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We review the literature on electron-vibrational interactions in polyatomic molecules. The analysis is based

on an adiabatic theory that employs a single universal small parameter of the molecules, viz., the Born-Oppenheimer

parameter. The principal results of the theory of electron-vibrational spectra are summarized. Special

attention is paid to to the results that follow from a general analysis that is not based on concrete model.

The theory is compared with experimental data for a wide range of chemical compounds (hydrocarbons

with various structures, heterocyclic compounds, dyes). Possible mechanisms of broadening the electron-

vibrational line in liquid and solid solutions are discussed. Experimental data that demonstrate the role of

various broadening mechanisms in concrete cases are cited. It is demonstrated by means of a number of

examples (induced optical activity, dimers, excimers) that the adiabatic theory is significant in the analysis

of the influence of intermolecular interactions on the spectral characteristics of the molecules. The

theoretical analysis is illustrated with experimental data. The role of the adiabatic theory in the description

of nonradiative transitions in polyatomic molecules is briefly considered. Particular attention is paid to a

discussion of the role of chemical processes that accompany nonradiative transitions. Some additional

problems faced by theory and experiment are indicated in the conclusion.
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1. INTRODUCTION

Interest in the problem of electron-excited states of
polyatomic molecules is constantly increasing. This is
due to a variety of causes—the use of organic dyes in
laser technology and in motion pictures, extensive use
of optical methods in chemistry and biology, the rapid
development of research on the molecular mechanisms
of photosynthesis, vision, cell damage by radiation, etc.

On the whole, the problem has a vast multitude of
various aspects. One of the most common aspects, es-
sential for a great variety of application, is the deter-
mination of the role of the vibronic interactions in vari-
ous spectral and other properties connected with ex-
cited electronic states.

The purpose of this review is a systematic exposi-
tion of the theory of vibronic interactions in polyatomic
molecules and its comparison with experiment. Some
of the considered questions are closely related to the
theory of crystal impurity-center spectra, which has
been treated in detail in a number of reviews and
monographs^1'5'. In the analysis of impurity centers in
crystals, however, principal attention is paid to the in-
teraction of the impurity molecule with the lattice vi-
brations. We, on the other hand, will concentrate our
attention on intramolecular vibrations, which play a de-
cisive role in most cases. The problem of vibronic
spectra of polyatomic molecules was touched upon
relatively recently in the review[6). We present a much
more complete exposition of this question, as well as a
review of the experimental data. In addition, we con-

sider a number of other aspects of the problem of
vibronic interaction, such as the mechanisms of line
broadening, the spectra of circular dichroism, the
luminescence of excimers, and nonradiative transitions.

During the course of the exposition we shall dis-
tinguish throughout between deductions that follow
rigorously from the general analysis, on the one hand,
various model concepts that are based on experimental
data obtained for concrete classes of molecules, on the
other. The basis for this general analysis of vibronic
interactions is an adiabatic theory that uses a single
universal small parameter of the molecule, viz., the
Born-Oppenheimer parameter κ = (m/M) , where m
is the electron mass and Μ is the characteristic mass
of the nucleus. A large number of examples will be used
to demonstrate the effectiveness of using the adiabatic
theory to obtain well-founded theoretical results and
estimates.

A few words concerning the structure of the article.
It is written so that a reader interested only in the tra-
ditional applications of the theory can turn immediately
to Chaps. 4, 5, and 7, where the main conclusions of the
theory (developed in Chaps. 2 and 3) are briefly sum-
marized and where the experimental situation is dis-
cussed. Chapter 6 presents the results of the applica-
tion of the adiabatic theory of vibronic interactions to
the investigation of certain particular effects of inter-
molecular interactions. The experimental data are dis-
cussed in that chapter at the end of each of the sections.
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2. SCHRODINGER EQUATION FOR A MOLECULE

The most important circumstance that follows from
the smallness of the quantity κ = (m/M)1 / 4 is the
validity of the adiabatic approximation. In order for our
analysis to be consistent, we present here estimates of
the limits of applicability of the adiabatic approximation,
although this question has been considered in numerous
reviews and monographs (see, e.g.,1-^).

We write down the Hamiltonian of the molecule:

, q). (1)

where T e and T N are the kinetic energy operators of
the electrons and nuclei, respectively, and U(r, q) is
the total potential energy of the molecule and depends
on the aggregate of the electronic (r) and nuclear (q)
coordinates.

The wave function is written in the form

Ψ (r, g) = Ψ (r, q) φ (q).

We do not assume for the time being any properties of
the functions φ(τ, q) and <p(q), so that this notation is
quite general.

The Schrodinger equation takes the form

We introduce an operator L defined by the equation

(2)

(3)

Substituting Ύίίφφ from (3) in (2) and dividing both
parts of the equation by ψ φ , we obtain

We denote the right-hand side of this equation, which
depends only on the nuclear coordinates, by V(q); we
then get

Ef. (5)

Equations (4) and (5) are completely identical with the
initial Schrodinger equation Jf* = ΕΦ. They have only
been rewritten in terms of the new formally introduced
functions φ{τ, q) and

The adiabatic approximation corresponds to neglect
of the term (Ι/φ) Up, called the nonadiabaticity opera-
tor, in Eq. (4).

The system of adiabatic equations is

(6)

(7)

The solution of the electronic Schrodinger equation (6)
yields a system of electronic wave functions and energy
levels that depend on the nuclear coordinates q as
parameters. The electronic energy Vf(q) serves as
the potential function for the motion of the nuclei. The
complete wave function in the adiabatic approximation
is the product

Ψ,η (r, <q) = ψ, (r, 9) <PM (?)· ( 8 )

To ascertain the conditions under which the adiabatic
approximation is valid, it is necessary to calculate the
corrections that appear in the electronic energy and in
the wave function when account is taken of the nonadia-
baticity operator in Eq. (4). We shall label the eigen-
functions (6) by the index " 0 " and denote the integra-

tion over the electronic coordinates symbolically by
angle brackets. Let us calculate the matrix element1'

Recognizing that ΓΛ = — J ^ f j , we obtain

(9)

We note that at all values of q the electronic wave
functions are normalized by the condition

Differentiating this equation with respect to q at f = f',
we get

<*•№>-<>.
The first-order correction to the electron energy given
by Eq. (6) is therefore

To estimate matrix elements of the type (9) and (10) it
must be recognized that the electronic wave function is
significantly altered, when the nuclear coordinates
change, over distances on the order of the nuclear dis-
tance a:

dq

It follows therefore that

vf
(ID

However, even this correction to the electron energy,
which is small in itself, still does not violate the adia-
batic approximation, since the quantity V^1' is fully
defined if one knows the solution of only the electronic
Schrodinger equation (6). The adiabatic approximation
is violated in the analysis of the electronic energy only
in second-order perturbation theory. The correspond-
ing correction to the energy is given by

Recognizing that the vibrational wave function varies
over distances on the order of the amplitude I of the
nuclear vibrations (/ ~ /ca), we obtain

dq
(13)

η ω β
from which we get (assuming that Vji" - V1.1? ~ ηωβ,
where u>e is the characteristic frequency of the elec-
tronic transitions)

yf>
(14)

In the calculation of the correction to the electronic
wave function, the nonadiabatic term appears already
in first-order perturbation theory:

οι»
« , * . . ιοί, ν №• 1

-1 τΝ ι ψ, >- 2i i f f (15)

vf-v'P

The correction ώ11 is of the order of

•·. |~κ». (16)

Thus, the adiabatic approximation is valid accurate
to terms of fifth order (inclusive) in κ for the electronic
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energy and to terms of second order for the wave func-
tion.

This statement, however, is valid for not all values
of the nuclear coordinate. One must not forget that the
nonadiabatic corrections (12) and (15) contain in the
denominator the q-dependent differences Vf - Vr01,
which can turn out to be quite small at certain values of
q. Therefore near the intersection points of the elec-
tronic terms the adiabatic approximation does not work
at all. Moreover, cases are possible when the elec-
tronic terms lie close to one another practically at all
q. A special analysis is then necessary, which would
not be based on perturbation theory, which is not ap-
plicable in this case, in this review we confine our-
selves mainly to an exposition of the vibronic spectra
in the adiabatic approximation. Questions connected with
violation of the adiabatic approximation are considered
most fully in t 8 ] .

The significance of the adiabatic theory is not limited
to finding when the total wave function can be repre-
sented in the form (8). The use of the small parameter
κ = (m/M)1/4 permits, when calculating various charac-
teristics in the adiabatic approximation, to separate
terms that make the largest contribution and to esti-
mate the order of magnitude of the next terms of the
expansion. In many cases, when spectral manifestations
of the vibronic interaction are considered, we can con-
fine ourselves to the so-called crude adiabatic approxi-
mation, in which the total wave function is represented
in the form

where q0 is a fixed value of the vibrational coordinates.
The use of the exact adiabatic wave functions in the
form (8) corresponds to allowance for the next higher
terms of the expansion in the small parameter κ, and
results in most cases in only small additions to the
sought quantities. It must be emphasized, however, that
there exist many situations in which the use of the
crude adiabatic approximation is utterly insufficient
and it is necessary to take into account the next higher
terms of the adiabatic expansion. These situations will
be considered specially later on (see Chaps. 3, 6, and
7).

3. FORM OF MOLECULE ABSORPTION OR
EMISSION BAND (THEORY)

As already noted in the introduction, the question of
the intensity distribution in the vibronic spectrum was
considered in many reviews as applied to the spectra
of impurity centers in crystals^1"51.

In this review we confine ourselves to consideration
of only those formulas that play an essential role in the
analysis of the intramolecular oscillations.

The electromagnetic field of a light wave can produce
in a molecule transitions either between the vibrational
levels of the same electronic state, or between
vibronic (electron-vibrational) levels of different elec-
tronic states. We are interested in the second type of
transitions. If μ. is the electric dipole-moment operator,
then the probability of a transition between the station-
ary states ipg<p gng~ Ψηφιοι^ where g is the ground
electronic state and u is the excited state, is deter-
mined in the adiabatic approximation by the square of
the matrix element

where

*(q) = <

(17)

(18)

It is clear that if the temperature is not equal to zero,
then a contribution of equal energy to the absorption
(emission) can be made by transitions from different
vibrational levels of the initial state. To obtain an ex-
pression that describes the probability of transitions
with absorption (emission) of a fixed energy fiu>, it is
necessary to average (17) over the initial state and sum
it over the final states, taking the energy conservation
law into account. We then have for absorption2'

a ( ) a 2 n\(\ie(q)\
η, η'=0

and respectively for emission

Eun.- Είη-ϋω); (19)

(20)

In these formulas, P n are the Boltzmann factors for
averaging over the initial states, and Κ are constants
that will incorporate henceforth all the inessential con-
stant multipliers. The dependence of / on ω yields the
form of the emission or absorption band.

Generally speaking, if we wish to calculate the form
of the band rigorously within the framework of the
adiabatic approximation, then we must take into account
the expansion of μ θ ^ ) up to second order in q, and
calculate ^fn(q) by solving the Schrodinger equation of
the vibrational problem (7), expanding Vf(q) up to fifth
order in q inclusive:

£ L . . (21)

where q0 are the equilibrium positions of the nuclear
coordinates for an arbitrary but fixed electronic state.

The approximation in which one confines oneself to
the zeroth order of the expansion of Me(q), i.e., Me(Q)
= lie(io), is called the Condon approximation. It means
that the probability of the transition between various
electronic states is considered within the framework of
the crude adiabatic approximation. We note that since
the kinetic energy operator of the nuclei is of the order
of ΚωΘκ2, it follows that allowance for the term contain-
ing the second derivative with respect to q in the ex-
pansion (22) is essential, since it is also of the order
of fiweK

2 ~ ΚΩ (Ω is the characteristic vibration fre-
quency of the nuclei). If we confine ourselves to this
term, then the vibrational wave functions obtained by
this method are called the harmonic-approximation
functions. Within the framework of these approxima-
tions, the square of the matrix element in (19) and (20)
takes the form | μ β ^ ο ί Ι ^ η ' η ) 2 . Assume that we have
calculated Jfa(<*>) and #ν(ω) by using this matrix ele-
ment. The corrections that must be introduced into
these expressions as a result of expanding iie(q) in
powers of q - q0, i.e., the deviations from the Condon
approximation and allowance for the next higher terms
of the expansion of Vf(q) (anharmonicity), as follows
from the general analysis in the introduction, will be of
order of smallness of κ and higher. Thus, for example,
allowance for the first term of the expansion of Me(q)
and for the third term of the expansion of Vf(q) leads
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to corrections of first order in κ. There is a difference,
however, between them. As to the anharmonicity, this
correction always appears against the background of the
principal contribution, and can be disregarded in most
cases for absorption and emission processes that affect,
as a rule, not too high vibrational levels of either the
ground or the excited electronic states. The anharmon-
icity becomes quite appreciable in processes in which
highly-located vibrational levels take part, i.e., where
the oscillation amplitudes corresponding to a given level
greatly exceed the amplitudes of the zero-point oscilla-
tions. This takes place when nonradiative electronic
transitions are considered (see Chap. 7).

The correction due to the deviation from the Condon
approximation is also of order of smallness κ, although
the situation here is different. The point is that the
matrix element μβ^ο) can have a numerical order of
smallness for various accidental causes, e.g., it can be
equal to zero by symmetry (forbidden transitions).
Then the contribution to Jf(u>) due to the expansion of
p«(q) no longer appears against the background of the
principal term, but is the first nonzero term.

a) Principal model. Thus, let us consider first
expressions (19) and (20) within the framework of the
following model (principal model):

1) We confine ourselves to the zeroth term of the
expansion of μ β ^ ) in powers of q (the Condon approxi-
mation).

2) We confine ourselves in the expansions of Vg(q)
and Vu(q) to terms of first order in q (the harmonic
approximation).

3) We assume that the only consequence of the elec-
tronic excitation for a nuclear subsystem is the shift
of the equilibrium position of the normal coordinates,
and neglect the changes of the natural frequencies and
of the normal-coordinate system itself.

It must be emphasized here that the first two as-
sumptions of the principal model are based on an expan-
sion in powers of κ and are practically always valid for
radiative transitions, except for the special case of for-
bidden transitions. On the other hand, the third assump-
tion is quite arbitrary, since it is not based on an ex-
pansion on the single small parameter κ, and devia-
tions from it can exert an appreciable influence on the
shape of the bands.

The Hamiltonians of the vibrational problem take, in
the framework of the indicated approximations, the form

± (23)

( 2 4 )

where fio>Ug is the energy of the pure electronic transi-
tion, summed over k, and signifies summation over all
the normal oscillations, while Mk, Ok> and Qk are the
reduced masses, natural frequencies, and normal co-
ordinates, respectively. By Δθ^' we denote the change
of the equilibrium position along the k-th normal coordi-
nate following electronic excitation.

The expression for the form of the absorption band
becomes

5Τ«(ω)=.Κ.[μ,|! Σ Pn\(n'\n)\26(Eun.-Egn-fla>). (25)
η, η·

It follows immediately from the form of the Hamilton-

ians (23) and (24) that the Franck-Condon factor
( n ' | η )2, which determines in the Condon approximation
the form of the band, breaks up into a product of factors
for each normal vibration

with

(nk I nh) - } <*<?„?„„ (ρ6)ξη, (Qh-

(26)

(27)

where ξ a re the wave functions of the harmonic oscil-
la tors . We introduce the quantities vk = n^ - % , and
then obtain for J f a ( w )

Ka (ω) = Ka | μ, |2 2 6 (aug + V, Qhvh - ω) WY,

where

(28)

(29)

with c% = exp( -

We consider first the case Vk 2 0. Writing down the
functions £(Q) in explicit form in terms of Hermite
polynomials (see, e.g./9') and using formula (7.377)
of[10], we obtain an expression for the square of the
overlap integral

(30)

is a Laguerre polynomial

2S (31)

We now substitute (30) in (29) and sum using (8.976.1)
οί [ 1 0 ] . We then have for Wv

02)

where Iy is a Bessel function of imaginary argument.
For vk < 0 we can obtain an identical expression, ex-
cept that the Bessel function takes the form I-vk· Since,
however, I v = I_v, expression (32) is valid for all
values of vk. Substituting (32) in (28) we obtain a final
expression for the intensity distribution in the molecule
absorption spectrum within the framework of the prin-
cipal model. Wv is the probability that the molecule
will go over, under the influence of the radiation, from
the ground electronic state to an excited one with a
change of the aggregate of the vibrational quantum num-
bers v. The analogous expression for emission is

Γ (ω) = Kr | 6 ( < o u s _ (33)

where Wv is defined as before by (32). It follows there-
fore directly that in the approximation of the principal
model the absorption and emission spectra have mirror
symmetry relative to the frequency of the pure elec-
tronic transition u>ug· We note that formula (32) was
derived many times by various methods (see[1~31). For
cases when ROk >> kT, it suffices to retain only the
first term of the expansion of the Bessel function in
powers of its argument, and this yields

π*-ψ-*%- (34)

In the opposite limiting case Rf2k <<: kT, using the
asymptotic expansion of the Bessel function, we have

(35)
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where

Thus, at low temperatures the distribution of the inten-
sity in the spectrum constitutes an aggregate of Poisson
distributions for each normal vibration. At high tem-
peratures, the spectrum takes the form of an aggregate
of Gaussian distributions. A detailed discussion of the
application of the obtained expression to the analysis of
the experimental data will be given in Chap. 4.

We have found above that the probability of a transi-
tion in which the molecule energy changes by an amount
fi(">ug + Skfikvk) is K a | Mel^v- We consider now
several integral characteristics of this probability dis-
tribution.

It is convenient to use for this purpose the well
known expression for the generator of a Bessel function
of imaginary argument:

S(z, i) = exp[f (/ + -|-)]= 2 (36)

We calculate first the summary probability of the
transition, i.e., in fact the zeroth moment (m 0 ) of the
distribution Wv. We have

(37)

We put in formula (36)

and then obtain for m0

- 2
ft

k

Hence

= Ka\ μ, |

(38)

(39)

Formula (39), incidentally, is obvious beforehand, since
it is the consequence of the condition for the normaliza-
tion of the probability distribution Wv. Formula (39)
means that the total absorption intensity, within the
framework of the principal model, does not depend on
the parameters of the vibrational problem and is deter-
mined only by the electronic-transition oscillator
strength. The mean value ω of the frequency can be ex-
pressed for the distribution Ka(w) in the form

f , (40)

and its variance in the form

where

Using the relations

we obtain

' = Σ

(41)

(42)

(43)

(44)

(45)

(46)

the second term of (45) has a negative sign. We see
that the mean value of the frequency and the variance
depend strongly on the displacements of the equilibrium
positions yk, and the variance of the bands has further-
more a definite temperature dependence.

b) Deviations from the principal model. 1) Changes
of the natural frequencies and of the system of normal
coordinates. We have already noted that the most essen-
tial assumption of the principal model, not based on the
expansion in the parameter κ, is the condition that
there be no changes in the natural frequencies and in
the normal-coordinate system itself. Let us analyze
this question in greater detail.

In the harmonic approximation, the adiabatic Hamil-
tonians of the vibrational problem take in the general
case the form (cf. (23) and (24))

(47)

(48)
fe

The normal coordinates of the electronic ground state
can be expressed in terms of the normal coordinates of
the excited state in the following manner:

(49)

ft

Τ* + 4" 2 MiQkVk* + fmag

where Aki are the elements of the matrix A = IT1!*',
the columns of the matrices R and R' being the forms
of the normal vibrations in the ground and excited
states, i.e., R and R'are the matrices for the transi-
tion from the generalized (natural) coordinates to the
normal ones. Thus, if dj is the change of the equili-
brium value for some natural coordinate, then we have
for the change of the equilibrium value of the k-th nor-
mal coordinate

Λ<Λ°'=• Σ («"')*;<*/• (50)

The expressions for emission are similar in form, but

The intensity distribution is determined as before by
Eq. (25), but the overlap integral takes the form

(n | n') = j dQ\... \ rf%ln,«?,) . . . UN (Qs) !„; (Q\) ... ^ («,), (51)

where Ν is the number of independent degrees of free-
dom of the molecule. In the principal-model approxima-
tion we have assumed that (R"'R') is a unit matrix, in
which case the Franck-Condon factor can be written in
the form of a product in the normal coordinates. In the
general case the problem reduces to a calculation of the
N-dimensional integral (51). The elements of the
matrices R"1 and R', the natural frequencies, and the
reduced masses for each electronic state are deter-
mined independently from the solution of the standard
normal-vibration problems (see, e.g.,[ 1 1 ]). The quanti-
ties dj, which are also necessary for the calculation of
(51), can be determined by the methods of quantum
chemistry. Knowing all the indicated quantities, we can
calculate the integral (51) by numerical methods with a
computer. This approach, while encountering consider-
able difficulties, can nevertheless be quite effective in
the calculation of the vibronic spectrum of a particular
compound, but it is impossible to obtain for it the
general laws governing the changes that occur in the
spectra in the case of deviations from the principal
model.

It was established in the preceding section that the
absorption and emission spectra have mirror sym-
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metry within the framework of the principal model.
Deviations from the principal model will always lead to
violation of the mirror symmetry. At the same time it
is known from experiment that for a very wide class of
compounds the spectra do indeed have mirror sym-
metry, the deviations from which have the character of
perturbations (see Chap. 4). This indicates that addi-
tional small parameters exist for a large class of real
situations.

In actual fact we must ascertain the conditions under
which the integral (51) can be calculated by perturba-
tion, taking the principal model as the zero-order ap-
proximation. This question was investigated in[ 1 2 ],
where it is shown that the principal model is a good
zero-order approximation if one uses in addition to the
Born-Oppenheimer parameter an additional small
parameter corresponding to the condition that the
change in the force constants of the bonds between the
atoms of the molecule be small in the case of electronic
excitation. This condition takes the form

&g<g, (52)

where g is the force constant and Ag is its change
under electronic excitation. In[ 1 2 ] we calculated the
correction to the first model in first order in Ag/g.

The condition (52) is an additional assumption that
depends, generally speaking, on the concrete properties
of the ground and excited electronic states. Its validity
can be verified only by comparing the experimental data
with the conclusions that follow from the model (see
Chap. 4). Situations can occur in which the condition
(52) is violated, for example in transitions to high-lying
electronic level or to states for which, say, one of the
double interatomic bonds becomes single, etc.3) Pertur-
bation theory can no longer be used in this case, and the
integral (51) must be calculated exactly.

It is of interest, at the same time, to obtain an ana-
lytic expression for the intensity distribution in this
case. Such an expression was obtained in[ 1 3 ' for zero
temperatures.

Sharp and Rosenstocktl4] have proposed for a numer-
ical calculation of the spectra a different approach
based on the fact that the overlap integral (51) can be
represented in the form of a coefficient of the expansion
of a certain generating function for which an analytic
expression can be obtained. This method does not re-
veal the general character of the intensity distribution,
but is quite effective when it comes to obtaining numer-
ical values of the Franck-Condon factors for transitions
to low-lying vibrational levels, and was used in[ 1 5 ] to
calculate the vibronic spectra of a number of organic
molecules.

2) Forbidden transitions. We now dwell on deviations
from the Condon approximation. This deviation from
the principal model is quite different in character than
the deviation considered above. Since the Condon ap-
proximation is based on an expansion in the parameter
κ, it follows that allowance for the next higher terms
should lead, generally speaking, only to small correc-
tions. Significant deviations from the Condon approxi-
mation may turn out to be caused by random factors,
owing to the numerical smallness of the quantity μβ(<1ο),
i.e., for transitions that are forbidden (or almost for-
bidden) by symmetry.

Thus, consider an electronic symmetry-forbidden

transition. The first nonzero term of the expansion of
in powers of κ is

".ω-Σ feL.0.. (53)

where the summation is carried out only over the non-
fully-symmetrical normal coordinates (a). It is obvious
that for all fully-symmetrical coordinates (s) we have
8μθ/&<38 = 0. We now use the remaining premises of
the principal model, i.e., we assume that in the case of
electronic excitation a change takes place in the equili-
brium positions of the nuclei, but there is no change in
the frequency and form of the normal vibrations. More-
over, we assume that electronic excitation alters the
equilibrium values of only the fully-symmetrical co-
ordinates. This assumption is of far-reaching signifi-
cance and will be discussed in detail in Chap. 4.

Within the framework of the assumptions made, we
obtain for the absorption probability the expression

In this expression, a a = exp(-Rf2a/kT), and Wys is the
intensity distribution for the fully-symmetrical normal
vibrations of the molecule and is given in the general
case by expression (32). The singularities to which (54)
leads will be analyzed in the next section, using the
long-wave band of benzene as an example.

4. COMPARISON OF THEORY WITH EXPERIMENT

a) Main conclusions of the theory. Let us summarize
the theoretical results and deduce from them certain
consequences that are useful in the analysis of the ex-
perimental data.

The main result of the theoretical analysis is the
conclusion that a consistent use of the single universal
small parameter of the problem, namely the Born-
Oppenheimer parameter κ = (m/M)1/4, and also of the
additional assumption that the electronic excitation pro-
duces a small change of the strength functions, lead to
the principal model of the theory of vibronic spectra.

Within the framework of the principal model, the
vibronic absorption and luminescence spectra have the
following properties:

1) The intensity distribution in the absorption spec-
trum of a polyatomic molecule is described by formu-
las (28) and (32).

2) The law of mirror symmetry of the absorption
and fluorescence spectra is satisfied.

When considering the question of mirror symmetry,
it must be recalled that the radiation is always assumed
to stem from the same electronic level on which absorp-
tion takes place. This is actually valid only for the very
lowest singlet excited state (see Chap. 7). In organic
molecules, on which most experiments on vibronic
spectra have been performed, electronic excitation
leads principally to changes in the lengths of the bonds
C—C, C=C, C—N, and C=0. At the same time, the
potential curves are shifted for the relatively "rigid"
normal vibrations, for which the inequality ΚΩ » kT is
satisfied. In this case formula (28) goes over into the
simple formula (see (34))
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(55)

where the yk are given by (31).

For one normal vibration (Fig. 1), the relative in-
tensity distribution is given by

Es.-iL (56)
Wo ~ v\ '

where y = >/ΜΩ/2ΚΔΦ 0 ) .

Formulas (55) and (56) are the most important ones
in the analysis of the intensity distribution in the vibra-
tional spectra of polyatomic molecules.

As indicated above, in order for the principal model
to be valid it is necessary that electronic excitation
change the force constant little. More accurately
speaking, this calls for the satisfaction of the inequality

f<*. (57)
where g is the force constant.

The simplest experimental criterion for the satisfac-
tion of this inequality is that the extent to which the
mirror-symmetry law is satisfied. Since κ ~ 10"1, the
inequality (57) means that the deviations from mirror
symmetry should not exceed about 10%.

This criterion, however, is valid only for the very
lowest signlet electronic states. A more universal
criterion is therefore the correspondence between the
experimental distribution of the intensity in the absorp-
tion and luminescence spectra, on the one hand, and
formulas (55) and (56) on the other.

Let us consider the condition (57) from a somewhat
different point of view. This means that the excitation
causes small relative changes in the lengths and angles
of the bonds. In other words, condition (57) is equiva-
lent to the requirement that the individual structure of
the molecule be preserved under electronic excitation.
When the condition (57) is violated, one can say that
when a quantum is absorbed the molecule undergoes
photochemical transformations. Electronic transitions
to low-lying vibrational levels and directly accompanied
by photochemical transformations have a rather low
probability, owing to the smallness of the Franck-
Condon factors for these transitions. Therefore elec-
tronic states for which the condition (57) is not satis-
fied do not manifest themselves in practice in the ab-
sorption spectra.4' Only after excitation to one of the
electronic levels for which the condition (57) is satis-
fied can the molecule experience a photochemical trans-

FIG. 1. Potential curves of
a molecule. Q is the normal
coordinate in the ground and
excited electronic states. The
shift AQ corresponds to y = 1.
The upper part of the figure
shows the relative intensity
distribution for transitions
from the zero vibrational
level (formula (56)).

formation. This question will be considered in detail
in Chap. 7. In this section we confine ourselves to the
consideration of transitions to levels for which the con-
dition (57) is satisfied.

It was shown in the preceding section that, within the
framework of the principal model, the system of normal
coordinates is not altered by electronic excitation, and
only the equilibrium values of the coordinates can
change. The invariance of the normal coordinates
means, in particular, conservation of their symmetry
properties. Consequently, within the framework of the
principal model, electronic excitation cannot cause a
change in the equilibrium values of the non-fully-sym-
metrical normal coordinates, for this would mean a
lowering of the molecule symmetry, leading inevitably
to a change in the system of normal coordinates. Thus,
within the framework of the principal model, the dis-
placement of the equilibrium positions of the nuclei of
the molecule following electronic excitation is possible
only along fully-symmetrical normal coordinates. This
selection rule for the appearance of oscillations in the
electronic spectrum limits significantly the number of
normal coordinates that manifest themselves primarily
in the electronic spectra of polyatomic molecules. We
note, finally that the inequality (57) leads to y i. 1.

These are the main results of the theory in the case
of the principal model. It must be emphasized, however,
that the expansion parameter κ, which is used for the
justification of the principal model, is not very small,
of the order of 0.1. Therefore the deviations from the
model have perfectly measurable values, even for the
lower excited states.

The deviations from the principal model manifest
themselves primarily in violation of the rigorous mir-
ror symmetry of the absorption and fluorescence spec-
tra, a violation that manifests itself both in a change in
the frequencies of the normal vibrations, and in a
change of the intensity distribution.

When comparing theory with experiment, a distinc-
tion must be made between two levels of rigor of the
theoretical predictions. So far we have referred only
to a rigorous theory based on expansion in the Born-
Oppenheimer parameter. Its conclusions have there-
fore a very wide range of validity (if the condition (57)
is satisfied). However, although this theory does lead
to important formulas (such as (38), (55), and (56)), it
answers by far not only questions that arise in the
analysis of the experimental data. In fact, in this theory
the dimensionless values of the displacements of the
normal coordinates, which occur following electronic
excitation (yk in formula (55)) enter as the parameters
of the theory, and these parameters must be determined
from experiment. This theory cannot explain how the
structure of the molecule affects its vibronic spectrum.
To answer this question we must be able to calculate the
yk- Calculations of this kind cannot be carried out rig-
orously in principle, in view of the absence of a small
parameter, and are inevitably based on one numerical
method or another. The degree of reliability of the re-
sults depends principally on the perfection of the
methods used to calculate the electronic energy of the
molecule as a function of the coordinates of the nuclei,
a problem that belongs to quantum chemistry.

b) Use of the theory of vibronic spectra to interpret
the experimental data. As already noted, the main
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formulas of the theory of vibronic spectra were derived
in the early Fifties[ 1 ). These formulas soon found ex-
tensive application in the interpretation of the experi-
mental data on impurity centers in crystals (see,
e.g./4 ]). To interpret the spectra of organic molecules
in solutions and vapors, these relations came into use
only in the early Sixties. Of particular significance in
this connection is the widely known paper of McCoy and
Ross[ 1 6 1, in which formula (56) was used to analyze the
vibrational progression of the long-wave absorption
band of a series of aromatic hydrocarbons. Somewhat
earlier, Kuhn[17] used formula (56) for an analysis of
the spectra of metalloporphyrines.

Formulas (55) and (56) were subsequently used for
an analysis of the vibronic spectra of hydrocarbons, as
well as of a large class of organic dyes[22~25]. Many at-
tempts were made [ 1 5 ' l e > 1 9 ' 2 0 ' 2 1 1 to calculate the quanti-
ties yk, which determine the form of the vibronic spec-
trum of the molecule, by starting from the molecular
structure. We shall summarize briefly in this section
the main results of the cited papers.

1) Hydrocarbons. In all the investigated cases, good
agreement was observed between the experimental in-
tensity distribution and formula (55). The parameters
yk were regarded as empirical and determined from
experiment.

By way of example, Fig. 2 shows the experimental
absorption spectrum of benzene, and also the intensity
distribution (in a different scale) calculated from (56)
with y = 1.25. The value of y2 is determined from the
ratio of the intensities of the first two peaks of the band,
after which the intensities of the remaining peaks are
calculated. Figure 2 demonstrates the good correspond-
ence between theory and experiment. A detailed strictly
quantitative comparison of the experimental distribu-
tion of the intensity with theory is made difficult (as
also in other cases considered below) by the fact that
each peak has a noticeable width and the peaks overlap.
As is well known, the long-wave band of benzene shown
in Fig. 2 (in the region λ = 260 nm) corresponds to the
symmetry-forbidden electronic transition Aig — B2u
and appears only as a result of a non-fully-symmetrical
vibration (see, e.g.,[ i : 6 a ], p. 175 of the Russian transla-
tion).

The main contribution to (54), i.e., to the "allowing"
of the forbidden transition in benzene, is made by the
non-fully-symmetrical vibration e2g with frequency
608 cm"1 in the ground state and 522 cm"1 in the excited
state. The small peak in the long-wave region (near
37 400 cm"1) corresponds to a transition to the zero
level (n a = 0) of the excited electronic state, i.e., it is
shifted relative to vug (the position of the pure elec-
tronic transition is marked by the arrow in Fig. 2) by

FIG. 2. Absorption spectrum of
benzene in a solution of isopropyl
alcohol at 293°K. [18] The theo-
retical progression is shown under the
experimental spectrum (in a different
scale) and is based on formula (56)
withy = 1.25.

FIG. 3. Absorption spectrum of
diphenylhexatriene at 77°K[2 1].
The spectrum reveals two vibra-
tions with frequencies Ω , / 2 Ϊ Γ
= 1670 cm"' (y i = l . l ) and Ω2/2π)
= 1210 cm"1 (y2» 0.7). An expan-
sion of the spectrum with the aid
of formula (55) is given.

275 300 325 v-10~'
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608 cm"1 towards the long-wave side (it corresponds to
the second term in the square brackets of (54)). At the
same time, the entire progression is shifted relative to
^Ug to the short-wave side by 522 cm"1 (the first funda-
mental term in (54)).

An estimate of ata shows that at room temperature
the intensity of the long-wave spike should be approxi-
mately 6% of the intensity of the first appreciable max-
imum; this is in good agreement with experiment (see
Fig. 2).

It follows also from (54) that the intensity distribu-
tion in the progression due to the fully-symmetrical
vibrations should have the usual form (56). From the
point of view of the theory of vibronic spectra, benzene
is the simplest example of a polyatomic molecule, for
in view of its high symmetry it has only one fully-sym-
metrical (aig) normal vibration connected with the de-
formation of the carbon core (a "breathing" vibration
having a frequency 995 cm"1 in the ground state and 925
cm"1 in the excited state). As noted above, following
electronic excitation one should expect shifts of the
potential curves, primarily along the fully-symmetrical
normal coordinates, as is indeed observed in the case
of benzene.

The experimentally observed value y = 1.25 for the
aig vibration agrees well with quantum-chemical calcu-
lations based on the scheme described above (formulas
(55), (31), and (50); for details see[2l>).

Appreciable contributions to the spectra of other aro-
matic hydrocarbons, and also polyenes, which have a
lower symmetry, are made simultaneously by several
normal vibrations, a fact also in accord with quantum-
chemical calculations (see[15'19~211). By way of example,
Fig. 3 shows the spectrum of diphenyl hexatriene and
the result of its analysis with the aid of (55).

The vibronic spectrum of hexatriene was calculated
in[ 1 5 1 by the method of Sharp and Rosenstock[14] with
allowance for the anharmonicity and for the change in
the force constants. The results agree better with ex-
periments than calculations within the framework of the
principal modelt 2 1 ]. This difference, however, does not
exceed 10% and must be attributed not to deviations
from the principal model but apparently to the use of
better quantum-chemistry methods in[ 1 5 1.5 >

2) Dyes. Another extensive class of compounds, be-
sides hydrocarbons, for which an analysis was carried
out of the intensities of the vibronic spectra, is that of
organic dyes. The spectra of these molecules are very
weakly resolved at room temperature, and to resolve
the vibrational structure the investigations must be
carried out at low temperatures. Investigations of this
kind have shown[22"2l] that the spectra in these com-
pounds also agree with (55). By way of example, Fig. 4
shows the spectrum of pinocyanol. By measuring the
excitation spectra, Ivanov et al. [ Z 7 ] have analyzed the
vibronic progression of the cyanin dyes and have
demonstrated the validity of (56) up to the sixth maxi-
mum.
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Fig. 4. Absorption and lu-
minescence spectra of pino-
cyanolat77°K[ 2 2 ] .
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A characteristic feature of the vibrational structure
of the electronic spectra of dyes is that the main con-
tribution to the progression is made by only one normal
vibration, but even for this vibration the value of y is
small. For most dyes we have y «< 0.5.[ 2 3 > 2 4 ]

in many of the cases considered above, the fluores-
cences spectra were measured in parallel with the ab-
sorption spectra. As a rule, no noticeable deviations
from mirror symmetry were observed. Where notice-
able deviations did exist, more careful investigations
have always led to the conclusion that the emission
takes place in this case not from the same electronic
level to which the molecule is excited. In some cases
this is connected with the formation of excimers (or
exciplexes (see[28])), and in others with the presence of
a lower-lying weak electronic transition'291, etc.

Thus, the conclusions of the theory are in full agree-
ment with experiment. In all the investigated cases the
intensity distribution in the vibrational progression fol-
lows formula (55). As expected, the reliability of the
predictions based on quantum-chemical calculations of
the values of yk is much lower, but even these calcula-
tions result in a correct semiquantitative (and some-
times even quantitative) picture of the connection be-
tween the structure of the molecule and its vibronic
spectrum.

5. THE PROBLEM OF THE VIBRONIC LINE WIDTH

A striking feature of the experimental spectra is the
large width of each peak corresponding to different
values of the vibrational quantum number. This width,
as a rule, exceeds the radiative width by several orders
of magnitude. There exists a method with which it is
possible to obtain narrow quasilines for a number of
molecules. We have in mind Shpol'skii's well known
method, the use of which calls for placing the investi-
gated molecules in a paraffin matrix. The Shpol'skii
effect has been investigated in detail and explained on
the basis of the theory of impurity centers of crystals
(seet i > 3 0 ]). We shall dwell in here in greater details on
the possible mechanisms responsible for line broaden-
ing in solutions.

a) Mechanisms of broadening of spectral line.
1) "Soft vibrations. This broadening mechanism is il-
lustrated by Fig. 5, which shows the spectrum of a hy-
pothetical molecule whose equilibrium positions of the
nuclei is produced by electronic excitation for two
normal vibrations—"hard" with frequency ί2ι/2π
= 1000 cm"1 and y2 = 1, and "soft" with Ω 2 / 2 π = 100
cm"1 and y | = 3. The spectrum was calculated from
formula (55), i.e., for the case of low temperatures
(ΚΩι and ΗΩ 2 » kT). Owing to the presence of several
frequencies of soft vibrations, and also owing to other
broadening mechanisms, the fine structure correspond-
ing to "soft" vibrations can vanish completely. The

i t . li. ι L· l i .
0 10 20 . 30

FIG. 5. Absorption spectrum calculated from formula (55) for the
case of two normal vibrations, Ω,/2π = 1000 cm"1 (yf = 1) and Ω 2 /2π
= 100cm"1(y^ = 3).

experiment will reveal only the envelope of the spectrum
shown in Fig. 5. With increasing temperature, the dis-
persion of the intensity distribution in an individual peak
corresponding to a given quantum number for the "hard"
vibrations should vary in accord with formula (46). For
the considered model of one "soft" vibration, we obtain

Δ = Ω « / / ^ . (58)

It follows from this formula that the width of the peak
will first remain constant with increasing temperature,
and then, at Τ « ΚΩ/k, it begins to increase, with
Δ oc /Y at Τ » /

The form of the intensity distribution in the peak is
also changed thereby. At low Τ it takes the form of a
Poisson distribution, and at high Τ it is Gaussian (see
formula (35)).

2) Phonons. The phonon broadening mechanism is
particularly important in crystals, but it can play a
noticeable role also in frozen solutions. This mecha-
nism is discussed in a large number of articles, re- •
views, and monographs (see, e.g.,[4'51), so that there is
no need to dwell on a detailed description here. We re-
call only that the fundamental fact in this region is the
existence of a very narrow no-phonon line, the intensity
of which decreases sharply with rising temperature. It
is precisely because of the existence of this no-phonon
line that resonance photon absorption and emission ef-
fects are observed (the Mossbauer and Shpol'skii ef-
fects). With increasing temperature, the intensity is
transferred from the no-phonon line into a diffuse pho-
non wing having a width on the order of the Debye fre-
quency of the phonon spectrum, i.e., ~100 cm"1. The
width of the phonon wing increases with rising tempera-
ture.

3) Inhomogeneous broadening. This broadening
mechanism is particularly important for solutions in
which different molecules of dissolved matter turn out
to be in different local environments, and the absorption
frequencies are changed as a result. The observed
spectrum is a superposition of ideal spectra that are
slightly shifted relative to one another.

The magnitude of the effect of inhomogeneous broad-
ening of a spectral line should in general depend on the
temperature. In fact, we assume for the sake of argu-
ment that the absorption frequency v{n) is a certain
function of the local density η of the solvent in the
vicinity of the absorbing (or luminescent) molecule.
Assuming the v(n) dependence to be weak enough, we
confine ourselves to the first term of the expansion of
this function in a Taylor series:

ν = v0 + A (n - n0), (59)

where n0 is the equilibrium density of the solvent near
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the dissolved molecules. According to the definition of
the quantity n0, the energy of the region in question near
the impurity molecules is determined by the expression

Ε = £„ + Β (η - no)K (60)

The probability of the density fluctuations is given by

W (n) <*> e -W co e - *<»- IKA'M^

from which we obtain for the shape of the absorption (or
emission) line

sr(v) = srOi-(v-M>wsA«) ( 6 1 )

where Δ = AVkT/2B.

Thus, the mechanism under consideration leads to
lines of Gaussian shape, with a half-width proportional
to ίΨ. If vitrification of the solvent takes place with
decreasing temperature, then the density fluctuations
that take place in the vitrification interval become
quenched, and no further decrease of the line width will
occur. As a result, the Δ(Τ) may turn out to be quite
close to that resulting from the mechanism of line
broadening by "soft" vibrations. This hinders signifi-
cantly the identification of the line-broadening mecha-
nism that is decisive in the real case.

4) Steroisomerization. This process is closely re-
lated to the considered inhomogeneous-broadening by a
solvent, although it is not quite as general. Its gist is
that if the molecule can exist in several steroisomeric
forms and if the corresponding absorption spectra are
shifted relative to one another, then the superposition
of spectra of these forms leads to a broadening of the
observed bands. Thus, whereas in the preceding section
we dealt with an inhomogeneity in the disposition of the
solvent near the dissolved molecule, we are dealing here
with inhomogeneity of the structure of the molecules
themselves. In order for this mechanism to lead to a
noticeable effect, a large number of different steroiso-
mers must be present. Consequently, the role of this
mechanism increases with increasing dimensions of the
considered molecules, and it can be particularly signifi-
cant in the case of polymers.

5) Interaction with other electronic states. A special
situation arises when two electronic states of a molecule
have close energy (degenerate or quasidegenerate elec-
tronic states). The vibronic spectra undergo in this
case particularly significant changes if both electronic
levels have close oscillator strengths. Then to find the
intensity distribution it is necessary to have an ap-
proach that is not based on the adiabatic approximation
(see, e.g./81). A different situation takes place when the
transition to one of the closely-located electronic levels
is forbidden, or has a small oscillator strength. From
the fact that the exact vibronic wave function corre-
sponding to this energy level can always be written in
the form of a linear combination of the corresponding
adiabatic functions that pertain to different electronic
levels, it follows (in view of the weakness of one of the
electronic transitions) that the intensity distribution in
the band corresponding to the strong electronic transi-
tion is of the same form as in the adiabatic approxima-
tion.

The foregoing does not mean, however, that the
widths of the vibronic lines remain unchanged in this
case. To the contrary, a molecule entering in a state
described by an incorrect wave function has a large
(for this case) probability of going over into other states

corresponding to the given energy (see Chap. 7). It is
this which causes the line broadening due to the non-
adiabaticity. In a number of cases this line-broadening
mechanism can predominate. It is clear that this mech-
anism is not universal, since it cannot take place only
in the case of "accidental" quasidegeneracy, when a
weak absorption band appears alongside the strong one.
At the same time, its significance must not be underesti-
mated, since it is well known that a weak η — π* transi-
tion appears quite frequently alongside a strong
π — π* transition, especially in the case of heterocyclic
compounds. The role of this mechanism was first
clearly demonstrated in the brilliant studies of Hoch-
strasser[ 3 1'3 2 1, which will be considered in the next
section.

b) Discussion of experimental data. Some of the pos-
sible vibronic-line broadening mechanism were con-
sidered already long ago (see, e.g., the series of articles
by Neporent[3!>1 and the earlier papers cited therein),
but there are few investigations in which any particular
broadening mechanism is convincingly proved. Progress
in this direction is strongly hindered by the fact, which
has become clear in recent years, that there is no uni-
versal line-broadening mechanism that is decisive in all
cases. Moreover, as will be seen subsequently, broad-
ening of the spectral line of one and the same molecule
can be due to different causes when the external condi-
tions (temperature, solvent, etc.) are altered.

The most prevalent broadening, which appears to be
present in all cases when solutions are investigated, is
inhomogeneous broadening, even though this mechanism
is far from making the largest contribution to the ob-
served effect. The role of the inhomogeneous broaden-
ing was investigated by Personov and co-workers'·341.
They have shown that if frozen solutions of various
molecules are excited in the region of the pure elec-
tronic transition by a narrow laser-emission line, then
luminescence spectra are observed, consisting of nar-
row vibronic lines with half-widths reaching fractions
of a cm"1. Figure 6 shows the emission spectra of 3, 4,
8, and 9-dibenzopyrene in ethyl alcohol at 4.2°K, ob-
tained by ordinary excitation (a) and by laser excitation
(b). There is an obvious narrowing of the spectral lines
in the case of laser excitation. This effect is attributed
in[ 3 4 ] to the fact that laser irradiation excites only a
small fraction of the molecules absorbed in the narrow
frequency band of the laser radiation, after which these
molecules luminesce. These experiments have demon-
strated convincingly the presence of the inhomogeneous
broadening effect.

FIG. 6. Fluorescence spectra
of 3, 4, 8, and 9-dibenzopyrene
in ethanol at 4.2°K under or-
dinary excitation (a) and after
excitation by a cadmium laser
with λ = 4415.6 A (data of [3 4]).
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At the same time, it is seen from the spectra shown
in Fig. 6 that an individual peak of the initial spectrum,
after the lifting of the inhomogeneous broadening effect,
turns out to consist of an entire series of narrow lines
corresponding to low-frequency ("soft") vibrations. It
appears that the total width of the peak in Fig. 6a is
determined just by the "soft" vibrations, and the role
of the inhomogeneous broadening reduces to a smearing
of the fine structure at extremely low temperatures,
when the role of the phonon mechanism of broadening
is still small. Personov and co-workers[ 3 4 ] have shown
that in analogy with the situation in crystals, when the
temperature is raised one observes in frozen solutions
a rapid decrease in the intensity of the no-phonon lines,
and the phonon broadening mechanism comes into play.
It is possible that this mechanism plays at increased
temperatures (several dozen degrees Kelvin and higher)
a more significant role than the effect of inhomogeneous
broadening. Thus, even at a temperature of several
dozen degrees Kelvin the spectrum is transformed
into a set of peaks with an unresolved fine structure,
and the width of each peak is determined by the soft
vibrations (see Fig. 6a).

A picture of this type is in good agreement with the
hypothesis advanced in[ 2 2 2 5 J to explain the temperature
dependence of the half-width of the individual peaks of
the vibronic spectra of dyes, in these studies, a com-
parison was made of the experimentally observed tem-
perature dependence of the principal peak (correspond-
ing to the 0—0 transition in accord with the " h a r d "
progression) with formula (58), which corresponds to
broadening due to "soft" vibrations. The result of such
a comparison is shown in Fig. 7. The values of the
parameters y and il were chosen such as to ensure the
best agreement between the theory and experiment.

The experimental data agree thus with the assump-
tion that the "soft" vibrations play the decisive role in
the broadening of the vibronic bands of molecules of
various classes. The data shown in Fig. 7 can by them-
selves be interpreted also on the basis of the inhomo-
geneous-broadening effect, since this effect, as shown
above (see formula (61)), can lead to an analogous tem-
perature dependence of the line width. This interpreta-
tion, however, contradicts a number of other data. In
particular, Serdyukova[35] has shown that the peaks have
a Gaussian form only at high temperatures (where a
linear dependence of Δ on /T is already observed),
while at low temperatures there is a noticeable devia-
tion of the band shape from Gaussian. This agrees well
with the mechanism of broadening due to "soft" vibra-
tions (we recall that in accordance with formulas (34)
and (35) the peak should be Gaussian at ηΏ « kT and of
the Poisson type at ΚΩ » kT), and does not agree with
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FIG. 7. Temperature de-
pendence of the width of the
long-wave maximum of the ab-
sorption bands of pinacyanol (1),
rhodamine C (2), and brilliant
green (3) in alcohol. Points-
experiment, curves-theory
(formula (58) [2S>35]).

the inhomogeneous-broadening mechanism, according to
which the peak should be Gaussian at all temperatures.
In addition, according to the data of Personov et al. [ 3 4 1,
the inhomogeneous-broadening effect is small.

Nonetheless, further research is needed for a more
definite assessment of the validity of the proposed inter-
pretation.

If the notion that the decisive role is played by
"soft" vibrations turns out to be true, there will still
remain the completely unanswered important question
concerning the nature of this vibration. The available
data do not make it possible, in most cases, to ascer-
tain unequivocally whether these are intramolecular
vibrations or vibrations of the solvent molecules. More-
over, in a number of cases it is necessary to make use of
the hypothesis that we should be dealing here with vibra-
tions of the solvent in the field of the dissolved mole-
cule. Only this hypothesis can explain the dependence
of the characteristics of this vibration on both the
properties of the dissolved molecule and on the proper-
ties of the solvent, in the case of dye solutions
(see[ 2 5 ' 3 5 ]).

In any case, the most probable at present in the fol-
lowing hierarchy of broadening mechanisms in most
cases: "soft" vibrations > phonons > inhomogeneous
broadening. The last two mechanisms change placed at
very low temperatures. This can give rise to a fine
structure due to soft vibrations. This picture may turn
out to be quite general. However, even now there are
known cases when the principal mechanisms are quite
different.

We have in mind the last two broadening mechanisms
indicated in the preceding section. Neither can claim,
in principle, to be general, since one of them requires
the existence of stereoisomers, and the other can be
realized only in the case of "accidental" quasidegener-
acy of the electronic terms.

The broadening mechanism due to stereoisomeriza-
tion is resorted to in [ 3 6 ] to explain the anomalously
broad bend of retinal in comparison with compounds
related to it. This explanation is quite plausible, since
retinal contains alternating double and single bonds and
rotation can take place around the latter.

Very convincing examples of band broadening due to
quasidegeneracy of electronic terms of different types
(one corresponding to strong absorption and the other to
weak absorption) were demonstrated by Hoch-
strasser1·3 1 '3 2 1. Figure 8 shows one such example, in the
form of pyridine in two solvents, water (a) and pentane
(b). It is known that the spectra are usually much better
resolved in nonpolar solvents than in watere>.

In this case, the inverse picture is observed—the
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FIG. 8. Absorption spectra of pyridine in water (a) and pentane (b)
according to [3].
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spectrum is better resolved in water. According to
Hochstrasser[ 3 1 ], this effect is due to the fact that the
nii* level of the pyridine shifts in water and turns out to
be higher than the wn* level. As a result, the broaden-
ing of the 7nr*-band vibronic levels due to quasidegener-
acy does not take place in water but does take place in
pentane, where the ηττ* level lies somewhat lower than
the JJJT* level. Hochstrasser presented also a large num-
ber of very convincing examples of an effect of this
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In addition to its importance in principle, the Hoch-
strasser effect is also of great interest because it can
become significant for the explanation of the spectral
characteristics of a large class of heterocyclic com-
pounds, including also molecules that are of great im-
portance in application, such as nitrogenous bases and
amino-acids.

6. ADIABATIC THEORY AND INTERMOLECULAR
INTERACTIONS

We have reported above the results of the application
of the adiabatic theory to isolated molecules (chromo-
phores). We consider now several examples that illu-
strate the conclusions that can be drawn by applying the
adiabatic theory (i.e., by consistently using the Born-
Oppenheimer parameter κ) to intermolecular interac-
tions. By "molecule" we mean here not necessarily an
individual Chemical compound, but also an arbitrary
chromophoric group, i.e., a part of a complex chemical
compound and having sufficiently individual spectral
characteristics. The interaction between the considered
chromophoric group and the remainder of a large mole-
cule can therefore be treated by perturbation theory.

a) Vibrational structure of circular-dichroism
spectra. The spectrum of the circular dichroism (i.e.,
the difference between the absorption coefficient of
right- and left-polarized waves is usually similar to
the absorption spectrum, and its vibrational structure
is described by the same relations as in the case of
ordinary spectra[ 3 7 ] . As first noted by Moffitt and
Moskowitz[381, however, in the case of weak optical
activity, which arises when a symmetrical chromo-
phoric group is placed in a weak asymmetrical field, a
noticeable difference between the circular-dichroism
(CD) and the absorption spectrum can be observed. This
question was subjected in [ 3 9 ] to a detailed analysis based
on the use of adiabatic theory, and also on symmetry
considerations, which play in this case a rather signifi-
cant role.

The following expression was obtained in[ 3 9 ' for the
form of the circular-dichroism band:

«α (ω)

= Ka 2 [ 4 + 2 Ba<#>+ 2 Caya(l—^-)] WT6((olli+ 2 «»»»-«>) ·
" (62)

The quantities Wv and yk take as before the forms (32)
and (31), respectively. Summation over a means sum-
mation over all the normal coordinates that are anti-
symmetrical with respect to the operations of inversion
and reflection in a plane. Q a is the displacement of
the equilibrium positions of the nuclei along the given
normal coordinate in the electronic ground state under
the influence of an asymmetrical field. The quantities
A, Ba, and C a are expressed in terms of the matrix
elements of the magnetic and electric dipole moments[ 3 9 ].

FIG. 9. Absorption and luminscence spectra (a) and circular dichroism
luminescence and circular polarization spectra (b) calculated from for-
mulas (28), (33) and (62), (63) respectively in the limit ηΩ, » kT for a
hypothetical molecule with one fully-symmetrical vibration y\ = 1 and
with one asymmetrical vibration y | = 0.5 ( Ω α = Ω 5 /2) . For simplicity,
the relations between the parameters were assumed to be the following:
A + BaQ

(

a

g ) = C a y a and A' + BaQ<a

u> = Caya.

Formula (62) yields an expression for the distribu-
tion of the intensity in the CD band induced in the mole-
cule by the asymmetrical field in first-order perturba-
tion theory and in the adiabatic approximation. It fol-
lows from it that there are three methods by which an
asymmetrical field induces optical activity. The first
term A corresponds to asymmetrization of the electron
motion in the case of symmetrical disposition of the
nuclear core. This is the only term usually taken into
account in the analysis of induced optical activity^40'.
The second and third terms correspond to asymmetriza-
tion of the nuclear core of the molecule in an asym-
metrical field. The second term Z/BaQa corresponds
to asymmetrization of the molecule in the electronic
ground state. The third term S C a y a U ~ ( v a/y | ) ] c o r "

a
responds to the contribution that arises if the asym-
metrized molecule has different equilibrium values of
the asymmetrical normal coordinates in different elec-
tronic states. This difference is determined by the
quantity y a .

It is important that all three terms in (62) are of the
same order of magnitude and generally speaking there
are no grounds whatever for discarding any of them.
This is demonstrated in [ 3 9 ] by an estimate of the terms
of expression (62) in general form.

We examine now the correspondence between the in-
tensity distributions in an isolated absorption band of the
molecule and in the band of its induced CD. It is seen
from (62) that the contribution made by the first two
terms to the CD has the same dependence on the vibra-
tional quantum numbers ν as in the case of absorption.
Therefore, if there is no change in the equilibrium
values of the asymmetrical normal coordinates Qa fol-
lowing the excitation (y a = 0), then the CD spectrum of
the isolated band should be perfectly similar to its ab-
sorption spectrum. The third term in (62) makes a
contribution of an essentially different character.
Starting with a certain value of v a (equal to unity if
y a < 1), the contribution given by this term reverses
sign (Fig. 9). As shown in[ 3 9 ] , the total contribution from
this term, summed over all the va, vanishes by virtue
of the rotation.

It is easy to show, by a procedure analogous to that
used in[ 3 9 ] for the CD spectra, that the spectrum of the
circular polarization of the luminescence should be of
the form[ 4 1 ]

flr(a)

=Kr 2 0 ' + Σ * w i ° - Σ c * ( i — i f - ) ] w* ( · · „ - 2 Ω ^ - ω ) -
ν α β k

(63)
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where Q^a' is the change of the equilibrium position of
the normal coordinate in the excited electronic state
under the influence of the asymmetrizing field. A', B a

and Ca differ from the corresponding expressions for
A, B a , and Ca in that the indices are permuted. An es-
sential difference between (63) and (62) is the change of
the sign of the third term. This should lead to the ab-
sence of mirror symmetry in the CD spectra and in the
circular polarization of the luminescence, a symmetry
that should occur if Ca = Ca = 0. The usual absorption
and emission spectra retain in this case their mirror
symmetry (see Fig. 9).

The possibility of contributions of opposite signs in
an isolated electronic CD band was first noted in [ 4 2 J .
This conclusion was based, however, on the erroneous
statement that the asymmetrical vibrations of a sym-
metrical molecule can by themselves lead to a nonzero
summary contribution to the CD, just as vibrations lift
the symmetry-forbiddenness in absorption spectra.
This contribution was obtained in t 4 2 ) as a result of the
quadratic terms of the expansion of the product of the
electric and magnetic moments in powers of the dis-
placements of the normal coordinates. An analysis^3"1

shows that these terms are strictly equal to zero from
symmetry considerations. A term analogous to the last
term of (84) was obtained in1"3»"1. There, however, just
as in[ 4 2 ], no use was made of the symmetry properties,
nor were the obtained terms estimated.

Even though the premise in[ 4 2 ) was wrong, the main
conclusion drawn there agrees with our conclusion
based on a rigorous analysis. That study stimulated
experimental research on the fine structure of CD
spectra[45~47]. Unfortunately, attempts to observe ex-
perimentally the theoretically predicted differences be-
tween the CD and absorption spectra have not yet suc-
ceeded. The reason is that the presence of various con-
formers of the given compound in the solution hinders
the interpretation of the spectra. The first experiments
in which circular polarization of the luminescence of
weakly asymmetrical molecules have been reported
recently1 1 8'4 9'. There are grounds for hoping that a
parallel investigation of the spectra of CD and of the
circular polarization of radiation of molecule, using the
difference between (62) and (63) for the interpretation of
the data, will help clarify this important question.

b) Vibronic interactions in dimers. The most com-
plete analysis of this question was carried out by Fulton
and Gouterman[ 8'5 0 ] (see also[ 5 1 ) 5 3 ] and the review[ 6 )).
The theory makes use of two parameters, the quantity
y for the intramolecular vibration of a monomer and
the dimensionless parameter e that characterizes the
magnitude of the interaction between monomers in a
dimer. The most interesting predictions are given by
the theory in the case of strong intermolecular coupling,
where | e/y | » 1. In this case, a strong exciton split-
ting of the electronic levels should take place, and the
intensity distribution in each of the two newly produced
bands ( " + " and " - " ) should obey the usual formulas
(55) and (56), but with a new value y± = y/\/~2~.

The theory was subjected to a detailed experimental
verification in [ 2 7 ) 5 4 > 5 5 ] , where they investigated a num-
ber of "intramolecular dimers," i.e., molecules made
up of two identical chromophoric groups. The investi-
gated dimers had different values of the parameter
| e/y |, but larger than unity for all of them. It turned
out that the predictions of the theory of Fulton and

Gouterman[8»501 are rigorously satisfied only at | e/y |
* 1, but a significant deviation from the theory occurs
when this parameter increases.

As shown in[ 5 5 ], the cause of the discrepancy be-
tween theory and experiment is that in the theory of
Fulton and Gouterman the matrix element of the opera-
tor of the interaction of the monomers in the dimer was
considered only within the framework of the crude adia-
batic approximation. Allowance for the succeeding
terms of the adiabatic expansion leads to the expression

The value of the additional term sy± was estimated
in[ 5 5 ] in terms of the Born-Oppenheimer parameter:
I 5y± I ~ * I e 1 · Λ i s seen from this estimate that the
deviation from the simple formula y± = y/f2 should
increase with increasing strength of the intermolecular
bond. This regularity, and also certain more definite
conclusions that follow from the adiabatic theory, have
found full experimental confirmation (see[ 5 4 > 5 5 ' 2 7 ]).

The briefly considered question of the effects of the
vibronic interaction in dimers in the case of strong
coupling is instructive in the following respect: It
serves as an example of a situation wherein, on top of
the universal small parameter κ, there appears also a
small parameter peculiar to the given theory ( l/e in
the present case), and the additional term that charac-
terizes the deviation from the crude adiabatic approxi-
mation turns out to be of the order of the ratio of these
two parameter. The real danger inherent in a situation
of this kind lies in the insufficient smallness of κ
(«0.1). Consequently the additional term may turn out
to be comparable with or even larger than the term ob-
tained within the framework of the crude adiabatic ap-
proximation.

c) Width of excimer emission band. An excimer is
defined as a dimer made up of identical molecules, pro-
duced in an excited electronic state, and decaying as
the system goes over to the ground state1·2 8'5 β ]. The
presence of excimers is revealed by a characteristic
"excimer" luminescence that differs from ordinary
luminescence in two basic features: large stokes shift
(about 5000-6000 cm"1) and broad structureless band.
To describe an excimer state one considers a
model[ 2 8 ' 5 e ] in which the potential of the system in the
excited state has a minimum with respect to the inter-
molecular coordinate, and in the ground state the poten-
tial is assumed to be purely repulsive (see Fig. 10).

A theoretical analysis of the excimer luminescence
band has been the subject of many paperst 5 7"5 S ]. In

U(R)

M + M

RB R

FIG. 10. Potential curves for an excimer. R—distance between
molecules in the excimer. Upper curve-state in which one of the
molecules is excited, lower curve—both molecules are in the ground
electronic state (for simplicity, the curve is assumed to be pure re-
pulsive).
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these papers, however, they considered only certain
special models of potential curves within the frame-
work of the quasiclassical approximation. A consistent
quantum-mechanical solution of the problem was ob-
tained int 9 0 ] for an arbitrary ground-state potential,
using an expansion in the Born-Oppenheimer parameter.
We repeat below the reasoning of[e0).

Using the Born-Oppenheimer parameter for the
potential function of the excited excimer state, we con-
fine ourselves to the harmonic approximation. Then the
adiabatic Hamiltonian of the excited state takes the
form

(64)

We then obtain

and in the ground state we have

$S % =s Τ $ -\~Vs (^)i (65)

where T N is the operator of the kinetic energy of the
relative motion of the monomers, R is the distance be-
tween the monomers, Ro is the equilibrium distance
between the monomers in the excimer, and Μ and Ω
are the reduced mass and the natural frequency of the
intermolecular oscillation in the excimer. In the Condon
approximation, the square of the moment of the transi-
tion from the excited state to the ground state, normal-
ized to unity, is given by (cf. (28))

1-α) Σ «"" Σ (66)

where a = exp(-hWkT). In the case of a continuous
spectrum of the states, the summation over ng is re-
placed by integration.

We shall continue the calculations using Lax's
method1-611. Taking the Fourier transforms of both
halves of (66) and using the rules for matrix multiplica-
tion we obtain, following1*11,

(67)

where

(-Τ*·*)» · (68)

with ( ( . . . » denoting averaging over the vibrational
levels of the excited electronic state, i.e.,

τ(ί)=.(1-α) 'wSSj) | ».) • (69)

The moments of the distribution function Jfr(a)) are
calculated from the formula

, , C bMlt . . . , .,_b d^X ( ί ) / Γ 7 Λ Ί

whence

(71)

<$,1», (72)

where b$e = 'SSU — $ββ, and [<$?„, $£e\ is the commutator
of the operators Mfn and ifg. The variance of the distri-
bution Jfr(w) is

A ! > 3 1 * - n*i trTi\

We introduce, as usual the dimensionless coordinate

*_ΐ/Γ5ΕίΛ_ΑΛ (74)

ts.Se . Λ Ο ^ - - Vg (x) + fiaus. (75)

In the calculation of (71) and (72) it is convenient to
change from averaging over vibrational energy levels
to averaging over the vibrational coordinate. We then
have, as is well known (see, e.g.,[621), for the arbitrary
function f(x)

where

2 1 — α ~~ 2 l 2kT (77)

To calculate expressions (71) and (72), we expand
the function Vg(R) in a series about the point χ = 0:

(78)

where

*"* =
d*V,

«a

The quantity Vg(x) will be averaged with a Gaussian
distribution having a variance on the order of unity
(see (76) and (77)). At the same time, the coefficients
Yk decrease rapidly with increasing index k. Indeed,
inasmuch as the potential Vg(x) changes significantly
over distances on the order of internuclear distances,
the ratio Yk/Y|j+i is of the order of the ratio of the
amplitude of the nuclear vibrations to the internuclear
distance. In other words, the expansion in (78) is in
terms of the Born-Oppenheimer parameter κ. Since
we assume the potential in the excited state to be har-
monic, it follows that we need retain in (78) terms not
higher than of second order. It is known that the mean
value of the commutator [^u, Jfg ] is rigorously equal
to zero [ e i ! .

Since
(79)

it follows that by using the relations <(x»= 0, <(x2» = σ2,
« x s » = 0, and « χ 4 » = 3σ\ we obtain ultimately

A* = Q*[y;o*+!(i-ys)»o']. (80)

The first term in (80) is determined by the slope of
the potential function of the ground state at an equili-
brium position of the monomers in the excimer. In the
case of intramolecular vibrations, we have Yi £. 1 as a
result of the small difference between the equilibrium
positions of the nuclei of the ground and excited states.
The concrete value of Y! cannot be estimated before-
hand in this case, and depends to a strong degree on
the concrete form of the vibration under consideration.
To calculate Yi it is therefore necessary to use the
methods of quantum chemistry, to which we referred
in Chaps. 3 and 4 above. The second term in formula
(80) for the intramolecular vibrations is usually much
smaller than the first, inasmuch as electronic excita-
tion causes small changes in the force constants, i.e.,
| 1 - Yz| « 1 .

In the case of excimers, when considering the inter-
molecular coordinate for which the potential of the
ground state is practically pure repulsive, the values of
Yi and Y2 can be estimated in general form. In fact,
using (74), we get

sa «
dR
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Further, inasmuch as the potential Vg(R) changes by
an amount on the order of the energy of the electronic
excitation fiwe over distances on the order of the inter-
nuclear distance \/ii/mwe, it follows that

Y, ' a \
ΙΤΚύρ

Analogously we have

Yt ~

(81)

(82)

Thus, whereas the second term is of the order of
unity in the case of an excimer, the first term turns out
to be quite large, of the order of κ'2. For the band
width expressed in terms of the frequencies of the
molecular vibration of the excimer we have

(83)

which is practically exact, with Do =
from (81) that

it follows

(84)

Thus, the excimer luminescence bandwidth can be
estimated in terms of a universal molecular constant,
the Born-Oppenheimer parameter κ. The concrete
characteristics of the excimer can affect the numerical
value of Do, but cannot change its order of magnitude71.

Thus, the obtained estimate is Do ~ 10. This esti-
mate agrees well with the experimental data, according
to which (see[28>56]) Do ~ 13. As to the temperature de-
pendence given by formula (83), it is of the same form
as in the case usually considered in the theory of
vibronic spectra, when Yj ^ 1 and Y2 = 1 (see (58)).
As shown by experiment'-28'561, this dependence holds
true also for the excimer luminescence band.

7. NONRADIATIVE TRANSITIONS

Vibronic interactions in polyatomic molecules play
the decisive role in the nonradiative relaxation of the
energy of excited electronic states.

The adiabatic theory makes it possible not only to
describe completely the processes occurring in mole-
cules following absorption and emission of photons, but
also serves as the basis for the understanding of non-
radiative transitions between various electronic states.

Modern development of the theory of nonradiative
transitions started in the early Sixties, i.e., simul-
taneously with the publication of the first papers on the
quantitative investigation of vibronic spectra of poly-
atomic molecules. McCoy, Ross, and co-workers'-a3'e4)

and Robinson[65] have called attention to the fact that the
equilibrium positions of the nuclei of the ground and
first-excited electronic states are shifted very little
relative to each other. In fact, an analysis of the en-
tire assembly of experimental data (see Chap. 4) shows
that for rigid oscillations we have y < 1, meaning that
this shift is close in value to the amplitude of the zero-
point oscillations, i.e., it is of the order ΚΆ, amounting
to ^lO"1 to 10'2A. The intersection of the potential
curves can therefore occur only at very high energies,
quite far from the energy of the ground vibrational state
of the excited electronic term8'.

These arguments made it necessary to forego the
prevalent opinion that the dominant role in the nonradi-
ative transitions is played by the point of intersection
of the potential surfaces, and to regard this process as
a tunnel transition8).

The most convincing is at present the following
fundamental scheme of nonradiative transitions in the
condensed phase, as proposed first by Robinson and
Frosch[e5"e7](see the detailed review[S8J).

After a molecule absorbs a photon, an equilibrium
distribution of the energy over the vibrational degrees
of freedom is established in the molecule rapidly, in a
time on the order of 10"12-10"n sec.10' The excess
energy dissipates in the medium or goes over to other
vibrational degrees of freedom of the large molecule.

The resultant Born-Oppenheimer state is stationary
if one stays within the framework of the adiabatic ap-
proximation, and a transition from this state to others
must be accompanied by photon emission. However, if
the Hamiltonian contains the next higher terms in the
Born-Oppenheimer parameter κ, which violate the
adiabatic approximation, then mixing of the Born-Op-
penheimer electronic states sets in and transitions be-
tween them become probable. The probability is given
by an expression that follows directly from the well-
known "Fermi golden rule" of the time-dependent per-
turbation theory

P = ^L\F?, (85)

where Le is the electronic matrix element of the non-
adiabaticity operator, F is the Franck-Condon factor111,
and ρ is the density of the vibrational levels of the
lower electronic state. We note that a great variety of
arguments and approaches were used to obtain the
probability Ρ (see, e.g.,[6s"69]), but they led inevitably to
a formula of the type (85). In practice one usually con-
siders a transition from the zeroth vibrational level of
an upper electronic state to an iso-energetic vibration-
ally-excited level of a lower electronic state. A formula
such as (85) is valid only if it is assumed that dissipa-
tion of the vibrational energy takes place very rapidly
after the transition to the lower state, for otherwise the
molecule could again return to the upper electronic
state. A detailed analysis of nonradiative transitions
with allowance for dissipation of the vibrational energy
is given in[7°-?3l.

The quantity Le in (85) can be estimated by adia-
batic theory in general form, and its order of magnitude
is given by | Le/Haie| ~ κ. The value of ρ can also be
roughly estimated in general form at ρ ~ 1/fifi, where
ΚΩ is the vibrational energy. The most essential multi-
plier in (85) is the Franck-Condon factor, which de-
pends very strongly on the relative placement of the
potential curves of the considered electronic states.

The clarification of the decisive role of the Franck-
Condon factor in nonradiative conversion of electronic
states was a very important step towards the explana-
tion of the nature of the phenomenon. Calculations of the
Franck-Condon factor are made complicated in this
case by the fact that approximations that are fully justi-
fied in hetanalysis of photon absorption or emission (the
principal model, see Chap. 3) cannot be used in this
case. The reason is that it is necessary to consider
transitions to high-lying vibrational levels of the lower
state. In this case one can no longer neglect the differ-
ences between the vibration frequencies of the upper and
lower states, nor the anharmonicity of the lower well.
The first of these effects was considered by
Seibrand[74"7e] (see also[68]), who obtained a general
expression for the Franck-Condon factor in the har-
monic approximation. The anharmonicity was taken
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into account in detail by Makshantsev and Perstnev[77~79',
who succeeded in obtaining an analytic expression for
the Franck-Condon factor in the case when the potential
wells are approximated by the curves for the Morse
oscillator. Estimates show that the probabilities of
nonradiative transitions vary by many orders of magni-
tude, depending on the shapes of the potential curves.
This sensitivity to the form of the potential is perfectly
understandable, since we are dealing here with a tunnel
transition. This leads, on the one hand, to the conclu-
sion that the considered theory makes it possible in
principle to explain the experimentally observed proba-
bilities of the nonradiative transitions, but on the other
hand this sensitivity to the detailed form of the potential
curves hinders, as in many other tunnel processes, the
quantitative comparison of theory and experiment. One
can speak only of qualitative trends. One of the most
important among them is a dependence, clearly, pro-
nounced both in experiment and in theory, of the non-
radiative-transition probability on the energy gap be-
tween the electronic levels, viz., the transition proba-
bility decreases exponentially (or even more strongly)
with increasing gap width. This regularity explains, in
particular, the rapid relaxation of the upper electronic
states (above the first excited state) since the density
of the electronic state increases rapidly, as a rule,
with increasing energy12'. At the same time the lower
excited electronic state is as a rule separated from the
ground state by a rather wide gap, and therefore the
lifetime of this state is frequently comparable with the
radiative lifetime.

In addition to the rapid relaxation of the upper elec-
tronic states, the strong dependence of the nonradiative-
transition probability on the width of the energy gap
leads to one more fundamental property typical of most
polyatomic molecules. This is a tendency to go over,
after electronic excitation to a lower excited singlet
level, not to the ground state, but to intermediate meta-
stable levels lying between the first excited singlet and
the ground states. A classical example of this tendency
is the transition to a triplet level. Another example may
be the numerous photochemical transformations, more
and more of which are becoming known (see, e.g.,[82~84]).

Many of the photoproducts can be short-lived, and
are exceedingly difficult to register. Photochemical
transformation can vary in character—intramolecular
restructuring, formation of photodimers^83"851 contain-
ing a pair of dissolved molecules, formation of photo-
products with participation of the solvent (e.g., photo-
hydrates1·83111'841) or with participation of oxygen mole-
cules dissolved in the solvent[8S1, etc. Among the very
short-lived photoproducts that exhibit characteristic
luminescent attributes are also excimer and exci-
plexes131 (see, e.g.,^8'82"851).

On the whole, an impression is gained that a direct
nonradiative transition from an excited singlet state to
high vibrational levels of the ground state is rather un-
likely and the bulk of the molecules that do not radiate
photons either go over to a triplet state14', or form
various photochemical products, and only then do they
relax to the ground state.

Many photochemical products can be regarded as
metastable excited states of the initial molecule (or a
pair of molecules when photodimers and excimers are
produced, or else a complex of the considered molecule
with the solvent molecules, etc.). The potential curves

of these states are quite strongly shifted from the po-
tential curve of the ground state along several nuclear
coordinates (yk » 1). This ensures their metastability
relative to emission of photons, owing to the smallness
of the corresponding Franck-Condon factors. The same
excludes the direct photoexcitation of these states. As
a result, these states do not manifest themselves in any
way in the absorption spectra, but play a very important
role in the fate of the electronic excitation.

Although we have dealt here with a concrete case of
relaxation of electronic excitation after absorption of a
photon, the same reasoning applies equally well to exo-
thermal reactions in condensed media[8e>87]. In fact, in
this case we can regard the initial state of the reagents
as "excited" and the final as the "ground" state. This
approach was used in[8e>87] to consider the reaction of
radiative polymerization of formaldehyde at tempera-
tures close to absolute zero. It was shown that the re-
action is due to tunneling of the formaldehyde molecule
as a unit through a distance of about 0.5 A towards the
end of a growing polymer chain. In general, modern
ideas concerning the tunnel mechanism of nonradiative
transitions can be of great importance in the under-
standing of the mechanism of many chemical processes.

8. CONCLUSION

The presented material shows that the theory of
vibronic interaction explains quantitatively the main
spectral properties of a rather large class of poly-
atomic molecules. This theory plays the principal role
not only in the analysis of such traditional problems as
the form of the absorption or luminescence band, but is
also essential in the analysis of optical activity and
nonradiative transitions. In all cases, the main method
of the theoretical analysis is a consistent expansion in
terms of a single small parameter, namely the Born-
Oppenheimer parameter. During the course of the ex-
position we have emphasized those conclusions of the
theory which are directly based on such an expansion,
and are therefore the most rigorous. This approach
leads to general formulas of universal significance, and
also permits estimates to be made of various expres-
sions. This approach, however, does not permit calcu-
lation of individual characteristics of concrete mole-
cules .

To perform calculations of this kind it is necessary
to use the methods of quantum chemistry. There are a
few attempts at such a calculation, and these studies
assure us that the use of modern quantum-chemical
calculation methods can yield a rather complete descrip-
tion of vibronic spectra of even sufficiently large mole-
cules. As shown in Chap. 3, in most cases the calcula-
tions can be carried out within the framework of the
principal model, i.e., without explicitly calculating the
potential surfaces of the ground and excited states.
This circumstance simplifies the necessary calculations
very greatly, and one can hope that work in the field of
quantum-chemical calculations of vibronic spectra will
develop further in the nearest future.

Perhaps the most rapidly developing theory of recent
years is that of nonradiative transitions. As a result,
the fundamental aspects of this problem have become
much clearer. However, the theoretical papers are in
most cases still detached from concrete experimental
data. This is due primarily to the difficulty of obtaining
quantitative predictions, owing to the exceedingly high
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sensitivity of the calculation results to the detailed form
and to the relative placement of the potential surfaces.

In this sense, quantum-chemical calculations of the
probabilities of nonradiative transitions constitute an
incomparably more complicated problem than the cal-
culation of the vibronic spectra. One can therefore
hardly hope the theory to be capable of making predic-
tions in the nearest future. Semiquantitative predictions
are still possible in those cases when the electronic
terms are separated by a narrow energy gap, but the
reliability of the estimates decreases rapidly with in-
creasing gap width.

As to further problems in experimental research in
this field, notice must first be taken of the need for
further research on the nature of the spectral-line
broadening. Much progress was made recently in the
elucidation of this question, but further more detailed
investigations are needed. It would also be desirable to
have more accurate data on the intensity distribution in
the vibronic spectra, for the purpose of revealing devi-
ations from the principal model and comparing these
deviations with theory.

To carry out research of this type it is necessary to
choose a system with a well resolved structure. It is
possible that the most suitable for this purpose are the
spectra obtained by the Shpol'skii method. The vibra-
tional structure of the circular-dichroism and of the
circular-polarization-luminescence spectra has been
investigated so far quite inadequately.

Further more detailed investigations of nonradiative
transitions are indispensable. The main difficulties
here are connected with aggravating factors such as the
formation of various photochemical products. Therefore
the determination of all the channels whereby electron
excitation is annihilated is a very complicated task. On
the other hand, the important role of the nonradiative
tunnel transitions in photochemical processes, as re-
vealed in research.of this type, gives grounds for as-
suming that tunnel processes play an essential role
even in various chemical reactions that are not photo-
chemical in nature.

It must be emphasized once more that the theoretical
deductions cited in this paper pertain, strictly speaking,
only to lower electron-excited states. We have there-
fore discussed the experimental data for molecule solu-
tions where the research is limited to the visible and
near-ultraviolet region. Interest in the shorter-wave-
length regions of the spectrum of polyatomic molecules
has noticeably increased of late. Research of this type,
which has become particularly intensive in connection
with the use of synchrotron radiation (see[ 8 8 )), yields
very interesting information on the properties of absorp-
tion at high-lying electronic levels. We can expect here
entirely new regularities, connected both with the rapid
increase of the density of the electronic states and with
the strong change in the properties of the molecules
following electronic excitation (the condition that the
changes of the force constants be small should be vio-
lated in this region). These two circumstances cast
strong doubts on the applicability of the principal model
to the description of spectra of highly-excited elec-
tronic states, and add to the importance of approaches
that are not based on this model, similar to the approach
used in Chap. 6 for the calculation of the width of the
excimer luminescence band.

''We assume that the wave functions are always real (there is no mag-
netic field).

2)The quantities Jfa and jfr denote not the absorption and emission in-
tensities l a and I r , respectively, but the relative quantities Jt& =XJu>
and JtT = ΙΓ/ω4.

3)The condition (52) is violated particularly frequently in the case of
small molecules and radicals.

4)We refer here to spectra corresponding to the visible and near-violet
regions, to which we confine ourselves in this article. Franck-Condon
transitions to electronic levels corresponding to changes in molecular
structure are possible, but it appears that they take place at a high
energy corresponding to the vacuum ultraviolet region of the spectrum
(see Chap. 8).

^Calculations of a number of molecules were performed by an analo-
gous procedure by M. A. Kovner and co-workers (see [2*])-

6'The causes of this rule are not quite clear. It may be due to the larger
deformation of the surrounding solvent molecules in the polar medium
upon electronic excitation of the dissolved molecule. Formally, this
explanation corresponds to an increase of the constant y for the soft
vibration on going from an unpolar to a polar solvent.

7'We emphasize that the values of formulas (83) and (84) go far beyond
the scope of the concrete problem of the width of the excimer lu-
minescence spectra. These formulas give, in general form, an estimate
of the maximum possible width of the emission band or absorption
band for transitions between isolated electronic terms.

8 Ά simple estimate shows that at y ^ 1 the intersection of the elec-
tronic terms is possible only at an energy from that of the ground
vibrational state of the upper term by an amount exceeding the en-
ergy of the electronic excitation.

''Incidentally, a detailed analysis based on an expansion in the Born-
Oppenheimer parameter shows that in fact no significant changes of
the nonradiative-transition probability takes place at the point of in-
tersection of the electronic terms.

'"'The cited value of the vibrational relaxation time r v follows from the
adiabatic theory, according to which this quantity is estimated in
terms of the Born-Oppenheimer parameter at r v ~ 2π/κΩ.

"'Strictly speaking, the formula (85) contains not the Franck-Condon
factor IVng (q)|^?nu (q)>2, but the expression K<i>ng(q)E 9/3qlv>nu(q)>l2,

however, for large vibrational quantum numbers, these expressions
differ only by a numerical factor. In addition, the differentiation can
be carried out not with respect to that normal coordinate for which
the largest change of the potential curve is observed upon electronic
excitation, in which case the expression for the latter will indeed con-
tain only simply the Franck-Condon factor

12'The universality of this rule, frequently called the Kasha rule, is evi-
denced by the fact that emission from a second excited electronic
state has been reliably observed in only one case (azulene) [8 0>8 1]. This
is due to the anomalously large gap between the second and first ex-
cited states of azulene (see, e.g., [67>82]).

1 3'lt is particularly important that exciplexes can be formed from an
excited molecule of dissolved matter and the solvent molecule (see,
e.g., [2 8]).

l4'Of course, all the remarks made above concerning the role of the
photochemical processes pertain also to the triplet state.
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