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According to the Lagrange-Helmholtz law, no optical system can ever increase the brightness (and

therefore the effective temperature) of a light beam. This limitation is frequently interpreted as a

consequence of the second law of thermodynamics. Actually, thermodynamics imposes no limitations

of practical importance on the possibilities of increasing the brightness of light beams: the decrease of

the entropy of the light beam associated with the increase of its brightness can be compensated by a

loss of a negligible fraction of the energy of the beam. The general discussions are illustrated by a

number of specific examples.

The alluring prospect of producing an optical system
capable of gathering divergent light fluxes into a narrow
directed beam or of reducing the transverse dimensions
of a light beam without increasing its divergence, i.e.,
capable, in the last analysis, of increasing the brightness
(W/cm2sr) of light beams, has been attracting the atten-
tion of inventors for centuries. The question whether
such a system is possible in principle has naturally
arisen. The theory of optical instruments answers this
question in the negative: no optical system can increase
the brightness of a light beam.

A proof of the above assertion based on the Lagrange-
Helmholtz law can be found in any handbook of optics.1'
An especially complete and detailed discussion will be
found in1-1·1, where we read: "The Lagrange-Helmholtz
law is valid for any optical system, however it may be
constructed of whatever number of both reflecting and
refracting elements. No combination of optical systems
can ever violate this law, which asserts that all hopes
for achieving an ideal concentration of radiant energy
are vain. Further, the law also holds for more general
optical systems, consisting, for example, of separate
zones (like the Fresnel lenses used in lighthouses),
making use of refraction in layers of air in which the
refractive index varies, or incorporating light pipes and
the bundles of vitreous fibers ("fiber optics") that have
recently begun to come into use."

The question would seem to have been thoroughly ex-
hausted. Nevertheless, there are weighty reasons for
taking another look at it. It should be emphasized at
once that no question of any revision of the theory of
optical instruments is being raised here; the question
is rather, whether the limitations on the possible trans-
formations of light beams of the type formulated in the
Lagrange-Helmholtz law can be extended to all of optics,
i.e., whether they are to be regarded as universal. One
may frequently encounter assertions to the effect that
the Lagrange-Helmholtz law is one form of the law con-
servation of energy, that an increase in brightness would
violate the second law of thermodynamics, and so on
(seec i : l , for example). Is this actually beyond the range
of applicability of geometric optics?

Doubts arise as soon as we consider systems that
include lasers. For example, in devices such as ruby or
neodymium lasers, the radiation from a xenon lamp is
transformed into a narrow sharply directed beam with an
enormous increase in brightness. How does the ruby rod
with its mirrors differ from "ordinary" optical instru-
ments—telescopes, projectors, etc.? What limitations,
if indeed any, does thermodynamics impose on the per-
formance of optical systems in the broad sense of the
word, i.e., optical systems that may include lasers?

These are the questions that will be discussed below.

Let us consider a linearly polarized light beam with
energy density AE(j/cm3) concentrated in the spectral
interval ω, ω + Δω and in the solid angle ΔΟ. When the
values of ΔΕ, Δω, and ΔΟ are fixed, the beam also has a
definite entropy. The entropy density AS (cm"3) is given
by the expression (see1·2-1, for example)

ω2Δω

(1)

(2)

where Ag is the number of field oscillators in the fre-
quency interval ω, ω + Δω per unit volume and unit solid
angle, and η is the mean number of photons per field os-
cillator.

Let us consider how Eq. (1) can be used to find limi-
tations on the possible transformations of light beams.
According to the law of increasing entropy, the entropy
of a closed system may increase or remain constant, but
it cannot decrease. Let us apply this law to a light beam.
When η increases, the function

/ (n) = (n + 1) In (n + .1) — η In η (3)

increases less rapidly; hence if η = ru + n2, we have
f (ni) + f (n2) > f (n). A number of limitations can be der-
ived from this inequality alone (see '-3·1). For example, if
we use a nonabsorbing plane parallel plate to separate
the beam into two parts 1 and 2 so that ΔΕ = ΔΕι + ΔΕ2
and η = ni + n2, the entropy will increase: Δβι + Δβ2

> AS. Hence no optical system that would recover the
initial beam can exist, since to recover the initial beam
it would be necessary to decrease the entropy in viola-
tion of the law of increasing entropy.

It must be pointed out and emphasized that the entire
discussion presented above is based on the assumption
that the path difference between I beams 1 and 2 is so
large that the beams cannot interfere. It is only in this
case that the entropies ASi and AS2 of the beams are
additive. If the path difference is small or zero, on the
other hand, the total entropy of beams 1 and 2 will not
be equal to the sum Δβι + AS2, and the use made above
of the law of increasing entropy will not be justified.

Let us send beams 1 and 2 back to the beam-splitting
plate with the aid of ideal mirrors, as is done in the
Michelson interferometer. Then each of the beams will
be separated into two parts: 1' and 1", and 2' and 2",
respectively. We denote the beams that propagate oppo-
site to the initial beam by 1' and 2'. If the mirrors are
so set that the optical paths of beams 1 and 2 are strictly
equal (zero path difference), then, as can be easily seen
from the well known Fresnel reflection formulas, beams
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1" and 2" interfere destructively, cancelling each other
out, while beams 1' and 2' interfere constructively,
leading to full recovery (neglecting diffraction losses) of
the initial beam, and indeed, regardless of the spectral
composition of the radiation. If the path difference is
small enough but not zero, beams 1" and 2" will cancel
each other out only at a certain value of the wavelength
λ, for which the path difference is an odd multiple of
λ/2. Complete cancellation of the beams throughout a
finite wavelength interval Δ λ cannot be achieved, however
small the interval. For an unpolarized light beam the
energy and entropy densities are additive:

AE = = Ag-AO- )-ηα\ηηο]. (4)

Hence spatial separation of the polarization components
of the beam involves no entropy change; consequently
optical systems capable of recovering the initial beam
from its spatially separated polarization components can
exist, regardless of the path difference between the com-
ponent beams.

Finally, let us consider the limitations on changes in
the brightness of the beam. We denote the areas of the
entrance and exit pupils of the optical system by F and
F', respectively. From conservation of the total energy
flux we have F A E = F ' A E ' , whence F A O · η = F ' A O ' · n',
where the primed quantities A O ' and n' pertain to the
beam leaving the optical system.2' The entropy F ' A S ' of
the beam leaving the optical system cannot be smaller
than the entropy FAS of the beam entering it. Hence it
follows from Eqs. (1) and (3) that F ' A O ' -f(n')
>: FAOf(n), or

This inequality is satisfied provided n' < n. The bright-
ness Β of the light beam (W/cm2sr) is related to Δ Ε and
η by the equations

(6)B-.
AE

: ΔΟ

where c is the velocity of light. Hence condition (5) is
equivalent to the condition B' < B; thus we conclude in
full conformity with the Lagrange-Helmholtz law that no
optical system can increase the brightness of a light
beam.

In the examples considered above we have assumed
that there is absolutely no exchange of energy between
the light beams and the optical system. This assumption
is of cardinal importance; relaxing it changes the situa-
tion completely. Let us assume that the energy δ Ε is
transferred from the beam to the optical system as the
former passes through the latter. Then (writing F = F'
= 1 for simplicity, as we may without loss of generality)
the condition on the entropy change must be written in
the form

AS' + 65 > AS, AE' + δΕ = AE, (7)

where 6S is the increase in the entropy of the optical
system consequent on its absorption of the energy δΕ
from the beam.

It is evident that if satisfaction of the inequality
6S ζ AS can be assured, no limitations at all will be
imposed on AS', so that it will be possible to make the
beam leaving the optical system as bright as may be
desired. A question naturally arises: How much of the
light-beam energy must be sacrificed? May not the re-
quired energy loss turn out to be too great? In other

words, what is the greatest value of the efficiency

AE· AE-f>E
AE

(8)

consistent with the inequality 6S > AS, i.e., with the con-
dition that the law of increasing entropy impose no limi-
tations on the increase of the brightness of the beam?
We shall find it convenient in what follows to express
the entropy AS in terms of the temperature Τ of the light
beam, defining the latter, as usual (see1-2-1), by the equa-
tion

kT.
K-1)

where n=

From (1) and (9) we have

: kT

AE

(9)

(10)

(11)
Assuming that the energy δΕ is released in the system
at temperature T o (at constant volume), we write 6S
= 6E/kT0; then we find

Τ
(12)

(13)

Relations (12) and (13) are similar to the well known ex-
pression for the efficiency of a Carnot cycle, the tem-
perature Τ of the light beam corresponding to the tem-
perature of the working substance. If we decrease ΔΟ
while holding AE constant, i.e., if we increase the bright-
ness Β and temperature Τ of the beam, the entropy AS
of the beam will decrease. In the limiting case of very
bright beams, the beam entropy is virtually zero, and
the formation of such a beam is in a certain sense
analogous to the performance of mechanical work.

Radiation in the optical region of the spectrum always
has a comparatively high temperature—much higher than
room temperature. Hence the ratio To/T is usually
small. For a xenon lamp, for example, Τ « 10 000° Κ,
and for To = 300° we have To/T « 3 x 10~2.

Thus, the energy losses that must in principle be ac-
cepted in order to be able to form a light beam of arbi-
trary brightness are virtually negligible. Of course it
does not follow from all this that just any sort of light
absorption would facilitate the solution of this problem.
General thermodynamic considerations cannot indicate
specific means for realizing the systems discussed. It
is extremely important, however, that thermodynamics
does not impose any limitations on the increase in the
brightness of light beams provided only that energy can
be exchanged between the light beams and the optical
system.

Fifteen years ago there were no optical systems
capable of increasing the brightness of a light beam; now
there are. For example, the ruby laser mentioned above
converts the radiation flux from a xenon lamp into a
laser beam of enormous brightness, the decrease in the
entropy of the light flux being compensated by an in-
crease of the entropy of the "optical system." The fact
that the pumping process produces a population inversion
in the ruby crystal and that the radiation is emitted as a
result of induced transitions in no way invalidates the
approach to the treatment of the system outlined above.
For example, we may consider a pumping pulse during
which the crystal is excited, radiates, and then returns
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to its initial equilibrium state, giving up the energy
"trapped" within it to a thermostat. The increase 6S in
the entropy of the system naturally depends on specific
features of this cycle (constant volume, constant pres-
sure, chemical reactions, etc.), but in all cases the de-
cisive feature is the smallness of To as compared with
T. When To/T <S 1, thermodynamics imposes no limita-
tions of practical significance on the characteristics of
the laser beam or the magnitude of the conversion effi-
ciency 7). Of course large values of η, close to the limit-
ing values given in (12) and (13), cannot always be
achieved.

We note in concluding that it is not at all necessary to
use a medium in which there is a population inversion
in order to increase the brightness of light beams. Sys-
tems for transforming laser beams using Raman and
Mandel'shtam-Brillouin scattering have already been
designed and tested, and brightness increases of tens
and hundreds of times have been achieved with them
(see*-4'5·1, for example). The scattering liquid (or gas)
is in a state of thermodynamic equilibrium. The ex-
change of energy between the light beam and the medium
takes place in the scattering process itself, which is ac-
companied by a decrease in the frequency of the light
quanta: ω -~ ω' (ω' < ω). It is noteworthy that the main
thing here is the frequency decrease, i.e., the energy
loss, in the scattering process. It may be very small
(for example, (ώ — ω')/ω ~ 10~5 for Mandel'shtam-
Brillouin scattering), but it is absolutely essential; the
converter cannot work if there is no frequency shift in
the scattering process, i.e., if ω = ω'. In more compli-
cated cases the frequency may increase in the scattering
process (e.g., in generating anti-Stokes lines), but the
process always takes place in such a manner that the
total entropy increases.

The nonlinear optical phenomena whose observation
and study became possible only when powerful laser light
sources became available have opened entirely new pos-
sibilities for the processing of light pulses, including the
possibility of increasing the brightness of the pulse at
the expense of its duration.

''The Lagrange-Helmholtz law is usually written in the form μΐ sin u
= μ'I' sin u', where μ represents the refractive index in the object
space, /, the transverse dimension of the object, u, the angle sub-
tended by the entrance pupil at the center of the object, and the
primed letters represent the corresponding quantities pertaining to
the image space, the image, and the exit pupil.

2'We assume for simplicity that the areas F and F' are perpendicular to
the axes of the corresponding beams.
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