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A review of the results of real and numerical experiments characterizing the thermodynamics of the
melting of simple substances is given. With the examples of argon and sodium it is demonstrated
that the qualitative trends in the behavior of the thermodynamic quantities along the melting curve
are independent of the form of the interaction forces. The question of the form of the
"characteristic" energy determining the melting or crystallization of a substance is analyzed. It is
concluded that melting is the most general example of an order-disorder transition in coordinate
space. The question of the nature of maxima in melting curves is discussed. The empirical relations of
Lindemann and Simon are considered.
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1. INTRODUCTION

The ability of different substances to be in the gase-
ous, liquid and solid states is one of the most surprising
and universal properties of matter. A reflection of this
fundamental fact is the practically universal form of the
phase diagrams of one-component systems, which con-
tain three characteristic regions corresponding to the
different states of aggregation of the substance (Fig. 1).

The beginning of scientific ideas on the phase dia-
gram of a substance and on phase transitions must be
placed at the end of the last century, when it was
established that the boiling curve is not infinitely ex-
tended but terminates at a critical point, above which
the transition between the gas and the liquid is continu-
ous. Then van der Waals proposed the famous theory
which explains qualitatively the nature of critical phe-
nomena. Since then, the investigations of critical phe-
nomena and of the second-order phase transitions dis-
covered later have been transformed into a vigorously
developing field of physical science. However, for a
number of profound reasons, the powerful progress in
the study of phase transitions has had almost no influ-
ence on the development of the theory of melting and
crystallization of matter. At the present time no rigor-
ous theory of melting exists. Moreover, there is not
even a generally accepted philosophy that would reflect
a qualitative understanding of the physical nature of
melting. The reasons for this situation arise to a con-
siderable extent from the fact that, until very recently,
we did not have at our disposal sufficiently reliable ex-
perimental data characterizing the thermodynamics of
the melting of simple substances. As a result, even
such a fundamental question as the behavior of the melt-
ing curve of a substance at high pressures, which was
discussed at the end of the 19th century, remains the
subject of debate (see Fig. 1).

In this connection, we must regard the primary prob-
lem of theory and experiment in the field of the physics
of melting to be the study of the behavior of the thermo-
dynamic functions along the melting curve and the
establishment of the shape of this curve. One of the
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most important problems here is the rigorous analysis
of the factors forbidding the realization of a melting as
a second-order phase transition11.

There is clearly no necessity to prove the importance
and relevance of the problem under consideration; the
absence of a solution is a sufficient stimulus for re-
search. However, it should be pointed out that, as has
become clear in recent years, the ability to crystallize
is not a perrogative of matter on the atomic or molecu-
lar scale only. It is not ruled out that in the interiors of
certain astronomical objects crystallization of nucleons
can occur. All this undoubtedly emphasizes the highly
general character of the melting and crystallization
problem.

In the last few years, thanks to new experiments and
the development of numerical methods in statistical
mechanics, results have appeared that make it possible
to present a general picture of melting and crystalliza-
tion, at least on the thermodynamic level. This review
is devoted to analyzing these results. An account of
earlier results and historical information can be found
in the review1-11.

Before proceeding to describe specific material, we
must forwarn the reader that in this article we study
only those aspects of the thermodynamics of melting
that can be explained by means of classical theory, and
the extremely interesting question of "cold" melting[2]

is left out of consideration. This restriction arises
from the author's view that the study of quantum effects

FIG. 1. Generalized phase diagram of a
one-component system. [TP-triple point cor-
responding to liquid-gas-solid equilibrium;
CPI—critical point on the liquid-gas equilib-
rium curve; CPU—hypothetical critical point
on the crystal-liquid equilibrium curve (ob-
viously, in Landau's terminology, we can
only talk about a critical point of the
second kind, at which the equilibrium
curve of first-order phase transitions goes
over into an equilibrium curve of second-
order phase transitions)].
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in melting should be preceded by elucidation of the
fundamental questions in the physics of melting within
the framework of classical statistical mechanics.

2. BRIEF SURVEY OF THE THEORETICAL
SITUATION

It is usually assumed that statistical mechanics is
able to describe all the features of the phase diagram of
any system of particles if the forces acting between the
particles are known. In fact, in view of the difficulties
of taking all the interactions into account in any realis-
tic system of particles, in the phase-transition problem
a general approach based only on the principles of
statistical mechanics has never been realized in any-
thing like a systematic and rigorous manner. The
modern approach in the theory of phase transitions
consists in the development and study of plausible
models, with subsequent comparison of the results with
the experimental data. In precisely this way, substantial
progress in the theory of second-order phase transitions
and critical phenomena has been achievedr3~5].

It would seem that this is also the natural way to
develop a theory of melting. However, we must empha-
size here that to construct a model of a phase transi-
tion, knowledge of the "characteristic" interaction or
"characteristic" energy responsible for the phase
transition is essential. The role of the "characteristic"
energy can be played by the interaction energy of the
spins in magnetic phase transitions, the pair-interaction
energy of the particles in the case of boiling and critical
phenomena in simple liquids, the electron-electron in-
teraction energy leading to the formation of Cooper
pairs in the superconductor—normal-metal transition,
etc. It has now become clear that in the case of second-
order phase transitions and critical phenomena the
form of the interaction determining the "characteristic"
energy has a direct effect only on the transition tem-
perature (kT c »> e0; T c is the transition temperature
and eo is the "characteristic" energy), while the be-
havior of the thermodynamic quantities near the transi-
tion point is essentially independent of the actual inter-
action law. Thus, here the general qualitative proper-
ties of the interaction are pushed into prominence.

In a first-order phase transition (and, in particular,
in the case of melting) there is no simple relation be-
tween the potential energy and the transition tempera-
ture, and the transition point is determined by the
equality of the thermodynamic potentials. Nevertheless,
there is no doubt that melting as a universal physical
phenomenon arises from properties of the inter-particle
interaction that are just as universal. However, the
character of this interaction is not clear a priori.

In recent years, proofs have been obtained of the
existence of a phase transition of the crystal-liquid type
in a system of hard spheres and in a system of parti-
cles repelling each other according to the law Φ ( Γ )
~ l / r n . By means of these results, it is possible to
interpret the melting of the inert gases and it turns out
that the van der Waals attraction can be treated in the
framework of mean-field theory (see below). There-
fore, it is not surprising that the assertion of the dom-
inant role of the short-range repulsion in the crystalli-
zation of matter is extremely popular at the present
t i m e ^ .

It should be remarked that the physical meaning of
this assertion is not completely clear even in the case

of the inert gases. Moreover, it is obvious that the
above conclusion cannot be extended directly to, e.g., the
alkali metals, in which short-range repulsion certainly
plays a small role1-71.

In view of this, the thought naturally arises that the
important thing for melting is not the concrete inter-
particle interaction law determining the form of the
"characteristic" energy, but a special property of the
potential energy, namely, its sensitivity to the way in
which the particles are distributed in space. This con-
clusion follows directly from the fact that the long-
range order disappears in the crystal-liquid transition.

Thus, it appears reasonable to regard the crystal-
liquid transition as an order-disorder transition. This
concept is not new (we recall the theory of Lennard-
Jones and Devonshirers)), but its application in the frame-
work of lattice models is not fruitful2'. The reason for
this obviously lies in the impossibility of an adequate
description of the configuration space of a dense system
in the framework of lattice models with a large mesh,
i.e., with a large ratio of the lattice constant to the
range of interaction of the particles. It might be thought
that a three-dimensional lattice model with a sufficiently
fine mesh will give a satisfactory description of melting,
but the analytic study of such a model is no less com-
plicated than for the continuum model.

Thus, in constructing a realistic model of the crystal-
liquid phase transition we are bound by the necessity of
considering a continuous coordinate space31. Otherwise,
even with the "correct" Hamiltonian the model selected
can have no relation to reality.

Nevertheless, it turns out that the possibility exists
of obtaining a number of rigorous relations characteriz-
ing melting in systems of particles interacting through
an inverse power law, outside the framework of any
models of space, using only properties of the partition
function. For this purpose, we shall make use of
Klein's theorem [ 3 '1 2 1, which states that, for a system
whose potential energy is a homogeneous function of
order η of the particle coordinates, the nonideal part
of the partition function does not depend separately on
the volume and temperature but is a function of th^
combined variable pn/3/kT, where ρ is the dimension-
less density and Τ is the temperature. The physical
justification for applying this theorem in a given spe-
cific case lies in the happy circumstance that in a num-
ber of the simplest systems (inert gases, alkali metals)
the "characteristic" energy can be expressed in the
form of a power function of the particle coordinates.

Thus, we shall assume that the potential energy of
the system has the form

(1)

where
Φ(Γ)-.(^)"ί (2)

e and σ are constants with the dimensions of energy
and length, and r is the distance between the particles.

We introduce the dimensionless density ρ = Νσ3/ν
and the dimensionless length s = r(N/V)1 / 3 (here V is
the volume of the system). Then for the partition func-
tion we have

e x p
(3)

".V

where
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λ = -
(lllmkT)1'2 '

From (3) follows the equation of state

PV , l i e \3/n\i e \3/n\ (4)

If a first-order phase transition occurs in a system de-
scribable by the equation of state (4), the beginning and
end of the phase transition are characterized by two
universal values of the variable p(e/kT)3/n. We shall
assume that a crystal-liquid phase transition takes
place in a system of particles interacting through the
law (2). Then the densities of the liquid and solid
phases are

kT
(5)

where ĉ  and c s are constants. From (4) and (5), we
have for the equation of the melting curve, the relative
volume discontinuity and the entropy discontinuity:

Μ^Γ3'"1, (β)
= const, (7)

-Η-= const. (8)

We note that as η —- °° the relations characterizing the
phase transition in a system of hard spheres follow
from (5) and (6):

Pi = c'i, ps = c's, ( 9 )

Ρ ~ r, (10)

where Cj and c^ are constants. It is easily seen that
relations (7) and (8) remain valid for a system of hard
spheres.

The validity of the relations (7)—(10) for the phase
transition in a system of hard spheres is easily proved
on the basis of thermodynamic arguments.

The free energy of a classical system of hard
spheres equals F = ( %)kT - TS. Consequently, the
equation of state of a system of hard spheres is

(ID

From (11) and the Maxwell relation (aS/aV)T
= (aP/aT)y it follows that

dTlv- (12)

Integrating (12), we obtain the equation of state in the
form

(13)

On the other hand, from the equality of the chemical
potentials in the phase transition we have

(14)

Then, using (14) and the Clausius-Clapeyron equation
dP/dT = AS/AV, we obtain the equation of the melting
curve

dP

dT'

or
P = CT. (15)

It is easy to see that the relations (7)—(10) follow from
(13) and (15).

Klein's theorem also finds application in the treat-
ment of the properties of a system of point charged
particles in a background of a uniform compensating
field (the model of the classical one-component plasma).

In fact, the potential energy of this system can be
written in the form

s.v) (16)

where r a is the radius of the sphere containing one
particle, determined from the condition 4ΤΤΓ^/3 = V/N,
and s = r(N/V)1 / 3 is a dimensionless length.

The function rj(si, . . . ,sj$) in (16) characterizes the
arrangement of the ions and is a constant for any fixed
configuration. In the case of a static crystal lattice,
the quantity defined by TJ(SI, . . . , SJSJ) is called the

Madelung constant.

The partition function of a system of point charges in
a uniform compensating background has the form

Ζ = - ^ Γ Γ . . . f βχρ[-Γη(β,, . . . , s^ldsi . . . dsK, (17)

where

3 kT

/•t Ο \

is the ratio of the mean Coulomb energy to the thermal
energy. Consequently, in this case too the nonideal part
of the partition function is determined entirely by the
parameter Γ, and if crystallization is occurring in the
system we can write for the density of the coexisting
phases:

9i.. ~ (kT)'. (19)

There is no point in writing out further relations follow-
ing from (17), since a system of point charges in a
uniform compensating background is unstable (the
pressure and compressibility are negative) and to ob-
tain physical results it is necessary to consider the
self-energy of the background (see below).

Thus, we have obtained a number of important rela-
tions characterizing the thermodynamics of transitions
in simple model systems. However, the existence of
phase transitions in these simple systems still needs
to be proved, and, moreover, it is necessary to clarify
their relation to phase transitions in real systems. As
we shall see from the following, the combination of the
data obtained by means of numerical and real experi-
ments gives the information necessary for the solution
of these problems and makes it possible to establish
that the relations (5)—(8) and (19) also remain valid for
real systems in the limit of very high temperatures and
densities.

3. RESULTS OF COMPUTER EXPERIMENTS

By computer or numerical experiments, we mean
methods for the numerical solution of many-particle
problems in statistical physics, realized by means of
high-speed computers. At present, two methods that
can be used to perform numerical experiments are
known: these are the Monte Carlo method r i 3 ' " ] and the
molecular-dynamics method r i 5 > 1 6 1. Since a detailed con-
sideration of these methods does not enter our problem,
we shall give here only the necessary minimum of in-
formation. The interested reader will find a detailed
account in the literature cited.

In both methods, as a rule, a cubic cell containing Ν
particles is given. The number Ν of particles in the
cell is limited by the capacity of present-day computers
and does not exceed a few hundred. To eliminate sur-
face effects, periodic boundary conditions are used.
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Numerical experiments by the Monte-Carlo method
are usually performed at constant volume and tempera-
ture. In the method there are practically no limitations
on the form of the interaction potential, but the require-
ments of a finite calculation time force us, as a rule, to
use a pair potential. After the initial configuration,
which can be arbitrary, is chosen, the particles of the
system are assigned random displacements and the
energy of the new configuration is calculated. If the
energy of the system is lowered, the new configuration
is taken with a weight equal to unity; if the energy is
raised, the new configuration is taken with a weight
equal to 1 - exp(-AU/kT), where Λϋ is the difference
of the energies of the initial and final configurations of
the particles. In the case when the specified displace-
ment of the particles is forbidden, a return to the initial
configuration occurs. As is proved in1-13'"1, for such a
system of calculation the frequency of appearance of
the different configurations is proportional to the Boltz-
mann factor exp[-U(xi )/kT]. The mean value of any
function of the coordinates can be calculated by means
of the expression

where UJ = P(xi)/2}P(xj) is the normalized probability

of the i-th state; this is equivalent to averaging over the
Gibbs canonical ensemble. Thus, by means of the Monte-
Carlo method it is possible to calculate the energy, the
specific heat, the equation of state, etc. Unfortunately,
the Monte Carlo method is not effective for calculating
the free energy and entropy.

The numerical experiments by the molecular-dy-
namics method are performed at constant volume and
constant energy. After the initial configuration is
chosen, arbitrary velocities are assigned to the parti-
cles and the classical equations of motion are solved.
Ultimately, at each given moment of time the coordi-
nates and velocities of the particles are known. In fact,
the whole system moves along a certain trajectory in
phase space, and the totality of points in the phase
space can be regarded as a microcanonical ensemble.
Equilibrium properties of the system (the energy, tem-
perature and pressure) are calculated by averaging
over the time.

To obtain reliable data, in both methods one studies
the dependence of the results on the number of particles
in the basic cell and makes estimates for Ν — ». In
most cases these estimates are entirely reliable.

One of the first important achievements of the nu-
merical methods developed was the study of the equa-
tion of state of a system of hard spheres [ 1 7 > 1 8 ]. It was
found that the compression isotherm of a system of
hard spheres in the high-density region consists of two
nonintersecting branches. The investigation of the con-
figurations of the particles and of the character of their
motion indicated definitely that the two branches of the
isotherm belong to the gas-liquid state and the crystal-
line state of the system. These were the first proofs of
the existence of a first-order phase transition in a sys-
tem of hard spheres. However, up to the present time,
coexistence of phases in phase transitions in systems of
artificial particles has not been obtained4', and this is
explained by the small number of particles in the basic
cell. In view of this fact, the coordinates of the phase
transition and, consequently, its thermodynamic
properties, cannot be established directly.

The only possibility of establishing the coordinates
of a phase transition lies in using the equality of the
chemical potentials in the phase transition. However,
neither the chemical potential nor the entropy can be
calculated in the framework of the Monte Carlo method
or of the molecular-dynamics method, but in the limit
of low density the thermodynamic properties of prac-
tically any system can be calculated exactly. Therefore,
the calculation of the necessary thermodynamic func-
tions is carried out to be integrating the equation of
state. This problem is trivial for the liquid or liquid-
like phase, but it is impossible to expand the solid
phase to arbitrary low density. In this case the problem
is solved by introducing a periodic external field
stabilizing the solid phase at low density [ 2 3 ]. For sys-
tems of particles possessing a "soft" interaction poten-
tial, the calculation of the thermodynamic properties of
the solid phase can be performed by means of the
standard methods of lattice dynamics. The results of
numerical experiments in this case are used to calcu-
late the corrections for anharmonicity1·241.

Up to now, the Monte Carlo and molecular-dynamics
techniques have been used to study the crystal-liquid
transitions for a system of hard spheres and systems
of particles interacting in accordance with the law Φ ( Γ )
~ l/r n , with η = 4, 6, 9, 12Γ24"271. In addition, in r 2 8 )

calculations were performed for a system of particles
with a Lennard-Jones potential. In r 2 7 ] the effect of the
energy of attraction on the thermodynamics of the
melting was taken into account in the framework of
perturbation theory. Figure 2 and Table I give data
characterizing the thermodynamics of melting in sys-
tems of artificial particles with power-law repulsion.

The work on the investigation of crystallization in a
system of point charges in a uniform compensating
background requires special consideration. As we have
already noted in Sec. 2, such a system possesses nega-
tive pressure and compressibility and is consequently
unstable. In order that a system of point charges have
physical characteristics, it is necessary to consider
the self-energy and pressure of the background. For
this it is sufficient to assume, e.g., that the uniform
compensating potential is due to a degenerate electron
gas.

It is easy to see that in the case of a phase transition
allowance for the free energy of the background cannot
alter the value Γ = Z2e2/rakT (cf. Sec. 2) at which the
intersection of the two branches of the free energy in
the subsystem of point charges occurs, but the thermo-
dynamic properties of the transition will be determined
to a certain extent by the nature of the compensating
potential.

A system of point charges was one of the first sys-
tems studied by the Monte Carlo method. Crystalliza-

FIG. 2. Equation of state of
model systems of particles with
interaction Φ(Γ) = e(o/r)n [ M ] .
The breaks in the slopes of the
curves correspond to crystal-
lization and melting.

* β

δ 5
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TABLE I. Thermodynamic properties of the crystal-liquid phase
transition in systems of particles with interaction Φ(Γ) = £(a/r)n [24]

Ρ (φΤ)1'η

Ρ (HkT)fa

AFINkT
AUjNkT
AS/R
AV/V,
PV0 ι e \3M
-VkT \ kT )

n = 4

3.94

3.92
—0.45

0.35
0.80
0.005

426

n - 6

1.56

1.54
—0.50

0.25
0.75
0.013

61

η = 9

0.971

0.843
—0.63

0.21
0.84
0.030

22

n=12

0.844

0.813
—0.72

0.18
0.90
0.038

16

„_,»

0.736

0.667
-1.16

0.00
1.16
0.103

8.3

ρ - NCT3/\/2V, where V is the volume of the system. In th» case of hard
spheres (n = °°) the parameter a is taken to be equal to the diameter of the
sphere.

AF, ΔΙΙ and AS are the changes in the free energy, internal energy and
entropy in the melting.

AV/VS is the relative volume discontinuity in the melting.

tion in this system was discovered in [ 2 8 1. In this same
paper an approximate estimate for the crystallization
line was given ( Γ » 125). The more exact results of'3"1

show that the intersection of the two free-energy
branches corresponding to the liquid and solid phases
occurs near Γ = 158, and, consequently, the equation of
the melting curve in (p - T) coordinates is of the form

Τ =

where

(20)

The calculations performed in the paper for the thermo-
dynamic parameters of the melting for a system of He4

nuclei whose electrical neutrality is maintained by a
nonrelativistic degenerate electron gas led to the follow-
ing results:

-^-«0.0004, ^ « 0 . 8 2 . (21)

It is necessary to note that, as follows from the data of
Table I and the values given above, the entropy discon-
tinuity is a more stable characteristic of the melting
than is the relative change of volume.

Thus, computer experiments give definite proofs of
the existence of phase transitions in the simple systems
considered in Sec. 2. However, it must be emphasized
that these proofs do not possess the necessary rigor,
and therefore certain doubts about the generality of the
numerical results are natural.

In the following sections it will be shown that real
experiments can be used as an independent source of
proofs confirming the validity of the results of the com-
puter experiments.

4. RESULTS OF REAL EXPERIMENTS

At the present stage of development of our knowledge
of melting it is obvious that we must regard the basic
problem of experiment to be the establishment of the
trends in the behavior of the thermodynamic quantities
characterizing the melting when the melting tempera-
ture or degree of compression is increased. In fact,
knowledge of these trends can, firstly, constitute the
necessary base on which it will become possible to de-
velop the theory of melting, and, secondly, will facilitate
the elucidation of certain fundamental problems in the

physics of melting on a purely empirical basis. Figure
3 shows different variants of the behavior of the melt-
ing curve of a simple substance as a consequence of
specific trends in the behavior of the entropy of melting
and of the relative volume discontinuity in the melting.

It may appear strange to the reader that, despite the
conclusions of the preceding sections, which explicitly
indicated the absence of a critical point on the melting
curves and an unlimited increase of the melting temper-
ature with compression in the case of simple model
systems, we are nevertheless discussing these ques-
tions in this section. The point is that the adequacy of
the model systems for real systems must be proved. In
addition, we feel it important to emphasize that the ex-
perimental data should, as far as possible, be analyzed
independently of any of these results, particularly as
they do not follow from a faultless theory.

At first sight, it follows from Fig. 3 that the demands
made on experiments in the study of the thermodynam-
ics of melting are, in practice, unrealistic. Indeed, we
are not in a position to perform experiments at arbi-
trarily high temperatures or unlimited compression,
but there is often no necessity for this. For example, if
we are concerned with a substance whose interaction
potential looks like the pair potential represented in
Fig. 4 and we wish to explain how this substance will
behave in the limit of high temperatures, then, as fol-
lows from thermodynamic perturbation theory [ 3 ], it is
sufficient to perform the experiments at temperatures
exceeding the depth e of the potential well. This condi-
tion is fully attainable in the case of the inert gases.
Nevertheless, the experimental possibilities impose
quite definite limitations on the choice of objects for
study. The state of experimental technique at the pres-
ent time means that it is only in the case of the inert
gases and alkali metals (i.e., substances with low melt-

FIG. 3. Hypothetical variants of
the behavior of the melting curve of
a simple substance as a consequence
of definite tendencies in the be-
havior of the entropy of melting
and of the relative volume discon-
tinuity in the melting, a—Unlimited
increase of the melting temperature;
b-critical point on the melting
curve; c-a maximum melting tem-
perature.

Liquid

/

Liquid

/

Liquid

/

SoUd

AS/ΛΌ.Ϊ , T

AV/VrO]^'1*

•^ Solid

AV/VS~O as T~TTaI

AS * 0 as T=T,;k7J.

FIG. 4. Schematic form of an inter-
particle pair interaction potential of the
type Φ(Γ) = ef(a/r).
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ing points and high compressibilities) that we can rely
on obtaining sufficiently representative results in the
study of the thermodynamics of melting.

But what is the essence of an experiment to study the
thermodynamics of melting? In the general case, it is
necessary to study the behavior of the volume, energy
and entropy along the melting curve. This problem re-
quires that a combination of dilatometric, piezometric
and calorimetric measurements be performed. How-
ever, if the thermodynamic properties of the substance
have been well studied at atmospheric pressure, it is
sufficient to know only the equation of state <p(P, V, T)
= 0 and the equation of the melting curve, Ρ = f(T).
Everything else can be calculated easily by means of
known thermodynamic relations.

If we set ourselves the more limited task of study-
ing only the change of the thermodynamic quantities on
melting, the experiment is simplified and we can con-
fine ourselves to measuring the (P - T)-coordinates of
the melting curve and one of the quantities appearing in
the Clausius-Clapeyron equation, i.e., the heat of melt-
ing or the volume change in the melting. Since calori-
metric measurements at high pressures cannot be per-
formed with high precision, measurement of the volume
discontinuity AV must be preferred.

The demands on the experimental accuracy are very
great. Indeed, if the volume change in the melting is a
quantity of the order of a few per cent, to determine the
volume discontinuity accurate to one per cent it is
necessary to measure the volume with an accuracy of
about 0.01%. Furthermore, since the derivative dP/dT
appears in the Clausius-Clapeyron equation, the coordi-
nates of the melting curve should be determined with an
accuracy no worse than a few hundredths of a degree
and a few atmospheres.

Modern means of measurement and automation make
it possible to maintain and measure the temperature
and pressure with the necessary precision (we do not
consider here the problems associated with the pressure
and temperature scales) in the region of pressures of
the order of 3 x 104 kgf/cm2 and at temperatures not
exceeding 600—700°Κ and bounded below by the melting
curve of helium. However, none of the progress in
modern techniques has had any substantial influence on
the development of methods of measuring the volume
of a substance, especially in the region of the crystal-
liquid transition under conditions of high pressures.
This fact partly explains the inadequacy of the experi-
mental data characterizing the thermodynamics of
melting.

Nevertheless, despite the existing difficulties, the
position has changed in recent years and at the present
time we have fully representative results on the thermo-
dynamics of melting of argon, sodium and cesium, giv-
ing an experimental basis for the discussion of the
problem of melting as a whole. We now turn to examine
these results.

a) Argon. Argon plays a significant role as an object
of investigation in many fields of physics. The popu-
larity of argon is explained primarily by the small
magnitude of the quantum effects, owing to which many
properties of argon can be treated in a purely classical
approximation and with a relatively simple form of
inter-particle interaction function. As is well known,
the potential energy of argon can be written in the form
of a sum of pair terms

(22)

where Φ ( Γ ^ ) is the pair-interaction potential, which
can be approximated with good accuracy by the Lennard-
Jones (6 :12) model potential5 ' [ 3 1 ] (see Fig. 4):

(23)

Successful investigations of the thermodynamics of
melting of argon have been carried out by three inde-
pendent groups in Canada[341, the USA[35'3e] and the
USSR f37)38]. The Canadian and American investigators
used practically the same method of measurement. The
essence of this method can be described in the follow-
ing way (Fig. 5). A high-pressure vessel of calibrated
capacity is weighed on a precision balance and linked
with a generator of compressed gas by a thin flexible
capillary. During the experiment the temperature, pres-
sure and mass of the gas are measured. In the proces-
sing of the results of the measurement it is necessary
to take into account the deformation of the vessel, the
displacement of the zero of the balance, and a number
of other effects. However, the principal difficulty in
this method is obviously associated with blocking of the
capillary on crystallization of the argon, and with the
impossibility of penetrating sufficiently far into the
region of stability of the solid phase in order to
"squeeze out" macro-defects of different kinds (see, in
this connection, the very interesting observations on the
crystallization of helium in [ 3 9 ] ). Therefore, it is not
ruled out that the values obtained for the volume of the
solid phase of argon in these experiments may be some-
what too low.

Figures 6 and 7 illustrate the method of measuring
the volume of argon as realized in the Crystallography
Institute of the USSR Academy of Sciences. Here, a
piston piezometer immersed in the high-pressure cell
is used to measure the argon volume. The piston of the
piezometer plays the role of a divider, separating the
compressed argon from the liquid transmitting the
pressure, and serves as an indicator of the level of the
compressed argon (for more details of the technique,
see r 4 0 1). The medium used to transmit the pressure is
benzine, and therefore the range of attainable tempera-
tures is bounded by the solidification curve of the
latter. The main sources of errors in this experiment
are leakage of the gas and penetration of the benzine
into the piezometer cavity. However, comparison of
measurements performed on raising and lowering the

FIG. 5. Scheme of the apparatus used by the Canadian group [34]
to study the thermodynamics of melting of argon. Fundamentally
similar apparatus was used in the experiments of the American investi-
gators [35>36]. 1-Balance; 2-high-pressure vessel; 3-flexible capillary;
4—mercury separator; 5—cylinder with argon; 6—pump; 7—load-piston
manometer.
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£/'(!·„ . . ., r.v)
(25)

FIG. 6. Scheme of the high-pressure apparatus at the Institute of
Crystallography of the USSR Academy of Sciences, designed to study
the thermodynamics of melting of substances with low melting
points t 4 0 ] . 1 -Pressure booster; 2-initial-pressure valve; 3-vessel con-
taining manganin resistance manometer; 4—thermostat to stabilize the
temperature of the manganin manometer; 5—vessel designed to house
the piezometer; 6—pump to supply compressed benzine to the high-
pressure system; 7—oil pump to supply the hydrualic cyclinders of the
pressure booster and valve; 8—thermostat; 9—heater; 10—resistance
thermometer; 11 -refrigerator.

FIG. 7. Piston piezometer used to
measure the volume of compressed argon in
the Institute of Crystallography of the
USSR Academy of Sciences. 1-Column of
the displacement gauge; 2-constantan wire;
3, 11, 12-components of the sealing unit;
4—gasket of fluorosilicon resin; 5—piston;
6—casing; 7—resin sealing washer; 8—valve
needle; 9-nut; 10-channel for filling the
piezometer; 13-mobile potential contacts;
14-fixed potential contacts; 15-panel;
16—current contacts.

pressure practically always makes it possible to
recognize these effects. By means of this method, it
has been possible to carry out reliable measurements
of the volume of solid and liquid argon at pressures up
to 17 x 103kgf/cm2.

Table II gives a summary of the results of the meas-
urements and thermodynamic calculations characteriz-
ing the thermodynamics of melting of argon, from the
data of different authors. Comparison of the results of
the measurements shows that the maximum difference
observed in the volume values from the data οί [ 3 5 > 3 8 ]

does not exceed 1%; the difference in the values of the
volume discontinuity is much smaller. On the whole, it
must be acknowledged that the agreement between the
measurements performed by the three independent
groups, by different methods, is highly satisfactory.

Before proceeding to discuss the experimental data,
we shall recall briefly a number of propositions from
thermodynamic perturbation theory [ 2 ], which are im-
portant for the following account.

The energy of a system of particles interacting in
accordance with a potential of the type (23) can be
represented under certain conditions as

It can be seen that representing the potential energy of
the system in the form (24) implies separating the
inter-particle interaction function into two parts, i.e.,

Φ (r) = Φο (Γ) + Φ' (Γ). (26)

The form of the functions Φ 0 ( Γ ) and 4>'(r) depends on
the way in which the total potential is separated: one
of these ways is illustrated in Fig. 8. Expanding the
perturbing part of the partition function in powers of
the ratio U'/kT, we obtain the free energy of the sys-
tem in the fornv3]

(27)

or, at high temperatures,

F = Fo + £ | Φ' (r) g0 (r) (4nr2) dr. (28)

where F o is the free energy of the unperturbed system,
and

is the mean value of the perturbing energy, expressed
by means of the radial distribution function go(r) of the
unperturbed system^"1.

It is important here to emphasize two aspects. First,
the perturbing energy gives an appreciable contribution
to the thermodynamic properties of the system at all
temperatures, and, consequently, a potential of the form

TABLE II. Thermodynamics of the melting of argon (experimental
data)

.v) = (24)

where

τ

83.78

915.41
101.11
105.81
110.55
115.30
120.08

91.73
108.12
120.85
140.88
11)0.40
180.15
180.2(1
201.32

158.39
181.28
221.41
253.49

197.78
221.61
222.87
247.77
247.94
273.00
273.12
297.93
298.00
298.16
322.83
323.15

Ρ

0.7

450.1
752.5
970.9

1197.1
1429.6
1β69.3

4«J
1072
1707
2761
3880
5098
5102
6460

3 641
5 161
7 835

10 156

6 261
7 929
7 947
9 727
9 734

11594
11604
13 573
13 579
13 569
15 630
15657

3.53

2.91
2.72
2.57
2.45
2.33
2.20

2.96
2.50
2.20
1.92
1.72
1.57
1.55
1.41

1.76
1.5-1
1.32
1.20

1.495
1.360
1.364
1.263
1.261
1.181
1.183
1.114
1.110
1.100
1.052
1.050

24.61

24.36
24.18
24.04
23.8S
23.75
23.62

24.34
24.02
23.65
23.04
22.54
22.08
22.11
21.69

22.64
22.01
21.18
20.63

21.470

20.964

20.554
20.167
20.122
19.768
19.805
19.808

19.410

A v v s

0.144

0.120
0.113
0.107
0.103
0.098
0.093

0.122
0.104
0.930
0.083
0.076
0.071
0.070
0.065

0.078
0.070
0.062
0.058

0.070

0.065

0.061
0.059
0.059
0.056
0.056
0.056

0.054

AS/R

1.686

1.530
1.469
1.432
1.398
1.358
1.316

1.523
1.413
1.313
1.246
1.207
1.175
1.161
1.063

1.214
1.148
1.089
1.058

1,133
1.101
1.106
1.086
1.084
1.072
1.074
1.062
1.058
1.049
1.049
1.047

ΔΗ

281

293
295
301
307
311
314

287
303
315
349
385
420
416
425

377
413
479
533

445
487
489
534
534
581
583
628
626
621
673
672

\U

281

256
247
243
238
233
228

255
241
227
225
228
233
230
212

227
227
237
248

226
234
236
247
247
261
261
274
273
272
288
287

Litera-
ture

41

31

35

36

38

Τ is the melting temperature in °K, Ρ is the melting pressure in kgf/cm2, AV is
the volume discontinuity in the melting, in cm3/mole, V$ is the volume of the solid
phase at the melting point, AS is the entropy of melting, ΔΗ and Δ ϋ are the
changes in the enthalpy and internal energy in the melting, in cal/mole, and R is
the gas constant.
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FIG. 8. Method proposed in [42]
for decomposing a potential of the
form Φ(Γ) = ef(a/r) into two parts
3><j(r) and Φ'(Γ) . At high densities and
temperatures, the energy due to the
interaction Φ'(Γ) can be regarded as a
perturbation.

Φ ( Γ ) = £(σ/τ^ is not, as is often stated, the high-tem-
perature form of the more general potential Φ ( Γ )
= e[(a/rf - ( a / r ) m ] . In fact, neglect of the attractive
part of the potential (23) is possible only at very high
densities. Secondly, it may be hoped that for intermedi-
ate densities the mean value of the perturbing energy is,
in view of the sufficiently long range of the perturbing
potential (see Fig. 8), almost independent of the con-
crete configuration of the particles, and the correction
to the free energy of the system will have the van der
Waals form, i.e.,

(29)

where a is a constant.

It is clear that these remarks clarify the viewpoint
outlined earlier about the possibility of separating out
a single term, depending on the configuration of the
particles, in the energy of substances of the inert-gas
type.

We turn again to consider the experimental data. The
material presented in Table II and in Figs. 9—11 con-
plete thermodynamic information about the melting of
argon in the temperature range from the triple point
(83.8ΓΚ) to 323°K. We recall that the critical tempera-
ture of argon, which can serve as a measure of the
depth of the interaction potential, equals 151°K.

We shall consider Fig. 9, which depicts the tempera-
ture dependences of the entropy discontinuity AS/R and
of the relative volume discontinuity AV/VS in the melt-
ing of argon. It can be seen in Fig. 9 that the quantities
AS/R and AV/VS, while decreasing rapidly in the low-
temperature region, become practically constant at
temperatures above 200°K. It seems highly probable
that AS/R and AV/VS remain finite at all tempera-
tures and pressures. More informative from the point
of view of establishing the asymptotic values of AS/R
and AV/VS is Fig. 11, where AS/R and AV/VS are
presented as functions of the volume discontinuity AV.
It follows from Fig. 11 that as AV tends to zero, which
is equivalent to the degree of compression and the tem-
perature tending to infinity, AS/R and AV/Vs tend to
finite values. Graphical extrapolation leads to the follow-
ing asymptotic values:

•i£--~0.9, j

4^-^-0.03 )
(30)

Thus, we have obtained extremely important results,
enabling us to state that: 1) the melting temperature of
substances of the argon type increases without limit on
increase of the degree of compression; 2) the melting
is a first-order phase transition at all temperatures
and pressures, i.e., there is no critical point on the
melting curve. We remark that these conclusions are
in agreement with those of Sec. 2.

as

·-.', "-2, b-3, &-4, a-S,

* Κ
AS/R

№ BOO

FIG. 9. Temperature dependence of the relative volume discon-
tinuity AV/VS and entropy discontinuity AS/R in the melting of argon,
from the data of different authors. l - [ 3 8 ] ; 2 - [ 3 5 ] ; 3 - [ 3 4 ] ; 4 - [ 3 6 ] ;
5 - [ 4 1 ] ; 6 - t 4 4 ] ; 7-calculated from the data of I " ' 4 6 ] .

FIG. 10

FIG. 10. Changes in the enthalpy (AH), internal energy (AU) and
free energy (PAV = -AF) in the melting of argon, as functions of tem-
perature (for the symbols, see Fig. 9).

FIG. 11. Relative volume discontinuity AV/VS, entropy discon-
tinuity AS/R and reduced density of the solid phase (p* = p(e/kt)"4)
in the melting of argon, as functions of the volume discontinuity AV
(AV -*· 0 corresponds to Ρ ->· °°). ρ = Na3/\/2V, where V is the molar
volume of solid argon along the melting curve. For the quantities σ and
e in the calculation of p*, the values of the corresponding parameters
of the Lennard-Jones (6:12) potential of [31] were taken (for the
symbols, see Fig. 9).

It i s in teres t ing to compare the re la t ions (30) with
the r e s u l t s of the computer e x p e r i m e n t s . F r o m the data
of Table I, in the melting of a model sys tem of par t ic les
interact ing in accordance with the law Φ ( Γ ) = e ( a / r ) 1 2

the entropy discontinuity and the re lat ive volume d i s -
continuity a r e equal to

'^.=0.89, 4 7 = 0.038. <31>

Comparison of (30) and (31) shows the ext remely close
correspondence between the computer exper iments and
real experiments.

Additional information can be extracted from Fig. 11,
which demonstrates the dependence of p(e/kT)3/n for
solid argon on the volume discontinuity AV along the
melting curve (for the symbols see Fig. 11). The quan-
tity p(e/kT)3/n depends on the ratio of the repulsive
energy to the temperature and is a constant for "soft"
spheres with power-law repulsion. In fact, in this case,
the relation p(€/kT)3/n = const is the melting curve in
the coordinates (p - T) (see Table I). For melting of a
real substance, the (p - T) coordinates of the melting
curve depend both on the van der Waals corrections and
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also on the other structure-sensitive terms in the poten-
tial energy apart from the energy of repulsion. How-
ever, in the limit, we may expect that the ratio
p( e/kT)3/n will be close to the corresponding ratio for
a system with a purely repulsive interaction. As can be
seen from Fig. 11 and Table I, the ratio p(e/kT)3/n for
argon tends to the characteristic value for a system of
particles with repulsion described by the law Φ ( Γ )
~ 1/r .

The set of results obtained above makes it possible
to conclude that the "characteristic" energy determin-
ing the crystallization of argon at high temperatures is
indeed the energy of repulsion. We note that the numeri-
cal agreement between the relations (30) and (31) gives
us the necessary proofs of the adequacy of the computer
experiments for the real situation.

We shall consider the behavior of the quantities
AV/Vs and AS/R in the low-temperature region, in
which it differs substantially from the behavior in the
case of systems of particles with repulsion only. It is
clear that the explanation of this fact must be sought in
the influence of the attractive interaction. A qualitative
understanding of the effects associated with the influ-
ence of the attractive interaction on the thermodynam-
ics of melting can be obtained in the framework of van
der Waals theory, i.e., by considering the attraction in
the spirit of mean-field theoryr47]. In fact, Fig. 12
demonstrates that the van der Waals corrections to the
free energy ( -a/V) and pressure ( -a/V2) lead to a de-
crease of the transition pressure and to an increase of
the volume discontinuity AV as compared with the cor-
responding characteristics of the phase transition in the
system without attraction. An increase in the entropy of
the transition (the effect of increase of the "free"
volume) should also appear as a consequence of the in-
crease of the volume discontinuity^431. With increasing
density and melting temperature, the contribution of the
attractive interaction to the free energy and pressure of
the system will decrease, and, consequently, a reason-
able explanation is found for the qualitative aspects of
the behavior of AV/VS and AS/R in the melting of a
real system (see Fig. 9). A calculation of the effect of
attraction on the phase transition in a system of "soft"
spheres, performed in r 2 8 ] by means of perturbation
theory, is in complete agreement with these conclusions.

On the basis of the qualitative arguments given, it is
possible to obtain approximate analytic relations char-
acterizing the behavior of the relative volume discon-
tinuity AV/VS and entropy discontinuity AS/R along
the melting curve for a real case.

, Jf

" FIG. 12. Scheme illustrating the
effect of an attractive interaction on
the parameters of the phase transition.

We shall consider a system of Lennard-Jones parti-
cles at the melting temperature T. We remark that
compression or expansion of this model system, which
simulates the properties of the inert gases, is equiva-
lent to changing the weight parameter of the attractive
interaction6'. We write the nonideal free energy of the
system in the form of a function of the thermodynamic
variables and of the interaction weight parameter ξ:

&F (32)

where ρ is the dimensionless density and ξ is the at-
tractive-interaction weight parameter, taking values
from zero to unity.

As follows from (32), for ξ = 0 the system under
consideration goes over into a system of "soft"
spheres with known melting characteristics. For non-
zero values of ξ, the changes in the thermodynamic
functions on melting no longer correspond to the case
of soft spheres. However, if the energy of attraction is
treated in the van der Waals approximation, the incre-
ments in the dimensionless thermodynamic quantities
must be assumed to be proportional to the increment in
the interaction weight parameter, the coefficients of
proportionality being functions of the varying dimen-
sionless quantities. The general form of these functions
is not known, but in a number of cases we can make use
of the smallness of the quantities being studied. Thus,
we shall characterize the change in the relative volume
discontinuity on variation of ξ by the relation

In view of the smallness of the quantity AV/VS, we

shall expand y(AV/Vs) in a series in powers of AV/VS.

It follows from physical considerations that the expan-

sion of y(AV/Vs) has the form ^a^AV/Vs)1. Retain-

ing only the first-order term in the expansion, we have

d^L^iin^Ldi, (34)

where T* is the dimensionless temperature. Next, tak-
ing into account that the interaction weight parameter
appears in the partition function only in combination with
the temperature, we shall assume that

un=w. (35)

where α is a dimensionless constant. Finally, from
(34) and (35) it follows that

AV (36)

where (AV/Vs)o is the relative volume discontinuity
for melting in a system without attraction.

The formula (36) can be obtained in a certain approx-
imation on the basis of purely thermodynamic argu-
ments. We shall illustrate this with the example of a
highly compressed substance.

For a system of repulsive particles at the melting
temperature Τ we write the thermodynamic equality

PAV = - \F. (37)

We shall introduce attraction in the van der Waals sense,
i.e., we shall assume the energy of attraction to be
equal to -eVo/V. We shall regard e as a variable.
Then, by means of (37), we have

AV (38)
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Here we are neglecting the influence of the attraction on
the pressure and absolute volumes of the coexisting
phases, which is possible in view of the high density of

the system. Next we take into account that Ρ ~ τ^+(3/η)
and Vj;S ~ T" n / / 3 . The volume of the effective sphere
of interaction also depends on the temperature accord-
ing to Vs ~ T~n'·*, since there are no temperature-
independent characteristic quantities with the dimensions
of volume in the system. Then from (38) we obtain a
differential relation equivalent to (34):

, AV ι i f ,

Calculations show that the set of experimental data
characterizing the behavior of the relative volume dis-
continuity in the melting of argon as a function of tem-
perature (see Table II) is described with good accuracy
by formula (36), with the following parameter values:

TABLE III

( 4 M =0.0385, 109.33°Κ. (39)

We note that the numerical value of the quantity
(AV/Vs)o, equal to the asymptotic value of AV/VS for
Τ — °°, agrees with the estimate (30) and agrees sur-
prisingly well with the corresponding quantity (31)7)

obtained in the computer experiment for a system of
particles with interaction potential Φ ( Γ ) ~ l/r1 2. The
parameter ae was found to be close to the Lennard-
Jones potential depth, equal to ~120°Ki31], i.e., the
constant α is a quantity of order unity.

Table III contains the results of a calculation, by
means of formula (36), of the quantity AV/VS at the
triple points of the inert gases; the value 0.038 was
taken for (AV/Vs)0i and the Lennard-Jones potential
depth was taken as the parameter ae. As can be seen
from Table III, the calculated values agree well with the
experimental data.

One of the conclusions that can be drawn on the basis
of the analysis given above is that the energy of attrac-
tion in the inert gases can be treated to a good approxi-
mation in the framework of van der Waals theory. It
follows from this that the energy of attraction does not
lead to qualitative changes in the character of the inter-
particle correlations. In this case, the dependence
AS/R = f(AV/Vs) can be represented in the form of an
expansion in powers of AV/VS:

\S ι ι / AV \ . / ΔΙ \2 /Af\\

-jr=a+b ( T 7 ) + C V T 7 ) +••· (4°)

In view of the smallness of the quantity AV/VS, in the
expansion (40) we can retain the zeroth- and first-order
terms only. As follows from Fig. 13, the dependence
between AS/R and AV/VS in the case of argon is in-
deed close to linear (for additional information on the
entropy of melting, see below).

b) Sodium. As an object of study, sodium plays the
same prominent role in metal physics as that of argon
in molecular physics. The spherical Fermi surface and
the negligibly small contribution of the direct short-
range ion-ion interaction to the energy make sodium an
ideal model of the metallic state of matter.

The total energy of a metal of the sodium type, ex-
cluding the thermal excitations, can be written asC 7 ]

£ ~ - £ t o m = £ , 4 - £ , , (41)

where E e is the energy of the electrons in the field of
fixed ions and Ei is the electrostatic energy of the ions

Ne
Kr
Xe

T, "K

24.57
115.95
161.36

ε, °Κ

36.3
159
228

<4v"Veicp

0.153
0.151
0.151

< a r / 1Vcalc

0.166
0.150
0.156

Τ is the temperature at the triple point [41 ] .
e is the energy parameter of the Lennard-Jones (6:12)

potential [ 3 1 ] .
(AV/Vs)eXp are the experimental values of the relative

volume discontinuity in the melting at the triple point ["' ] .
(AV/Vj)^^ are the calculated values of the relative

volume discontinuity.

FIG. 13. Relationship be-

tween the relative volume dis-

continuity AV/VS and entropy

discontinuity AS/R in the

melting of argon, from the

date of I 3 4 " 3 6 ' 3 8 ' 4 1 ' 4 * - 4 6 ] .

O.I5

S./ff

•15 Ι.ΰ
AS/g

in a background of neutralizing uniform charge (the
Madelung energy). The Madelung energy of a system of
point ions has the form

Z 2 e 2 /Λ π \

Ει = -y— η (st s.y), ( 4 ^ )

where rj(Si,... ,SN) is a function of the dimensionless
coordinates of the ions and ra is the radius of an
atomic sphere.

A physically visualizable interpretation of the elec-
tron energy can be obtained with the aid of the pseudo-
potential concept148'491. According to [ 4 8 ' 4 9 1 , the electron
energy Ee in second-order perturbation theory has the
form

where E£" is the energy of the interacting electron gas

and E"* = £,( k | W | k) is the mean value of the non-
[ς

Coulomb part of the electron-ion interaction. For a
local pseudo-potential W(r),

(44)

where c and r 0 are the parameters of the pseudo-
potential. It is not difficult to see that the expression
for E^11 can be rewritten in the form

e'C, (45)

where e' is the characteristic energy, equal to Z2e2/r0

in order of magnitude. We shall need this form of E£>
later on. E^> the energy corresponding to the indirect
pair interaction of the ions via the conduction electrons.
In the one-electron approach to the problem of scatter-
ing of electrons by a collection of ions, Ê > can be
written in the form
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(46)

where S(q) = ( 1 / N ) ^ e " ^ r is the structure factor and
F(q) is the characteristic function, depending on the
form factor of the isolated ion and on the screening
properties of the electron gas.

It is important to emphasize that of all the compon-
ents of the total energy only the ion energy Ej and the
indirect pair interaction energy Ê > depend on the ion
configuration, and, as we should expect, the contribution
of the energy Eg2' to the total energy of the metal is
extremely small (Fig. 14).

Thus, the ion energy Ej makes the overwhelming
contribution to the structural energy of the alkali metals.

The first experiments to study the thermodynamics of
the melting of sodium were carried out by Bridgman at
pressures up to 12,000 kgf/cm21-501. These experiments
were repeated many years later in the Institute of
Crystallography of the USSR Academy of Sciences t 5 1 ).
However, for a number of reasons, the accuracy of the
data ofr50>51] has turned out to be inadequate for a relia-
ble calculation of the changes in the thermodynamic
functions on melting.

New results characterizing the thermodynamics of
melting of sodium at pressures up to 22 x 103 kgf/cm2

have now been obtained at the Institute of Crystallo-
graphy1^21. Just as in the case of argon, the thermody-
namic data were calculated on the basis of (P-V-T)
measurements.

The measurements of the volume of sodium as a
function of temperature and pressure were carried out
by means of a piston piezometer, the general scheme
of which is given in Fig. 15. The chief source of error

0.5

FIG. 14. Total energy of crys-
talline sodium and its separate com-
pontents at Τ = 0, as function of the
volume [']. 1-EJP; 2-Eg>;3-Eg»;
4-Ej; 5—E; Vois the sodium volume
at Ρ = 0.

is the possibility of loss of the substance, or of penetra-
tion of the medium transmitting the pressure into the
piezometer cavity. This defect is characteristic,
generally speaking, of all piston methods of measuring
the volume, but, as we noted in Sec. 4(a), it is possible
to avoid it if the measurements are carried out care-
fully.

Figures 16 and 17 and Table IV contain the results
characterizing the thermodynamics of melting of sodium.
The first thing that strikes one is the surprising sim-
ilarity in the character of the behavior of the thermody-
namic functions in the melting of sodium and argon (see
Figs. 9, 10, 16 and 17); and although the asymptotic
limit for AV/VS as AV — 0 is not established here as
distinctly as in the case of argon, the corresponding
limit for AS/R undoubtedly exists and amounts to a
quantity of the order of 0.7 (we note that 0.7 « In 2; for
the significance of this fact, see below). These results
undoubtedly convince one that the concrete nature of the
inter-particle forces exerts no substantial influence on
the characteristics of the crystal-liquid phase transi-
tion, and, consequently, only certain general properties
of the interaction energy are important for melting. As
noted earlier, the structure-sensitivity of the total po-
tential energy of any real system is clearly a qualitative
property of this type8'. In the specific case of sodium,
the structure-sensitivity of the potential energy is de-
termined principally by the ion energy Ej.. In view of

at as
K cms/iriole

FIG. 17

FIG. 16. Temperature dependence of the relative volume discon-
tinuity AV/VS) entropy discontinuity AS/R and internal-energy dis-
continuity AU in the melting of sodium [ " ] .

FIG. 17. Entropy of melting (AS/R), relative volume discontinuity
AV/VS and the parameter Γ = e2/rakT as functions of the volume dis-
continuity AV in the melting of sodium (AV -* 0 corresponds to P-*°°).
r a is defined from the condition 47iTj/s = Vg/N, where Vs is the
volume of solid sodium along the melting curve [ " ] .

TABLE IV. Thermodynamics of the melting of sodium ["] (ex-

perimental data)*

FIG. 15. Piezometer for measuring the volume
of liquid and solid sodium. 1,2—Piston pair; 3—
casing; 4—sealing nut; 5—orifice for filling; 6—vis-
cous grease. A screw thread on the piston 1 and
the sleeve 2 serve as a mounting for the displace-
ment gauge. In the measurements, the piezometer
is situated inside a thick-walled high-pressure
vessel (see Fig. 6).

τ

371.26
372.53
37-4.54
382.B3
392.50
•402.36
412.33
422.34
132.16
4-42.-41
442.58
473.15
493.15

ρ

35
183
420

1420
2 670
4 050
5514
7 106
8 801

10 635
10 644
17 088
22148

0.617
0.613
0.601
0.572
0.528
0.496
0.457
0.426
0.396
0.366
0.363
0.287
0.240

v .

24.15
24.11
24.02
23.68
23.28
22.87
22.48
22.07
21.66
21.30
21.23
20,15
19.42

AV/r,

0.0255
0.0254
0.0250
0.0242
0.0227
0.0217
0.0203
0.0193
0.0183
0.0172
0.0171
0.0142
0.0124

Δ/7

624
627
627
643
648
668
673
688
703
713
70fi
747
755

iS/B

0.846
(1.847
0.842
0.845
0.8.H
0.835
0.822.
0.821
0.819
0.811
0.804
0.794
0.771

*For the notation and units of measurement, see Table II.

aV

623
624
621
624
615
«20
614
HI 8
(j2'>

622
«16
632
C31
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this it is interesting to compare the crystallization of
sodium with the phase transition in the model of the
one-component Coulomb plasma (see Sec. 3). In fact,
since the relative contribution of the pair interaction
energy Eg2' decreases on compression (see Fig. 14), and
the purely volume terms Eg' and Eg' do not affect the
coordinates of a phase transition with AV = 0, the
asymptotic value of the parameter Γ = Z2e2/rakT as
A V — 0 (here r a is the radius of the atomic sphere of
sodium at the melting temperature and Τ is the melt-
ing temperature) should be close to the corresponding
value characterizing the crystallization of the one-
component classical plasma. As can be seen from Fig.
17, the parameter Γ along the melting curve of sodium
tends to a value ~150, which is in agreement with the
data ofr3°l.

As regards the limiting values of the relative volume
discontinuity AV/VS and of the entropy discontinuity
AS/R, an extremely unusual situation arises.

It is well known that the stability of the alkali metals
at moderate pressures is ensured exclusively by the
non-Coulomb part of the electron-ion interaction, i.e.,
by the non-pointlike nature of the ions. The electron
energy Eg0' is almost independent of the volume of the
system under moderate compression, and in practice
can be regarded as an additive correction to the total
energy. Therefore, the equilibrium volume at atmos-
pheric pressure, the equation of state and the thermo-
dynamics of the melting of sodium are functions of only
two components of the total energy: the mean value of
the non-Coulomb part of the electron-ion interaction
Eg1' ~ l/V and the ion energy Ei ~ l/V1/3. Obviously, at
high pressures the general character of the volume de-
pendence of the free energy of sodium is determined
principally by the energy Eg1', while the existence of the
phase transition (crystallization) is ensured by the
structure-sensitive ion energy Ei.

Thus, the asymptotic values of the quantities AV/VS

and AS/R as Ρ — °°, about which information can be
obtained on the basis of the experimental data, will not
correspond, generally speaking, to the values charac-
terizing the crystallization of a classical one-component
plasma.

It can be shown that, from a formal point of view, the
limiting values of the quantities AV/Vs and AS/R in
the melting of sodium correspond more closely to a
hypothetical substance with a pair interaction of the
form Φ ( Γ ) ~ l / r 3 (the divergence of the integral in the
calculation of the energy of a system with interaction of
the form Φ ( Γ ) ~ l / r 3 need not worry us, since we are
concerned with a purely formal similarity, and, more-
over, we can always add a small positive number to the
power exponent). For this, we write the free energy of
a metal of the sodium type, after subtraction of the
ideal-gas and electronic components, in a form ana-
logous to (32):

(47)

in this formula ρ is the dimensionless density, e' is
the characteristic energy (the parameters determining
ρ and e' are obvious from (45)), and ξ is the weight
parameter of the ion interaction,

It should be emphasized that, in contrast to the case
of argon, the interaction weight parameter ξ cannot be
equal to zero, but varies in a range from a very small

value δ to 1 (when ξ = 0 the phase transition disap-
pears).

Thus, for ξ » δ, which is equivalent to high density,
the thermodynamic properties of the system depend
almost exclusively on the single combined variable
pe'/kT, and consequently, in the limit of very high
pressures, the thermodynamics of the crystallization is
determined by the relations

— — = const, Δ5
(48)

= const.

Finally, the formal analogy between the thermodynamic
characteristics (48) of melting for a model of an alkali
metal and the corresponding properties of a system of
particles interacting in accordance with the law Φ ( Γ )
~ 1 / Γ 3 + Δ is obvious (see Sec. 2).

It is interesting to compare the asymptotic value of
the quantity AV/Vg (as Ρ —-*>) for sodium with the
quantity AV/VS that is characteristic of the melting of
a hypothetical substance with interaction Φ ( Γ ) ~ 1 / Γ 3 + Δ .
Direct information about the latter is unobtainable, but
from the data of Table I this quantity can be assumed
equal to 0.0025—0.0030. Extrapolation of the experi-
mental data (see Fig. 17) agrees with this estimate9 '.

Going over to the analysis of the behavior of AV/Vs
as a function of temperature in the melting of sodium,
we note that if we confine ourselves to representing the
free energy of sodium in the form (47) we obtain an ex-
ponential formula of the type (36) for the dependence
Δν/Vs = f(T). However, despite the smallness of the
second-order terms Eg' in the expansion of the elec-
tron energy, it is necessary to take account of their
influence on the thermodynamic properties of the melt-
ing. The reasons for this necessity are connected with
the obvious fact that the thermodynamics of a phase
transition is determined not by the absolute values of
the various quantities, but by the difference in their
values in the coexisting phases. In the specific case of
sodium, the difference in the energies Eg2' in the solid
and liquid phases at pressures close to atmospheric is
comparable with the difference in the ion energies
Ei [ 5 3 1 . Since the energy Eg2· is a negative quantity and
has a large absolute value for a disordered state of a
substance, it is obvious that its influence on the phase
transition reduces to an increase in the transition
pressure and a decrease in the volume discontinuity.
The correction that takes into account the effect of Eg2'
on the volume discontinuity has the form

W, (49)

where AE^' is the difference in the second-order elec-
tron energies in the solid and liquid phases.

Taking (49) into account and assuming that AEjf'
= const,10' we obtain for the correction to the relative
volume discontinuity:

&v
V.

const (50)

The final expression for the temperature dependence of
the relative volume discontinuity in the melting of
sodium is

AV ^ ι AV \ l—\ .5- (51)

where (AV/Vs)o is the asymptotic value for AV/VS

for Τ —•*>, and A and Β are constants. The calculations
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show that the experimental values of iV/V s character-
izing the melting of sodium are described with good
accuracy by the expression (51) with the following values
for the constants:

0 =0.0034, 4 = 847.6°K, β=-2.69°Κ. (52)

We call attention to the fact that the quantity obtained
for the asymptotic value of AV/Vg and the sign of the
constant Β correspond to the estimates given above.

Thus, just as in the case of argon, the analysis of the
behavior of the thermodynamic quantities characterizing
the melting of sodium leads to the conclusion that there
is an unlimited increase in the melting temperature on
compression, and no critical point on the crystal-liquid
equilibrium curve.

To conclude this section, we note that at very high
pressures the analysis of the thermodynamic properties
of sodium, as well as the properties of other alkali
metals, should include consideration of the energy of the
short-range ion-ion repulsion, and the energy of the
electron gas.

In the limiting case of complete ionization the model
of the substance is again simplified, and we can confine
ourselves to considering the ion energy Εχ and the
Fermi energy Ef of the electron gas. In these condi-
tions, the behavior of the substance is determined to a
substantial degree by the energy Ef, and the relations
(48) undergo certain changes; in particular, in accord-
ance with the dependence Ef ~ V"^3 the equation of the
melting curve will have the form Ρ ~ T 5 / 2, and the rela-
tive volume discontinuity AV/VS hardly exceeds a few
ten-thousandths (see Sec. 2

c) Thermodynamics of melting of cesium and nature
of the maxima in the melting curves. The discovery of
temperature maxima in the melting curves of a number
of substances (cf., e.g./1 '5 4 ') has violated long-standing
ideas about the shape of melting curves, built up under
the influence of the experimental work of Bridgman.
This discovery has been a powerful stimulus for the
development of experiments to study melting, since it is
precisely in the attempts to explain the nature of the
maxima that the full weakness of the existing theoreti-
cal viewpoints has been revealed. A number of
authors [ 5 5 ) 5 β ] have effectively reactivated the old hypoth-
esis of Tamman (cf.[11) about the existence of a universal
temperature maximum for all substances, which,
generally speaking, reduces to an assertion about the
limited field of stability of the crystalline state of
matter. It must be specially stressed that here we are
not concerned with quantum phenomena and the associ-
ated "cold" melting of matter.

In this connection, it is necessary to recall that in
considering simple models of matter with a power-law
interaction we convinced ourselves of the existence of
universal relations between the "characteristic" energy
and the melting temperature:

M! = const > 1 , (53)

which follow from the self-similarity of the partition
function. The statements that there is a one-to-one rela-
tionship between the density of a substance and the melt-
ing temperature (cf. (5) and (19)) and that there is an
unlimited rise in the melting temperature on compres-
sion are a rigorous consequence of (53). For melting of
a real substance, the relation (53) is not valid in the

general case. However, as we have been able to see, for
simple substances of the argon and sodium types there
exist relations of the type (cf. Figs. 10 and 17)

(54)EQ (V)
kT -const a s ' Ρ-*•<».

It is not difficult to conclude that the hypothesis of a
universal maximum is in contradiction with (54), since
it requires an unlimited increase of eo( V)/kT on com-
pression.

Thus, we can conclude that, for given constant
parameters of the inter-particle interaction function,
temperature maxima (like other anomalies) in the melt-
ing curves are impossible.

However, we can imagine a situation in which the
relation of the type (54) will be violated. Primarily,
this refers to those cases in which the character of the
inter-particle interaction changes on compression.

We shall consider the characteristic case of cesium,
the phase diagram of which possesses a number of re-
markable features, including a double maximum in the
melting curve1·57"59'. It is well known that at pressure
4 x 104 kgf/cm2 a phase transition occurs in solid
cesium without change of the crystal structure, and is
usually associated with a transition of the valence elec-
tron from the s to a d state [β0~β1]. There are grounds
for assuming that a similar transition also occurs in
liquid cesium, but, in view of a specific feature of the
liquid state, this transition occurs continuously and be-
gins at pressures of the order of 10" kgf/cm2 [ 5 8 '5 9 ]. It
is obvious that a change of the wavefunction of the
valence electron should lead to a sharp change of the
electron-ion interaction parameters and, consequently,
to violation of the conditions under which limiting rela-
tions of the type (54) are valid.

The thermodynamics of the melting of cesium has
been studied in the Institute of Crystallography of the
USSR Academy of Sciences r e 2 ). The volume of the
cesium was measured by means of a special piston
piezometer with an intermediary liquid^83' (Fig. 18).
The cesium sample investigated was placed in a herme-
tic ampoule of stainless steel, with a well thickness of
0.05 mm. As can be seen from Figs. 15 and 18, the
technique for measuring the volume of cesium was sub-
stantially more complicated than in the case of sodium;
this was a consequence of the extremely high reactivity
of cesium.

The results of the investigations are set out in Table
V and are illustrated in Fig. 19. Analysis of the results
obtained shows that at low pressures the behavior of the

TABLE V. Thermodynamics of the melting of cesium (smoothed

data)[ 6 2 ]*

τ

301.52
323.23
341.85
372.08
395.75
415.08
431.25
444.76
455.70
463.95
469.34
471.76
471.20

ρ

1
1000
2 000
4 000
6 000
8 000

10 000
12 000
14 000
16 000
18 000
20 000
22 000

sv

1.691
1.408
1.188
0.888
0.707
0.587
0.493
0.410
0:331
0.250
0.158
0.042

—0.101

0.0243
0.0210
0.0184
0.0148
0.0124
0.0108
0.0096
0.0083
0.0069
0.0054
0.0036
0.0012

—0.0023

•For the notation, see Table II.

AS/R

0.8477
0.8272
0.8104
0.7904
0.7852
0.7854
0.7853
0.7895
0.8103
0.8618
0.9525
1.0746
1.1864

ΔΗ

507.7
531.1
550.3
584.2
617.3
647.6
672.8
697.5
733.5
794.2
888.0

1007.0
1110.4

ΔΙ/

507.7
498.1
494.7
501,0
517.9
537.6
557.3
582.4
625.0
700.5
821.4
987.3

1162.7
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iS/R

FIG. 18. Piezometer for measuring the
volume of liquid and solid cesium [ " ] . This
piezometer is analogous in many respects
to the piezometer for measuring the volume
of sodium (see Fig. 15), but differs from
the latter by the presence of an inner
hermetic ampoule, containing the cesium.
The space between the walls of the piezo-
meter cavity and the ampoule is filled with
mercury. To calculate the volume of the
substance being investigated at high pres-
sures it is necessary to know the equation
of state of mercury. 1,2-Piston pair; 3 -
casing; 4-sealing nut; 5-orifice for filling
the piezometer with mercury; 6-ampoule
containing cesium; 7—cesium; 8—mercury;
9-viscous grease; 10-deformable part of
the ampoule; 11—welded joint; 12—base
of the ampoule; 13-orifice for filling the
ampoule with cesium.

m
FIG. 19. Pressure depend-

iDH ence of the melting tempera-
ture T, relative volume discon-
tinuity AV/VS and entropy dis-

15t> continuity AS/R in the melting
of cesium [ " ] .

thermodynamic quantities characterizing the melting of
cesium agree, from a qualitative point of view, with the
known results for argon and sodium. Moreover, it
should be noted that the initial portion of the dependence
AV/VS = f(T) for cesium is well described by formula
(51) with constants equal to (AV/VS)Q = 0,0032,
A = 698.8°K and Β = -2.39°K. We call attention to the
fact that, as we should expect in this case, the value of
the constant (AV/Vs)o is practically the same for
cesium and sodium. At high pressures, however, this
agreement disappears. The sharp increase in the en-
tropy of melting and the change in the character of the
behavior of AV and AV/Vg along the melting curve are
undoubtedly evidence of a fairly sharp change in the
properties of compressed cesium.

Thus, the experimental data indicate explicitly that
the appearance of the maximum in the melting curve of
cesium is not a reflection of general tendencies, but, on
the contrary, is an "anomalous" phenomenon. In fact,
as is well known, at pressures above (40—45) x 103

kgf/cm2, after the series of phase transformations has
been completed, the situation in cesium becomes normal
and the melting curve again acquires the "usual"
form r"-5 el.

5. SPECIAL PROBLEMS

a) Entropy of melting. By analyzing the results of
computer and real experiments, it is not difficult to con-
clude that the numerical values of the entropy of melting
experience relatively small variations from substance
to substance and, on average, amount to a quantity of the
order of the gas constant R ( R « 2 cal/mole). To ex-
plain this fact, the hypothesis of a discontinuous in-
crease in the "communal" entropy from zero to R on
melting was formerly invokedΓΜ>β5]. The essence of

this hypothesis is easily elucidated using a simple ex-
ample.

We consider a system of Ν noninteracting particles
in a volume V. The partition function of this system is

Zi = λ " 3 Ν ν Ν / Ν ! . We enclose each of the particles in a
cell of volume V/N with impenetrable walls, and then
obtain for the partition function: Z2 = X' 3 N (V/N) N . The
difference in the entropies of the two systems equals

(55)

This hypothesis is certainly beautiful, but it is incor-
rect, since the liquid cannot be identified with a system
similar to an ideal gas. Nevertheless, the result (55) is
of undoubted interest as an upper limit for the entropy
of disordering at constant volume. It seems probable
that, together with this, there exists a certain minimum
value for the entropy of disordering, responsible for the
disappearance of only the long-range order in any given
system of particles. Indeed, if this were so, the rela-
tive constancy of the values of the entropy of melting
for different substances would not seem surprising.

Unfortunately, these considerations cannot be rein-
forced by a calculation of the number of states for a
real disordered system of particles. However, the ex-
perimental results at our disposal shed some light on
this important problem.

As we have seen in Sec. 4(a), the entropy of melting
of argon can be represented in the form (40):

Δ5 , HV Ι Δν \2 ,

- τ = α + 6 τ Γ - + < : Ι τ Γ ) + · · ·

An analogous expression can also be written for sodium.
The constant a in the expression (40) corresponds to
the change of entropy in melting without change of vol-
ume, which is not realizable physically. However, by
varying the parameters of the inter-particle interaction
and the conditions of melting (see Table I and Sec. 3),
we can make the volume change in the melting suffic-
iently small. The question is: does the constant a in
the expression (40) have any physical meaning?

This question is not unimportant, since in the hypo-
thetical melting of a substance under conditions of con-
stant V it is possible that the disappearance of the long-
range order in the system is achieved in the most
economical way, i.e., with the minimum change in the
number of states. Thus, it is not ruled out that the en-
tropy of melting for AV/Vs = 0 characterizes the mini-
mum "disorder" compatible with the absence of long-
range order in a continuous system. However, it is not
clear to what extent the value of the constant a depends
on the specific properties of a real system of particles.

We call attention to Fig. 20, which demonstrates the
inter-relationship between the discontinuity AS/R in the
entropy of melting and the relative volume discontinuity
AV/VS for argon and sodium. It follows from the figure
that the form of the functions AS/R = f(AV/Vs) is the
same for these two substances111. In this connection it
is necessary to emphasize that the crystal structures of
argon and sodium are different. For the asymptotic
value of the entropy of melting we obtain the surprising
result ~0.7R,12) or [ e e '

- In 2 as
AV

•V. '

(56)

We recall that such a result for the entropy of disorder-
ing is characteristic for systems of particles whose
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FIG. 20. Relationship be-
tween the relative volume dis-
continuity AV/VS and en-
tropy discontinuity AS/R in
the melting of argon and
sodium [ 6 6 ].

dS/R

state is determined by a variable that can take only two
values, e.g., for a system of spins with spin-value Y2.
However, in the present case, the concept of two states
of a particle in a dense system is clearly inadmissable.
Below we shall attempt to show that the result (56) for
the entropy of disordering can be obtained, with certain
special assumptions, in the framework of a cell model.

We consider a system of Ν indistinguishable parti-
cles in a volume V divided into Ν numbered cells. The
trivial state of the system with singly-occupied cells
(Fig. 21a) is naturally identified with the ordered or
crystalline state. It is clear that disordering of the
system is possible in the framework of this model only
when cells become multiply occupied. Inasmuch as we
are attempting to model a system of high density, we
shall take only double occupation into account (Fig. 21b).

The partition function of our system has the form

;/ ?-3-V y ΛΊ (VYVI

V

V

2JV

where Μ is the number of single particles and the com-
binatorial factor under the summation sign is the num-
ber of ways of distributing Μ particles and (N - M)/2
pairs of particles over Ν positions.

It is easy to see that the entropy change in the transi-
tion from the ordered state with Μ = Ν to the dis-
ordered state is

- = l n m
M\{[{N-M)l2\\f2"

(58)

or, replacing the sum in (58) by its maximum term with
Μ = N/2, we obtain for large N:

AS
= ln2. (59)

Clearly, this discussion is not a solution, but rather a
formulation, of the problem. Nevertheless, it can serve
as a useful illustration of such ill-defined concepts as
the long-range order and the order-disorder transition
in a continuous system of coordinates.

b) Equation of the melting curve. In 1927, Simon
proposed for the equation of the melting curve an em-
pirical equation of the form r e 7 ]

ρ-p. (60)

where P o and To are the pressure and temperature of
the triple point, and a and c are constants. At high
pressures, the quantity P o can be neglected and (60)
acquires the simpler form

Ρ = AT" + Β (61)
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with three constants A, B and c. Equation (61) de-
scribes the experimental melting curves with good ac-
curacy and is widely used for interpolation and extra-
polation of experimental data [ 1 > 6 8 ). The numerous at-
tempts to justify Eq. (61) have been mainly semi-
empirical in character and have not led to positive re-
sults (see the bibliographies on this question in the
reviews [ 1 'e e ]).

We shall show that Simon's equation cannot be rigor-
ously justified for real substances, even in the limit of
very high pressures.

As we have seen in Sec. 2 (Eq. (6) and Table I), the
equation of the melting curve for a system of particles
interacting in accordance with the law Φ ( Γ ) ~ l/r11 is

Ρ = αΓ«3/">, (62)

where α is a constant. We shall take the attraction into
account in the framework of perturbation theory (see
Sec. 4(a)).

The first-order correction to the melting pressure
will be equal to the ratio Δ<ϋ' )/AV of the difference in
the perturbation-energy values in the liquid and solid
phases to the volume discontinuity in the melting in the
unperturbed system (see Fig. 12). With the first-order
correction taken into account, we obtain for the equation
of the melting curve:

(63)
AV

or, using the van der Waals approximation for the per-
turbation energy, we shall have, using the relations (5),

Ρ = aTl*lS'n> — βΓ1/". (64)

Thus, we have convinced ourselves that Eqs. (52) and
(53) should be regarded only as interpolation formulas.
In practice, this means that the constants of Simon's
equation are in fact pseudo-constants, and their numer-
ical values should depend on the region of temperatures
being investigated. As an example, in Table VI numeri-
cal values, calculated by the least-squares method for
different temperature regions, are given for the con-
stants of the Simon equation approximating the melting
curve of argon. As can be seen from Table VI, the re-
sults of the calculation correspond to our expectations.
On the other hand, the coefficients of Eq. (64), calcu-
lated for the same parts of the melting curve of argon
with the assumption that η = 12, turn out to be suffic-
iently stable (Table VII).

In conclusion, we note that application of the Simon
equation to describe the melting curves of metals, ionic
crystals and other substances does not have even the
slightest theoretical justification. As an example, we
point out that at low pressures the equation of the melt-
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TABLE VI. Parameters of the Simon equation

Ρ = ATC + Β for the melting curve of argon (P is in

kgf/cm 2andTin°K)

τ

83.8-117.fi
97.8—272.9

197.8—322.8

A

1.87462
2.72620
3.15742

Β

—2158.883
—2338.475
—2390.0

1.591781
1.52299
1.49694

Litera-
ture

45
69
38 *)

*In the calculation, the coordinates of the triple point are
included in the data of [ 3 8 ] .

TABLE VII. Parameters of the equation Ρ = α Τ 1 2 5

+ 0T°-5for the melting curve of argon (P is in kgf/cm2

and Τ in °K)

τ

83.8—H7.6
97.8—272.9

197.8—322.8

α

17.749
17.879
17.997

—491.288
—498.514
—504.096

Literature
(experiment)

45
69
38 *

•In the calculation, the parameters of the triple point are
included in the data of [ 3 8 ] .

ing curve of an alkali metal has, in accordance with the
results of Sec. 4(b), the form

Ρ »>- AT'/* + BT1 + CT, (65)

where the first term is due to the ion energy Ej, the
second arises from the mean energy of the electron-ion
interaction E^', and the third arises from the pair-in-
teraction energy Eg'.

c) Lindemann's melting criterion and some thermo-
dynamic properties of coexisting phases. Lindemann's
melting criterion states that the ratio of the mean am-
plitude of vibration of the atoms to the interatomic dis-
tance in the solid is a constant at the melting point [ 1 > 7 0 ],
i.e.,

Τ = Η — const. (66)

In the Debye approximation the relation (66) is usually
written in the form131

C2, (67)

where m is the atomic weight, V is the molecular
volume, ® is the Debye temperature, Tm is the melting
temperature, and C is a constant.

Despite its purely empirical origin, the Lindemann
relation is widely used in geophysical and astrophysical
applications, in the study of the Wigner crystallization
of electrons, of the "cold" melting of highly com-
pressed matter, etc. Naturally, the question arises of
the theoretical justification of Lindemann's rule and its
limits of applicability.

It can be shown that the Lindemann relation is a
rigorous consequence of the self-similarity of the non-
ideal part of the partition function for a system of parti-
cles with interaction Φ ( Γ ) ~ l/r1 1. In fact, in this case
(see Sec. 2) the partition function has the form (3)

where Si = r i (N/V)1/3 are dimensionless coordinates
and, since p n ' **e/kT = const on the melting curve, the
probability distribution function of the dimensionless
coordinates is constant along the melting line for both
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the liquid and the solid phases. This conclusion im-
mediately leads to the result that the nonideal parts
S - Si of the entropy and the mean values of the dimen-
sionless coordinates of the particles in the liquid and
crystalline states are constant along the melting curve.
It is not difficult to see that this is precisely the es-
sence of the Lindemann rule. We remark that the analog
of the Lindemann rule for the liquid phase is the state-
ment that the reduced pair distribution function
g(si, Sj) of the particles is unvarying.

To illustrate the above arguments we shall obtain the
Lindemann relation from the constancy of the ratio of
the potential and thermal energies along the melting
curve for a system of particles with an inverse-power-
law interaction. Thus, we have

(68)t/(rt r»)
kT = const.

In the case of the crystalline phase, (68) can be rewrit-
ten in the form

• = const. (69)
kT

The temperature in (69) can be expressed in terms of
the vibration amplitude of the atoms, from the expres-
sion

(70)

Assuming an Einstein spectrum, we have for the fre-
quency:

(71)

From (69), (70) and (71) we obtain

* " " " ' = const.
jti

When we go over to consider the experimental data,
we must emphasize that even in the case of a simplified
model of a real substance, in which terms depending
only on the volume are present, together with the struc-
ture-sensitive term, in the potential energy, the rela-
tions that follow from the self-similarity of the parti-
tion function lose their validity, generally speaking. But
inasmuch as a uniform field applied to the system does
not change the coordinate distribution function, changes
in the nonideal entropy and in the mean dimensionless
coordinates of the particles on the melting curve can
only be the result of a change in the phase volumes at
the coexistence point (see Fig. 12). The latter effect is
not large, and we may expect that the nonideal entropy
of the coexisting phases and the Lindemann constant
will be practically constant along the melting curve for
substances such as argon and sodium. Figures 22 and
23 and Tables VIII and IX clearly confirm the validity
of the assumptions made.

Thus, we have verified that the Lindemann relation
is a consequence of the self-similarity of the classical
partition function of a system of particles with an in-
teraction potential of the form Φ ( Γ ) ~ l/r1 1 and cannot
be regarded as a universal criterion of melting.
Naturally, the limits of applicability of the Lindemann
relation, just as for all other scaling relations following
from (3), are determined primarily by the limits of ap-
plicability of classical statistics.1 4 ' In view of this,
attempts to determine the coordinates of "cold" melt-
ing, which is essentially a quantum phenomenon, on the
basis of the Lindemann rule are unsoundr74] (concerning
"cold melting", see [ 2 ' 7 4 ] ).
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6. FINAL REMARKS AND CONCLUSIONS

Thus, melting or crystallization is a universal physi-
cal phenomenon, characteristic of practically all sub-
stances. It is obvious that the responsibility for this
phenomenon, which appears as a first-order phase

I '..

-9

-I!
-9 -

iS-S,),

100 200

FIG. 22

T. '"

ΊΟΟ

FIG. 23

sa~

FIG. 22. Entropy S and nonideal entropy S - Si of the solid and

liquid phases of argon along the melting curve, as functions of tem-

perature [ 7 2 ].

FIG. 23. Entropy S and nonideal entropy S - Sj of the solid (s)

and liquid (1) phases of sodium along the melting curve, as functions

of temperature.

TABLE VIII. Volume, entropy and Lindemann's constant along the

melting curve of argon

83.806
90

100
120
140
180
220
260

198.15
223.15
248.15
273.15
298.15
323.15
348.15

Vl

28.24
27.66
27.00
25.89
25.00
23.60
22.54
21.69

22.931
22.339
21.810
21.331
20.889
20.479
20.093

24.63
24.46
24.24
23.66
23.08
22.04
21.20
20.50

21.437
20.977
20.549
20.150
19.778
19.428
19.091

12.53
12.67
12.83
13.24
13.47
13.99
14.38
14.66

14.224
14.473
14.716
14.950
15.194
15.446
15.704

9.14
9.50
9.91

10.53
11.01
11.70
12.20
12:55

11.963
12.274
12.559
12.858
13.094
13.369
13.643

—3.632
—3.648
—3.702
—3.763
—3.809
—3.869
—3.924
—3.996

—3.863
—3.890
—3.903
—3.907
—3.895
—3.869
—3.832

—5.205
—5.125
—5.064
—5.003
—4.949
—4.950
—4.962
—4.999

—4.934
—4.934
—4.930
—4.903
—4.897
—4.862
—4.818

Θ»

70.0
70.6
72.9
78.7
84.7
96.8

108.7
120.9

101.5
108.5
114.9
120.1
126.0
130.3
134.1

c

140.6
136.5
133.3
130.4
128.8
127.9
128.2
129.7

126.5
126.6
126.3
125.0
121.7
123.2
121.4

V

0.084
0.086
0.087
0.090
0.092
0.092
0.092
0.091

0.093
0.093
0.1)93
0.094
0.094
0.095
0.097

Litei-
tuie

73

72

T m is the melting temperature in °K, Vj and Vg are the volumes of the liquid
and solid phases in cm3/mole, 5\ and S s are the entropies of the liquid and solid
phases in cal/mole. deg, (S — Sj)l and (S — Si)s are the nonideal entropies of the
liquid and solid phases in units of R (Si = (5R/2)+ R In V + 3R In [mkt/27rh2)/2])
0 s is the Debye temperature in °K (determined from the entropy with the aid of
Tables of Debye functions), and y = <ARV2/R(in the calculation of γ it is
assumed that <ω*> = 5UIQ/3 and <ω-2> ~ ΙΛω2)).

TABLE IX. Volume, entropy
melting curve of sodium*

τ.

373
383
393
403

1

15
15
15
15

413.15
423
433
443
453
463
473
483

15
15
15
15
15
15
15

493.15

*

24
24
23
23
22
22

r l

691
227
773
329
893
466

22.045
21
21
20
20
20
19

631
222
819
421
028
639

24.083
23
23
22
22
22
21
21
20

661
247
840
440
045
655
270
888

20.510
20
19
19

-or the symbols

136
7K4
395

15
15
15

460
485
508

15.530
15
15
15
15
15

551
570
588
604
619

15.630
15.637
15
15

647
663

13
13
13
13
13
13

786
818
850
882
916
948

13.981
14
14
14
14
14
14

, see Table VIII.

013
045
074
099
126
159

and Lindemann's constant along the

—3
—3
—3
—3
—3
—3
—3
—3
—3
—3
— 3
—3
—3

436
444
452
460
407
474
482
489
496
504
512
519
523

—4
—4
—4
—4
—4
- 4
—4
—4
—4
—4
—4
—4
—4

»«).

.254

.261)
264
268
270
272
273
273
272
272
273
272
268

θ

140
143
146
149
152
154
157
160
163
166
168
171
174

4
4
4
2
I)
9
7
4
1
0
9
7
2

100.6
100.8
101.0
101.1
101.2
101.3
101.2
101.2
101.2
101.2
101.3
101.3
101.1

0
0
0
0
0.
0.
0.
0.
0.
0.
0.
0.

V

120
120
119
119
119
119
119
119
119
119
119
119

0.119

transition, should be attributed to an equally universal
property of the inter-particle interaction.

Regarding melting as the most general example of an
order-disorder transition, it is natural to assume that
the required universal property of the interaction is
manifested in the structure-sensitivity of the potential
energy. Generally speaking, this is a property of any
realistic system of particles. In view of this, it is not
surprising that the ability to crystallize is displayed or
can be displayed in systems (molecules, atoms, atomic
nuclei, neutrons, etc.) at the most diverse levels of the
hierarchy of the material particles.

Thus, the highly general character of the problem of
melting is obvious.

It is well known, however, that a theory of melting
does not exist, and one of the principal reasons imped-
ing its creation is the impossibility of an adequate de-
scription of the configuration space of a system with
high density in the framework of lattice models with a
large mesh. Nevertheless, in a certain sense it is pos-
sible to formulate an axiomatic approach to the problem
of melting, making it possible to link together the con-
clusions following from statistical mechanics and the
results of the real and computer experiments. The logi-
cal outline of this approach is described briefly below.

As is well known, in a number of the simplest sys-
tems (inert gases, alkali metals), the structure-sensi-
tive or "characteristic" energy can be represented in
the form of a power function of the particle coordinates.
By considering the properties of model systems with a
Hamiltonian in which the potential part contains only the
"characteristic" energy (the "soft-sphere" model and
the classical one-component plasma model) and postu-
lating the existence of a first-order phase transition in
these systems, it is not difficult, using the scaling rela-
tions, to obtain a number of rigorous relations charac-
terizing the thermodynamics of the melting. The de-
rivations of the impossibility of a critical point on the
melting curve, of the unlimited increase of the melting
temperature on compression, etc., are consequences of
these relations. But confidence in the validity of the re-
sults obtained can be achieved only when the existence
of the phase transition in the model systems studied is
proved. Direct comparison with experiment is ineffec-
tive here, inasmuch as the numerical coefficients in the
relations following from the scaling theorem are un-
known. However, by bringing the results of the computer
experiments into the analysis, we obtain simultaneously
the necessary proof of the existence of phase transitions
in the model systems and a proof of the validity of
identifying the "characteristic" energy responsible for
the melting with the energy of repulsion (in the case of
the inert gases) and with the ion energy (in the case of
the alkali metals).

The analysis of the experimental data characterizing
the melting of argon and sodium are in complete accord-
ance with the interpretation of the melting as an order-
disorder transition, and demonstrates that the qualita-
tive trends in the behavior of the thermodynamic func-
tions along the melting curve are independent of the
nature of the "characteristic" energy. The actual
nature of the "characteristic" energy determines the
temperature and heat of melting and the magnitude of
the volume change, but, as we should expect, the value
of the entropy of melting is a highly stable characteris-
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tic of the melting. Moreover, all the existing data force
us to assume that there exists a limit determining the
minimum value of the entropy of melting, equal to
~R In 2. It is obvious that this quantity is closely con-
nected with the disappearance of the long-range order
on melting and characterizes the minimum "disorder"
consistent with loss of long-range order in a continuous
system. It appears that an explanation of this fact could
shed new light on the nature of the liquid state.

We shall say a few words about maxima in melting
curves. It follows from the material cited in this review
that a universal maximum in the melting curve is im-
possible in the case of given constant parameters deter-
mining the form of the "characteristic" energy (here
we do not consider quantum effects, the influence of
which can be important only at astrophysical pressures).
From this point of view, maxima in the melting curves
of simple substances must be regarded as "temporary"
transient phenomena, arising as a result of a change in
the inter-particle interaction function.

It should be emphasized that in the study of anomal-
ies in melting curves a general approach is evidently
impossible, and each case must be treated specifically.
This remark applies to a still greater degree to sub-
stances with covalent interaction, which are not con-
sidered in the present article.

In conclusion, the author thanks L. V. Keldysh, A. P.
Levanyuk and S. A. Pikin for discussion of a number of
the problems described in this article. The author is
also grateful to Ya. B. Zel'dovich, D. A. Kirzhnits and
I. N. Makarenko, who read the entire article and made
many valuable comments. In addition, the author would
like to record that discussions with V. A. Abovskii
facilitated the elucidation of the question of the influ-
ence of attraction on the form of the melting curve.
l)As is well known, it follows from the Landau theory that a line of

second-order phase transitions cannot exist for a crystal-liquid transi-
tion [ 2 0]. We remark that this conclusion was reached by considering
the order parameter to be the one-particle distribution function,
which, in the case of a liquid or gas, is a quantity proportional to the
macroscopic density, and in the case of a crystal is a periodic func-
tion with maxima at the lattice sites. It is clear that, in principle, this
supposes the possibility of existence of crystals with an infinitesimally
small amplitude of oscillation of the one-particle distribution function,
which is unlikely.

2)We note that in the "compressible-lattice" model [9'10] it is possible
to avoid the basic difficulty of the theory of Lennard-Jones and
Devonshire-the appearance of a critical point on the equilibrium
curve.

' I t is interesting to note that decrease of the mesh size in an order-
disorder transition in two-dimensional lattice systems of hard particles
leads to a change of the type of phase transition [ " ] . This leads to
the thought that the nature of melting as a first-order phase transition
is somehow related to the continuous nature of space.

*'The discovery of a van der Waals loop in a system of 870 hard disks [19]
is considered to be the only direct proof of the existence of a phase
transition in a system of artificial particles. However, in view of the
well-known theorem of Peierls (see [2 0""]) on the instability of a two-
dimensional crystal at Τ Φ 0, the nature of this transition is not en-
tirely clear.

5 )It is necessary to emphasize that in fact the many-particle interaction
in the inert gases, including argon, is not negligibly small [ 3 2 · 3 3 ] . There-
fore, the potential (23) should be regarded only as an "effective" pair
potential, which indirectly takes the contribution of the many-particle
forces into account.

6'The introduction of a weight parameter for the attractive interaction
means, in the present case, that the inter-particle interaction poten-
tial of the system is written in the form <t>(r) = e[(a/r)n - f(a/r) m ],
where £ is a dimensionless coefficient taking values from zero to unity.

^In view of the substantial approximations made in the analysis of the

behavior of AV/VS, the very precise agreement between the quantities
AV/VS from (31) and (39) must be admitted to be fortuitious.

8'ln discussions we often start implicitly from the statement that the
potential energy is always a minimum for an ordered state of a sub-
stance. We note that there is no general proof of this statement ['].

9>It should be kept in mind that, since the contribution of the energy
of the interacting electron gas to the thermodynamics of melting of
sodium is extremely small in the region of moderate pressures, the
extrapolation to infinite pressure gives properties that are character-
istic not of sodium itself but of the model taken to describe the prop-
erties of sodium in the region of moderate pressures.

10)The quantity ΔΕ§' depends primarily on the mean configurations of
the particles in the liquid and in the solid state (cf. (46)), which can
be regarded as given along the melting curve.

n )We remark that a universal relation between AV/VS and AS/R repre-
sents a kind of "scaling" for melting.

12)The results of the computer experiments do not contradict the con-
clusion cited above (see Table I). However for the sake of objectivity,
we should point out that the experimental results for polyvalent
metals do not follow the dependence shown in Fig. 20. But in these
cases a substantial contribution to the entropy of melting from the
electronic component is possible. It is important, for us, to emphasize
only the fact that cases in which the entropy of melting is smaller
than 0.7R have not yet been recorded. The interested reader can
verify this by making use of any handbook of physical and chemical
constants.

13)The general expression for the mean-square amplitude of the vibra-
tions is [71]

- g (ω) άω.

where e(oj, Τ) is the vibrational energy of the mode with frequency ω
and g(oj) is the frequency distribution function. In the Debye ap-
proximation the Lindemann melting criterion for Τ > Θ has the form

For a frequency spectrum of arbitrary forms at high temperatures, we
have

,/3ίΐΓ(ω-2)

1 4 )It is easy to see that in the quantum case one more dimensionless
parameter determining the properties of the system and including
Planck's constant appears (h2p2 / 3/mkT), and thus the scaling rela-
tions that follow from the classified partition function for a system
of particles with a power-law interaction (cf. Sec. 2) do not hold for
a quantum system of particles.
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