled along the trigonal
axis. Knowing the refractive indices for the ordinary
and extraordinary rays in the paramagnetic region
made it possible to determine the magnetic birefring-
ence along the bisector of the acute angle 2V using Eq.
(61). Figure 14 shows the temperature dependence of
this acute angle 2V. According to Eq. (61), the value of
2V should be a linear function of the antiferromagnetic
vector 1. It is clear from Fig. 14 that the results of the
optical measurements are in good agreement with the
value of the spontaneous ferromagnetic moment m
(which is proportional to 1). At low temperatures, the
acute angle in question is about 3°, i.e., the optic axes
deviate only slightly from the trigonal axis of the crys-
tal.
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FIG. 13. Temperature dependences of the difference between the
refractive indices of the ordinary and extraordinary rays Δη = n^ - ny
plotted for MnCO3 (1), CoCO3 (2), and CsMnF3 (3). Below T N in
CoCO3> the circles denote the dependence of Δη in a magnetic field of
2 kOe and the dashed curve is the dependence in the absence of the
magnetic field. [45]

VIII. CONCLUSIONS

Recent investigations have established the basic ideas
about the magnetic linear birefringence of a large group
of crystals with different types of magnetic order (ferro-
magnetic, ferrimagnetic, and antiferromagnetic). A
phenomenological theory of the magnetooptic phenomena
in these crystals is based on the principles of magnetic
symmetry. The heuristicity of this method is confirmed
by the prediction of several new magnetooptic phenom-
ena, many of which have not yet been investigated. The
next step should be the development of a microscopic
theory of these phenomena and experimental investiga-
tions.

In contrast to the diamagnets and paramagnets, mag-
netically ordered media exhibit a strong linear magnetic
birefringence Δη which may reach ΚΓ2-ΚΓ4 and is ex-
plained by the exchange interactions. The large value of
this effect is also frequently accompanied by a strong
magnetooptic anisotropy.

This review deals with some aspects of the crystal
optics of magnetically ordered media, which require
further studies to establish more rigorously the nature
of the interaction of light with these crystals. Some
characteristic crystal-optics phenomena arise from the
coexistence of comparable linear and quadratic magnetic
birefringence effects.

An important point is the establishment of the corre-
lations between the magnetooptic properties and other
characteristics of magnetic crystals. In some cases,
one can only speak of a qualitative correspondence be-
tween the temperature dependences of the sublattice
magnetizations and magnetic linear birefringence (rare-
earth iron garnets), whereas in other cases a good quan-
titative correspondence has been established between the
birefringence and specific heat (fluorides with the rutile
structure).

Most of the investigations have been carried out so
far at fixed wavelengths and the number of investigations
of wider spectral ranges is small. Nevertheless, stud-
ies of the magnetic dichroism in the electron transition
region may provide a reliable experimental basis for
theoretical calculations.

The large magnitudes of the magnetic linear bire-
fringence and dichroism in magnetically ordered crys-
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FIG. 14. Temperature dependences of the acute angle 2V between
the optic axes, of the birefringence of light n g - n m , and of the spon-
taneous ferromagnetic moment ms. [**]

tals and the high sensitivity of modern methods for re-
cording the polarization of light and its changes may re-
sult in extensive applications of these effects in studies
of magnetic crystals.

The same properties of magnetic crystals and the
possibility of changing them by external agencies, in
combination with a fairly high optical transparency,
should make these materials useful in various technical
applications.
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