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Perfection of the technique of macroscopic physical experiments has recently been proceeding so

intensively that we can now inquire naturally under what conditions in macroscopic experiments will

an increase in sensitivity be limited by the quantum-mechanical properties of the test objects. In this

article we determine the limiting values of the detectable accelerations (or forces) when free particles

or oscillators are used as the test objects. The conditions for attaining the limiting sensitivity are

discussed. It is shown possible to increase the sensitivity of a converter of mechanical into electrical

oscillations by increasing the relaxation time of the electric resonator. The possibility is discussed of

nondestructive recording of the η -quantum state of an oscillator. It is shown with the example of a

concrete experimental design that one can determine the value of η (including η = 0) in such a way

that the probability of transition to the adjacent levels after the measurement will be small.
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1. INTRODUCTION

Perfection of the technique of macroscopic physical
measurements has recently been proceeding very inten-
sively. A methodology has already been developed that
permits one to detect an amplitude of mechanical oscilla-
tions at the level of 10"14 cm (an amplitude of relative
elongation[ 1 ] of 10"16), and a methodology is being de-
veloped that is designed for an amplitude of 10"18 c m . [ 2 l i

Aluminum cylinders of mass 2.6 Τ are cooled to
3 χ 10~3 K.C4] The short-term stability of the frequency
standards was as much as 10~14;ibl the natural width of
the line of optical generators has been measured in de-
tail'-6-' (it amounts to hundredths of a Hertz). A Q-factor
of electric resonators of 1011 has been attained in the
centimeter range.'-7-1 Accelerations of 10~9 cm/sec2 are
being recorded t8-1 in drift-free satellites, and systems
are being developed ^ that are designed for
10"11 cm/sec2. The distance between the space apparatus
and the Earth, which is of the order of 100 million km,
is fixed with an accuracy up to 1 m . [ l 0 ] With such a
vigorous development of measurement technique, it has
become natural to pose the question: under what condi-
tions in macroscopic experiments will the increase in
sensitivity be limited by the quantum-mechanical prop-
erties of the test objects?

We shall restrict the treatment in this article to the
problem of the minimum detectable variable (not quasi-
static) accelerations (or forces). As we see it, this
question is pertinent with regard to increasing the sen-
sitivity of gravitational antennas, and to the problem of
inventing a sensitive accelerometer.

2. THE EFFECT OF THE QUANTUM-MECHANICAL
PROPERTIES OF TEST OBJECTS ON THE ACCURACY
OF MEASUREMENT OF FORCES

The minimum force whose action can be detected by
the response of a test object is determined by the quan-
tum-mechanical features of the test object and the time
of action of the force.

Let us first examine the case in which the test object
is a free particle. The action of a force on a free parti-
cle can be detected by observing the variation of its
coordinate or momentum. We must measure the coordin-
ate x0 and the momentum p0 of the particle at some in-
stant t 0 of time, and its coordinate at the instant t 0 + τ.
We can calculate the value of the final coordinate χ(τ)
that it would have had in the absence of a force by using
the known x0, p 0 , and τ. However, we cannot simultane-
ously measure x0 and p 0 exactly. The root-mean-square
errors Δχ0 and Δρ0 are related by the Heisenberg uncer-
tainty relationship '-11-1

(1)

Hence, owing alone to the uncertainty of the initial values
of the momentum and the coordinate, the uncertainty of
the final coordinate will be

(2)

(m is the mass of the particle).

Since the change in the final coordinate caused by the
constant force F is FT?/2m (Τι is the time of action of
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the force), the root-mean-square error of measurement
of the force will be

- ( 4 ) 2 - ^ = r · (3)

(We shall consider the time of action of the force to be
equal to the time of observation τ.) The right-hand side
of (3) has a minimum at

= £· (4)

Finally we get

(5)

Equation (5) implies that the minimum force F m j n that
can be detected by the response of the free particle is

n = fc·—1/ —=— ,
τ ' τ

(6)

Here £ is a certain coefficient greater than unity that
depends on the reliability of detection.

Let us examine another way of detecting a force using
a free particle: by measuring its energy. Now we must
measure the energy of the particle before the action of
the force and after. The first measurement must give
the value that the initial energy has after the process of
measuring it. The accuracy of ΔΕ from such a measure-
ment depends on the duration τ of the measurement: C11""]

AE = \, (7)

and in principle, it can be as small as we wish with a
long enough time τ of measurement. However, the total
time of observation of a free particle will be limited by
some quantity f. Part of this time will be spent in meas-
uring the energy, while the change in the energy caused
by the force will take up the rest of the time. The work
done by the force F during the time η with FTI -C p 0 will
be approximately equal to (we shall assume that F n po):

A£0=MiL. (8)

This change in the energy can be detected if Δ Ε 0 > ΔΕ.
Upon accounting for the fact that τ + Τι = τ, we find from
(7) and (8) the optimum relationship between τ and TL :
τ = τ ι = τ/2. The corresponding minimum detectable
force is

Let us consider a change in the state of the harmonic
oscillator caused by a force of the type F(t) = F0coscut.
If the initial state of the oscillator was one having the
assigned energy Eo, then its mean value over a time τ
will be c " ]

Ε (τ) = E0

while the standard deviation is

F—Hy^' (9)
where Eo = po/2m is the mean initial energy of the parti-
cle.

In contrast to (6), we note that the right-hand side of
Eq. (9) depends on Eo, and F m j n decreases with increas-
ing E o .

Now let us examine the measurement of a force using
another test object that fundamentally differs from a
free particle: a harmonic oscillator. The action of a
force on a harmonic oscillator can be detected by the
change in the energy of the oscillator. In this case the
major error of measurement will involve the discrete-
ness of the energy levels. The work done by the force
on the oscillator can be measured only to an accuracy of
fios, since the energy of the oscillator cannot be a fraction
of ίιω (ω is the characteristic frequency of the oscillator).
The error of determining the initial and final energies of
the oscillator with a time of measurement τ 3> 2JT/UJ can
be in principle much smaller than fia>.

(10)

AE =

where

(12)

and m is the mass of the oscillator.

The oscillator will change its initial state with a re-
liability close to unity if

(13a)

or

Ha,

AE > Ηω. (13b)

When Eo > w, then the second condition will be satisfied
earlier. We get from (11) and (13b) the following:

(14)

where n0 « Εο/ηω. This inequality determines the root-
mean-square error of measurement of the amplitude of
the force from the response of the harmonic oscillator
(under the above-stated restrictions). The minimum de-
tectable force corresponding to Eq. (14) is

In the analysis presented above, we have not accounted
for such processes in actual test objects and measuring
devices as the process of relaxation and the process of
fluctuational forces exerted by the measuring device.
Let us find the conditions under which the stated proces-
ses will not be decisive.

3. THE EFFECT OF RELAXATION

One can detect the action of a force on a background
of fluctuations if the change in the state of the oscillator
that it causes is larger than the change caused by relaxa-
tion. The mean of the intrinsic value of the energy in the
process of relaxation varies according to the law'-16-1

nR (τ) = nT — (nT — n0) e T/t*.

while the variance is

-χ/τ· + nT(nT

(16)

(17)

= ( e " a ) / k T _Here Oj. = ( e " a ) / k T _ j^-i; n o ^s ^ e i g e n v a i u e corre-
sponding to the energy Eo, and T* is the relaxation time,
Τ is the equilibrium temperature, and k is the Boltzmanrr
constant. If n T 3> 1 (i.e., fio> <C kT) and n0 S> 1, then
when T/T* <. 1, we get from (17):

(18)

We can find the condition for detecting the force on the
background of fluctuations by comparing (18) with (11):

SmkT
(19)

We note that (19) agrees with Nyquist's formula, which
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was derived by a purely classical method (for more de-
tails, see C l 7 ] ) .

A force equal to F Q m i n can be detected on the back-

ground of fluctuations if AnR < 1, i.e., in our case, when

^ 2 η τ η ο < 1 (< i u)

(this inequality was first derived in i l B l by a somewhat
different method).

Let us consider the fact that Eq. (15) can be derived
classically, just as Eq. (19) can, provided only that we
consider the minimum work that the force can do on the
classical oscillator to be Λω. Moreover, the initial re-
lationships (10), (11) and (16), and (18) themselves have
their classical analogs. In fact, the change in the energy
of a classical oscillator acted on by a harmonic force is
(when ωτ 3> 1):

τ sin φ (21)

Here φ is the initial phase difference between the force
and the displacement, and a0 is the initial amplitude of
the oscillations.

If the phase ψ is random, we get from (21):

w d =•%£- = w, (21a)

(21b)

In particular, the classical analog of Eq. (18) is (1)—(4)
in the book[17:).

We can conclude from the above said that we can use
the classical method for calculating the quantities of in-
terest to us when hw <C kT, while the quantum limita-
tions are introduced by restricting the minimum change
in the energy of the oscillator to be the quantity Λω.

4. CONDITIONS FOR EXPERIMENTAL DETECTION
OF FORCES OF THE ORDER OF Fo m i n

For practical realization of the limit (15) for a given
observation time, one must:

a) decrease the intrinsic fluctuations of the oscillator
by: 1) increasing the relaxation time τ*, and 2) decreas-
ing the equilibrium temperature Τ;

b) find a way of measuring that will permit one to de-
tect the corresponding change in the energy of the oscil-
lator.

First let us discuss the possibility of carrying out the
program mentioned under point a). The final goal of this
program is to satisfy the inequality (20). Let us assume
that fio> <C kT, and write (20) in the following form:

(22)

Here A = Qw (Q is the Q-factor of the oscillator), and
a = nj/no. If the only cause of losses in the oscillator
is the heat conductivity of the material, then the quantity
A is the characteristic constant of the material.[ i e : l For
example, it is about 1020 sec"1 for sapphire at Τ = 0.4 K.

If we assume that Τ = 0,4 Κ and α = 1, then we get
from (12) that the minimum detectable force with
τ < 0.3 sec will be determined by Eq. (15). In the ab-
sence of an external force, the oscillator will remain in
the initial level over a period of 0.3 sec with a probabil-
ity close to unity.

We shall not discuss here the ways of artificially
transferring the oscillator to the level n0. However, such
an energy change is possible in principle (a diminution
of the initial oscillation energy has already been carried
out, e.g., inC 2 0 ]).

5. ON SOME POSSIBILITIES OF INCREASING THE
SENSITIVITY OF A CONVERTER OF MECHANICAL
INTO ELECTRICAL OSCILLATIONS

The fundamental methods of measuring small mech-
anical displacements are described in the bookt l 7 ] .
Estimates of the maximum sensitivity of these methods
are also derived there under certain conditions of meas-
urement. According to t17-1, when one uses an electronic
converter in a quasi-steady-state mode (τ| < l/ω, where
τ* is the relaxation time of the oscillator and ω is the
frequency of capacity modulation; see Figs. 1 and 2a),
the intrinsic thermal fluctuations of the resonator do not
permit one to measure a force smaller than

Ft. m i . = ζ • 4 - -f (23)

(Te is the temperature of the resonator, and Ω is its
natural frequency). The relationship (23) holds when
ίιΩ <iC kTe. Comparison of (23) with (15) shows that,
when one uses an electronic transducer in a quasi-
steady-state mode, one cannot attain the limit of (15).
In order to increase the sensitivity of the detector, one
must increase the relaxation time τξ of the resonator.
However, when τ* > l/ω, the quasi-steady-state method
of conversion is not applicable. In this case one can
perform the conversion by the "upward frequency con-
version" method. V. I. Panov is responsible for the idea
of applying this method for detecting mechanical oscilla-
tions. In this method, the following relationship holds
between the frequencies of the resonator Ω, that of the
pumping generator p, and that of the mechanical oscilla-
tor ω (Fig. 2b):

ω + ρ = Ω. (24)

In the absence of capacity modulation of the resonator,
the oscillations at the intrinsic frequency of the resona-
tor will be determined only by its Nyquist noise and by
the noise of the generator that falls within the band of the
resonator. Capacity modulation at the frequency ω gives

FIG. 1. Schematic diagram of converter
of mechanical oscillations into electrical ones,
m, Κ, Η are the mass, elasticity coefficient,
and friction coefficient of the oscillator; Up
is the pump-generator emf; C is the modulated
capacitance; L and R are the inductance and
loss resistance of the resonator.

Sf(<u) Kei(o)

A
FIG. 2. Relative position, on the frequency axis, of the stationary

characteristics of the mechanical oscillator Κ(ω) and of the electric
oscillator Κε(ω) and of the pump generator radiation density Sp(o>)
at 7-g < 11 ω (a) and r J > 1 /ω (b).
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r i se to a voltage at the combination frequency ω + p . The
amplitude of this voltage will be

Here U p is the amplitude of the voltage of the pumping
generator, d0 i s the mean distance between the plates of
the condenser, and a i s the amplitude of the mechanical
oscil lations. (We have assumed in deriving (25) that

/τ*
(

1/ω, and U
p + W

i

U p .) The change in the ampli-
iltude of the mechanical oscillator 6a during the time that

the force acts on it (with τ -C τ*, and 6a <C a0) is deter-
mined by the relationship

(26)

With random φ , the root-mean-square variation of the
amplitude will be

(27)

Hence the root-mean-square variation in the amplitude
of the voltage at the combination frequency over the time
f is

(28)

The action of this voltage on the resonator can be detec-
ted on the background of Nyquist noise if its time aver-
age obeys

" ~ ^ (29)

Here R is the equivalent resistance of the resonator
losses. '-17-' The detector exerts a force effect on the
mechanical oscillator. ^ In the studied system, the
spectral component of this force at the frequency ω
arises as a combination component of the pumping volt-
age and the intrinsic oscillations of the resonator. The
amplitude of this component is

Ft = upua-^—4j-· (30)

where Co is the mean capacitance. Up + ω varies with
varying amplitude of the mechanical oscillations, and
hence, so do UJJ and Fj.

Equation (28) continues to hold until 6Fj < F o . Let us
determine the value of Up for which the quantity 6Fj
attains the value F o in the time τ. Since when f is small
enough,

Ν/ο-Ιβϋ^-^-, (31)

then we obtain from the condition

and the relationships (30) and (31) the following:

(32)

(33)

If we assume that (28) holds to a certain approxima-
tion during the entire time t, and substitute Up from (33)
into (28), we get the minimum detectable amplitude of the
force

0. mln — fe - y Q —ξ.

The given value of FQ m i n is in order of magnitude

(34)

smaller by a factor of than (23).

permits one to obtain a substantial gain in sensitivity.
When

the value from (34) agrees with (19). That is, the noise
of the electrical part of the system then plays the same
role as the noise of the mechanical part.

Although we have for the sake of simplicity used
rather crude approximations in deriving (34), an exact
calculation confirms the derived result. However, thor-
ough analysis shows that the process of establishment
of oscillations in the system is accompanied by beating,
and in order to detect forces of the order of FQ m m , one
must know either the prior history of the system, or the
period of the beats.

Equation (35) has been derived purely classically.
However, it also holds for a quantum oscillator when
hfi <C kT e . We shall introduce the quantum limitations
here in the same way as we did in deriving (15). Namely,
we shall assume that the minimum change in the energy
of the resonator over the time τ must be no smaller than
fifl. The change in the energy at the frequency Ω when
δ υ Ω < υ Ω i s

6£ = COUO&UQ. (36)

If the energy of the oscillations in the resonator is kTe,
then

Uo=V^r- ( 3 ? )
We get the following equation from the condition δ Ε = ίιΩ
and Eqs. (31) and (34)-(37):

(38)

where
η 5·=Ί«Γ· (39)

By using (38) and (35), we can find the limiting measur-
able force amplitude

(40)= t · ^ - 1/ —ζ— .
1 ' "τ

Thus, in the described detector system, the Nyquist
noise of the resonator allows one to measure a force at
the level given by (15) under the condition (35) and when

η'τ>2η0. (41)

Let us discuss Eqs. (38)—(40) and (41). They imply
that one must increase the temperature T e of the reson-
ator in order to increase the sensitivity. If we consider
the fact that we must increase τ* upon increasing T e , in
line with (38), then this result is easily explained on the
basis of (36).

Actually, the larger the initial amplitude Ufj of the
oscillations is, the smaller the value of 6Ufi at which the
condition 6E Ϊ ίιΩ will be satisfied. These arguments
imply that it is not necessary to increase the equilibrium
temperature of the resonator in order to increase the
sensitivity. It suffices to produce in some way intense
oscillations at the intrinsic frequency of the resonator.

Let us assume that the energy of the initial oscilla-
tions of the resonator is Ef. Then, according to (18),
the dispersion of the energy that arises from relaxation
will be

Thus, using a converter having a large time constant = y-^2kTeE\, (42)
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Upon substituting (43) into (35), we find

r .. y 1 τ /" 8mfao
^0, Iim ~ ζ ^ Γ - | / —• .

τ ' "S

where nf = Εο/ηΩ. Now, instead of (41), we get

while the corresponding change in the amplitude when
Δ Ε *C Ε ο is independent of Ef, and is equal to (32).
Since the change in amplitude does not depend on Ef, the
inequalities (29) and (33) that serve to define Up o p t and

F o m m are not altered. However, Ufi = V2Ef/C0 enters
into (36), and instead of (39) we get

(43)

(44)

(45)

This calculation shows that it is possible in principle to
measure a force at the level of Eq. (15) by observing a
transition process in the system.

We note that, since the amplitude of the total force
acting on the mechanical oscillator is approximately
equal to Fj + F o , and Fj 3> F o , the energy of the mech-
anical oscillator will vary over the time τ by an amount
greater than n0fio>. The change in the energy of the os-
cillator caused by the work done by the force F will de-
pend on nf, and Up. Its minimum value (i.e., when n®

= 2n0) is approximately equal to 4ήω. One can easily
prove this by substituting the sum Fj + Fointo (21) in-
stead of Fo, and using Eqs. (30), (34), (38), (43), and (45).

6. REQUIREMENTS ON THE PUMPING GENERATOR

In the calculations performed above, we have neglec-
ted the noise of the pumping generator. Let us examine
whether this assumption is possible in such a case. As
we know, the spectral emission line of an autogenerator
has a narrow peak and a broad but relatively low pedes-
tal. '-21·1 The noise of the generator can affect the oscil-
lations at the intrinsic frequency of the resonator in two
ways:

a) directly (owing to the "tails" of the spectral line);

b) owing to combination interaction with the mechan-
ical oscillations.

We can make the direct effect negligibly small by:
1) increasing the difference Ω - ρ ; and 2) decreasing
the spectral density in the tails of the line by using an
auxiliary narrow-band resonator.

The total variation of the combination voltage Up + ω ,

as we see from (25), is

Hence, we can neglect the noise of the generator in (46)
under the condition

„ δα

Here 6a, 6Up, and δρ are the variations of the corre-
sponding quantities over the time τ. In measurements at
the level of FQ m i n , 6a/a will be ~ l / 2 n 0 . When n0

~ 103, the variation of the generator frequency over the
time f must be no greater than δρ = 1(Γ4 ω, while the
change in the amplitude must be no greater than 6Up

= 10"* Up. If, e.g., ω ~ 104 while Ω ~ 10", then the fre-
quency stability of the pumping generator must be of the
order of 1011. Hence, one can use here an ordinary am-
monia maser. When no ~ 105, one now needs an atomic
hydrogen beam maser.

7. ON NONDESTRUCTIVE RECORDING OF THE
n-QUANTUM STATE

We started above with the idea that the error of meas-
urement of the initial and final values of the energy of
the oscillator can in principle be much smaller than hu>.
In other words, we assumed that we could measure the
energy of the oscillator while practically not perturbing
it. However, up to now no way, even putative, has been
proposed for making such a measurement.

We shall show with the example of a concrete experi-
mental system that one can determine the value of η
(including the case η = 0) for a chosen resonator mode in
such a way that the probability of transition to the adja-
cent levels after the measurement is small.

Figure 3 shows the fundamental diagram of the ex-
periment under discussion. An electron beam having the
horizontal velocity v x passes through the condenser of a
klystron-type UHF resonator in such a way that the elec-
tric field deflects the passing electrons in the direction
of the axis Oy. Then the electrons pass into a system of
lenses Ai and A2, which carries out a mirror reflection
of the trajectories of the electrons with respect to the
symmetry plane of the condenser. Thereupon the elec-
trons again enter a condenser of the studied resonator.
The resonator in this case must have two spatially
separated condensers. If the resonator is designed with
only one condenser, then we must supplement the dia-
gram shown in Fig. 3 with a system of mirrors.

The second passage through the condenser of the
electrons that hadn't struck the screens Bi and B2 is used
to compensate the effect that they exert as they pass
through the resonator the first time. In order to permit
such a compensation, the time between the first and
second passages must correspond to a phase change of
the oscillations by 2τπη, where m is an integer. This
condition presupposes a rather precise knowledge of the
frequency ω and good monokineticity of the electrons in
the beam. The receiving electrodes, which are made in
the form of two screens (Bx and B2), are arranged per-
pendicular to the axis Oy near the focus of the lenses,
symmetrically with respect to their optic axis. When an
a.c. field is applied in the left-hand condenser, the focal
spot will oscillate in the plane of the screens. Conse-
quently, if the edges of the screens lie closer to the
optic axis than the first diffraction minimum, the mean
number of electrons striking the screens will increase
with increasing amplitude of the oscillations in the
resonator. The oscillations of the focal spot will be de-
tectable when the increase 6Ng of the mean number of
electrons striking the screens exceeds the fluctuation
ΔΝβ of the number of electrons striking the screens in
the absence of a field in the condenser. Since 6Ng ~ N,
while ΔΝ Β ~ VN (where Ν is the total number of elec-
trons passing through the condenser), the detectable os-
cillation of the focal spot will become smaller as Ν in-
creases. However, an increased number of electrons

FIG. 3. Schematic diagram of "non-perturbing" measurement of
the resonator energy.
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passing through the resonator increases the probability
of a change in the state of the resonator.

Calculation shows that, if the oscillator was in the
ground state (n = 0) before the measurement, then after
one electron has passed through only the left-hand con-
denser, the probability of finding it in this state will be

Po = e~"

where in our case

(48)

Here y2 is the mean-square coordinate of the electron
with respect to the symmetry plane of the condenser,
Υ is the distance between the plates of the condenser,
e is the charge of the electron, xf is the time of flight of
the electron through the condenser, and v y is the uncer-
tainty of the velocity of the electrons along the Oy axis.

Equation (48) holds when ωτ^-s I. The second term
in (48), which corresponds to the divergence of the beam
during the time of passage, is much smaller than yVY2

in the cases of practical interest to us. If the probability
density of the coordinate y is independent of y over
almost the entire cross-section Η of the beam, then
y2 = H2/12. Then, e.g., if o>rf = 1, C « 0.3 pF, ω = 2
χ ΙΟ10 sec"1, and H / Y « 1, we get w = 1.5 χ 10~3. That is,
one electron perturbs the ground state of the oscillator
but little. However, if α Ν electrons out of Ν electrons
transmitted through the system strike the screens, then
w increases by a factor of aN.

The necessary number Ν of electrons depends on the
amplitude of the oscillations y0 of the focal spot. In the
general case it is

_ eU0 xtL

^ο μΥ νχ '

where Uo is the amplitude of the voltage oscillations on
the condenser, μ is the mass of an electron, and L is the
focal length of the lens. If η = 0, then Uo = Vficoo/Co = 2.5
χ 10"6 V. Then if vx = 1010 cm/sec, Υ = 0.2 cm, L = 102

cm, and Tf = 5 χ 10"11 sec, yo = 10"8 cm. As a simple
analysis shows, one can detect such an oscillation of the
spot if Ν κ 103. Then 102 electrons strike the screens on
the average, i.e., a ~ 0.1. Hence, the described experi-
mental system permits one to determine the ground state
of the oscillator, and the probability of finding the oscil-
lator in this state after the measurement will be
Ρ = 0.85. These estimates refer to the case in which all
the electrons passing outside the main diffraction maxi-
mum are stopped by the screens. However: a) the
screens can be made in the form of narrow strips having
an angular width smaller than the width of the diffraction
maximum; and b) in order to detect the electrons, it
suffices to draw from them an energy of only several
electron volts. Since the energy of the electrons is of
the order of 3 χ 104 eV, the screens can be made almost
transparent to the electrons.

Hence, the decompensation coefficient a can be dimin-
ished at least by another factor of ten. Then the proba-
bility of finding the oscillator after the measurements in
the ground level will be P o = 0.98-0.99.

The minimum value of a is determined not only by the
width and transparency of the screens, but also by the
diffraction perturbation of the electrons passing along-
side the screens. Estimates show that this effect plays
a smaller role than the absorption of electrons by the
screens does.

We note that the mechanical degrees of freedom of
the resonator play a substantial role in the described
system. Measurement of the momentum of the electrons
is accompanied by a change in the mechanical momen-
tum of the resonator. However, since the mass of the
latter is large, its position remains well defined.

The significance of the discussed experimental sys-
tem consists not only in the fact that it can be realized,
even with the current state of experimental technique,
but the main thing is that it answers the fundamental
question of whether one can record nondestructively the
η-quantum state of an oscillator.

8. CONCLUSIONS

The quantum-mechanical properties of test objects
limit the minimum detectable force to the quantity

fmin = IB (A, i).

The concrete form of B(ft, τ) depends on the properties
of the test object and the method of observation.

When the test object is a harmonic oscillator, the
minimum amplitude of the force is

The natural fluctuations of the oscillator will not mask
the action of this force if the following inequality holds:

The change in the state of a mechanical macroscopic
oscillator can be converted without loss of information
into an electromagnetic high-frequency signal by using
an electronic transducer if its relaxation time is much
greater than the time of observation. Using transducers
having long relaxation times (τ* 7$> τ) makes it possible
to increase the sensitivity by a factor of Vf/τ* as com-
pared with a transducer that has τ£ < l/ω. In the
classical approximation, such a transducer will permit
one to measure a force of the order of

— t - / t l / ~ mkT.a τ
e,Bnn—t'^~l/ — ——

τ ' α τ· •

An account for the discrete nature of the energy levels
of the transducer transforms the latter relationship into
(40).

Nondestructive recording of the η-quantum state of an
oscillator is possible in principle.

The authors thank V. I. Panov for a useful discussion
on the problems taken up.
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