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A review is given of the current status of the self-induced transparency effect. The McCall-Hahn
theory (2ττ pulses) is considered and its generalization to the case of phase modulation of radiation
pulses, degeneracy of transitions, and two-photon resonance is discussed. The relationship with the
theory of nonlinear waves, obeying the Korteweg-de Vries equation, is pointed out. The possibility of
similar coherent effects in direct interband transitions in semiconductors is discussed. A summary is
given of the experimental results demonstrating a strong fall in the absorption and a considerable
slowing down of light pulses, typical of the self-induced transparency. Possible physical applications
of the effect, based on these properties, are discussed.
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INTRODUCTION

High-power coherent light pulses of duration shorter
than the relaxation times of resonant transitions in many
media (such as gases, alkali metal vapors, ruby, etc.)
can now be generated by Q-switched or mode-locked
lasers. The effects which accompany the propagation
of such ultrashort pulses through resonantly absorbing
media are no longer described by the laws based on the
linear dispersion theory (low intensities) or on the
rate equations for radiative transfer (incoherent inter-
action).

The dominant feature of the new effects is that the
relaxation processes (collisions, spontaneous emission,
etc.) have insufficient time to destroy the "phase me-
mory" so that the polarization of the medium is a non-
linear function of the field amplitude and phase at all
the preceding moments in time. Coherent effects of
this kind include the photon echo'-1·' and optical nuta-
tion, which are the optical analogs of the effects known
from the nuclear magnetic resonance theory.

However, the consequences of the phase memory are
manifested most clearly in the phenomenon of self-
induced transparency discovered by McCall and Hahn.[3'5]

It is found that above a certain intensity threshold the
absorption of a pulse by resonant transitions falls
strongly and a previously absorbing substance becomes
almost completely transparent to the incident radiation.
This is accompanied by considerable reduction in the
velocity of a pulse compared with the phase velocity of
light in the substance under consideration.[5"el

The physics of the self-induced transparency can

be understood by considering the dynamics of the
interaction of a pulse with a medium. The leading edge
of a pulse transfers absorbing particles from a lower
energy state to a coherent superposition of the lower
and upper states, so that some of the field energy is
stored in the medium. If the pulse intensity is suffi-
ciently high, at some moment the particles are all
found in the upper state, i.e., the medium is completely
inverted. The remainder of the pulse causes the parti-
cles to emit stimulated light and thus return the energy
to the field. In this way, the particles are gradually
transferred back to the lower state. Since the duration
of a pulse is less than the relaxation time, this energy-
transfer cycle should be completed before the relaxa-
tion processes can destroy the coherence of the interac-
tion. Moreover, under certain conditions, all the energy
acquired initially from the field returns to the pulse
and restores its initial shape. In this way, a pulse may
travel in an absorbing medium without losses, all the
time expending and recovering its energy. Consequently,
its velocity decreases. Here, it is convenient to sepa-
rate this coherent bleaching of a medium from the
bleaching effect due to the ordinary saturation of the
absorption which occurs when the duration of high-
power pulses is much longer than the relaxation time of
the investigated medium. In the latter case, the relaxa-
tion processes play an important part in the interaction
and, consequently, the ability of a medium to absorb or
radiate energy is simply proportional to the difference
between the populations of the upper and lower levels.
Hence, it is clear that such a long pulse cannot transfer
the medium to the inverted state and, at best, it can
only equalize the probabilities of finding the particles
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at the upper and lower energy levels. The energy neces-
sary for this purpose is acquired from the leading edge
of the pulse and this energy cannot be returned coher-
ently. It is then emitted as spontaneous radiation or lost
by nonradiative transitions, i.e., it is generally lost to
the radiation pulse. Thus, a pulse of this kind traveling
across a medium loses energy irreversibly in the
bleaching process.

We shall consider the self-induced transparency ef-
fect in the wide sense of this term and discuss the co-
herence phenomena which accompany the propagation of
ultrashort pulses across resonantly absorbing media.

However, we shall not deal with the photon echo or
optical nutation. They can be regarded as independent
effects without any necessary link with the self-induced
transparency as such, and we shall direct the reader
to appropriate reviews.[ 7'8 ] The relationship between
the photon echo, optical nutation, and self-induced trans-
parency is discussed int 9 ] . The coherence effects in the
presence of a phase memory play equally important
roles during the propagation of radiation across ampli-
fying media (see also[ 1 0 ]). Some of the results obtained
on this subject are given in reviews/6' u ' 1 2 ] where the
saturation of the absorption and amplification in the in-
coherent case is also discussed. It should be pointed out
that such properties of the self-transparency effect as
the strongly pronounced threshold nature of the transmis-
sion of light and the considerable reduction in the velo-
city of propagation are not only of general physical in-
terest, but may find (and have already found) practical
applications in measurements of short relaxation times,
dipole moments of transitions, and other characteristics
of resonances; there are also optoelectronic applica-
tions such as the reduction in the spatial size of light
pulses or the use of self-transparency in discriminators,
delay lines, and logic elements. The connection between
the self-induced transparency effect and the general
theory of solitons (Korteweg-de Vries equation1-131) is of
considerable theoretical interest.

1. DERIVATION OF EQUATIONS DESCRIBING
RESONANT INTERACTION OF PULSES WITH A
MEDIUM

We shall describe the electromagnetic field of a
pulse Ε using the Maxwell equations for a dielectric
and we shall find the dipole moment P, induced in
absorbing particles by the field E, from quantum-
mechanical equations for the density matrix β. The sum
of all these dipoles determines the macroscopic polari-
zation & of the medium. For the sake of self-consistency,
this polarization should also occur in the equations
which govern changes in the field. This semiclassical
approach is generally acceptable in descriptions of the
interaction between laser pulses and media (in the co-
herent and incoherent cases) and it works well if we
can ignore the quantum fluctuations of the field (see, for
example/141). The procedure is shown schematically in
Fig. 1. We shall assume that a medium consists of
two-level particles interacting with one another only

via the radiation field. These particles may be atoms,
ions, or molecules separated sufficiently far from one
another and characterized by spectra with two levels
ei and €2 such that the transition between them ω21 is
close to resonance with the carrier frequency ω of the
incident light pulse. We shall assume that these parti-
cles are immobile but the results obtained can usually
also be applied to moving atoms in gases.t l 2 ]

The high-frequency dipole moment Ρ induced by the
field in such a two-level atom can be described by the
formula

Ρ = eP =Tr(iip), (l.i)
where e is the polarization vector and μ is the dipole
moment operator of the atom.

We shall assume that the field Ε represents a
linearly polarized1' plane wave:

E = e £ ( z , t), ez=0. (1.2)
The equation of motion for the density matrix is

Μ 4-p=[c?iO+V, P]_-fp, (1.3)

where jf0 is the Hamiltonian of the atom under consi-
deration in the absence of the field, and

V = _ μΕ, μ = (μβ).

The term f ρ describes the relaxation processes
(collisions, spontaneous emission, etc.) which-on the
whole—result in the decay of the dipole moment. We
shall not give the intermediate steps but make a pheno-
menological allowance for the relaxation in the final
equations.

In the representation in which Jt0 is diagonal, the
operators are of the form

Schrodinger
equation

Sum over
atoms

Maxwell
equations

FIG. 1. Schematic diagram
illustrating the procedure in ob-
taining a self-consistent system of
equations for the field and medi-
um.
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The dipole moment P(z, t) can be represented by

Ρ = Ρυμ» + ρ2ιμι,, (1.5)
and, going over from Eq. (3) to the equations for the
quantities Ρ and η = Pu—Pa, we obtain

(1.6)

(1.7)
dn

1Γ:
dP

where μ = |μι 2 |= ΙΜ·2ΐΙ, ω2ΐ = (e2-e1)/h. The value of η
governs the difference between the populations of the
lower and upper energy states and, in the absence of
the field, we have η = 1 (absorbing medium).

We shall assume that the following inequalities are
satisfied:

τ ρ >4-, μΕ«/ζω, Χ<κ, (1.8)

where Tp is the duration of the light pulse and Κ is the
absorption coefficient in weak fields. Therefore, the
field Ε can be represented in the form

Ε (ζ, t) = t (z, t) cos Φ, Φ = ωί — κζ + φ (ζ, ί), (1.9)

where £ and φ are the "slow" amplitude and phase, and
κ is the wave vector. The conditions of "slowness" are:

Self-consistency condition

&<χ. (1.10)

We shall assume that the field is coherent in the
sense that the coherence length is greater than the
length of the absorbing medium L. Similarly, the di-
pole moment Ρ (z, t) can be separated into the fast and
slow parts:

Ρ (ζ, t) = Λ (ζ, t) cos Φ + />„ (ζ, t) sin Φ; (1.11)
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here ΈΊ is the reactive component and P2 is the active
component; we can also say that Pi describes the con-
tribution to the dispersion and P2 the contribution to
the absorption of light by the medium (in the weak-field
case). It should be stressed that, in the coherent inter-
action of a high-power pulse with a medium, the field
dependence of the polarization is strongly nonlinear and
P2 may contribute not to the absorption but to the
slowing down of a pulse. The conditions of slowness for
Pi and P2 are similar to those given in Eq. (1.10).

In terms of the slow variables,1-51 the system (1.6)
becomes (see alsoC23])

η — 1
Τ,

(1.12)

here Δω = ν-ω21 and Ρι(ζ, -«) = Ρ2(ζ, -»)=0.

We have introduced above the phenomenological
decay constants Ti and T2, which describe the relaxa-
tion processes (this is a generalization of the well-
known Weisskopf-Wigner method[l5]). In particular,
Ti includes a contribution of only those processes
which result in the transition of the excited atom to
the lower state (these transitions usually give rise to
the spontaneous radiation). On the other hand, T2 also
includes the contributions from the relaxation events
such as collisions of excited atoms with one another
in gases, with phonons in solids, and so on. Since, in
this case, the particle energy does not change greatly
but only the phase of its vibrations is disturbed, we
usually have T2 « Ti (however, in the case of low gas
pressures, we can have T2 «* T j . The broadening of
the transition line associated with T2 is homogeneous.
The criterion of the coherence of the interaction be-
tween a light pulse and a medium can be expressed in
the form

^<n. (i.i3)
The relaxation terms on the right-hand side of Eq.
(1.12) are small compared with the derivatives and we
can seek a solution in the absence of relaxation and
then find corrections in terms of the smaller parame-
ter Tp/T2.

In the derivation of the expression for the macro-
scopic polarization 0>, we must allow for the fact that
the resonant transition frequency ω2[ is not the same
for all the atoms but is distributed with a probability
g(w21 -ω°ι) in a range of frequencies around the ave-
rage ω21 (close to the pulse carrier frequency ω).

Then,

9> = eN j g (Δω) Ρ (Δω, ζ, t) dAa = eN (,Ρ), (1.14)

where Δω = ω — ω21 is the integration variable and Ν is
the number of particles (per unit volume) participating
in the transitions under discussion. The line broadening
associated with the distribution g(At̂ ) is called inho-
mogeneous. Its width 1/Τί ~ l/g(0) contributes to the
total width of the transition line 1/T2.

The quantities P t and P2 in the material equations
(1.12) should now also be regarded as functions of the
parameter Δω. The Maxwell equations for the field can
easily be reduced to the wave equation

-a#—72-dW = -W-dW' (1.15)
here, η is the nonresonant component of the refractive
index, so that the whole contribution of the resonance is

included in ». McCall and Hahn[4> 5 ] modified Eq. (1.15)
to first-order shortened equations for the field ampli-
tude g and phase φ. Although this approximation is not
simply a consequence of the slowness conditions (1.10),
it can be justified for the majority of experimental
situations.[1β] [Some of the results based on the use of
the second-order equation (1.15) are discussed in ' ] .

We shall now give a self-consistent system of equa-
tions for the coherent interaction:

(1.16)

(1.17)

(1.18)

(1.19)

dn

~~dT + Tat
2πωΝ

- & ) 8 = - - ^ < ' · > · (1-20)

The system (1.16)-(1.20) can be studied by numerical
methods. However, we shall first consider some impor-
tant analytic results which can be obtained subject to
additional assumptions.

2. McCALL-HAHN SOLUTIONS

We shall consider the special caset 5 ] when there is
no phase modulation:

φ (ζ, t) = const. (2.1)

In this case, the field g is given just by Eq. (1.19),
whereas Eq. (1.20) reduces to the condition which must
be obeyed by the dispersion law κ(ω). Thus, in this case,
there is no reactive nonlinearity because (Pi) <* Ε

We can easily see that Eqs. (1.16)-(1.18) can be re-
duced to an equation for the rotation of a virtual vector
R with the components (Ρι/μ, Ρ2/μ, n ) : t 2 2 ' 2 4 ]

^- = [ Ω , RJ. R (Δω, ζ, - oo) = (0, 0 ,1) ,

where the angular velocity "vector" Si is

Ω = ( _ ϋ* ο. Δω).

Hence, it follows that

(2.2)

(2.3)

f« 2 =l. (2.4)

In the absence of the field, the atom is in its lower
state, i.e., R = (0, 0, 1) and it begins to rotate during a
pulse. If the field transfers the atom to a state with
equal probabilities for both energy levels, the corres-
ponding rotation is through the angle ir/2, whereas
complete population inversion corresponds to the rota-
tion through π. If we ignore relaxation, the rotation of
the vector R under the action of a pulse g is completed
before the relaxation effects (Τι, Τί) can have any sig-
nificant effect.

In the case of particles in exact resonance, Δω = 0,
the rotation equation (2.2) is easily integrated:

P[ = 0, P2 = μ sin ψ, n = cos ψ, (2.5)

where the angle of rotation is

Ψ==χ \ %(z,ti)dtt. (2.6)

The complete rotation is

ΰ·(ζ) = ψ(ί. oo)=iL f g (z, t)dt in η\
ft J \ώ * i )

— oo

and it is an important characteristic of the interaction.
The quantity ^(z) is also called the area of a pulse. It
follows from Eqs. (2.5) and (2.6) that if X = 2ττη (n = 1,
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FIG. 2. Area theorem for a non-
degenerate one-photon resonance.

2, . . . ), such a pulse returns the resonant atoms
exactly to the lower state so that all the energy first
stored in a medium rever t s to the radiation field. We
shall show later that this is true not only for resonant
atoms but for atoms with arbitrary detuning Δω (sub-
ject to the condition that Δω « ω). Consequently, such
a 27m pulse moves across a resonantly absorbing me-
dium without losing energy.

We shall now consider the behavior of a pulse whose
initial a r e a is t>o = <>(0),. Using Eqs . (1.19), (1.16), and
(1.17), we find that

* * < ' - ' ' > ) *,. (2.8)f t (i. ,,) (η(Δω,

Going to the l imit , [ 2 5 ]

t) jim

bm \ιηχ—, J i m
£-*(J X t—oo

sinzi

we obtain the "area theorem"' 5 '

(2.9)

*2.= _ j L s i n O ( (2.10)

where

Κ = Κ (ω) = JL2ifc—e ' ω" , Δωο = ω — ω° (2 11)

The quantity Κ(ω), which occurs in the a r e a theorem
given by Eq. (2.10), is simply the absorption coefficient
of a weak monochromatic field of frequency ω. We
shall consider the specific case when the spectrum of
a light pulse is narrower than an inhomogeneously
broadened line, i.e., we shall assume that

τκ>2% (2.12)

In this case, the value of Κ varies only a little within
the spectrum of the field.

If the pulse being considered is sufficiently weak,
i.e., if .*o « 1, we find from Eq. (2.10) that

d(Z) = e o e x p ( - ^ ) . (2.13)

Applying Eq. (2.12), we obtain the same exponential
decay law of the pulse energy W = (TJC/8TT) / ^2(z, t) dt:

W (z) = Wo exp (— Kz). (2.14)
Thus, in the case of a weak pulse, A > « 1, the usual

Beer absorption law (2.14) is also valid in the coherent
case if the spectrum of the field is much narrower than
the total line width.

The general solution of Eq. (2.10) is

tg-2- = tg-jr-exp (— -y-) • (2.15)

This solution is shown graphically in Fig. 2. The area
of a pulse tends to the nearest stable value $ = 2 irn.
In particular, there is a steep threshold at t?0 =n, i.e.,
pulses with smaller areas decay in a distance of
several reciprocals of the absorption coefficient,
whereas pulses with a larger area are converted to a
form with a stable area.

Although allowance for other factors results in some
broadening of the threshold, the discriminatory nature
of the transmission of the pulses in the self-transpar-
ency effect is not in doubt and can be utilized (see
alsot 2 e ]). It should be pointed out that the area <> is

related in a simple manner1-26-1 to the spectrum of a
pulsey(z, v) = | j £ exp [-i(u-v)t]dt | 2 :

»2(z) = - (2.16)

We shall seek the steady-state solution of Eqs.
(1.16H1.2O) for the field and medium when all the
quantities depend only on the variable τ = t-(z/v).

(It should be noted that the velocity is ν < c/η .) This
solution can be found subject to the additional condition,
which is in agreement with the results to be discussed
later, that the active component of the polarization can
be represented in the factorized form:

Pt (Δω, τ) = Ρ 2 (0, τ) χ (Δω). (2.17)

Using Eq. (2.17), we find from the system
(1.16H1.20) that the steady-state value of the quantity
φ (Τ ) is described by the equation

-g- = -i-sint|>, (2.18)

where
.·. Ψ» d/")-(η/0 ic, IQ\

This is analogous to the equation of motion of a
physical pendulum, which is disturbed from its upper
unstable equilibrium position. All the solutions are
periodic, except for

iexp^-, (2.20)

which corresponds to the motion of the pendulum with
zero initial velocity. Naturally, only Eq. (2.20) corres-
ponds to a pulse limited in time and characterized by
an energy W < °° . Hence, we obtain the following ex-
pression for the field £·.

(2.21)
Γ--μ - r-μ -ρ

We can easily see that the area is ̂  + 2 π so that the
steady-state solution obtained here is a 2π pulse. Hence,
it follows directly that other solutions with constant
areas ί = 2ττη (n / 1) are not steady-state pulses.

3. PROPERTIES OF 2π PULSES

We shall first consider the behavior of the polariza-
tion and inversion during the passage of a 2TT pulse
through a medium. Using Eq. (2.21), we readily find
from Eqs. (1.16>-(1.18) that

Pt (Δω, τ) — — 2μΔωτ,,χ (Δω) sin -|-, Ρ 2 (Δω, τ) = μχ (Δω^βίη ·ψ, (3.1)

n (Δω, τ) = 1 - 2χ (Δω) sin2 -f-. (3.2)

It follows from Eq. (2.4) that the function χ has the
Lorentzian form (1 + Δω2·)-2,)"1.

A remarkable property of the system (3.1)-(3.2) is
that the "vectors" R(Att>, τ) are rotated through 2ir
in the case of atoms with an arbitrary detuning from
resonance Δω, so that the absorption of light in a re-
sonant transition is identically zero (in the absence of
relaxation), irrespective of the profile of the inhomo-
geneously broadened lines representing this transition.
However, the velocity of the incident pulse ν decreases.
We readily find from Eqs. (1.20) and (2.19) that

1 _ : I = J ^ L , K<«)~2.IM»). (3.3)

where

(3.4)

The quantities Κτ (ω) and Πτ(ω) differ from the
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ordinary absorption coefficients Κ and the ordinary
refractive index Π only by the fact that the relaxation
rate Γ = 1/Tj in Eq. (3.4) is now represented by the
spectral width of the incident pulse l / r p . If T f « τρ,
we find that KT =* K and Πτ « Π.

In the case of considerably delays, when
Κτρ/2 » η/c, we have ,

ν *,-£-. (3.5)

Equation (3.5) demonstrates the unusual role of the
absorption coefficient K. It no longer describes the ab-
sorption of light but it occurs in the expression for the
velocity of the pulses and the high values of Κ corres-
pond to slow pulses. A different expression for the
velocity,'281 which has a simple physical meaning, is
given by

W ( » + ^ " ) . (3-6)
where U m and Uf are the average energies stored in the
medium (m) and in the radiation field (f). The reduction
in the velocity of a 2π pulse then means that a consider-
able proportion of its energy is the excitation energy of
the medium. The velocity ν deduced from Eq. (3.3) is
the generalization of the concept of the group velocity
to the nonlinear coherent interaction case. If the car-
rier frequency ω is sufficiently far from the central
frequency of the line ω°ι, the nonlinear effects disappear
and ν becomes the ordinary group velocity v g in the
dispersion theory.[ 2 9 ' 3 0 )

4. ALLOWANCE FOR TRANSIENT CONDITIONS

Although our steady-state model of a 2π pulse in the
absence of relaxation gives a qualitative description of
the coherent interaction between light and matter, any
comparison with real experiments demands allowance
for various factors which are ignored in Chaps. 2 and 3.

a) Transient stage. This stage is described by the
complete system (1.16)-(1.20), which can only be
solved numerically. However, some qualitative results
follow directly from the area theorem (2.10). As men-
tioned earlier, light pulses whose initial areas lie in
the range τ < <?0 < 3π are converted into 2n pulses.

However, the 2π pulses obtained in this way differ
from one another in respect of their duration and inten-
sity. This is due to the fact that the parameter τ« in
Eq. (2.21) is equal to the initial pulse duration T m only
if on entry into the medium under consideration it is of
the form described by Eq. (2.21). If π < ·>0 < 2ττ, the area
under the pulse increases and its energy decreases
during the transient stage because the medium still ab-
sorbs significantly. Consequently, the duration of the
pulse increases so that, finally, we have τ_ > τ^.
However, if 2n < ·><> < 3JT, the area under the pulse
decreases, whereas its energy remains practically
constant. Consequently, the pulse duration decreases
and we have Tp < TJJJ.21 A remarkable property of the
self-transparency effect is that the pulse which emerges
from an absorbing medium is characterized by the maxi-
mum value of the field exceeding the initial value.
These features of the transient stage are responsible
for the appearance of a delay which depends strongly on
the initial area under a pulse i?0. In particular, calcu-
lations'2 7 1 show that if ι>0 ^ τ , the delay during the
transient stage (due to the increase in the pulse dura-
tion) may be considerably greater than the steady-state
delay given by Eq. (3.12) (see also[ 3 3 ]).

b). Relaxation processes. The results for a steady-
state 2π pulse, given by Eqs. (2.21) and (3.1)-(3.5), are
obtained on the assumption that there is no relaxation.
If we allow for the fact that T! and T2' are finite, we
find that a resonant transition absorbs the pulse energy
but to a much smaller extent that predicted by the
Beer law (2.14).

We can show1·51 that, in the first order with respect
to Tp/T2', the relaxation has the following consequences.

1) The area of a 2TT pulse changes little:

#~2»(i-%). (4.1)

2) The energy of a pulse W decreases in accordance
with the law

dW

3) The total delay, described earlier by the
formula

t - K % p Ltd =—τ— Lt

is now of the form

(4.3)

The reduction in the energy in the case of a constant-
area 277 pulse increases the pulse duration Tp until > 3 4 j

the pulse which has traveled a distance z c approaches
the duration of the relaxation time (Tp « T'2); subse-
quently, the pulse is absorbed very rapidly in accor-
dance with the incoherent interactions laws.

It should be noted that the gradual absorption of a
pulse due to the relaxation processes described by Eqs.
(4.1)-(4.31)canbe compensated, at least to some extent,
by weak focusing of a light beam in a medium.[5>16>321

c) Transverse structure of optical field. According
to the model considered in Sees. 2 and 3, the field is a
plane wave <?(z, t). In a real situation, there is also an
additional transverse structure in the field (for example,
that associated with the transverse modes of the laser
pulse). We shall assume1-51 that the transverse struc-
ture can be described by the dependence <?(r), where r
is the distance from the beam axis; for the sake of
brevity, we shall ignore the variables ζ and t. If <i(r)
falls sufficiently slowly, we can still use our results
(2.21) for a plane wave and introduce a parametric
dependence on r. We shall assume that the transverse
structure of the field at the entry to a medium is such
that at the center of the beam we have <?o(r = 0) > π,
with <Mrc) = jr.

Then, in the central part of the beam (r < r c ) , we
find that a short transient stage is followed by the
appearance of 2π pulses with i»(r) = 2ir, whereas the
peripheral part of the beam (r > r c ) is absorbed ra-
pidly (the process is known as pulse stripping). How-
ever, the central part of the beam is no longer homoge-
neous because the initial distribution <£O(r) gives rise
to a range of pulse durations Tp(r) and amplitudes
E(r) <* l/τρ of the 2ir pulses. The region of the highest
intensity in a pulse (r » 0) leaves behind the peripheral
parts (r * r c ) so that the field profile becomes elon-
gated.

We shall assume that the recording of a pulse in-
volves averaging over the detector aperture r a ; then,

«•«-[w"*1^--^)'*· (4.4)
If the condition r a « r c is not satisfied, the recorded
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FIG. 3. Transmission W(L)/W(0): 1) Ύ* < τρ < T'2; 2) T 2 = 2.5 τρ;
f2 < τρ.
FIG. 4. Delay time t d : 1) Τ* <« τρ < T 2 ; 2) T2 = 2.5 r p .

intensity may differ considerably from the shape of a
2τ? pulse.

Other deviations appear because of the dependence of
the refractive index Πτ(ω) on the pulse duration Tp(r) as
given by Eq. (3.4), unless the exact resonance condition
ω = ω21 is satisfied. In this case, self-focusing or self-
defocusing of the beam may occur , t 5 ' i e ] depending on the
sign of the difference Δω0 = ω -ω°1#

The estimates given in Sec. 4b and the points 1-3
are confirmed by numerical integration of the system
(1.16M1.19) making allowance for the finite values of
the relaxation times Τ χ and T2, detuning from the
resonance Δω, and presence of nonresonance losses/1 6 '"3

This solution allows us to obtain the true transmission
curve W(L)/W(O) and the delay t j of a pulse interacting
with a specified transition (Figs. 3 and 4) (see
alsoC l 6 ' 3 5 > 3 6 ]).

The influence of the relaxation is manifested by the
change of the transmission curve to a monotonically
rising form and by its downward shift from the total
transparency level W(L)/W(O) = 1. Although the delay
of a 2TT pulse changes only slightly, it can decrease
strongly during the transient stage (for <>o > f). The
disappearance of oscillations in the transmission curve
and of a sharp maximum in the delay curve3' for
Tp » T2' may be used to estimate the value of T2'.
Methods suitable for more accurate measurements of
the relaxation times are discussed in[ 2 6 ] .

The results in Chaps. 2-4 apply to an inhomogene-
ously broadened line ( Τ ί « Τ|). If a line is homogene-
ously broadened, the area theorem given in the form
(2.10) ceases to be valid. However, calculations
showt32>34>37] that, even in this case, the main properties
of the self-transparency effect are retained.

5. 2rrn PULSES (SPLITTING INTO SOLUTION)

It follows from the area theorem (2.10) that there are
pulses which can move across a medium without a
change in their area. However, we have seen in Chap. 2
that only the 2ir pulses represent a steady-state solution
which does not change in shape. Therefore, we have to
return to the system (1.16)-(1.20) of the transient
equations in order to study other solutions.

We shall first consider a simplified system,t 3 8"4 2 ] in
which there is no homogeneous broadening and the pulse
frequency is equal to the transition frequency:

This approximation is valid if the pulse spectrum is
much wider than an inhomogeneously broadened line,
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FIG. 5. a) Schematic representation of the Backlund transformation,
b) Relationship between four particular solutions.

FIG. 6. Splitting of a 4π pulse
into two solitons.

-6 -i -2 ΰ

i.e., if T f » T P (or if Τ ί » «/μ<?). However, in many
cases, the conclusions reached employing this model
differ only slightly from the results in the opposite case
when a line exhibits a strong inhomogeneous broadening
T ? « Tp < Tz). As a rule, this is due to the factorized
dependence of the polarization on the frequency detuning
Δω given by Eq. (2.17). If the condition (5.1) is satisfied,
the transient system of equations simplifies consider-
ably and it can be reduced to a single equation for
φ [see Eq. (2.6)]

•UH-S i n 1"· (5-2)
where we have introduced the dimensionless variables

The nonlinear differential equation (5.2) is encoun-
tered in a differential geometry, theory of dislocations,
field theory, superconductivity, physics of elementary
particles, and so on. There is a regular method for
obtaining particular solutions, which are very useful
for the understanding of the process of obtaining iso-
lated results by numerical calculations. This method is
based on the Backlund transformation equations, which

We can show that φ0 and φι in the system (5.3) also
satisfy Eq. (5.2). Consequently, if only the solution φ0

is known, we can obtain a new solution φχ by the method
of quadratures. In practical calculations, it is conven-
ient to use the schematic representation shown in Fig.
5a. We can demonstrate that the four particular solu-
tions linked as shown in Fig. 5b satisfy the relationship

t g * i ^ $ o . = A ± | . t g j i i ^ . . (5.4)

A new solution φ3 can be obtained from Eq. (5.4)
without integration provided we know the three particu-
lar solutions φ 0 , φι, and ψε.

Since φ = 0 is a solution of Eq. (5.2), it follows that
if we use it as φ0 in Eq. (5.3), we obtain the following
solution for the field

α, Ά
sech

I. A. Poluektov et al.

(5.5)
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where
1

aca.

In this way, we can find a 2π pulse in the absence of
inhomogeneous broadening. However, a special analysis
is needed[ 4 2 > 4 3 ] to find the stability of this solution. In
order to obtain a Air pulse, we can use Eq. (5.4) and
select the three particular solutions

The field i now becomes

JS_ = ŝechX, + sech^j ( J _ β ( t h X ( . t h X2_s e ch X,.sech Χ2)ΓΚ (5.7)

where
(5.8)

(5.9)

the velocities Vi and v2 are given by the formulas
1 η , .

"1,8 e 1 | 2

It follows from Eq. (5.7) that over sufficiently
long distances a 4π pulse splits into two 2π pulses
(Fig. 6).

Results of this kind were obtained in numerical cal-
culations based on the complete system of equations'·31

and in experiments.[ i e > 3 2 ] The physical cause of the
conversion of a 4π pulse into two 2v pulses or solitons
can be understood by recalling that each 2ir cycle
causes the vector R to rotate completely once. There-
fore, the central part of a pulse is continuously inter-
acting with atoms which have returned to the lower
state and it is gradually "eaten away." The remainder
of the pulse is, on the whole, amplified because of the
stimulated emission until the area i> = 2ττ is reached.
A similar analysis yields expressions for the 6π, 8π,
. . . pulses.[ 4 2 '4 4 > 4 5 1 In all cases, the ί = 2im area splits
into n independent 2π pulses, each moving at its own
velocity. This property is a unique characteristic of
the self-transparency effect, in sharp distinction to
the incoherent saturation of the absorption when only
the leading edge of the pulse becomes steeper at suf-
ficiently high intensities.

The existence of steady-state 2ir pulses and the
splitting of these pulses into separate solitons demon-
strate a relationship with the theory of nonlinear waves
of different physical origin such as hydrodynamic,
plasma, and other waves.t l 3 1 The agreement between
many results obtained in our discussion and in these
theories is due to the similarity of the equation of
motion of a light pulse(5.2) and of the Korteweg-de Vries
equation in the soliton theory. Under steady-state con-
ditions , this equation is identical with the equation for
the intensity «?2 which follows from Eq. (2.18). Moreover,

5

0

« 5

\o

-5 _ 0
t--V- rel. units
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h
 Λ / Ιν
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b

the optical equation (5.2) and the Korteweg-de Vries
equation obey certain conservation laws, which can
be used to determine the amplitudes and durations of
the final solitons if we know the parameters of the ini-
tial pulse, and this can be done without numerical cal-
culations. An analysis shows that this similarity is also
observed in the case of an arbitrary inhomogeneous
line broadening.[42>46] The relationship between the
solutions in the form of 2im pulses and the problems in
the scattering theory is discussed int 4 5 > 4 7 ] .

6. Οττ PULSES

Nontrivial pulses with «> = 0, within which the
field changes sign, are special among the constant-area
solutions. These Oir pulses are a special case of the
solution with a phase modulation. Although a disconti-
nuity of the phase at the point where Ε = 0 is in formal
conflict with the slowness conditions (1.10), a more
detailed analysis allowing for the phase modulation1·481

gives similar results. Thus, if a pulse entering a med-
ium is characterized by a phase shift, we find that-even
if i>o < ττ-its energy need not be rapidly absorbed. In
this case, the prediction of the area theorem (& — 0)
becomes ambiguous and we have to investigate the
transient process for a specific initial shape of a pulse.

We shall first consider the analytic form of some of
the OTT pulses in the absence of inhomogeneous broaden-
ing.1·423 One of the solutions of this kind can be obtained
from Eqs. (5.6)-(5.8):

(6.1)
Over long distances we again obtain two independent

2π pulses but with their phases shifted by 180° relative
to one another (Fig. 7a). A completely different type of
0π pulse can be obtained if we assume that the parame-
ters aj and a2 in Eq. (5.6) are complex and that
ai = a? = a. Then,

««

sin2A"..sech2;

where
V" ' X--- Ima ί—(

(6.2)

(6.3)

FIG. 7. Motion of splittable (a) and unsplittable (b) 0π pulses.

In contrast to the preceding case, this pulse does not
split: it moves as a compact entity of duration τ« and
is subject to a considerable delay (Fig. 7b).

The results in Chaps. 5 and 6 can be generalized to
the case of an arbitrary inhomogeneous broadening1·461

and we can find an analytic form of the 2ττη pulses
(n = 0,1, 2, . . .) which move across a resonantly ab-
sorbing medium without change in their energy.

Numerical calculations1491 which allow for the finite
values of the relaxation times Ti and Ύ'2 demonstrate a
gradual fall in the field energy. The relaxation also
slows down the splitting of pulses but has hardly any
effect on their delay.

Since the 0π pulses considered above are only the
special case of the solutions with constant phase shifts,
they do not give information on the motion of an arbi-
trary initial field with ^0 = 0. However, a numerical
solution of the system (1.16)-(1.19) in the T f « τρ case
reveals the following relationships.1·291

a) If the initial pulse consists of two parts of areas
i»i » —1»2 « 2π, the solution is a Οττ pulse of the kind
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that can split and is characterized by very low energy
losses [see Eq. (6.1)].

b) If i>! » - Λ • n, we obtain a On pulse of Eq. (7.2)
which cannot split and which moves as a whole subject
to a considerably delay.

c) If ι?ιχ -ι?2 « π, then (in spite of the phase shift)
the absorption obeys the usual exponential Beer law
(2.14) because the interaction of such a pulse with a
medium is linear and its spectrum is much narrower
than the line width.

d) The behavior of the pulses with <ί0 t 0 may depend
strongly on the presence of the initial phase shifts.

We shall close this section by considering a third
type of Οπ pulse,[H>'52] which appears when the width of
the field spectrum is much greater than the line width
(τρ « Τ ί < Τ2). In this case, we may expect an anoma-
lously weak absorption even in the case of weak pulses
(^0<< 1), accompanied by the "eating away" ("burn-
ing") of a hole in a spectrum of width ~1/T?. The solu-
tion for the field δ is of the form[ 5 0 ]

(0, v)exp[-iv (<--lz— (6.4)

where

ε(0, v) = j g ( 0 , t) e x p [if ( 0 , t) + ivt]dt, 4 V = « r ( ( / ; ) + (

(6.5)
Figure 8a gives the results of a numerical calcula-

tion based on Eq. (6.4) for an initial Gaussian field pro-
file. We can see that the pulse becomes oscillatory. The
absorption of energy (Fig. 8b) deviates strongly from
the Beer law, even for Tp <- T2

[50]

7. PHASE MODULATION EFFECTS

We shall now discuss a more general case than the
phase discontinuity in a Off pulse. It is convenient to
discuss separately the transient stage and the steady-
state motion of a pulse.

a) It follows from the general equations (1.16)-(1.20)
that there is no phase modulation during the transient
stage only if the initial pulse is unmodulated [φ(0, t)
= const] and its frequency ω is identical with the central
frequency ω^ of a symmetric inhomogeneously
broadened line. On the other hand, the results for a 2π
pulse without phase modulation [Eqs. (2.21) and (3.1)-
(3.4)] are applicable to any frequency ω (and not just
ω = ω^). We may therefore expect that, when the car-
rier frequency ω of a pulse entering a medium is not
in exact resonance with the transition, the field is still

A,
A

Kz-0

Hz-12

Kz-ZO

-2
β !6

b

FIG. 8. Propagation of a weak Ojr pulse with a wide spectrum (a)

and absorption of the energy of such a pulse (b): 1) T jj = 0 4 2 )

Tp/T2 = 2; 3) Beer law. P

FIG. 9. Changes in the area # and
in the average frequency of a pulse ω
with distance in the case of pulling of
the pulse frequency to the central
frequency of a line.

30 Hz

FIG. 10. One period of a
steady-state solution (7.3).

-Kt. c Κ*. τ

transformed into a steady-state 2π pulse. However,
because of the phase modulation, the carrier frequency
during the transient stage may differ from its initial
value «jjj.1-531 In order to determine the resultant shift
of the spectrum, we must integrate numerically the
system of equations describing the transient stage. It
is found that the sign and magnitude of the shift
ω - ωίη depend on the shape of the initial pulse, inhomo-
geneous line width, and so οη. [ 5 3 > 5 4 ] Under certain con-
ditions, the pulse frequency may be pulled toward the
center of the transition line: ω _ ω^.^ Figure 9 shows
the change in the pulse area $ and in the average fre-
quency ω resulting from such pulling. If the phase modu-
lation exists already in the initial pulse, we find that the
frequency may be shifted even when it is in exact reson-
ance with a transition ^ 1 5 4 1

It should be pointed out that although the phase mo-
dulation can alter the spectrum of a pulse, it can only
affect weakly such characteristics as the transmission
and delay curves.'1 2'2 7

b) The steady-state solution considered so far, i.e.,
a 2n pulse, is not phase-modulated. We shall now seek
different types of steady-state solution which are also
characterized by φ(τ) ^ const. We shall show later that
they all represent not single pulses but infinite trains of
pulses.'4 8'5 5"β 3 1

Under steady-state conditions the system (1.16)—
(1.20) can be used to obtain a general expression for
the dispersion and phase modulation law [subject to the
condition (2.17)]:

η ω _ (Αωχ) / Ι η \ i ^ _ £ L

~ ~ Γ ~ ~ (χ) \v c)' ΐτ ~ «s " \"·ί)

The phase modulation constant C! may clearly differ
from zero only for waves which are infinite along the
time axis and, if CL = 0, we again have a 2ir pulse of
Eq. (2.21). The general equation for the field is

The solution of Eq. (7.2) with arbitrary constants M,
N, and Q can be expressed in terms of the elliptic Jacobi
functions

here, sn is the elliptic sine,[ M l whose period is
2K(m, ΤΓ/2),4' where m ' s / ' i 1.

The field (7.3) is an infinite periodic pulse train.
There is no phase modulation only if I2 = 1 or
I2 = m2. [ 5 e"5 8 iOne period of such a field is shown in Fig.
10. We can easily demonstrate that the solution is
single-valued if we specify three physical parameters,
which are the depth of the intensity modulation A2,
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maximum field value i m a x , and "duration" Tp, all of
which satisfy the same inequality A s £max s 2η/μΤρ.

Consequently, it is sufficient to control only the
envelope of g at the entry1·481 to excite this type of wave
in a medium. A wave without phase modulation can also
form from a step-like initial pulse. 6 5 ]

We must stress that all the steady-state solutions
discussed so far are obtained on the assumption that
there are no relaxation processes (Ti = T2 = °°). A
necessary condition for the existence of these solutions
is, therefore, Tp « T2, i.e. each period in a train
should be sufficiently short. The influence of the finite
value T2 on the evolution of such a wave has not yet
been investigated and no experimental results have yet
been obtained.

We shall end this section by considering the cases
when the phase modulation may also appear for isolated
2π pulses.[ 4 8 ) 5 2 > 6 1 > 6 β"6 8 1 This occurs, for example, if a
nonresonant refractive index η depends on the field £.
For the sake of simplicity, we shall consider a Kerr
nonlinearityt48] η = η0 + r}20, where η2$

2 « 1. (A more
general nonlinearity is considered in[ 6 6 ]) . Then, if ν
« c/?7o, we obtain

and even in the case of a weak nonlinearity (772 £2 « η0),
we can have Tpd<p/dT ~ 1, since, usually, κ » KT.

An additional phase modulation may also result from
the influence of other levels on the interaction of a
pulse with a resonant transition.[ 6 7 ) β 9 ]

8. DEGENERACY OF TRANSITIONS

We shall now consider the interaction between a
pulse and a degenerate transition when several two-
level transitions of different kinds are in resonance
(within the limits of the line width) with the pulse field.
It is convenient to distinguish the following two cases.

a) In the first case, the field frequency ω is in re-
sonance with transitions between a large number of
quite different levels characterized by a wide distribu-
tion of the dipole moments of the transition μ. This
"accidental" degeneracy may occur if the absorption
spectrum of a medium is locally very rich in lines and
is effectively continuous.

b) In the second case, the upper and lower levels are
degenerate in respect of the projections of the total mo-
mentum j 2 and ji. In this case, we may be dealing with an
atomic transition or a vibration-rotational transition in a
molecule.133'693In the latter case, an additional k dege-

neracy may occur
[70]

We shall confine ourselves to case B; the results
for case A are basically identical with the conclusions
reached for Β in the case of strong degeneracy
j » l/ 3 3 ' 7 1 !

We shall thus assume that the incident field is in
resonance with the transition whose upper and lower
levels can be represented by the quantum numbers
(j2, m2) and (j l t m j , where | m, | s jj and | m2 | < j 2 .

The following selection rules apply here:
/. = Λ - 1 . /s = 7i. 7 i = / l + l , ( 8 . 1 )

which corresponds to P(ji), Q(ji), and R( ji) types of
transition.

In the case of a linearly polarized pulse field eE,

the projection of the total momentum along the direction
e is quantized and only transitions with m1 = m2 = m
are allowed. Thus, we can consider separate subtransi-
tions (ji, m) -~ (j2, m). If the relaxation time T3 between
the separate sublevels is sufficiently long,

T3 > τρ, (8.2)
these subtransitions interact completely with the field
and each is characterized by its own dipole moment

Exactly as in Chaps. 5 and 6, it is convenient to
consider first a model (5.1) postulating the exact reson-
ance and the absence of homogeneous broadening.[691

This allows us to understand qualitatively the charac-
teristic features of a degenerate transition.

A system analogous to (1.16)—(1.19) is now of the form

(8.3)

(8.4)

»; (8.5)

t h

a%
dz '

dt

η 0%

' c dt

% Ρ

here, the index m has 2j + 1 values and indicates that
the quantity in question refers to a subtransition with
the projections mi = m2 = m. We shall consider the spe-
cific case when j = ji £ J2 and the initial differences
between the populations are such that Nj = N(2j + I)"1.

Equations (8.3)-(8.5) yield expressions which des-
cribe the changes in the area under a pulse ^j(z) and in
the total energy W(z):

& = — r 2 i C m S m ( t

m
dW NjKa -<n .,

here,

(8.6)

(8.7)

(8.8)

The quantities c m which describe the relative weight
of each subtransition have the following explicit form:

«'-»2>' ; 3- type Ρ(/),)
l " » | -type Q(j), (8.9)

The right-hand sides of Eqs. (8.6)-(8.7) describe,
respectively, the macroscopic polarization and the
energy which remains in the medium after the passage
of a pulse β.

We first note that, for several exceptional transi-
tions, which we shall denote by 0 i^ 1, 1/2 ^ 1/2,
1/2 3* 3/2, and l e i , the degeneracy has no influence
on the propagation of an ultrashort pulse because only
the sublevels with identical values of μ are optically
coupled. In the case of these special transitions, the
sums over m in Eqs. (8.6) and (8.7) reduce to a single
term, as in the nondegenerate case and this leads-in
particular—to the existence of 2π pulses which propa-
gate without absorption.5' It follows from the properties
of the solution (2.21) that this result also applies to an
arbitrary inhomogeneously broadened line g(Aw). The
transitions which are not exceptional in the sense des-
cribed above are characterized by sums over m which
reduce to several terms and we can show that for all
the P(j) and R(j) transitions the right-hand sides of
Eqs. (8.6) and (8.7) do not have common zeros for any
value t?j / 0, so that the propagation of a steady-state
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FIG. 11. Shape of a steady-state pulse for the Q(2) transition in the
absence of inhomogeneous broadening (a) and the transient stage in the
case of inhomogeneous broadening of the Q(2) transition (b).

pulse without resonance losses is impossible.[β9]

The situation is different for the Q(j) transitions.
Since the ratio of the dipole moments μΐη in Eqs. (8.8)
and (8.9) is made up of integers, the right-hand sides
vanish simultaneously not only for ^j = 0 but also for
t>j = 2irj. In this case the vectors R m of all the sub-
transitions return exactly to the initial position after
the passage of a pulse.

Under steady-state conditions, the equation for a
pulse becomes

(ja3L\* =№Ϋ—^-Sll-cos(cmt)l. (8.10)
\ ft / \ dX I Xp *—* * '

m

A pulse corresponding to j = 2 is shown in Fig. l la .
In general, if j ·£ 1, the field profile is symmetric and
has j maxima (j + 1/2 in the case of half-integral
values of j). The nature of the oscillations can be
easily understood by considering the example of j = 2
when a steady-state pulse is a 4?r pulse for two sub-
transitions (m = ±2, c m = 1). In the nondegenerate case,
it would seem that the pulse should split into two parts.
However, the splitting process is not completed because
of an "excess" pair of subtransitions (m = ±1, c m

= 1/2) for which the field is simply a 2TT pulse.

If «>j = 0, Eqs. (8.6) and (8.7) can be solved for all
three types of transition P(j), Q(j), and R(j). We have
seen in Sec. 6 that, apart from the normal absorption,
such solutions may also correspond to the formation of
0π pulses (̂ j = 0, W > 0).

Since the steady-state equation (8.10) has no such
solutions, these Οττ pulses should then travel, keeping
the area under the pulse and its energy constant but
not conserving the pulse shape. These 0π pulses are
naturally not identical with the analogous pulses in the
case of nondegenerate transitions [see Eqs. (6.1) and
(6.2)]. In fact, calculations'-491 show that, for example, a
0π pulse which can undergo splitting [Eq. (6.1)] interacts
with a degenerate transition, assuming rapidly the same
shape as a pulse which cannot split [Eq. (6.2)] and
moves subsequently, gradually losing its energy.

9. TRANSIENT PROCESSES AND ROLE OF
INHOMOGENEOUS BROADENING OF DEGENERATE
TRANSITIONS

We must now consider the evolution of a pulse toward
its steady-state shape, given by Eq. (8.10) and discuss
the influence of the inhomogeneous broadening ignored
in Chap. 8.

It is convenient to consider separately the cases of
small values of j and of strong degeneracy (j » 1).

a) Numerical calculations for a wide inhomogene-
ously broadened line indicate1-33] that, in the case of

small values of j , the initial pulse assumes (after the
transient stage) an oscillatory form with j maxima and
this form is close to the steady-state solution of Eq.
(8.10). This evolution is shown in Fig. l ib for the Q(2)
transition in the case when the energy of a weak pulse
obeying the Beer law decreases by a factor of ~103

(at ζ =L).

b) The sibuation is quite different in the case of
strongly degenerate transitions (j » 1). Here, the
decisive factor is the wide range of values of the dipole
moment of the transition μ. We shall consider the spe-
cific case of the Q(j) transitions but our conclusions
also apply qualitatively to the Ρ (j) and R(j) transitions
and to the "accidental" degeneracy when a large
number of transitions is active simultaneously (at least,
in the case when ^0 » 1[33>71]). In the case of large
values of j , the summation in Eqs. (8.6) and (8.7) should
be replaced with integration. In the Q(j) case the equa-
tions for the area and energy of a pulse become

. (9.1)
Κ sin

2

dW

•ft!

sin<

Calculations indicate[ 3 3'7 1 ) that the behavior of a
strongly degenerate transition varies greatly with the
initial area i»0 under a pulse.

1. If <>o « 1, we have the normal linear absorption
and the influence of degeneracy reduces to the appear-
ance of an extra factor of the order of unity in the
absorption coefficient.

2. If π :£ <*o ^ 1.4π, i.e.. in the range which contains
the first unstable root of the area equation for nonde-
generate transitions, the corresponding pulse travels,
conserving its area but losing its energy. Since
W ~ <*VTp> the duration of the pulse τ« increases and
this results in a delay of the field maximum.

This situation resembles that encountered in the
transient stage under nondegenerate conditions, when
>>o " if (Chap. 4). The similarity becomes greater if
the length of the absorbing medium is not large, KL ~ 1,
so that the energy losses do not result in a significant
absorption of a pulse. i 7 l ]

3. If ^ o » 1, a strongly degenerate transition be-
haves quite differently from a nondegenerate transition.

FIG. 12. Transient stage in the case
of the Q( 10) transition: l ) z = 0 ; 2 )
z = L.

wai
W(0)

FIG. 13. Transmission (a) and delay (b) curves for nondegenerate (1)
and strongly degenerate (2) transitions.
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Physically, this means that after the passage of a strong
pulse a medium may be in a state with zero macroscopic
polarization and an energy density equal to Nfiw/2, as in
the ordinary noncoherent saturation of the absorption.
This is due to the fact that, in the strongly degenerate
case, there is an interference between the contributions
made to the macroscopic polarization by the separate
subtransitions so that, in the case of large values of i>,
these contributions "quench" one another.t ? l )

Calculations show that, under these conditions, an
initial pulse does not assume its steady-state shape
with j maxima. Instead the leading edge becomes
steeper but the rest of the pulse is practically unaffected
(Fig. 12).[331 These conclusions are also qualitatively
valid for any strongly degenerate transition.

The transmission and delay curves can be calculated
by numerical integration of the appropriate equations,
allowing for the inhomogeneous broadening and the
finite nature of the relaxation time1331 (Fig. 13).

In the strongly degenerate case, the transparent
state is achieved much more smoothly without oscil-
lations at A) = 2π, 4π, . . . . and the dealy curve is much
broader. On the other hand, in both cases, the region of
maximumdelay U o ~ ir) coincides with an inflection in
the transmission curve.

It should be stressed that the delay time t$ for a
strongly degenerate transition is entirely due to an
increase in the pulse duration and not a reduction in its
velocity.

All the results derived in Chaps. 8 and 9 are subject
to the following comment. Our conclusions are based
essentially on the condition (8.2), which allows us to
consider separate subtransitions as independent of one
another. However, we can have a'situationt721 when the
opposite inequality is true, i.e., when the relaxation
between degenerate sublevels is capable of maintaining
the same populations of these levels. Under these con-
ditions , the coherence of the interaction of each sepa-
rate transition with the field breaks down. However,
we can show that the transition as a whole interacts
coherently with the field (provided τρ <T£j and the
dipole moment of the transition ist 7 3 ] A/IJ Mm· Then,

' m
irrespective of the values of j 2 and h, the transition
behaves as "effectively nondegenerate" and the results
obtained for a two-level transition are still valid. In
particular, steady-state 2π pulses should form, the
strong field should split into solitons, and so on.

In the "accidental" degeneracy case, there are no
such equal populations of the levels and the transition
always behaves as strongly degenerate. This can some-
times be used to determine the nature of the degeneracy
of a given transition.1-721

10. INFLUENCE OF STATIC FIELDS

We shall now consider the influence of static (elec-
tric or magnetic) fields on the self-induced transpar-
ency in the case of a degenerate transition. In general,
a Stark or Zee man shift of the sublevels is approxi-
mately equivalent to an inhomogeneous broadening of a
transition and, consequently, it simply introduces
additional losses. However, an important exception to
this rule is represented by the 1/2 =* 1/2, 1/2 ^ 3/2,
0 * 1, and 1 ^ 1 transitions, which behave as non-
degenerate in the absence of an additional field. We
shall show later that the application of a static field

FIG. 14. Scheme of the 1/2-

transition.

• 1 / 2 TlOi

makes the characteristics of steady-state pulses inter-
acting with such transitions dependent on the field and
on the Stark or Lande constants of the levels involved.

a) Magnetic fields. If a static magnetic field Hc is
aligned longitudinally with respect to the direction of
propagation of light, we find from the theory of the
Zeeman effect[70lthat a line splits into a series of σ
components corresponding to the subtransitions with
Am = ±1 and all these components should be circularly
polarized. If the initial pulse is linearly polarized, it
can be represented by two superimposed circularly
polarized (+) and (-) pulses.

However, it should be noted that these pulses now
interact with transitions of different frequencies
because, as expected the laws of dispersion and velo-
city may be different for such pulses. The difference
between the laws of dispersion corresponds to the
well-known Faraday rotation of the plane of polariza-
tion and the difference between the velocities gives rise
to a gradual spatial separation of the (+) and (-) pulses.

In the specific case of the 1/2 — 1/2 transition, one
of the pulses (-) interacts with the subtransition Am
= -1 and the other (+) interacts with the subtransition
Am = 1. It is assumed that ω = ω%1 so that the shift
away from the resonance condition is symmetric (Fig.
14). When both pulses become 2π pulses, their disper-
sion laws are described by

χ±(») = 5.Π? (<fl) = f ( η - ^ < - ^ > ± ) . (10.1)

The averaging (. . . ) ± denotes integration over in-
homogeneously broadened lines g±(Au>) and the centers
of these lines ω21 are shifted relative to one another by
geHc/mc (g is the Lande' factor).

Expressed differently, Eq. (10.1) represents the
rotation of the plane of polarization through an angle
A = (K+ -K.)Z and, in the first order with respect to Hc,
we obtain

% = V(itc), (10.2)

where the Verdet constant is of the form'281

\
2 / (10.3)

the averaging ( . . . ) is carried out over an "unper-
turbed" inhomogeneously broadened line κ(Δω) with its
center at ω°2ί = ω. An estimate obtained in*281 on the
basis of Eq. (10.3) for the parameters typical of a
resonant transition in potassium vapor gives an anoma-
lously large Verdet constant (1.9 rad.cntf'.Oe"1).

This "giant" rotation is exactly equal17"1 to the
normal Faraday rotation calculated using the linear
dispersion theory for a spectral line whose decay con-
stant is Γ = l/τρ because the dispersion law (10.1) is
the same as in the case of a weak field.

It is important to note that only under the conditions
corresponding to the self-transparency effect, when a
2n pulse can move steadily across a medium charac-
terized by strong dispersion and absorption, does this
classical formula have its full meaning (see also[ 7 S l).
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If frequency pulling takes place, the angle of rotation
of the plane of polarization A does not remain constant
but "moves"1-741 at a phase velocity c/η:

Λ^Κ,-ας,ψ-^ί). (10.4)

The results obtained for the 0 =t 1 and 1 — 1 transi-
tions differ little from the case 1/2 — 1/2 just consi-
dered (see also[ 7 6 ]).

Strictly speaking, all these results are valid only as
long as the (+) and (-) pulses are spatially coincident.
Over long distances, the nature of the polarization
varies along the field profile in accordance with the
following sequence : t 5 i circular (+), elliptic, linear,
elliptic, linear, elliptic, circular (-). Later, two spa-
tially separate 2ir pulses, (+) and (-), form and move at
different velocities v±.t 5'7 5 1

b) Electric field. We shall consider the case when a
static field E c is oriented parallel to the polarization
vector of the wave field e. ] In this case, a pulse in-
teracts with the subtransitions Am = 0, whose frequen-
cies depend on the value of E c . The shift of the energy
levels is described by the well-known formula for the
quadratic Stark effect1701

Since the electric field does not lift the degeneracy
of the sign of m, it follows that the transitions 0 ** 1,
1/2 ̂  1/2, 1/2 ̂  3/2, and l-~ 1 can still be described
by the results for the nondegenerate case but the velo-
city ν and nature of the dispersion law κ (ω) of a 2π pulse
now depend on the detuning Awo(Ec) = u»21 - ω ^ . For the
sake of simplicity, we shall give the formulas only for
the case when, in the absence of the field E c , the con-
dition (5.1) is satisfied:

(10.6)

where Δω0 = (g /ffilrjj , and the values of the parame-
ters r j j 2 and Γ ^ j 2 are listed in the table below

1 1
2"*2

Ή—«l

1

1 -• 1

(as—a,) +
2

2

3

1-fO

(O2 — Oti) —

1
3

0-.1

1

1 3

(ο,-οι)-

1

3 1
2~*2

(a2-a,)-:-

1
2

11. POSSIBLE SELF-INDUCED TRANSPARENCY IN
SEMICONDUCTORS

Several coherent effects may appear when ultrashort
light pulses interact with semiconductor crystals. The
nature of these effects depends on the energy band struc-
ture, nature of optical transitions, degree of doping of
the semiconductor crystal, and other parameters.

We shall consider particularly the case when the
photon energy is less than the forbidden band width
•fiw < Δ . In the case of weak pulses, a strong plasma
reflectiont78] is expected in the range

ω < Ω (11.1)

where Ω = (477e2Nc/7j2mc)
1/2 is the plasma frequency,

N c is the density of electrons in the conduction band,
and mc is their effective mass. However, in the case
of semiconductors with a nonparabolic dispersion law,

the value of β may depend strongly on the incident
radiation intensity.

It is shown in1-791 that a high-power light pulse
of a shape close to that given in Eq. (2.2) may cross a
semiconductor such as PbTe or InSb in the plasma
reflection region defined by Eq. (11.1).

A close analog of the self-transparency occurs'80-1

in the case of direct interband transitions when fiw > Δ.
The absorption of monochromatic radiation in such
transitions can be described formally as in the case of
an inhomogeneously broadened two-level transition. In
particular, the absorption coefficient in weak fields is
of the form[ 8 l ]

here,

Δωΐ[ = ω —
A+te(k)+e.(k)

(11.2)

(11.3)

and, by analogy with the two-level transitions, we have
introduced μ^, which is the dipole moment of a transi-
tion between Bloch states in the valence band $v(k) and
in the conduction band >pc(k); njj is the difference between
the populations of these states; €c(k) and ev(k) are the
dispersion laws of the bands; Γ is the rate of decay of
the interband polarization due to electron-electron and
electron-phonon collisions. The law of conservation of
the quasi-momentum k couples optically the pairs of
states i/>c(k) and i/*v(k) in the conduction and valence
bands. The expression (11.2) differs from the formula
for the absorption coefficient in the case of a two-level
transition because the averaging over the profile of an
inhomogeneously broadened line is now replaced
with the summation over the quasicontinuous spectrum
in the energy bands. However, there is one fundamental
difference: the two-level atoms which absorb light are
basically localized, whereas the electron states in
pure semiconductors are smeared over the whole crys-
tal because the probability of finding an electron at a
given point (| tpc(k) I2, |i/ty(k) I2) is a periodic function of
the coordinates and the period corresponds to the crys-
tal lattice parameter.

An ultrashort light pulse interacts coherently with a
semiconductor if

a) the pulse duration τ~ is less than any of the re-
laxation times, which include the spontaneous recombi-
nation time Ti, polarization decay time Τί electron-
electron collision time T e e , and electron-phonon col-
lision time T e p ;

b) the carrier mobility is incapable of disturbing the
coherent coupling between the field and the polarization
produced by it.

The first condition is clearly analogous to the cri-
terion Tp < T2' in the case of a two-level transition and
the second is entirely due to the presence of the
long-range order in a semiconductor crystal.

In deriving equations for the coherent interaction
between a light pulse and a semiconductor crystal, we
can conveniently replace the Bloch functions with the
localized Wannier functions.t82] The two-band Schro-
dinger equation can then be reduced to

»Α-^-/*(Κ, t) = ec( — iV)/ck —^ k £/ c k , (11.4)

i»-|-/.*(R,Q = M-iV)/<*-(*£/<*; (11-5)

here fcjj and fvjj are the amplitudes of the probability
that at a moment t an electron is in the Wannier state
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I, i/)VR if this electron is in the Bloch state 4>v(k)
before the application of the field. The initial conditions
for Eqs. (11.4) and (11.5) are

/Λ (R, - oo) = ο, /Λ (R, - oo )=«-*"· (11.6)
We can show that the second of the above conditions

can be satisfied if the "displacement" of a carrier
during a pulse τρ is small compared with the "length"
of the pulse ίρ = ντρ. In the parabolic band case, the
latter condition becomes

where
, τ.—— = δ ω — Δ.

mv ' 2mc l J

(11.8)

d% η d% 2πω

dz <Ύ~βϊ τΰΓ .

If the condition (11.7) is satisfied, the differential
operators in Eqs. (11.4) and (11.5) can be replaced with
the c number ec(k) -Δ -ev(k), and the equations for the
field and medium are then easily reduced to the form

(U.9)

here, P j ^ and P2jj are the reactive and active compo-
nents of the polarization for the ck — vk transition;
η is the nonresonant part of the refractive index of the
semiconductor (considered ignoring the contributions
of the conduction and valence bands). The interband
dipole moment of an allowed transition can be approxi-
mated satisfactorily by assuming that μ^ = μ.

In this case, the system (11.9) is of the same form
as the system for a two-level transition (1.16M1.20),
except that the averaging over an inhomogeneously
broadened line is replaced by the summation of the
values of the wave vector k in the first Brillouin zone.

In particular, the "area theorem" is valid:
dXt _ K, . »
dz 2 S >

where

(11.10)

(11.11)

' Κ Γ (ω) [see Eq.

K8 —-

If hu> -Δ » ηΓ, we find that Ks(w)
(11.2)].

Since the absorption coefficient of direct interband
transitions can be very large (~104 cm"1), the transient
stage extends over much shorter distances than in
media with two-level transitions. Moreover, since the
density of states varies very slowly over the width of
the pulse spectrum, effects resembling the weak Oir
pulses of Chap. 6 cannot occur in a semiconductor.

Α 2π pulse in a semiconductor has its previous form
(2.21). The velocity of this pulse and the dispersion law
are

" (11.12)
r\ch

where Π(ω) is identical (if ηω -Δ « h/τρ) with the or-
dinary refractive index of a semiconductor.

Estimates based on the system (11.12) show that,
if Kr = 104 cm"1 and Tp = 5 x 10"12 sec, the velocity of

FIG. 15. Energy band structure
of a semiconductor.

a 2ir pulse is three orders of magnitude lower than the
velocity of light and the length of such a pulse is three
orders of magnitude shorter than the length of a pulse
in air. This "miniaturization" effect of the self-induced
transparency may find applications in optoelectronics.

If the dipole matrix element near a band edge can be
described by μ^ α k " e, a light pulse interacts with a
semiconductor in exactly the same way as with a
strongly degenerate two-level transition (Chap. 9).

The results obtained for a two-band model of a
semiconductor are easily modified to allow for the
real band structure such as that of the III-V compounds
(Fig. 15). If Δ < ήω < Δ + Ag, transitions take place
between the conduction band and the light-hole (v2)
and heavy-hole (vj bands.[ 7 8 ] The laws of conservation
of energy and quasimomentum "burn" two inhomo-
geneously broadened transitions in the energy spectrum
and these transitions are separated by

δ = (*ω-Δ)-2ϋ £3..

If the condition | ο | »-Ji/Tp is obeyed, a 2TT pulse
has the same form as in the case of two-level transi-
tions but the expressions (11.11) and (11.12) for the
velocity of a pulse and for the absorption coefficient
should be summed over v2 and vi. The contribution of
the heavy-hole band is m C V 2 / m c v times greater than
that of the light-hole band.

We shall now consider the influence of the doping of
a crystal. The energy states in a doped semiconductor
containing Nj donor or acceptor impurities are charac-
terized by a dimensionless parameter s = agNj/ 3, where
aj3 is the Bohr radius of an impurity center. In the case
of low impurity concentrations (s « 1), the energy
band structure is practically the same as that of an
undoped semiconductor but an additional impurity scat-
tering of carriers with a characteristic time Tj has to
be allowed for. If the duration of a light pulse satisfies
the condition τρ < Τι, such scattering does not have
sufficient time to disturb the coherence of the interac-
tion with the field.

In the heavy doping case (s > 1), the very concept of
the dispersion law loses its meaning.1831 The density of
states changes considerably and tails appear in the for-
bidden band. The presence of a large number of random-
ly distributed impurity centers can be described by
introducing a fluctuation potential U which acts on elec-
trons in the semiconductor. It is usual to employ the
bent-band approximation/831 assuming that the bottom
of the conduction band and the top of the valence band
simply shift in accordance with the form of U(R).

The equations for the polarization and population
difference can be written formally in their previous
form (11.9) except for the substitution
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whereas the field equation has to be averaged over the
impurities:

here B(U) is the distribution of the fluctuation potential;
Awk(U) = Auk + Aevk(U) + A6Ck(U); A e c k and Aevk
are the displacements of the energy states.

It is important to note that, in general, AeQk(U) ^
£ Aevk(U) because of the localization effect[84^ the
result of which is that a potential well U of width Γ ο

does not contain bound states if U < "ηΥιηΓο. If the mass
of a hole m v is much greater than the mass of an elec-
tron m c , we can use the approximation

ί Ααη,+ υ, UO<U<UC,

~~\A(ot, U<UV, U>UC,

This approximation works well if Uy < y < U (y is
the rms value of the potential U and Γ ο is the Deoye
screening radius), which is true of several heavily
doped semiconductors.[ 8 5 ]

We can now use Eqs. (11.9), (11.13), and (11.14) to
obtain the area theorem

(11.15)

where

K,=
2π2μ2ω ^ι Γ

= — — — /, nok ι

"c ΐ i.
B(U) δ ( Δ ω ΐ [ + U ) dU,

and ngif is the initial Fermi difference between the
populations in the band. We can easily show that
Ki is identical with the usual absorption coefficient of
transitions between density-of-states tails of a heavily
doped semiconductor.[8β1

12. MEDIA WITH TWO-PHOTON RESONANCE
TRANSITIONS

Some coherent effects may also occur during the
propagation of an ultrashort light pulse through a
medium exhibiting the two-photon resonance.'8 7"8 9 1 It is
assumed^90' that the atomic spectrum includes levels
€i and e2 such that ω2 1 = (e2 -£i)/n ** 2ω.

The equations for the difference between the level
populations and the polarization in the case of an
ultrashort pulse (r p < T2) can be reduced to

dn

in

where

(12.1)

=«= Σ

Bearing in mind that the resonance frequencies ω2 1

of atoms are distributed in accordance with the profile
of an inhomogeneously broadened line g(Au>) (Δω
= 2ω -ω2ι), we find that the slow field amplitude and
phase are given by

(12.2)5® . TJ 5©

Under exact resonance conditions, [g(Δω) = δ(Δω)],
Eqs. (12.1)—(12.3) readily yield an expression which
describes the evolution of a pulse:

Sit

FIG. 16. Energy theorem under two-
photon resonance conditions.

where

0.5 1.0
K,z

2S J t]c{r2i) 4

The quantity t>(z) = φ (ζ, «) is directly proportional
to the total energy of a pulse. We can show that

ctg4-=ct8x+2X22- »o=«(0)· (12.5)

The solution of Eq. (12.5), which we can call the
energy theorem by analogy with Eqs. (2.10) and (2.15),
shows that the initial energy ί of a pulse is absorbed,
tending to a stable value & = 2im (n = 0, 1, . . . ), as
shown in Fig. 16. A steady-state 2jr pulse has the
Lorentzian profile:

The pulse velocity ν is related to its duration Tp by

Other steady-state solutions represent an infinite train
of 2ir pulses:

In the case of detuning from resonance, (Δω0 =
= 2 ω ^ - ω2 1 f 0), the phase modulation alters the initial
frequency «in :

«2= (12.4)

As long as the detuning Δω0 is not too large, such a
distortion of the spectrum has little influence on the
evolution of a pulse. Therefore, if 4ττ > ^ 0 > 2ττ, the
transient stage, whose duration now depends on Δα>0,
is followed by the formation of a quasisteady 2π pulse
which is described approximately by Eqs. (12.6) and
(12.7). A delay (v < c/η) results in an effective pulling
of the pulse frequency toward the central frequency ω2 1

(this happens near the maximum of the pulse) and the
spectrum becomes asymmetric:

2ω = 2(ω ΐ η + ̂ -)-ο>31. (12.10)

Exact solutions of Eqs. (12.1)-(12.3) are not known
for the inhomogeneous broadening case. However, we
may expect the broadening to result in additional losses
of the pulse energy, even in the case when 20)^ = ω2 1.

Two-photon coherent effects can also occur in the
presence of two pulses[ 8 9 ] of frequencies α^ + ω2 « ω°ι,
in which case one of the pulses can change with time
because of a change in the intensity of the other pulse.
Moreover, a resonant two-photon transition may com-
pete with a nonresonant one-photon transition and,
under these conditions, the second harmonic may be
generated in a centrosymmetric crystal. [ 9 1 ]

The interaction between an ultrashort light pulse and
a semiconductor under two-photon resonance conditions
Δ/2 < ί ω < Δ may, under certain conditions, result in
coherent saturation of the absorption at much lower
values of the field than in the conventional saturation
case. [ 9 2 > 9 3 ]
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FIG. 17. Simplified schematic diagram of the apparatus used in
studies of the self-induced transparency: L is a laser system; M!-M3

are mirrors; S is an absorbing medium; PD is a photodetector.

13. SUMMARY OF EXPERIMENTAL RESULTS

Over twenty experiments have been carried out on
the self-transparency effect. On the whole, the results
obtained indicate that the remarkable properties of the
coherent interaction between light pulses and matter,
described above, do indeed occur in real materials but
a quantitative agreement with the experimental results
can be obtained only if we allow for the relaxation
processes, degeneracy of the transitions, transverse
structure of the field, time profiles of the pulses en-
tering a medium and their phase modulation, profile
of an inhomogeneously broadened line, etc. However,
the majority of the experimental results can be under-
stood qualitatively even on the basis of the simple
McCall-Hahn model (Sees. 1 and 2). These include a
very strong drop in the absorption when the pulse
intensity exceeds the threshold value and a consider-
able delay in a medium which depends strongly on
the initial field intensity. The condition &0= π of Eq.
(2.15) easily yields the threshold value of the optical
flux necessary for the observation of the self-trans-
parency effect:

< ? * ~ ^ ( ^ Γ - (13.1)
Hence, it follows that the effect should be observed
more easily in a medium with a large dipole moment
of the transition μ and a long relaxation time T2'.

The experimentally determined thresholds Q ^ are
in good agreement with the estimate represented by
Eq. (13.1) and lie in a wide range from ~1 W/cm2 for
SF6 to ~102 kW/cm2 for ruby and ~102 MW/cm2 for
semiconductors. A common feature of all the inves-
tigations is the use of Q-switched lasers or tunable dye
lasers. The duration of laser pulses is usually in the
range 1-300 nsec (~1 nsec in the case of semiconduc-
tors).

A simplified schematic diagram of the apparatus
used is shown in Fig. 17.

The media in which the self-transparency effect has
been observed so far can be divided into four main cate-
gories: solid dielectrics, alkali metal vapors, molecu-
lar gases, and semiconductors.

a) Solid dielectrics. The self-transparency effect
was first observed experimentally in a ruby crystal
in the fundamental papers of McCall and Hahn. 5 l

Since then, the details of the effect in ruby have been
studied in detail. t 3 5 > 3 6 ) 9 4 ] The radiation used in these
experiments was generated by a Q-switched laser
operating at 77°K. The pulses were of 10-30 nsec du-
ration and passed through a resonant absorber in the
form of a ruby crystal cooled with liquid helium to
Τ = 4—60°K. The laser transition frequency was close
to the frequency of the corresponding transition in the
cooled ruby crystal.

The relaxation time at 4°K was fairly long (T2 ~
~ 50-80 nsec)[ 9 4 3 and the pulses could interact co-
herently with the investigated ruby crystal. The inho-
mogeneously broadened line was considerably wider
than the pulse spectrum (Τ? ~ 0.03 nsec). The self-
induced transparency was observed when the optical
flux reached the threshold Q t h ~ 100 kW/cm2 and at
this threshold the absorption fell by a factor of up to
~105. The delay of the pulses in the ruby crystal re-
presented a reduction in the velocity down to 10"2C/TJ.
A systematic study of the transmission and delay
curves and of the influence of temperature on these
curves demonstrated good agreement with the McCall-
Hahn theory subject to allowance for the transverse
structure of the field (Sec. 4). The high threshold flux
and the need to employ liquid helium were attributed
to the small dipole moment of the transition
(μ ~ 5 x 10"21 cgs esu) and the relatively fast relaxa-
tion processes in ruby.

b) Alkali metal vapors. At low concentrations
(Ν ~ 10" -1012 cm"3) of atoms, a pulse of τρ ~ 1-10
nsec duration can interact coherently with such vapors.
The large dipole moments of the transitions in alkali
metal atoms (μ ~ 10"18 cgs esu) should make it pos-
sible to observe the self-transparency effect at low
threshold fluxes Q t h ~ 1-10 W/cm2.

The most systematic studies were those reported
in[ 1 6 > 3 2 ] . In these studies, use was made of an Hg II
laser and a Pockels cell to produce pulses of Τρ ~ 10
nsec duration. A static magnetic field (Hc ~ 75kOe)
produced a resonance between the laser frequency and
the frequency of a two-level transition (5s-5p) in a
rubidium atom. When the self-transparency appeared,
the absorption fell by a factor of —100 and the delay
corresponded to an extremely large reduction in the
pulse velocity by a factor of ~1500. Special measures
were taken to reduce the phase modulation (single-mode
laser radiation, control of the spectrum) and to avoid
deviations from the plane-wave conditions (screens with
small apertures were used). Consequently, the results
of these experiments (transmission and delay curves,
splitting of 2π pulses, and so on) were found to be in
excellent agreement with the theory. A reduction in the
pulse duration by an order of magnitude was observed
for the first time in the self-transparency effect. This
was achieved by reducing the width of 3π pulses by con-
version into 2ir pulses and a simultaneous slight focus-
ing, which balanced out the energy losses.

The self-transparency in potassium and sodium
vapors was also investigated.130'951 Tunable-frequency
dye lasers were used for the first time in experiments
of this kind and this made it easier to achieve resonance
in the investigated substance. The range of dispersion
delays in the case when the laser frequency was far
from resonance was studied in[ 3 0 1; the transmission and
delay curves were also obtained.

The use of a magnetic field Hc = 5 kOe in[ 9 5 ] for the
separation of a pure two-level transition and the em-
ployment of screens with small apertures made it
possible to observe the majority of the self-transpar-
ency effects in their pure form.

c) Molecular gases. The most thoroughly investi-
gated substance among the molecular gases is
SF6_[7i,72,96.99] p u l s e s o f 20-300 nsec duration were
generated using Q-switched CO2 lasers (λ = 10.6 μ).
At low SF6 pressures, the relaxation time was T2 "$, 1
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msec, which ensured a low threshold Qtn ~ 0.1-5
W/cm2. Coherent effects were observed for the CO2

laser lines in the 10.6 μ range: P(20), P(18), P(16),
and P(14). In most of these investigations, there was a
considerable deviation from the nondegenerate transi-
tion case: the absorption and delay curves were
smoother than expected, splitting of 2ττη pulses was
not observed, and so on.

The exact nature of the vibration-rotational transi-
tions in SFe responsible for the self-transparency ef-
fect is not known but the experimental results are in
good agreement with the calculations[33>71] carried out
for the strongly degenerate case. It was found that the
leading edges of the pulses became steeper in the case
of interaction with the P(18) transition, which was evi-
dence of the degeneracy of the transition in the
Tp < T2 case. On the other hand, the results t 7 2 i obtained
for the P(14) line were in excellent agreement for the
theory of nondegenerate transitions, as manifested by
the steep transmission and delay curves and by the
splitting of 2ττη pulses. However, we should bear in
mind that the results reported in172-1 could also be ex-
plained by assuming an effective lifting of the degene-
racy (Chap. 9).

The self-transparency effect was also observed in
other molecular gases such as ammonia NH 3

[ 5 1 > 1 0 0 '
and boron trichloride.1-101' Other experimental investi-
gations were concerned with effects similar to those
discussed above. They included the observation of a
delay in neont l O 2 ] experienced by pulses generated by
a mode-locked He-Ne laser, as well as some fall in
absorption and a delay in the case of transition to a
free state of Cl2,C l 0 3 ] etc.

In their first main paper/5 1 McCall and Hahn pointed
out that an effect similar to the self-induced transpa-
rency should also occur in fields other than optical.
This was confirmed experimentally1-104-1 for an ultra-
sonic wave interacting with an MgO crystal containing
paramagnetic impurity centers. In this case, a strong
fall in absorption, delay, and splitting into separate
2ir pulses were observed. Ultrasonic experiments dif-
fered in some details from the optical experiments and
were much easier to perform. In particular, the car-
rier frequency of the ultrasonic pulse and the transi-
tion frequency in a crystal could both be varied easily.
This made it possible to demonstrate experimentally
for the first time[ 7 5 ] the Faraday rotation of the plane
of polarization of a 2ir pulse as well as the splitting
into (+) and (-) pulses. Experiments were also carried
out recently under two-photon resonance conditions.
Thus, a two-photon self-transparency in potassium
vapor was reported int 8 9 1 . The sum of the energy of
photons produced by a ruby laser and of the first Stokes
component of these pulses in nitro-benzene was close
to the transition energy. The large matrix elements of
the transition made it possible to observe the effect at
low thresholds Qth ~ 2 kW/cm2.

We shall now consider the experiments on the co-
herent interaction between ultrashort light pulses and
semiconductors. We pointed out in Sec. 11 that the
self-transparency effect could occur in the interband
transitions in several semiconductors and, because of
the large linear absorption coefficient, one could expect
a very large drop in the absorption and a considerable
delay even in small crystals (L < 1 cm). However,
these effects were difficult to achieve because of the
shortness of the relaxation times. The polarization

decay time T2' of semiconductors is governed by fast
electron-electron and electron-phonon collisions and,
under ordinary conditions, these collisions thermalize
the carriers in the allowed bands.

One obviously has to use picosecond pulses and
work at the lowest possible temperatures. It is also
desirable that the excess of the photon energy over the
forbidden band width be less than the optical phonon
energy "ήω -Δ " ^ ^ o p t so as to avoid activating the fast
relaxation via the optical phonons.

Equation (13.1) predicts that the threshold flux should
be Q t h ~ 102 MW/cm2 in the case of pulses of τρ ~ 10"12

sec duration (μ = 10"17 cgs esu).

Although it was difficult to satisfy all the require-
ments mentioned above, some of the coherent effects
had been observed in semiconductors. They included the
observation of the one-photon self-transparency in an
elegant experimental investigation reported in [ l 0 5 1 . The
use of picosecond pulses of the second harmonic of a
neodymium laser and of a specially grown CdS0.6Se0.4
crystal revealed a strong drop in the absorption and a
reduction in the pulse velocity. Earlier experiments[ 1 0 e l

revealed that the propagation of Nd laser pulses across
a GaAs crystal reduced the two-photon interband ab-
sorption by several orders of magnitude and could pro-
duce some delay.

CONCLUSIONS

Investigations of the self-induced transparency effect
have now grown into a fairly independent branch of non-
linear optics which is developing rapidly in the experi-
mental and theoretical aspects.e> Although the basic
physical principles are now clear, many important
aspects are still awaiting investigation. These aspects
include:

1) the relationship between the self-transparency
effect and the general theory of solitons;

2) the spectral changes associated with the phase
modulation;

3) the special features of the self-transparency
observed for picosecond pulses generated by mode-
locked lasers;

4) the search for new absorbing media in which the
self-transparency or its acoustic and other analogs
can be observed;

5) the generation of ultrashort pulses on the basis
of the self-transparency effect;

6) the measurement of the relaxation times, cross
sections, and dipole moments of various transitions,
and the determination of the Stark and Lande" factors
from the results of studies of the characteristics of
2π pulses;

7) the possibility of long-range coupling in the
strong-absorption regions;

8) the construction of optoelectronic elements such
as discriminators, delay lines, logic elements, etc.

The authors are grateful to B. Ya. Zel'dovich and
I. I. Sobeljman for numerous discussions.

"The main results are applicable also to circularly polarized light. [4's ]
2)This consequence can be used in practice in the shaping of ultrashort

pulses. I"··3 1·3 2]
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3>We are assuming that the plane-wave condition is still satisfied (for

example, with the aid of an aperture).
4 ) K(x, p) is a complete elliptic integral of the first kind. [ M ]
s ' l n the case of circularly polarized light, only the transitions 0 ^ 1 ,

1/2 -*• 1/2, and 1 -*• 1 behave as nondegenerate. [ s ]
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